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Abstract
We discuss a class of explicitly solvable mean field type control problems/mean

field games with a clear economic interpretation. More precisely, we consider long
term average impulse control problems with underlying general one-dimensional
diffusion processes motivated by optimal harvesting problems in natural resource
management. We extend the classical stochastic Faustmann models by allowing
the prices to depend on the state of the market using a mean field structure. In a
competitive market model, we prove that, under natural conditions, there exists an
equilibrium strategy of threshold-type and furthermore characterize the threshold
explicitly. If the agents cooperate with each other, we are faced with the mean
field type control problem. Using a Lagrange-type argument, we prove that the
optimizer of this non-standard impulse control problem is of threshold-type as well
and characterize the optimal threshold. Furthermore, we compare the solutions and
illustrate the findings in an example.

Keywords: mean field games, mean field type control, optimal harvesting, stochastic
impulse control, diffusion processes

Subject Classifications: 91A15, 91A25, 49N25, 93E20

1. Introduction Mean field game theory has been introduced by Lasry and Lions [34]
and by Huang, Malhamé, Caines [30] to study Nash equilibria of differential games with
many players, where each player controls a diffusion. The main feature of these games
is that the players do not interact with the others individually, but only through the
distribution of all players’ states. This gives rise to apply techniques similar to mean
field approximation from physics to obtain approximate equilibria for N -player games.
Applications include growth models, the production of an exhaustible resource by a
continuum of agents, as well as opinion dynamics [13, 27]. In the classical diffusion model
the equilibria of the limiting mean field game are given by a system of nonlinear partial
differential equations with partly initial, partly terminal conditions, if one considers the
analytic approach to mean field games, or they are given by a coupled forward backward
stochastic differential equation, if one considers the probabilistic approach (for details
consider [8, 14, 15]). Note, however, that also these systems are mostly intractable. Only
in the case of linear dynamics and quadratic costs, explicit solutions have been obtained.
More recently, several other types of mean field games have been introduced, such as
finite state mean field games [18, 26, 36] or mean field games of stopping [10, 37, 38, 17],
in which case it is sometimes possible to obtain other explicitly solvable models which
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might yield a deeper understanding of the nature of mean field equilibria. First results
on mean field games of impulse control for diffusion processes have been obtained in [11].
The main focus there is on developing a general theory in a Brownian motion model
including existence and uniqueness results of equilibria.

Another branch of research covers mean field type control theory, which discusses a
connected question. The difference is that in these models there is no competition be-
tween the agents, but they are assumed to cooperate. From a mathematical perspective,
this means that there is only one decision maker who chooses a control to optimize the
expected reward for the whole population. We refer to [4] for an early paper on the
maximum principle for such problems and to [16] for a comparison of mean field games
and mean field type control problems. Some real-world problems have reasonable inter-
pretations both as a mean field game and a mean field type control problem, see, e.g.,
[6] for an example inspired by pedestrian crowd dynamics.

In this paper, we leave the classical setting of continuous stochastic control, but
consider stochastic impulse control problems. Impulse control problems form the math-
ematical framework to study a continuous time model with interventions at adaptively
chosen discrete time points only. Such problems naturally arise whenever costs have to be
paid for each interventions, e.g., in portfolio management with constant transaction costs
([23], [7]) and control of the exchange rate by the central bank ([35]). An overview on
results for jump diffusions is given in [39], see also [33] for a survey article with financial
applications. Many of these articles are based on the fundamental connection between
impulse control problems and quasi-variational inequalities developed originally in [9], see
also [19] for more references. This formulation is straightforward for discounted prob-
lems. Some more caution is needed for long-term average formulations which, however,
play an important role as well, see [40, 28, 29, 21, 20] for some recent references.

Here we consider a well-known impulse control problem that naturally arises in nat-
ural resource management. Its deterministic form is widely used to calculate optimal
harvesting strategies and originates in the work of Martin Faustmann back in 1849.
Over the last decades, different stochastic extensions of this classical model utilizing dif-
fusions have been suggested and discussed, see [22, 44, 25, 2, 3, 43] to name just a few.
The underlying question may be formulated as follows: Assume that the volume of wood
in a forest stand is modelled as a one dimensional diffusion process and that fixed non-
zero costs occur for each time harvesting. When should the forest stand be optimally
harvested and what is the optimal value?

In this paper, we add as a new feature an interacting component of different agents
by letting the reward of the agents depend on the average harvesting rate in the market.
More precisely, we consider a mean field framework and assume that the reward depends
on the expected harvesting rate, that in turn depends on a joint strategy all other agents
are assumed to use. In this context two problems are of interest: First, we can assume
that all agents compete with each other. In this setting every agent wants to maximize
his reward given the other agents’ strategies and we are interested in finding equilibria
of these game. Second, we can assume that all agents corporate with each other. In this
setting they jointly choose one strategy that maximizes the reward of all agents together.
The first problem is a mean field game, the second problem is a mean field control type
problem.

We prove, for a natural set of assumptions, that for both problems optimal strategies
of threshold-type exist and characterize these thresholds explicitly. Moreover, we obtain
uniqueness of the equilibrium in threshold strategies. Furthermore, we obtain that the
threshold for the mean field game is smaller than any threshold for the mean field type
control problem. As a second step we also consider a second price formation method,
where the price depends on the overall supply of wood in the market. In this setting we
can again prove the existence of optimal strategies of threshold type for both problems
and obtain also a similar characterization result. However, here no uniqueness statement
is possible and moreover, we obtain that the thresholds for the mean field game are larger
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than the thresholds for the mean field type control problem, so the relation is reversed.
The remainder of the article is structured as follows: In Section 2 we introduce the

full model and the standing assumptions. In Section 3 we describe several preliminary
results including the necessary results for the underlying impulse control problems, which
are proven in the Appendix A. Section 4 presents the analysis of the mean field game,
Section 5 presents the treatment of the mean field type control problem. Section 6 then
provides the comparison result regarding the thresholds for the game and the control
problem. Section 7 then describes the analysis of the second price formation mechanism.
Finally, Section 8 illustrates the theoretical findings in two examples where the dynamics
of the forest stand are modeled by a logistic SDE.

2. Model and Standing Assumptions In this section we introduce the model as
well as the necessary assumptions used in this paper. In the first subsection we describe
and motivate the general model. In the second subsection we then formulate the standing
assumptions.

2.1. The Model To model the natural resource under consideration, e.g., in the origi-
nal model the volume of wood in the forest stand, we use a stochastic process (Xt)t≥0 that
is a regular one-dimensional Itô-diffusion on R+ = (0,∞), whose dynamics is described
by

dXt = µ(Xt)dt+ σ(Xt)dWt

for a standard Brownian motion W and continuous functions µ : R+ → R, σ : R+ → R+
that are sufficiently regular to guarantee a unique (strong) solution to the stated SDE.
As usual, we denote by Px probabilities for the process conditioned to start in the initial
state x and write Ex for the corresponding expectation operator. We furthermore denote
the speed measure by M and the scale function by S. By assumption, their densities m
and s, resp., are given by (see e.g. [12])

m(x) = 2
σ2(x) exp

(∫ x

a

2µ(y)
σ2(y)dy

)
, s(x) = exp

(
−
∫ x

a

2µ(y)
σ2(y)dy

)
for some a ∈ R+. The forest owner can at any time decide to cut the forest, in which case
the process is restarted at an externally given level y0 > 0. In contrast to other models,
we follow the classical Faustmann literature and assume that y0 cannot be chosen by
the decision maker, which simplifies some expressions. Let us, however, remark that the
basic ideas used in the following could be taken over to more general settings as well.
Formally, the cutting decision is modelled by a sequences of stopping times R = (τn)n∈N
satisfying limn→∞ τn = ∞ a.s. We just consider strategies R = (τn)n∈N such that the
controlled process fulfills XR

τn− ≥ y0 for all n ∈ N, which we call admissible strategies in
the following. Here, by XR we denote the solution to

XR
t = XR

0 +
t∫

0

µ(XR
s ) ds+

t∫
0

σ(XR
s ) dWs −

∑
n; τn≤t

(XR
τn− − y0).

