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On the Saturation Phenomenon of Stochastic Gradient Descent for Linear
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Abstract. Stochastic gradient descent (SGD) is a promising method for solving large-scale inverse problems due
to its excellent scalability with respect to data size. The current mathematical theory in the lens of
regularization theory predicts that SGD with a polynomially decaying stepsize schedule may suffer
from an undesirable saturation phenomenon; i.e., the convergence rate does not further improve
with the solution regularity index when it is beyond a certain range. In this work, we present a
refined convergence rate analysis of SGD and prove that saturation actually does not occur if the
initial stepsize of the schedule is sufficiently small. Several numerical experiments are provided to
complement the analysis.
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1. Introduction. In this paper, we consider the numerical solution of the following finite-
dimensional linear inverse problem:

(1.1) Az =y,

where A € R™ "™ is the system matrix representing the data formation mechanism, and
x € R™ is the unknown signal of interest. In the context of inverse problems, the matrix A
is commonly ill-conditioned. When the matrix A is rank-deficient, (1.1) may have infinitely
many solutions. The reference solution z' is taken to be the minimum norm solution relative
to the initial guess z1, i.e.,

¢ = argmin{||z — 1| st. Az =y},
TER™

with || - || being the Euclidean norm of a vector (and also the spectral norm of a matrix). In
practice, we only have access to a noisy version y° of the exact data yt = Azf, i.e.,

v =yt +¢
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where £ € R™ denotes the noise in the data with a noise level § := ||£]|. We denote the ith row
of the matrix A by a column vector a; € R™, i.e., A = [al]"_; (with the superscript ¢ denoting
the matrix/vector transpose), and the ith entry of the vector 4° € R™ by yf . Linear inverse
problems of the form (1.1) arise in a broad range of applications, e.g., initial condition/source
identification and optical imaging. A large number of numerical methods have been developed,
prominently variational regularization [7, 14] and iterative regularization [21].

Stochastic gradient descent (SGD) is one very promising numerical method for solving
problem (1.1). In its simplest form, it reads as follows: Given an initial guess 2§ = z; € R™,
we update the iterate xi 41 recursively by

(1.2) $i+1 = xi — nk((aik,xz) — y?k)aik, k=1,2,...,

where the random row index iy is drawn independent and identically distributed (i.i.d.) uni-
formly from the index set {1,...,n}, nr > 0 is the stepsize at the kth iteration, and (")
denotes the Fuclidean inner product. We denote by Fj the filtration generated by the ran-
dom indices {i1,...,ix—1}, define F by F = \/, oy Fk, and let (Q,F,P) be the associated
probability space. The notation E[-] denotes taking expectation with respect to the filtra-
tion F. The SGD iterate :ni is random, and it is measurable with respect to F,. SGD is a
randomized version of the classical Landweber method [23]

(13) mi-{-l = ZL‘i - nkn_lAt(Al‘i - y6)> k= 17 2> SERE)
which is identical to the gradient descent applied to the following objective functional:
(1.4) J(z) = (2n) " Az — y°|I%.

When compared with the Landweber method in (1.3), SGD (1.2) employs only one data pair
(aik,yfk) instead of all data pairs, and thus it enjoys excellent scalability with respect to the
data size. It is worth noting that due to the ill-conditioning of A and the presence of noise in
the data y°, the exact minimizer of .J(z) is not of interest.

Since its first proposal by Robbins and Monro [29] for statistical inference, SGD has re-
ceived a lot of attention in many diverse research areas (see the monograph [22] for various
asymptotic results). Due to its excellent scalability, the interest in SGD and its variants
has grown explosively in recent years in machine learning, and its accelerated variants, e.g.,
ADAM, have been established as the workhorse in many challenging deep learning training
tasks [2, 3]. It has also achieved great success in inverse problems, e.g., in computed tomog-
raphy (known as algebraic reconstruction techniques or the randomized Kaczmarz method
[13, 27, 31, 17]) and optical tomography [4].