The most interesting strategies in practice as well as in our following discussions are
threshold strategies. These are strategies R = (τn)n∈N such that for a given threshold
y > y0 we have (with τ0 = 0):

τn = inf{t ≥ τn−1 : XR
t ≥ y}, n ∈ N.

We denote such a threshold strategy for a threshold y > y0 by R(y). In Figure 1 we
present a simulated sample path for such a strategy.
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Figure 1: Simulated sample path with threshold strategy

In the classical version of this famous impulse control problem, the forest owner
chooses an admissible strategy in order to maximize his long term average reward

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−)−K)

 ,

where K > 0 denotes the fixed costs for each cutting decision and γ(XR
τn−) can be

interpreted as the income earned for selling the available wood at time τn−.
However, this classical impulse control problem lacks one – often crucial – feature.

It ignores that there might be other forest owners who also grow and sell their wood at
the same time and therefore influence the prices. Here we introduce these other agents
in a mean field type fashion. More precisely, we assume that there is a market for
wood consisting of a continuum of agents with the same structure (dynamics and reward
functional) as the decision maker under consideration. We remark that considering a
continuum of agents is the natural way to formalize agents with negligible individual
influence on the market outcome.

Since we consider a long-term average reward structure it is sensible to consider
admissible stationary strategies formally introduced in Definition 2.3 below. Moreover, in
this context it is natural to assume that the wood price depends on the average harvesting
rate. If all other agents use a joint strategy Q = (σn)n∈N, then a representative agent’s
forest stand is described by a process X̂Q with the same dynamics as XQ and some
initial distribution representing the collective distribution of the forest stands at time 0.
By standard renewal theory, the average collective harvesting rate is given by

E[XQ
τ−]− y0

E[τ ] ,

where τ is the stopping time generating Q (see Definition 2.3).
Now, to model our reward, we define for each pair of admissible strategies R, Q, with

Q stationary, the expected reward function

Jx(R,Q) := lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(
γ

(
XR
τn−,

E[XQ
τ−]− y0

E[τ ]

)
−K

) ,

with the interpretation that Jx(R,Q) is the long term average reward obtained by an
individual player starting in state x playing according to strategy R, while the whole
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population plays according to strategy Q. Here, γ(x, z) is the payoff function that models
the reward the decision maker gets each time harvesting, which we assume in our model
to depend on the average harvesting rate E[Xτ−]−y0

E[τ ] .
In this setting two optimization problems naturally arise. First, we could consider

the behaviour of agents in a competitive market. In this setting all agents would –
given the choice of the others which they cannot influence – maximize their reward.
The central interest now lies in finding equilibrium strategies for this problem, that is
finding strategies such that if the whole population of agents plays according to such an
equilibrium strategy, then the individual agent has no incentive to deviate from doing
so. Formally, we search for admissible stationary strategies such that

Jx(Q,Q) = max
R admissible

Jx(R,Q) for all x.

The second situation of interest is the case when all agents cooperate, that is all agents
together choose a strategy in order to maximize the overall reward. Mathematically
speaking, we search for admissible stationary strategies such that

Jx(Q,Q) = max
R admissible

Jx(R,R) for all x.

The first problem is a classical problem in the theory of mean field games, the second
is a classical problem in mean field type control theory, which both up to now have not
been considered in detail in the context of impulse control problems. As in the standard
theory, mean field equilibria are usually not solutions of the mean field type control
problem and vice versa. Indeed, it might be societal beneficial to coordinate on some
strategy where unilateral deviations are still profitable and it might also happen that
unilateral deviations are not profitable, whereas collective deviations are.

2.2. Assumptions In this section we introduce the standing Assumptions 2.1 and 2.7,
which we assume to hold for the rest of the paper, unless explicitly stated otherwise.

Assumption 2.1. 1. The process X is positively recurrent with integrable stationary
distribution. The stationary distribution is, with a slight abuse of notation, denoted
by P(X∞ ∈ dx). Furthermore, we assume that 0 is an entrance-boundary.

2. There is a y1 ≥ y0 such that the drift function µ is strictly decreasing on (y1,∞)
and increasing on (0, y1].

3. limx→∞ s(x) =∞.

Let us briefly comment on the assumption regarding the process X:
1. In terms of the speed measure, the existence of a stationary distribution means

that M(R+) < ∞. Then, up to standardization, M is the stationary distribution of X
and we have

E[X∞] =
∫
R+

x
m(x)
M(R+)dx <∞.

The assumption thatM(R+) <∞ implies that the boundary∞ is natural and 0 is either
entrance or natural (see [32, p.234]). In analytical terms, our additional assumption that
0 is not natural reads, for arbitrary x > 0, as∫ x

0
(S(x)− S(y))M(dy) <∞.

Intuitively, it means that the process can reach an interior point from the state 0, but
cannot reach the state 0 from an interior point.

2. The assumption on the drift µ intuitively means that if the quantity of available
resources is low enough – in our main example this means, young, new trees just got
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planted – there is a random, yet on average positive growth of the drift. But at some
point a level of saturation, for example due to the limited available space, is reached and
there is no more room for further growth. Thus the average growth rate starts shrinking.
This assumption not only seems practical on the intuitive level, it also includes the major
growth models used for modelling natural resources. So it is satisfied the dynamics of the
non-random Richards curve, which is a standard deterministic model for plant growth
([42, 41]) and also one of the most widely used models to describe biologic growth in a
random environment, namely the generalized logistic (Perlhurst-Vearl-)diffusion satisfies
this assumption. This model is given by the SDE

dXt = aXt(1− bXt)dt+ σ(Xt)dWt,

where a, b > 0 and σ is a positive function (when σ is linear, this becomes the (standard)
logistic diffusion) and it will be analysed in our example in Section 8.

3. The assumption on the speed density s could be relaxed, see the proofs below, but
holds in the practically relevant examples.

Remark 2.2. Assumption 2.1.1 means that for all x, y ∈ R+ we have Ex(̊τy) < ∞ for
the hitting time τ̊y = inf{t ≥ 0 : Xt = y}, see [12, II.12]. Hence we can define the
function

ξ : R+ → [0,∞); y 7→ Ey0(τy) (1)

for the threshold time τy = inf{t ≥ 0 : Xt ≥ y}. We then obtain ξ(x) for x ≥ y0 as

ξ(x) =
∫ x

y0

(S(x)− S(y))m(y) dy + (S(x)− S(y0))M [0, y0]

see [28]. In particular, ξ ∈ C2 on [y0,∞).

As a next step let us explicitly define the considered strategies:

Definition 2.3. An impulse control strategy R = (τn)n∈N is called admissible stationary
strategy if there exists a stopping time τ such that τn+1 = τ ◦ θτn + τn, X

R
τ ≥ y0 and τ

has a finite mean under Py0 . Here, θ denotes the shift operator.

Remark 2.4. Note that threshold strategies R(y) for y > y0 are admissible stationary
strategies (τ = τy := inf{t ≥ 0 : Xt ≥ y}). The integrability holds by general theory for
diffusion processes.

As a first step we show that we can restrict our attention on a compact interval of
possible harvesting rates. Indeed, classical theorems on optimal stopping (and also the
results in A) yield that the value of the stopping problem

max
τ

E[Xτ−]− y0

E[τ ]

is attained by a threshold strategy. Thus, the following result describes the maximal
possible harvesting rate.

Lemma 2.5. Let K̃ ≥ 0. Then the function kK̃ : (y0,∞) → R, y 7→ y−y0−K̃
ξ(y) , ξ

defined in (1), has a unique maximizer ŷK̃ and is strictly decreasing for all y > ŷK̃ . For
constants K̃1 < K̃2 we moreover have that ŷK̃1

< ŷK̃2
.

In order to prove this lemma we first prove the following statement which is perhaps
of more general interest. See also [1] for a related result.

Lemma 2.6. Assume that there exists y1 ≥ y0 such that µ is (strictly) decreasing on
[y1,∞) and increasing on (0, y1]. Then, there exists y2 ∈ [y1,∞] such that ξ (see equation
1) is (strictly) convex on (y2,∞) and concave on [y0, y2].
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Proof. For all x, b ∈ R+ with x < b using Dynkin’s formula and standard diffusion theory,
see e.g. [32, Chapter 15.3], it holds that

b = Ex[Xτb ] = x+ Ex
[∫ τb

0
µ(Xt)dt

]
= x+

∫ b

x

(S(b)− S(y))µ(y)M(dy) + (S(b)− S(x))
∫ x

0
µ(y)M(dy).

Differentiating with respect to x yields

1 = s(x)
∫ x

0
µ(y)m(y)dy. (2)

Now, we differentiate twice in the formula for ξ in Remark 2.2 and obtain

ξ′(x) = s(x)M [0, x], ξ′′(x) = s′(x)M [0, x] + s(x)m(x).

Taking s′(x) = 2µ(x)
σ2(x)s(x), m(x) = 2/(s(x)σ2(x)) and (2) into account, we obtain

ξ′′(x) = − µ(x)
σ2(x)/2s(x)M [0, x] + 1

σ2(x)/2

= 2s(x)
σ2(x)

∫ x

0
(µ(y)− µ(x))m(y) dy

=: 2s(x)
σ2(x)I(x).

Noting that I ′(x) = −µ′(x)M [0, x], we see that I is increasing if µ is decreasing and
vise versa. Therefore, under our assumptions, ξ′′ changes sign at most once and from
negative to positive.

Proof of Lemma 2.5. Let us start by observing that

lim
y→y0

y − y0 − K̃
ξ(y) = −∞,

lim
y→∞

y − y0 − K̃
ξ(y) = lim

y→∞

1
ξ′(y) = lim

y→∞

1
2s(y)M [0, y] = 0

and kK̃(K̃ + y0 + 1) > 0. Thus, a maximum point exists and is given by a critical point,
i.e. by a root of

F̃K̃(y) = ξ(y)− (y − y0 − K̃)ξ′(y),
since it suffices to consider the numerator of the first order condition as the denominator
is always positive. For all y < y0 + K̃ we have F̃K̃(y) > 0 since ξ′(y) > 0 for all
y ≥ y0. Moreover, let y2 be as in Lemma 2.6. Then for y in the (possibly empty) interval
(y0 + K̃, y2) we have

∂

∂y
F̃K̃(y) = − (y − y0 − K̃)︸ ︷︷ ︸

>0

ξ′′(y)︸ ︷︷ ︸
≤0

≥ 0.

For y > max{y0 + K̃, y2} we have

∂

∂y
F̃K̃(y) = − (y − y0 − K̃)︸ ︷︷ ︸

>0

ξ′′(y)︸ ︷︷ ︸
>0

< 0.

In total we obtain that F̃K̃ is positive on [y0,max{y0 + K̃, y2}] and is strictly decreasing
after max{y0 + K̃, y2}. Therefore, it has exactly one root which furthermore lies in
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[max{y0 + K̃, y2},∞), which implies that kK̃ has exactly one maximum point and that
this maximum is attained at a point in [max{y0 + K̃, y2},∞). Since the derivative is
strictly negative for y > max{y0 + K̃, y2} and ŷK̃ ≥ max{y0 + K̃, y2} we obtain that kK̃
is strictly decreasing for y > ŷK̃ .

Let now K̃1, K̃2 ≥ 0 be such that K̃1 < K̃2. Furthermore, let ŷ1 be the unique
maximizer of kK̃1

and ŷ2 be the unique maximizer of kK̃2
. Then ŷ1 solves

ξ(ŷ1)− (ŷ1 − y0 − K̃1)ξ′(ŷ1) = 0

and ŷ1 ≥ max{y2, K̃1 + y0} by the previous discussion. Therefore, we have ŷ1 ≥ y2, thus

F̃K̃2
(ŷ1) = ξ(ŷ1)(ŷ1 − y0 − K̃2)ξ′(ŷ1)

= ξ(ŷ1)− (ŷ1 − y0 − K̃1)ξ′(ŷ1)︸ ︷︷ ︸
=0

+ (K̃2 − K̃1)︸ ︷︷ ︸
>0

ξ′(ŷ1)︸ ︷︷ ︸
>0

> 0.

Since by the previous discussion F̃K̃2
is decreasing on [max{y2, y0 + K̃2},∞) and F̃K̃2

is
positive in the beginning of this interval, the unique root ŷ2 of F̃K̃2

lies right of ŷ1, which
proves the desired claim.

Thus, we can restrict our attention to the compact interval [0, ŷ0−y0
ξ(ŷ0) ] of average

harvesting rates. Now we are in the position to conclude the description of the model by
adding the following assumption:

Assumption 2.7. The function γ is of the form γ(y, z) = (y−y0)ϕ(z) for a continuously
differentiable and strictly decreasing function ϕ : [0, ŷ0−y0

ξ(ŷ0) ]→ R+.

We highlight that it would be possible to formulate more general assumptions allow-
ing for a reward function γ(y, z) : [y0,∞) × [0, ŷ0−y0

ξ(ŷ0) ] → R that is twice continuously
differentiable in the first argument and decreasing in the second argument. However,
this would yield to rather technical additional assumptions explicitly requiring the prop-
erties derived in Section 3. Nonetheless, our restriction on this assumption has mainly
economic reasons, since such a general payoff function does not have a clear economic
interpretation. Indeed, in our setting of a continuum of players, a payoff function “quan-
tity times price” is the only sensible formulation of the fact that agents have a negligible
impact on the market price.

3. Preliminaries This section collects preliminary results regarding the associated
classical impulse control problems necessary to discuss the mean field game and the
mean field type control problem in the subsequent sections.

Let f : R+ → R be an increasing and continuous function satisfying f(y0) = 0
and let h : R+ → R+ be a continuous function satisfying the linear growth condition
h(x) ≤ c(1 + x) for some c > 0. Then the control problem of interest is given as
maximizing

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(f(Xτn−)−K)−
∫ T

0
h(Xs)ds


among all admissible strategies. To analyse the control problem define for all x ∈ R+
the auxiliary value function

vh(x) := sup
Q

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(f(XQ
τn−)−K)−

∫ T

0
h(XQ

s )ds


for Q = (τn)n. We often suppress the dependence on Q in the following when the context
is clear.
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Proposition 3.1. Assume there is a maximizer y∗ in [y0,∞) of

y 7→
f(y)−K − Ey0

[∫ τy
0 h(Xs)ds

]
ξ(y) (3)

for the uncontrolled process X, then for all x ∈ R+ we have

vh(x) = sup
y>y0

f(y)−K − Ey0

[∫ τy
0 h(Xs)ds

]
ξ(y) .

Furthermore, the threshold strategy R(y∗) is optimal for all x ∈ R+ and R(y∗) is the
unique optimizer amongst threshold strategies, if y∗ is the unique maximizer of (3).

The proof of this result is presented in Appendix A.
For us the central control problem of interest is for fixed z ∈ [0, ŷ0−y0

ξ(ŷ0) ] the problem

lim inf
T→∞

Ex

 ∑
n:τn≤T

(γ(Xτn−, z)−K)


for which we now investigate the function y 7→ γ(y,z)−K

ξ(y) :

Lemma 3.2. Let ŷ0 denote the unique maximizer of y−y0
ξ(y) . Then for every z ∈ [0, ŷ0−y0

ξ(ŷ0) ]
there exists a unique critical point y = yz ∈ (ŷ0,∞) of y 7→ γ(y,z)−K

ξ(y) and this is a global
maximum. Moreover, for all pairs (y, z) describing a critical point as given before, it
holds that

∂2

∂y2
γ(y, z)−K

ξ(y) < 0.