The theoretical analysis of SGD for solving inverse problems is still in its infancy. Let
ei = aci — 2! be its error with respect to the minimum-norm solution z!. Only very recently,
the regularizing property was proved in [18]: when equipped with a priori stopping rules, the
mean squared error E[HeiHQ}% of the SGD iterate z{ converges to zero as § tends to zero,
and furthermore, under the canonical power type source condition (see (1.5) in Assumption
1.1 below), it converges to zero at a certain rate. However, the result predicts that SGD can

suffer from an undesirable saturation phenomenon for smooth solutions (i.e., with v > %)
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E[HeiHQ]% converges at most at a rate 0(5%), which is slower than that achieved by the
Landweber method [7, Chapter 6]; see also [15] for a posteriori stopping using the discrepancy
principle and numerical illustration on the saturation phenomenon for SGD. Thus, SGD is
suboptimal for “smooth” inverse solutions with v > % This phenomenon is attributed to the
inherent computational variance of the SGD approximation 1:2, which arises from the use of
a random gradient estimate in place of the true gradient. To the best of our knowledge, it
remains unclear whether the saturation phenomenon is intrinsic to SGD.

In this work, we revisit the convergence rate analysis of SGD with a polynomially decaying
stepsize schedule for small initial stepsize ¢y, and aim at addressing the saturation phenom-
enon, under the standard source condition. First we state the standing assumptions for the
analysis of SGD. The choice in (i) is commonly known as a polynomially decaying stepsize
schedule. Part (ii) is the classical source condition, which represents a type of smoothness
of the initial error 2T — x1 (with respect to the matrix B), and the condition on B is easily
achieved by rescaling the problem. Source type conditions are needed in order to derive the
convergence rate, without which the convergence can be arbitrarily slow [7]. Loosely speaking,
it restricts ¥ — x; to a suitable subspace which enables quantitatively bounding the approx-
imation error. Note that the condition generally is insufficient to ensure a contractive map
for the Landweber method. Below we shall focus on the case v > %, for which the current
analysis [18] exhibits the saturation phenomenon, as mentioned above. Part (iii) assumes that
the forward map A takes a special form. Alternatively, it can be viewed as SGD applied to a
preconditioned version of problem (1.1). To validate this condition, we present some numer-
ical results for typical inverse problems in subsection 4.2, which indicates that this structure
is irrelevant to the performance of SGD in the sense that it performs nearly identically on the
problems with or without this structure. Thus this restriction is due to the limitation of the
proof technique; see Remark 2.7 for the obstruction in the proof in the general case.

Assumption 1.1. Let B = n~'A*A with || B|| < 1. The following assumptions hold.
(i) The stepsize n; =coj~, j=1,...,a € [0,1), with

cp < min ((mlax||ai||2)_1, 1) and ¢ Bl < (2¢)7 1.

(i) There exist w € R™ and v > 3 such that the exact solution 2! satisfies
(1.5) ¢’ — 1z = Bw.
(iii) The matrix A = XV* with ¥ being diagonal and nonnegative and V' column orthonor-

mal.

Now we can state the main result of this work. By choosing the stopping index k(¢) in
accordance with the (unknown) regularity index v as k = O(||w|]5_1)m, the result
implies a convergence rate

Eflefen|")? < ellu]| 72 575,
which is identical to that for the Landweber method [7, Chapter 6]. Thus, under the given

condition, the aforementioned saturation phenomenon does not occur for SGD. This result
partly settles the saturation phenomenon, and it complements existing analysis [18, 19].
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Theorem 1.2. Let Assumption 1.1 hold and cy be sufficiently small. Then there exist con-
stants ¢, and ¢, which depend on v, n, ¢y, and «, such that