Proof. Fix z ∈ [0, ŷ0−y0
ξ(ŷ0) ]. Then we have

φ(z)(y − y0)−K
ξ(y) = φ(z) ·

y − y0 − K
φ(z)

ξ(y) .

Thus, the existence of a unique critical point satisfying the stated condition directly
follows from Lemma 2.5 using K̃ = K

φ(z) . Furthermore, we have for any pair (y, z) such
that y is a critical point for z(

∂

∂y

)2
γ(y, z)−K

ξ(y) =
(
∂

∂y

)2
ϕ(z)(y − y0)−K

ξ(y)

= ∂

∂y

ϕ(z)ξ(y)− (ϕ(z)(y − y0)−K) ξ′(y)
(ξ(y))2

= − (ϕ(z)(y − y0)−K)ξ′′(y) + 2ξ(y)ξ′(y)
=0︷ ︸︸ ︷

(ϕ(z)ξ(y)− (ϕ(z)(y − y0)−K)ξ′(y))
ξ(y)4

= − (ϕ(z)(y − y0)−K)ξ′′(y)
ξ(y)4 < 0,

which proves the rest of the claim.

Lemma 3.3. The function

g :
[
0, ŷ0 − y0

ξ(y)

]
→ [ŷ0,∞), z 7→ arg max

y∈[ŷ0,∞)

γ(y, z)−K
ξ(y) (4)
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is continuous. In particular, the set{
y ∈ [y0,∞)

∣∣∣∣∃z ∈ [0, ŷ0 − y0

ξ(y)

]
: y is a critical point of γ(y, z)−K

ξ(y)

}
(5)

is compact.

Proof. We apply the implicit function theorem. By Lemma 3.2 for any fixed z ∈ [0, ŷ0−y0
ξ(ŷ0) ]

there exists a unique maximizer which moreover is a solution to

F̃ (y, z) := φ(z)ξ(y)− (φ(z)(y − y0)−K)ξ′(y) = 0, (6)

where the right-hand side is, as stated before, the numerator of the first order condition.
Since we additionally have, by Lemma 3.2, that

∂

∂y
F̃ (y, z) := ∂2

∂y2
γ(y, z)−K

ξ(y) < 0,

we can apply the implicit function theorem and obtain that y = ψ(z) for a continuous
function ψ defined on an open neighbourhood U of z. The second part of the claim
directly follows from the continuity of g.

4. The Mean Field Game In this section we prove that Assumptions 2.1 and 2.7
imply the existence of a mean field equilibrium in threshold strategies and provide a
criterion ensuring the uniqueness of such an equilibrium. By definition, a mean field
equilibrium in threshold strategies satisfies

R(yg) ∈ arg maxR admissible J(R,R(yg)).

In Lemma 3.3 we proved that the set (5) is compact. Let now y and y denote
the minimal and maximal elements of this set. Since for any equilibrium strategy of
threshold type the threshold y has to be optimal given the average harvesting rate z, we
directly obtain that only a threshold from the interval [y, ȳ] can constitute a mean field
equilibrium.

The central idea now is that any mean field equilibrium in threshold strategies is a
fixed point of the following continuous function

Φ : [y, ȳ]→ [y, ȳ]; y 7→ arg max
ỹ∈[y,ȳ]

γ
(
ỹ, y−y0

ξ(y)

)
−K

ξ(ỹ) (7)

and any fixed point of this map is a mean field equilibrium in threshold strategies. Indeed,
let y be a threshold such that R(y) is an equilibrium. By Proposition 3.1, Lemma 3.2
and 3.3 the threshold y maximizes

ỹ 7→
γ(ỹ, y−y0

ξ(y) )−K
ξ(ỹ)

and satisfies y < y < ȳ. If, on the other hand, y ∈ [y0, ȳ] is a fixed point of (7), then y
maximizes

ỹ 7→
γ(ỹ, y−y0

ξ(y) )−K
ξ(ỹ) ,

which by Proposition 3.1 and Lemma 3.2 means that R(y) is the unique optimal threshold
strategy for z = y−y0

ξ(y) , which is the defining property of a mean field equilibrium.

Theorem 4.1. Let Assumptions 2.1 and 2.7 hold. Then, there is a fixed point of Φ,
which means that a mean field equilibrium in threshold strategies exists.
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Proof. We note that Φ = g ◦ f, where g is as in (4) and

f : [y, ȳ]→
[
0, ŷ0 − y0

ξ(y)

]
; y 7→ y − y0

ξ(y) .

The function f is continuous since ξ is continuous and g is continuous by Lemma 3.3.
Therefore, the function Φ itself is continuous and Brouwer’s fixed point theorem yields
the existence of a fixed point.

A relevant question in game theory is under which conditions an equilibrium is unique.
As in most situations, also here the uniqueness result relies on monotonicity of the map
that characterizes the equilibria.
Theorem 4.2. There is a unique mean field equilibrium in threshold strategies.
Proof. In the setting of the proof of Theorem 4.1 we have seen that the map Φ is a
composition of two functions f and g. The optimization problem considered in the
function g is to maximize φ(z)(y−y0)−K

ξ(y) , which is equivalent to maximizing y−y0−K/φ(z)
ξ(y) .

Since K/φ(z) is strictly increasing in z we obtain by Lemma 2.5 that the function g, that
maps z to the unique optimizer, is increasing. Moreover, the function f is decreasing
since by Lemma 3.2 we have y > ŷ0 and by Lemma 2.5 the function y−y0

ξ(y) is strictly
decreasing for y ≥ ŷ0. Thus, in total the function Φ is strictly decreasing, which yields
in combination with Theorem 4.1 that a unique fixed point exists.

5. The Mean Field Control Problem We now consider the situation that the
market participants cooperate in the sense that they agree to choose a common strategy.
The mean field type control problem therefore consists of maximizing

Jx(R,R) = lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(
γ

(
XR
τn−,

E[X̂R
τ ]− y0

E[τ ]

)
−K

) (8)

over all admissible stationary strategies R with corresponding stopping times τ . In the
class of threshold strategies R(y), y ≥ y0, the optimization problem is easily solved. In
this case, we explicitly know E[X̂Rτ ]−y0

E[τ ] = y−y0
ξ(y) , hence, we just have to maximize the

explicitly given real function

v(y) := Jx(R(y), R(y)) =
γ
(
y, y−y0

ξ(y)

)
−K

ξ(y) .

However, the problem (8) is a non-standard stochastic control problem due to the
expectation-terms. Therefore, it is by no means clear that threshold strategies are indeed
optimal in the class of all admissible stationary strategies. In the following theorem, we
prove this fact by splitting up the problem as follows

sup
R
Jx(R,R) = sup

z∈[0, ŷ0−y0
ξ(y) ]

sup
R with E[XRτ ]−y0

E[τ] =z

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−, z)−K)

 (9)

and then utilizing a Lagrange-type approach to reduce the restricted problem to a stan-
dard problem.
Theorem 5.1. Under Assumptions 2.1 and 2.7 the value of the optimization problem
(8) is

sup
y
H(y), H(y) =

γ
(
y, y−y0

ξ(y)

)
−K

ξ(y)
and if y∗ is a maximizer of H, then the threshold strategy R = R(y∗) is optimal in the
class of all stationary strategies. Moreover, any such threshold value y∗ lies in [ŷ0,∞).
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Proof. By the previous discussion, it is enough to consider, for fixed z ∈
[
0, ŷ0−y0

ξ(ŷ0)

]
, the

restricted problem

sup
R with E[XRτ ]−y0

ξ(y) =z

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−, z)−K)

 (10)

and prove that a threshold strategy is optimal.
Following a standard Lagrange approach, we consider, for fixed λ < φ(z), the associ-

ated unconstrained problem

sup
R

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−, z)−K)

− λ(E[X̂R
τ−]− y0

E[τ ] − z

)
. (11)

Writing N(t) = max{n : τn ≤ t} we obtain by standard renewal results that

1
T

∑
n:τn≤T

(
XR
τn− − y0

)
= 1
T

N(T )∑
n=1

(
XR
τn− − y0

)
= N(T )

T
· 1
N(T )

N(T )∑
n=1

(
XR
τn− − y0

)
→ 1

E[τ ] · (E[Xτ−]− y0) = 1
E[τ ] ·

(
E[X̂τ−]− y0

)
a.s. and in L1, hence problem (11) may be rewritten as

sup
R

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

((φ(z)− λ)(Xτn− − y0)−K)

+ λz.