E[[|ed||] < ek A= ||w]|? + cpnd 2k

The condition “cq being sufficiently small” can be made more precise as cg = O(n™1).
Note that the stepsize choice O(n~!) has been extensively used in the convergence analysis of
SGD with random shuffling [33, 11, 30]. In Theorem 1.2, the constant condition on ¢y is not
given explicitly. When « = 0, the following condition is sufficient:

(1.6) 2(1+ ¢(2€))nci 2 <1 for some ¢ € (3,1),

and the function ¢ is defined in Lemma 2.2 below; see Theorem 3.11. The numerical ex-
periments in section 4 indicate that with a small initial stepsize ¢y, SGD can indeed deliver
reconstructions with accuracy comparable to that of the Landweber method for a range of
regularity index and noise levels, and in the absence of the smallness condition on ¢y, the re-
sults obtained by SGD are indeed suboptimal. These numerical results indicate the necessity
and sufficiency of a small stepsize for achieving the optimal convergence rate.

The general strategy of proof is to decompose the error ei = azi —2' into three components

(with z;, being the SGD iterate for exact data y)
2}~z = (Elzy] — 27) + (Elz}] - Elzs]) + (af, — El2})),

which represent, respectively, approximation error due to early stopping, propagation error
due to data noise, and stochastic error due to randomness of gradient estimate, and then to
bound the terms by bias-variance decomposition and the triangle inequality as

Ell2} — «"|*] < 2||Efzx] - 27|* + 2/|E[e}] — E[za]|® + E[l|z} — E[z3]).

In our analysis, we refine this decomposition by repeatedly expanding the random iterate noise
within the third term and applying the bias-variance decomposition up to the fth fold; see
Theorem 2.5 for the details. In the decomposition, Assumption 1.1(iii) is used in an essential
manner to arrive at a simple recursion. It improves the existing analysis [18, 19] for SGD in
the sense that the stochastic component is further decomposed. Then the analysis proceeds
by bounding the first two components separately, and the third component by recursion, all of
which in turn involves lengthy computation of certain summations. It is noteworthy that for
the case of a constant stepsize, the convergence analysis can be greatly simplified; see section
3.4 for the details.

Finally, we situate the current work within a large body of literature on SGD. The con-
vergence issue of SGD has been extensively studied in different senses, and two main lines of
research that are related to this work are optimization and statistical learning, in addition
to the aforementioned results for inverse problems. In the context of optimization, when the
objective function is strictly convex, many results on the convergence of the iterates to the
global minimizer are available; see, e.g., [16] for matching lower and upper bounds, and the
references therein for further results. Note that J(x) in (1.4) is not strictly convex. In general,
the convergence of SGD is often measured by the optimality gap (i.e., the expected objective
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function value to the optimal one) or the magnitude of the gradient. See the survey [3] for
a recent overview on this line of research, including advances on nonconvex problems. Very
recently the work [8] proved the local convergence of SGD with rates to minima of the ob-
jective function while avoiding convexity or contractivity assumptions. It is noteworthy that
these results cannot be directly compared with the convergence rates given in Theorem 1.2,
since the global minimizer to the objective function J(x) is not of practical interest due to the
ill-conditioning of A. This represents one essential difference between the results from opti-
mization and those from regularization theory. The second line of research is the generalization
error in reproducing kernel Hilbert spaces in statistical learning theory [34, 32, 5, 26, 28, 25].
These works aim at establishing upper bounds on the generalization error for SGD or its vari-
ants (often combined with a suitable averaging scheme), which differs from the error bound
on the iterate itself. Nonetheless, the high level idea of analysis is similar: both use the
bias-variance decomposition to bound relevant quantities, which often depend on source type
conditions given in Assumption 1.1(ii). One major technical novelty of this work is to develop
a recursive version of the bias-variance decomposition for the mean squared error.

The rest of the paper is organized as follows. In section 2, we derive a novel error decom-
position, and then in section 3, we give the convergence rate analysis by bounding the three
error components of the SGD iterate xi. Finally, in section 4, we provide some illustrative
numerical experiments to complement the theoretical analysis. Throughout, the notation c,
with or without a subscript, denotes a generic constant, which may differ at each occurrence,
but it is always independent of the iteration number &k (and the random index i) and the
noise level §.

2. Error decomposition. In this section, we present several preliminary estimates and a
refined error decomposition.

2.1. Notation and preliminary estimates. We will employ the following index sets ex-
tensively. For any k1 < kg and 1 <i < ko — k1 + 1, let
Tier eai = {Letiy 1 k1 < i <jic1 <+ < jo < j1 < ka},
Ji = {j17j27 e 7]1}
Note that the set J, ,),; consists of (strictly monotone) multi-indices of length ¢, which
arises naturally in the proof of Theorem 2.5 below. For ¢ = 0, we adopt the convention

-7[k1,k2],0 = {@} and Jo = @ For all Ji = {jh cee ,jz} S ‘7[;617]@]71-, with 0 <1 < kQ - kl + 1, we
define

J[c/fl,kz},i = {k1,..., ka} \ Ji,

where we omit the dependency on J; for notational simplicity. In particular,

k7[k‘1,k2},1 = {{kl}v ce {kQ}} and J[ckl,krg],o = {]61, R ,k‘g}.

For i > kg — k1 + 1, we adopt the convention Ji, k), = {0}, Ji = 0, Sl ol = 0.
The next lemma collects useful identities on the summation over the indices Jy g i41-
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Lemma 2.1. The following identities hold:

7i—1 k—1i

21) > -y ¥Y-¥ %

Jiv1€Tn ki1 Ji€TpkiJie1=1 Jii=1Ji€ T, vk

Proof. The identities are direct from the definition:

]'L 1—1 j1_1 ]2_1
Jit1€T 1,141 J1=i+1 Ji=2 Jita=1  Ji€J[2 k)i Ji+1=1

k—i k—i+1

Y ey Y oy ey w

Jir1€Ipwitr  Ji=lii=di+tl =+l G =1 D€y k)i

This directly shows the assertion. |
We use the following elementary inequality extensively.

Lemma 2.2. For any k € N and s € R, there holds
2175(1 — s)71kl=5, s <0,

k
s (1—s)"tkl=s, s€[0,1),
(2.2) Z_:J = 2max(lnk, 1), s=1,
B s(s—1)71, s> 1.

Throughout, we denote the constant and power on the right-hand side of the inequality
(2.2) by ¢(s) and k™2x(1=50) respectively, with the shorthand k™2*(0.9) = max(Ink, 1).

The next result bounds the spectral norm of the matrix product I1;(B)B?*, which, for each
index set J, is defined by (with the convention IIy(B) = I)

m;(B)=[[(T—n;B).
jeJ
Lemma 2.3. Under Assumption 1.1(i), for any s > 0 and J; € Ty e with K < k,
0<l<k+1-FK,

1M, | (BYBE| < 5%(eco)(k+1 = K — )k,

Proof. For any s > 0 and Jy € T j),¢ with K <k 0</{<k+1—FK, there holds
I W= sup » [[ @-n),

[k ,K],€
AESp(B o 7C
p( ) ZeJ[k’,k],é

(B)B?|| < sup |NTLje,
AESp(B) [ K¢

where Sp(B) denotes the spectrum of B. For any € R, there holds the inequality 1 —z < e™%,
and thus

5 s - s “Aieus ’ i
A H (I—mN) <A H mA — \Se (k! K],¢

ieJe eJe

(K K]0 (K K],

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/09/22 to 37.156.73.29 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SATURATION PHENOMENON OF SGD 1559

For the function g(\) = Ae*¢, with @ > 0, the maximum is attained at \* = sa~!, with
a maximum value s°(ea)™®. Then setting a = >, e n; and applying the inequality a >
LR
co(k+1—Fk — 0)k~* complete the proof of the lemma. [ ]
The last lemma gives two useful bounds on the summations over the set Jj p) ;-