As λz is just a constant and

(φ(z)− λ)(y − y0)−K
ξ(y) = (φ(z)− λ)y − y0 − K̃

ξ(y)

with K̃ = K/(φ(z) − λ) we obtain by Lemma 2.5, and Proposition 3.1 that there is
a threshold y = y(λ, z) ≥ ŷ0 such that R(y) is the unique optimal threshold strategy.
Moreover, by Lemma 2.5 the optimizer is increasing in λ and satisfies y(λ, z) ≥ y0 +

K
φ(z)−λ . Thus, we obtain

lim
λ→φ(z)

y(λ, z) =∞ and lim
y→−∞

y(λ, z) = ŷ0.

Moreover, we can show as in Lemma 3.3 that the map λ 7→ y(λ, z) is continuous. There-
fore, for any z ∈ (0, ŷ0), there is a λz such that

z = y(λz, z)− y0

ξ(y(λz, z))
.

Since R(y(λz, z)) is an (unconstrained) maximizer for

sup
R

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

γ(Xτn−, z)−K

− λz (E [Xτ−]− y0

E[τ ] − z
)

and fulfils z = y(λz,z)−y0
ξ(y(λz,z)) it is a maximizer for (10) as well. We conclude by noting

that any threshold startegy R(y) with threshold y < ŷ0 is not optimal for (10) since
φ(z)(y − y0) < φ(z)(y(λz, z)− y0).
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6. Computation and Comparison of Solutions We have shown that, both for the
mean field game and for the mean field equilibrium, there is a solution being a threshold
strategy. In both cases the threshold can be obtained by maximizing the function

G : (y0,∞)× R+; (x1, x2) 7→
γ
(
x1,

x2−y0
ξ(x2)

)
−K

ξ(x1)

in a certain way. We remark that G is differentiable, since x2 7→ x2−y0
ξ(x2) is differentiable

due to (13).
The optimal thresholds yp for the cooperative mean field type control problem are

given as the solutions of

0 = ∂

∂y
G(y, y) = ∂

∂x1
G(y, y) + ∂

∂x2
G(y, y)

and the threshold yg constituting an equilibrium for the competitive mean field game is
given as the solution of

0 = ∂

∂x1
G(y, y).

Our assumptions, in particular the assumption that γ(x, z) is strictly decreasing in z
for all x, yield the following comparison result stating that the threshold under competi-
tion is smaller than in the cooperative regime. Therefore, in our (oversimplified) model,
competition leads to a smaller average volume of wood in the forest stands.

Theorem 6.1. Let yp be an optimal threshold for the mean field type control problem
and yg the unique threshold describing a mean field equilibrium. Then yp ≥ yg.

Proof. Assume that there is a threshold for the mean field type control problem yp such
that yg > yp. Since by Lemma 2.5 and Theorem 5.1 we have yg, yp > ŷ0 Lemma
2.5 yields that yg−y0

ξ(yg) < yp−y0
ξ(yp) . As γ(x, z) is strictly decreasing in z, it holds that

G(x, yg) > G(x, yp) for all x > y0. Since yg is an equilibrium we obtain that

G(yp, yg) ≤ G(yg, yg).

Since yp is a solution of the mean field type control problem we have

G(yg, yg) ≤ G(yp, yp).

All in all we obtain

G(yp, yp) < G(yp, yg) ≤ G(yg, yg) ≤ G(yp, yp),

which is a contradiction.

7. An alternative market state dependence In this section we investigate a dif-
ferent interaction mechanism. More precisely, we assume that the prices do not depend
on the average harvesting rate, but on the expected wood supply. The existence of mean
field equilibria and optimal mean field type control can be established using similar meth-
ods. However, we no longer obtain that equilibria in threshold strategies are unique and
the comparison result now holds with interchanged roles. We do not completely derive
the results here, but instead we highlight, at which points differences in the results or
proofs occur.

In this section we assume that the wood price at time t depends on the volume of
wood available at that time, which is described by the mean E[X̂Q

t ] depending on the
initial distribution of X̂Q

0 . As we consider a long-term reward structure, it is reasonable
to assume that the process X̂Q has an invariant distribution ΠQ and X̂Q is started from
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this. We call strategies satisfying this assumption invariant admissible strategies. In this
setting, E[X̂Q

t ] =
∫
xΠQ(dx) =: E[X̂Q

∞] is independent of t. Therefore, the new reward
functional for each pair of admissible strategies R, Q, with Q invariant, is given by

Jx(R,Q) := lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−,E[X̂Q

∞])−K)

 , (12)

where γ(x, z) is now the payoff function that models the reward the decision maker gets
each time harvesting, which we assume here to depend on the average amount of wood
E[X̂Q

∞] that the other market participant have in their forest.
Except for the change in the reward functional the formulation of the mean field game

and the mean field type control problem are completely analogous and also the standing
assumptions 2.1 are unchanged. Only for the payoff assumption 2.7 we have to adjust
the range of possible values for the expected size of the forest stand. This is done in the
following lemma:

Lemma 7.1. Let R be an admissible impulse control strategy. Then

z1 ≤ lim inf
T→∞

E[XR
T ] ≤ lim sup

T→∞
E[XR

T ] ≤ z2,

where z1 := E[Xr
∞] for the diffusion process Xr reflected downwards in y0 and z2 :=

E[X∞] for the uncontrolled diffusion process X.

Proof. First note that the expectations z1, z2 exist by Assumption 2.1 and as Xr is
positively recurrent. The inequalities can be proved using an easy (partial) coupling
argument:
We construct a version of Xr by letting it run coupled with XR until a state ≥ y0 is
reached. Then, we reflect Xr in y0 downwards and let both processes run following their
dynamics with respect to the same Brownian motion until the first time the two paths
meet again. Then, we couple the paths and follow this rule. Consequently, for each t
and each ω, we have Xr

t (ω) ≤ XR
t (ω), proving the first inequality.

Similarly, we construct a version of the uncontrolled diffusion X by running coupled with
XR until the first impulse time. Then we let both processes run following their dynamics
with respect to the same Brownian motion until we couple them the next time the two
paths meet and so on. Again, for each t and each ω, we have XR

t (ω) ≤ Xt(ω).

With this preparation we can restate Assumption 2.7:

Assumption 7.2. The function γ is of the form γ(y, z) = (y−y0)ϕ(z) for a continuously
differentiable and strictly decreasing function ϕ : [z1, z2]→ R+.

As a next step we investigate the interaction term E[XQ
∞] for an economically rea-

sonable class of strategies that moreover lead to a stationary controlled process. This
class of strategies is the set of all admissible stationary strategies with the additional
requirement that τ is non-lattice. We remark, that threshold strategies R(y) with y > y0
satisfy this requirement.

Proposition 7.3. For each admissible stationary strategy R with corresponding stopping
time τ such that τ is non-lattice, the stationary distribution for the process XR, denoted
by Π, exists and is given by∫

f(x)Π(dx) = 1
Ey0 [τ ]Ey0

[∫ τ

0
f(Xs)ds

]
.

Proof. It is immediately seen that XR is a regenerative processes in the sense of [5],
Chapter VI. Therefore, the result holds by ibid, Theorem 1.2 on p.170.
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In the case that R = R(y) is a threshold strategy, a more explicit description of the
limiting distribution is possible. By standard diffusion theory, see e.g. [28], Proposition
3.1, we have that XR(y) has a stationary distribution with density

πy0,y(x) =


0, x > y

κm(x)S[x, y], x ∈ [y0, y]
κm(x)S[y0, y] x ≤ y0

, (13)

where S[x, y] := S(y)− S(x) denotes the Stieltjes measure and

κ =
(∫ y

y0

S[w, y] M(dw) + S[y0, y]M [0, y0)
)−1

.

Using this we obtain
E
[
XR(y)
∞

]
=
∫ y

−∞
xπy0,y(x)dx,

which in particular yields that the map y 7→ E
[
X
R(y)
∞

]
is continuous.

Moreover, we also obtain in this setting a monotonicity result. However, whereas
the harvesting rate was decreasing in the threshold value (at least for those thresholds of
interest), here we obtain that the expected volume of wood is increasing in the threshold.

Lemma 7.4. For all y1 < y2 it holds that XR(y1)
∞ <st X

R(y2)
∞ , where <st denotes the

stochastic ordering.
In particular, E[XR(y)

∞ ] is increasing in the threshold level y.

Proof. We show that given an arbitrary pair y1 < y2 there is a switching point z ∈ [y0, y1]
such that for the corresponding densities it holds that

πy0,y1(x) > πy0,y2(x), x < z, πy0,y1(x) ≤ πy0,y2(x), x ≥ z.

This immediately yields the statement. To this end, we first prove that for fixed y0 and
x ≤ y0 the density πy0,y(x) is decreasing in y: We have

πy0,y(x) = m(x) g1(y)
f1(y) + f2(y)

with

f1(y) =
∫ y

y0

S[w, y]dM(w), f2(y) = S[y0, y]M [0, y0], g1(y) = S[y0, y]

Using
f ′1(y) = s(y)M [y0, y], f ′2(y) = s(y)M [0, y0], g′1(y) = s(y)

we obtain
∂

∂y
πy0,y(x) = m(x)g

′
1(y)(f1(y) + f2(y))− g1(y)(f ′1(y) + f ′2(y))

(f1(y) + f2(y))2

= m(x)
(f1(y) + f2(y))2 s(y)

[∫ y

y0

S[w, y]dM(w) + S[y0, y]M [0, y0]

− S[y0, y]M [y0, y]− S[y0, y]M [0, y0]
]

= m(x)
(f1(y) + f2(y))2 s(y)

∫ y

y0

(S[w, y]− S[y0, y])︸ ︷︷ ︸
=−S[y0,w]

dM(w)

 < 0.
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This yields πy0,y1(x) > πy0,y2(x) for all x ≤ y0. It remains to consider the case x > y0.
We first show that for y ∈ [y0, y1] and x ∈ [y0, y] the derivative ∂

∂yπy0,y(x) may be
decomposed as follows:

∂

∂y
πy0,y(x) = m(x)h(x, y),

where h(x, y) is increasing in x. Indeed, for all x ∈ [y0, y] using the notation g2(y) =
S[x, y] we get

∂

∂y
πy0,y(x) = m(x)g

′
2(y)(f1(y) + f2(y))− g2(y)(f ′1(y) + f ′2(y))

(f1(y) + f2(y))2

= m(x)s(y)
(f1(y) + f2(y))2

[∫ y

y0

S[w, y]dM(w) + S[y0, y]M [0, y0]

− S[x, y]M [y0, y]− S[x, y]M [0, y0]
]

= m(x)
{

1
(f1(y) + f2(y))2

(∫ y

y0

S[w, x]dM(w) + S[y0, x]M [0, y0]
)}

=: m(x)h(x, y),

where h(x, y) is indeed obviously increasing in x. This decomposition is sufficient as it
yields that

πy0,y2(x)− πy0,y1(x) = m(x)
∫ y2

y1

h(x, y)dy

changes sign just once. Hence, using πy0,y1(x) > πy0,y2(x) for x ≤ y0 and πy0,y1(x) =
0 < πy0,y2(x) for x ∈ (y1, y2), there exists some z ∈ [y0, y1] satisfying above conditions.

7.1. The Mean Field Game With these preparations we can analyse the existence
of mean field equilibria in threshold strategies:

Theorem 7.5. Let Assumptions 2.1 and 7.2 hold. Then a mean field equilibrium exists.

Proof. As in the case of average harvesting rates a mean field equilibrium in threshold
strategies is given by a fixed point of the slightly modified map

Φ : [y0, ȳ]→ [y0, ȳ], y 7→ arg max
ỹ∈[y0,ȳ]

γ
(
ỹ,E

[
X
R(y)
∞

])
ξ(ỹ) .

This function can be again represented as a composition of two functions f and g, where

f : [y0, ȳ]→ [z1, z2], y 7→ Ex
[
XR(y)
∞

]
and g is defined as in (4) with the domain now given by [z1, z2]. By previous discussions
the map f is continuous and also the continuity of g can be proved as in Lemma 3.3.
Thus, a fixed point of the map Φ and thus a mean field equilibrium exists.

In contrast to the case of average harvesting rates here we do not obtain a general
uniqueness criterion under assumption 7.2. Indeed, we obtain that the function Φ is
increasing instead of decreasing when we assume that φ is additionally differentiable:
Recall the notation from Lemma 3.3. By the implicit function theorem we have that

∂g(z)
∂z

= −
∂
∂x2

F̃ (g(z), z)
∂
∂x1

F̃ (g(z), z)
.
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By Lemma 3.2 we have ∂
∂x1

F̃ (g(z), z) < 0. Moreover, by definition any critical point
g(z) given z satisfies

ξ(g(z))− (g(z)− y0)ξ′(g(z)) = − K

φ(z)ξ
′(g(z)),

which yields

∂

∂x2
F̃ (g(z), z) = φ′(z) (ξ(g(z))− (g(z)− y0)ξ′(g(z)))

= −φ′(z) K

φ(z)ξ
′(g(z)) > 0.

Thus, g is increasing. Since f is also increasing, we obtain that Φ itself is increasing.

7.2. The Mean Field Type Control Problem The analysis for the mean field type
control problem can be carried out similarly as before. The central technical difference
is that now an auxiliary problem with running costs has to be investigated. To this end,
we need the following assumption:

Assumption 7.6. 1. For every z ∈ [z1, z2] and every λ ∈ (0,∞) there is a unique
critical point y = yz ∈ (y0,∞) of

γ(y, z)−K − λEy0

[∫ τy
0 Xsds

]
ξ(y)

and this is a global maximum.

2. For all pairs (y, z) describing a critical point as given before, it holds

∂2

∂y2
γ(y, z)−K − λEy0

[∫ τy
0 Xsds

]
ξ(y) < 0

Theorem 7.7. Under Assumptions 2.1, 7.2, and 7.6, the value for the problem of max-
imizing

Jx(R,R) = lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(
γ

(
XR
τn−,

E[X̂R
τ ]− y0

E[τ ]

)
−K

) (14)

is

sup
y
H(y), H(y) =

γ
(
y,E

[
X
R(y)
∞

])
−K

ξ(y)

and if y∗ is a maximizer of H, then the threshold strategy R = R(y∗) is optimal in the
class of all stationary strategies.

Proof. As in the case of average harvesting rates it suffices to consider for fixed z ∈ [z1, z2]
the restricted problem

sup
R with E[X̂R∞]=z

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−, z)−K)

 (15)

and prove that a threshold strategy is optimal. Also here we follow the Lagrange approach
and consider now for a fixed λ ≥ 0 the associated unconstrained problem

sup
R

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−, z)−K)

− λ(E[X̂R
∞]− z

)
. (16)
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Using standard caculus we obtain

E
[
X̂R
∞

]
= lim
T→∞

E
[
X̂R
T

]
= lim
T→∞

Ex
[
XR
T

]
= lim
T→∞

1
T
Ex

[∫ T

0
XR
t dt

]
,

and hence, we can rewrite(16) as

sup
R

lim inf
T→∞

1
T
Ex

 ∑
n:τn≤T

(γ(XR
τn−, z)−K)−

∫ T

0
λXR

t dt

+ λz.