Lemma 2.4. The following estimates hold.
(i) For any k> 2, a €[0,1), and 2 <1i < k, there holds

i
Z Hjt—Zoz < ¢<2a)i(kmax(172a,0))i.
Ji€1,k),: t=1
(ii) For any j=0,....k—1andi=1,...,k— j, we have
— 5
R k—3)"
i!
Ji €T i1,k

Proof. Assertion (i) follows from (2.2) as

-1 Ji—1—1
]—201 ] —2a ]
e B e
H ( th 2a) < 2a)kmax(1 20, 0))
t=1 j:=1

By the definition of the index set J; 1 1), we have the identity

k—i+1
> Z Z Z 1
J-ejok =j+1  je=js+1lj1=ja+1
Z Z Z 1= Z Z k= ja).
=j+1 Jje=Jj3+1j1=j2+1 =j+1 Jje=js+1

Then assertion (ii) follows by repeatedly applying the inequality
Zts (s+1)"YT+1)*t' VI eN, s> 0.

This completes the proof of the lemma. |

2.2. Error decomposition. Now we derive an important error decomposition. Below, we
denote the SGD iterates for the exact data y' and noisy data y° by x; and xg, respectively,
and also use the following shorthand notation:

A:n*%A, gznféf, 5:n*%5, and e =z — .

The following result plays a central role in the convergence analysis.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/09/22 to 37.156.73.29 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1560 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

Theorem 2.5. Under Assumption 1.1(iii), for any 0 < ¢ < k, the following error decompo-
sition holds:

(2.3) Efllef11]%] < ZI 1t ZIZQ + (Ip)",

where the terms I¢

2 1=0,1,....¢0, j=1,2, are defined by

=27 e

e

2 1
+(n—1 anu o BIBE2),

5y = 1
I3 = 26° (H Z nille o (B)B2

G- 01 3 DA, el <iss
Jz€~7[1k
Ji—1 L2
_9itl(y i+1
I/Lv 2Z Z Hnjt(H Z nji+1HJ[cji+1+1,k],i(B)Bl ?
Jejz,k],zt 1 Ji+1=1
Ji—1
2 i+L9 .
+(n=1) > W W (BIBT2 ) Vi<i<lt,
Jit1=1
/+1

) 1 ¢ 41,8
(10) =2 +1(n —1) +1 Z H"JzzE[”HJGMH,W (B)B JrlejZ+1 ||2].

Jo41€T01 k) 041 =1

Proof. Recall that J; = {j1,...,7:} for any ¢ > 1 and Jy = 0. By the definition of the
SGD iteration (1.2), we have

k—1
(24) @@= —moaB)y + o Hyo =1y (Blel + ) (nillye | (B)H;),
j=1

where Hj is defined by

1) ) 1 1)
(2.5) Hj = Bej — ((aij,xj) - yij)aij = (B- aijaﬁj)ej +&i;ai;-
By bias-variance decomposition and the triangle inequality, we have

Elllet411%] = IElexsa)I” + ENER 1] = 2241]°)

(2.6)
< 2||Efexs1]lI* + 2| Elzrir — af]lI” + ElIE[2D44] — 24117

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.
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It is known that the following estimates hold [18]:

[Elexsalll = [MLss . (Beall;

1
|E[zr41 — 2% 4]l < 6| ZWJHJ[]H k]o( )Bz|,

7=1
k

(2.7) Ellla sy — Elegl’] = Y nfElIy,, (BJA'N?|?],
j=1

with the iteration noise IV ]‘5 (at the jth SGD iteration) given by

Nj =7 (Aa] — o) = (@i, 2) — ] b

where b; = (0,...,0,1,0,...,0)" € R" denotes the ith canonical Cartesian basis vector. Let
70
N] = ((a’L]7 ]) yz])b = ((a’L]7 ]) é-’z]) ZJ