Using Proposition 3.1 and Assumption 7.6 we obtain that there is a unique threshold
y = y(λ, z). Let y(z) be a threshold value satisfying z = E[XR(y)

∞ ]. Then we obtain that
all maximizers z of (15) fulfil y(z) ≤ y(0, z). Indeed, assume that y(z) > y(0, z). Since
γ(y, z) is decreasing in the second component, we obtain for the value function Jx from
(12)

Jx(R(y(z)), R(y(z))) ≤ Jx(R(y(0, z)), R(y(z)) ≤ Jx(R(y(0, z)), R(y(0, z))),

which is a contradiction. Moreover,

lim
λ→∞

y(λ, z) = y0 ≤ y(z)

and, again by the implicit function theorem and Assumption 7.6, the function λ 7→ y(λ, z)
is continuous. Due to Lemma 7.4

lim
λ→∞

∫
wΠR(y(λ,z))(dw) ≤ z ≤ lim

λ→0

∫
wΠR(y(λ,z))(dw).

Therefore, there is a λz such that z =
∫
wπR(y(λz,z))(dw). Now the proof can be con-

cluded as in the average harvesting rate case.

7.3. Computation and Comparison As in the case of the average harvesting rate
we obtain the thresholds by maximizing now the function

G : (y0,∞)× R+; (x1, x2) 7→ γ(x1,E[X̂R(x2)
∞ ])−K

ξ(x1)

in those ways described in Section 6. We remark that also here G is differentiable, since
x2 7→ E

[
X̂
R(x2)
∞

]
is differentiable due to (13).

Interestingly, also in this setting we obtain a comparison result, however, the relations
hold in the different direction:

Theorem 7.8. Let yp be an optimal threshold for the mean field type control problem
and yg be a threshold describing a mean field equilibrium. Then yp ≤ yg.

Proof. Since γ(x, z) is strictly decreasing in z and x 7→ E[XR(x)
∞ ] is increasing (see Lemma

7.4), we obtain that G(x, z) is decreasing in z. Assume that there is an equilibrium
threshold yg and an optimal threshold for the mean field type control problem yp such
that yg < yp. Then we obtain

G(yg, yg) ≤ G(yp, yp) < G(yp, yg) ≤ G(yg, yg),

which is a contradiction.
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8. Example To illustrate our results, first, we consider the case of a classical logistic
stochastic growth model. This is, the controlled process follows the dynamics

dXt = Xt(a− bXt)dt+ βXtdWt,

where a, b, β are positive constants. This diffusion is well-studied. We refer to [24] for
the results we use here and further references. The results there also yield that our
assumptions are fulfilled.

Using the notation q := 1/2 − aβ−2, it is well-known that X converges towards a
unique stationary distribution if q < 0 and converges to 0 a.s. for q > 0. We assume
q < 0 in the following. Speed measure and scale function are, resp., given by the densities

s(x) = x2q−1 exp
(

2
β2 b(x− 1)

)
(17)

m(x) = 2
β2x

−2q−1 exp
(
− 2
β2 b(x− 1)

)
. (18)

In this case, the function ξ is known (semi-) explicitly:

ξ(y) = 1
β2|q|

(
log
(
y

y0

)
+
∞∑
n=1

1
(1− 2q)n

(ρy)n

n
−
∞∑
n=1

1
(1− 2q)n

(ρy0)n

n

)
,

where (u)n = u(u+ 1) · · · (u+ n− 1) denotes the Pochhammer symbol and ρ := 2bβ−2.
(The series may be represented using hypergeometric functions.) For each y the expec-
tation

E[XR(y)
∞ ] =

∫ y

−∞
xπy0,y(x)dx

needed for the model considered in Section 7 can be calculated according to (13) using
(17) and (18).

To study both models introduced above in parallel, we write

c(y) :=
{
y−y0
ξ(y) for the main model,
E
[
X
R(y)
∞

]
for the model in Section 7.

For the mean field games all we have to find are thresholds yg such that

yg = arg max
y

γ (y, c(yg))−K
ξ(y) .

For the mean field type control problem, the function

y 7→ arg max
y

γ (y, c(y))−K
ξ(y) (19)

has to be optimized. As all expressions are known explicitly, this task can be carried out
straightforwardly. Here we use the following set of parameters

q := −1, b := 1/2, β := 1, y0 := 1, K := 1.

8.1. A reward function yielding unique solutions Let us first choose γ(y, z) =
(y − y0)/(z + 1) for the main model. Then we obtain for the game a unique equilibrium
threshold yg ≈ 5.13 with corresponding value 0.243, cf. Theorem 4.2. For the mean field
type control problem the optimizer is yp ≈ 5.9 with value 0.254. As discussed in Section
6, the threshold yp is higher than yg. The value in the mean field type control problem
is of course higher than the value in the game.
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8.2. A reward function yielding multiple equilibria As mentioned above, the
model discussed in Section 7 potentially allows for multiple equilibria. Indeed, let us
now consider the reward function

γ : [y0,∞)× R+ → R+; (y, z) 7→ y − y0

1 + exp(10(z − 1.9)) .

Having this logistic dependence on z yields three equilibria which are approximately at
the points yg1 ≈ 4.55, yg2 ≈ 6.8 and yg3 ≈ 55.5. While the first and the last one of
them are stable in the sense that when starting with a value y1 in an interval around
the equilibrium point the iteration used to numerically determine the equilibrium points
defined by

yn+1 = arg max
ỹ

γ
(
ỹ,EXR(yn)

∞

)
−K

ξ(ỹ)

for all n ∈ N will converge to yg1 and yg3 respectively, this is not the case for yg2 .

A. Solving the Auxiliary Control Problem(s) In this section we prove Proposition
3.1. First, we derive a verification result. Thereafter, we present a candidate for the
value function and the optimal threshold by relying on an associated stopping problem,
for which we then prove that it indeed satisfies the conditions of the verification result.

Lemma A.1 (Verification result). (i) Let g be a measurable function on R+, let u be
defined by

u(x, y) = f(x)− f(y)−K − g(x) + g(y)

for all x, y ∈ R+, y ≤ x, and assume

(a) M = (g(Xt) −
∫ t

0 (h(Xs) + ρ)ds)t≥0 is a supermartingale under Px for all
x ∈ R+,

(b)

lim sup
T→∞

Exg(XQ
T )

T
≥ 0 for all admissible Q, x ∈ R+,

(c)
u(x, y0) ≤ 0 for all x ∈ R+,

Then
vh(x) ≤ ρ for all x ∈ R+.

(ii) If furthermore Q∗ = (τ∗n)n∈N is admissible and such that

(a) Using the notation MQ
t := g(XQ

t )−
∫ t

0 (h(XQ
s ) + ρ) ds for all Q, we have

Ex
(
MQ∗

τ∗n− −M
Q∗

τ∗
n−1

)
= 0 for all n ∈ N, x ≥ 0,

(b)

lim
T→∞

Exg(XQ∗

T )
T

= 0 for all x ∈ R+,

(c)
u(XQ∗

τ∗n−, y0) = 0 Px-a.s. for all x ∈ R+,

then
vh(x) = ρ, for all x ∈ R+

and Q∗ is optimal.
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Proof. We first fix an admissible Q = (τn)n∈N and T > 0. Since the process XQ runs
uncontrolled on each stochastic interval [τk−1, τk), the optional sampling theorem yields
that Ex[MQ

τk∧T− −M
Q
τk−1∧T ] ≤ 0 for each k ∈ N, x ∈ R+. Hence

Ex

 ∑
n∈N:τn≤T

(f(XQ
τn−)−K)−

∫ T

0
h(XQ

s ) ds


≤ Ex

 ∑
n∈N:τn≤T

(f(XQ
τn−)−K)−

∞∑
k=1

(
MQ
τk∧T− −M

Q
τk−1∧T

)
−
∫ T

0
h(XQ

s ) ds


= Ex

 ∑
n∈N:τn≤T

(f(XQ
τn)−K)−

∞∑
k=1

(
g(XQ

τk∧T−)− g(XQ
τk−1∧T )

−
∞∑
k=1
−
∫ τk∧T

τk−1∧T
(h(XQ

s ) + ρ) ds
)
−
∫ T

0
h(XQ

s ) ds
]

= Ex

 ∑
1≤n:τn≤T

(
f(XQ

τn−)−K − g(XQ
τn−) + g(y0)

)
− g(XQ

T ) + g(XQ
0 ) + ρT


= Ex

 ∑
1≤n:τn≤T

u(XQ
τn−, y0)

− Ex
[
g(XQ

T )
]

+ g(x) + ρT

≤ −Exg(XQ
T ) + g(x) + ρT,

where we use i.(c) and that f(y0) = 0 by assumption.
Dividing by T and taking the limit T →∞, we obtain the first assertion using i.(b) .