Then the iteration noise IV, f can be rewritten as

N} = B[N -

Next we claim that under Assumption 1.1(iii), there holds

28) Mg, (BIA'(AS — )] = Zu oo (BVA'(a1,0) — &)

Actually, in view of Assumption 1.1(iii), for any 1 < j < k, the following hold:

Ael — €= Z (@i ef) = &)bi and Iy (B)A" = V1L n~lete)nt

[j+1,k],0(

Then the claim (2.8) follows from these two identities and column orthonormality of V' as

§ _
||HJ§+1,k],o(B)At(A€j — 9P = HVZHJ[CjJrl,k],O(n )5 ((as, j) £)b;

SV (SIS () — &)l = ZHHJM B)A!((ai, ¢}) - &)bill>

i=1

Thus, by the bias-variance decomposition and the definitions of the notation A and &, etc.,
we have, for any j =1,...,k,

B)A'NJ|[*|F;] — | MLy
At

Elly, o (B)YA'NS |21 7] = El|Mye . (B) (B)AE[N; | F)|?

[541,k],0 [i+1,k],0

:ggHHJ@H,H,JB)A%(%, ) — &bl — Iy, (B)=-(AeS — )

=(n—1)||My,, , (B)(Bej — A%
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By the Cauchy—Schwarz inequality, the identity ||TT Je (B)A!||? = |11 (B)B 2 |2, and

[4+1,K],0 [j+1 k],0

the triangle inequality, we deduce from (2.7) that

k

Elllaf 1 — Elzfl’] = Y nfE[ElLy,  (B)A'N]|*IF;]
j=1

=(n—1) Zn UTe o (B)(Bej — A%¢)||”]

n—1§jm( Fon o (BYBEI?] + MLy (B)AE]P)

Jj=1

B

k

5112 _QZ 2 12

— j+1,k],0(B)BejH J+2(n—1)o . 177j||HJ[Cj+1,k],0(B)B2H )
Jj= Jj=

<2(n— 1) nE(L;

By the definitions of 1871, Igg, and (I3)¢, we have

Elllefs1 %] <51 +10 + (19)°.

Next further expanding {e _, in the expression of (I3)¢ using (2.4) gives

(1) = m—lmmn@ﬂ<>3£w
Jji—1
n N 1 Z 77‘71 [H 11+1 k],0 (B)B(HJ[CLH—I]O 61 T Z 12+1 Jj1—11, (3)77]2 J2 )H ]
Ji1=2 J2=1
Now using the definition of H; in (2.5), we obtain
Jji—1 J1—1
t )
Z (HJ[J2+1 1-11, (B)n”H ) - Z (77]21_[ [io+1.31-11, O(B)(B B aianiiz)ejQ)
J2=1 J2=1
Ji—1
+ Z 77]2 That1,41-11,0 ( )5i12aij2)'
Ja2=1
Thus, we can further bound (I3)¢ by
(%féﬂn—lnﬂﬂﬁ](Bﬂ%NQ
Ji—1 2
4n—1) Z i [H Ih1+1.01, B)B Z 3211 Tla+1.01-110 ( )&maij?) ’ }
J1=2 J2=1
19
4n—1) Z "5, [H I 1,800 (B)B<HJ[C1 J1-1], O(B)el

J1=2
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ji—1

2
t 0
- Z (anHJ[Cszrl,jrl],o (B)(B - iy G%)@jz)) H }
J2=1

]

<2(n— )My, (BB +4(n — 1) Zml [HZ npllye o (B)BEiaz,)

J1=2 Jo=1
h
Jji—1 9
4(n—1) Z i, [H TE X B)Be + Z nj, 11 - (B)B(B - a%aﬁh)e;l) ‘ } .
Ji1=2 jo=1
11>

Next we simplify the two terms II; and IIy. Under Assumption 1.1(iii), direct computation
gives, for any j1 =2,...,kand 5,7/ =1,...,71 — 1,

B[y, (B)B&,ai, Ty | (B)B&,ai,)]

Ate At & .

(2 9) — n<HJ[CJ'/+1,k],1(B)BA & H‘] G41,k],1 ( )BA §>7 J =2
‘ At At ¢ ./ .
<HJ[PJ "+1,k],1 (B)BA{ HJ G41,k],1 ( )BA £>7 J 7&.7‘

Indeed, the case j' # j follows directly. Meanwhile, under Assumption 1.1(iii), we have

t
Mye | g, (BYBAE = VILe

n IS (n TR &b,

J+1,K], 1(
and VY&, = At&b; = a;&;. This and the column orthonormality of the matrix V imply

n
Ttx 2
Al (B)BASE =n ||Vl (7 S) (0 SIS b
=1

n n
S S IV, ) S = 0t Y MLy, (B)Baiti]?
=1 =1

[”HJ L), ( )B&]%H]

This and the bias-variance decomposition imply that the term II; can be simplified to

T J1—1 o
th _H ZT’” Ihg+1.m, ( )BAtfH (n—1) anzn o1k, ( )BAtEHQ
J2=1 J2=1
52 32 72j1_1 2 3.2
<55 w08 02 S i BB
J2=1 Jo=1

Further, by the measurability of e? with respect to F;, we have

(2.10) E[(e}, (B — aj;a; )e;)] =(e}, E[E[(B — ay,af )ej| F5l) = 0 Vj,

? J
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since €? is deterministic, and similarly,

(2.11) E[((B — a; /at‘,)egfa (B az]aﬁj)eﬁﬂ
: =E[((B — ai,af )ep, E[(B — aj;af )ej| Fi))] =0 Vi < j
Consequently, there holds
Jji—1
My =Ty, (BB + 4Bl | (B)B(B — i, al, )el, ).
Jj2=1

Combining these estimates with the definitions of the quantities 11 LI 2, and (I aye gives

(1) < 2(n— 1)771||HJ2klo( B)Bej|”
2 32 = 2 312
4(n —1)3 Z%(HZ% 5o BB =) YR (B)BE?)
J1=2 Jjo=1 Jo=1
Jji—1
4<n—1>2n3«1(unjﬁ,k],< JBE? + 3 B | (B)B(B = aiy,al, )el, %)
Jj1=2 Jo=1
k
<A(n—1) S 03|y (B)Be]|?
Jji=1
3 ]1 ! 3
2 E =12
A(n —1)3 Zml(HZmQ oy BB+ 0= 1) Y L (B)BEP)
J1=2 Jjo=1
j1—1
An—1) Zml(zmg Ty v (BYB(B =i al )el, )
Jj1=2 j2=1

=1} 1,11 1 2T (19)e.

Similar to the analysis of (Ig)c, by repeating the argument, we obtain

ko ji—1
s 2.8 112
(Il)c Z Z 77]177]2 j2+1 K], 1( )B ejg” ]
J1=2j2=1
In general, we can derive
41
Sye _ ol+1 ¢ ¢ , ¢ 52
@ =2 -1 S J[RE, L (B)BUB - ay, e, 0P

Jer1€T k), 041 t=1

Then repeating the preceding argument and noting the relation 6‘1S = e; complete the proof.l
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Remark 2.6. In Theorem 2.5, Assumption 1.1(iii) plays a central role in the refined error
decomposition at two places, i.e., (2.8) and (2.9). Intuitively, the condition essentially assumes
low correlation between the rows of the matrix A, in analogy to the mutual coherence condition
in compressed sensing [6]. The numerical experiments in section 4 indicate that SGD performs
comparably with or without this assumption.