The additional assumptions in (ii) guarantee that we have equality in each step for the
strategy Q∗.

We now provide a candidate and verify that this candidate satisfies the assumptions
in Lemma A.1. The intuition for our candidate below is as follows: We first find one
value y from which shifting the process back to y0 yields the maximal reward per time
unit. Due to the continuity of X, we will always hit this point y and therefore going on
like this should yield an optimal strategy. More precisely, define

y∗ := arg max
y∈[y0,ȳ]

f(y)−K − Ey0

(∫ τy
0 h(Xs) ds

)
ξ(y) ,

ρ∗ := max
y∈[y0,ȳ]

f(y)−K − Ey0

(∫ τy
0 h(Xs) ds

)
ξ(y) ,

and Q∗ = R(y∗). Moreover, set for all x ∈ R+

g(x) := sup
τ∈Ty0

Ex
[
f(Xτ )−K −

∫ τ

0
(h(Xs) + ρ∗) ds

]
,

where
Ty0 := {τ stopping time |Xτ ≥ y0 a.s.}.

Note that g(x) is the value function of a classical stopping problem.

Lemma A.2. The function g, the constant ρ∗ and the strategy R(τy∗) fulfil the require-
ments in Lemma A.1.
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Proof. M = (g(Xt)−
∫ t

0 (h(Xs) + ρ∗)ds)t≥0 is a supermartingale: This is well-known by
the standard theory of optimal stopping, but we give a direct proof here using the reverse
optional sampling theorem. Let τ be a bounded stopping time. Then, using the time
shift operator θ,

Ex [Mτ ] = Ex
[
g(Xτ )−

∫ τ

0
(h(Xs) + ρ∗)ds

]
= Ex

[
sup
σ∈Ty0

EXτ
[
f(Xσ)−K −

∫ σ

0
(h(Xs) + ρ∗)ds

]
−
∫ τ

0
(h(Xs) + ρ∗)ds

]

= Ex

[
sup
σ∈Ty0

Ex

[
f(Xσ◦θτ+τ )−K −

∫ σ◦θτ+τ

0
(h(Xs) + ρ∗)ds | Fτ

]]

≤ Ex

[
sup

σ∈Ty0 ;σ≥τ
Ex
[
f(Xσ)−K −

∫ σ

0
(h(Xs) + ρ∗)ds | Fτ

]]

≤ sup
σ∈Ty0

Ex
[
Ex
[
f(Xσ)−K −

∫ σ

0
(h(Xs) + ρ∗)ds | Fτ

]]
= g(x)
= M0

The inequalities (i).c and (ii).c hold: For this we investigate the stopping problem
associated to g. As a first step we note that by the general theory of optimal stopping,
first entrance times into non-empty closed sets Sε are ε-optimal. (Note that problems
with linear running costs are time homogenous, see, e.g., [31]). Since X has continuous
sample paths and due to the one-sided nature of the attainable stopping times, we have
that Py0-a.s. the first entrance into Sε are identical to the first hitting times τyε , where
yε = minSε. Thus, we obtain

g(y0) = sup
y≥y0

Ey0

[
f(Xτy )−K −

∫ τy

0
(h(Xs) + ρ∗) ds

]
= sup
y≥y0

[
f(y)−K − Ey0

[∫ τy

0
h(Xs) ds

]
−max
z≥y0

f(z)−K − Ey0

[∫ τz
0 h(Xs) ds

]
ξ(z) ξ(y)

]
= 0.

Furthermore, we see that by construction the first hitting time of y∗ is optimal. In
particular, this yields g(y∗) = f(y∗)−K.

Since immediate stopping is possible, we have g ≥ f −K. This implies that

u(x, y0) = f(x)− f(y0)−K − g(x) + g(y0) = f(x)−K − g(x) ≤ 0,

which is (i).c. Analogously, we obtain, since y∗ is in the stopping region that

u(Xτ∗n−, y0) = u(y∗, y0) = 0.

(ii).a holds: The observation that g(y∗) = f(y∗)−K directly yields that

Ex[Mτ∗n− −Mτ∗
n−1

] = Ey0

[
g(Xτy∗−)−

∫ τy∗

0
(h(Xs) + ρ∗)ds− g(y0)

]
= Ey0

[
g(y∗)−

∫ τy∗

0
h(Xs)ds− g(y0)

]
− ρ∗Ey0 [τy∗ ]

= g(y∗)− (f(y∗)−K) = 0.

the transversality conditions (i).b and (ii).b hold: As pointed out in Remark 2.4,
for any threshold strategy R(y), y ≥ y0, the controlled process XR(y) has an invariant
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distribution. Denote the invariant measure for Q∗ = R(y∗) by ΠQ∗ . Thus, for all y ∈ R+
we obtain

lim
T→∞

Eyg
[
XQ∗

T

]
=
∫ y∗

0
g(x)πQ

∗
(dx).

Because h is bounded on [0, y∗] and τy∗ is an optimal stopping time for the problem with
value function g, we obtain for some d > 0

g(x) = f(y∗)−K − Ex
[∫ τy∗

0
(h(Xs) + ρ∗) ds

]
≥ f(y∗)−K − dExτy∗

= f(y∗)−K − d
(∫ y∗

x

(S(y∗)− S(y))m(y) dy + (S(y∗)− S(x))M [0, x]
)

≥ f(y∗)−K − d
∫ y∗

0
(S(y∗)− S(y))m(y) dy.

As 0 was assumed to be an entrance-boundary, the last integral is finite and hence g is
bounded from below. Since f is continuous, the function g is furthermore bounded from
above on compacts. Therefore, we obtain that

lim
T→∞

Ex[g(XQ∗

T )]
T

= 0 for all x ∈ R+.

Now take an arbitrary strategy Q and denote with Xr the process X reflected at
y0. By the same coupling argument as in the proof of Lemma 7.1, we can assume
Xr ≤ XQ. It is well known that in our setting Xr has an invariant distribution Πr.
Further, as mentioned above, g is bounded on (0, y0). Utilizing that f is increasing and
h is a positive function a simple calculation yields that g is increasing, which implies that
g(XQ) ≥ g(Xr). In total we obtain for all y ∈ R+

lim inf
T→∞

Ey[g(XQ
T )] ≥ lim inf

T→∞
Ey[g(Xr

T )] =
∫
g(x)Πr(dx) ∈ R

and therefore for all y ∈ R+

lim sup
T→∞

Ey[g(XQ
T )]

T
≥ lim inf

T→∞

Ey[g(Xr
T )]

T
= 0.

Remark A.3. The renewal reward theorem directly yields that for each y > y0 the value
we get by using R(y) equals

f(y)−K − Ey0

[∫ τy
0 h(Xs) ds

]
ξ(y) .

Hence, whenever y∗ is the unique maximizer of

y 7→
f(y)−K − Ey0

[∫ τy
0 h(Xs) ds

]
ξ(y) ,

then R(y∗) is the unique optimal strategy in the set of threshold strategies.
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