Remark 2.7. It is instructive to see the obstruction in extending the argument of Theorem
2.5 to a general matrix A with exact data (i.e., £ = 0) in the absence of Assumption 1.1(iii).
Let the singular value decomposition of A be A = UXV?, with ¥ € R®»*™ being diagonal with
positive diagonal entries {o;}]_; (with 7 < min(m,n) being the rank, ordered nonincreasingly)
and U = [ug,...,up]€ R and V = [v1,...,vy]€ R™™ being column orthonormal. Now
consider the right-hand side and left-hand side, denoted by RHS and LHS, respectively, of the
crucial identity (2.8) with a random index set J and a random vector e € R™ (by suppressing
the subscripts). In view of the identity af = bl A, we have

n

LHS =|VII,;(n 'S'S)S U Ae|® = | DU Ae|)* = > " (djuli(Ae))® = ng(ut (Ae))?

j=1
RHS = Z |VILy(n 'St ) St Uthbt Ae||? = Z | DU (Ae)s||? = Zd2 Z uji(Ae);)?,
=1
with the diagonal matrix D given by D = I1;(n 'X!X)%! := diag(dy, . . ., dy), with the first r

entries being strictly positive. Since the index set J is arbltrary, the existence of a constant ¢
(independent of J) such that RHS < cLHS essentially requires

n

Z(uji(Ae)i)2 < c(ué(Ae))z, j=1,...,7

i=1
Since Ae = Y;_, oyupve, the above inequality is equivalent to

n

(2.12) D (uji(Ae)i)® < e(ojvle)?.

=1

When Assumption 1.1(iii) does not hold, there exist some j < r and two nonzero elements
Ujiy, Wjip- Now we take any e € R™ such that vie = 0 and (Ae);, # 0 or (Ae);, # 0. Then the
left-hand side of (2.12) is strictly positive, and the right-hand side vanishes. Thus, there is no
constant ¢ such that this inequality holds. This shows the delicacy of the analysis for a general
matrix A. Nonetheless, the numerical experiments in section 4 indicate that the saturation
phenomenon actually also does not occur for a general matrix as long as the stepsize ¢y is
sufficiently small. Thus, we believe that the restriction is due to the limitation of the proof
technique. Note that the convergence analysis in section 3 remains valid provided that relaxed
versions of the identities (2.8) and (2.9) hold but with different constants in the final estimate.

The proof of Theorem 2.5 also gives the following error decomposition for exact data y!.
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Corollary 2.8. For any 0 < ¢ < k, the following error decomposition holds:
4

(2.13) Elllex1]?] < DL+ (L),

=0

where the terms 1;, 1 =0,1,...,¢, are defined by

2
= [y, (B)er I,

Li=m-1" ) HnﬁH T (B)Ble® vi<i<t,

Ji€Tp ki t=1
041

(L) = (n— 1)£+1 Z H 77],5 M L1k (B)BEJrleje-o-l HQ}

Jo41€T01 k) 041 t=1

In view of Theorem 2.5, the error E[||e +11I?] can be decomposed into three components:
approximation error Zf:o Igl, propagation error Zf:o I;{Q, and stochastic error (Ig)c. Here
we have slightly abused the terminology for approximation and propagation errors, since the
approximation error only depends on the regularity of the exact solution 2 (indicated by the
source condition (1.5) in Assumption 1.1(ii)), whereas the propagation error is determined by
the noise level. With the choice ¢ = 0, the decomposition recovers that in [18, 19]. When
compared with the classical error decomposition for the Landweber method, the summands
for £ > 1 arise from the stochasticity of the iterates (due to the random row index at each
iteration), and so does the stochastic error (I9)°. This refined decomposition is crucial in
analyzing the saturation phenomenon (under suitable conditions on the initial stepsize). Below
we first derive bounds on the first two terms in Propositions 3.1 and 3.5, and then we prove
optimal convergence rates of SGD by mathematical induction in section 3.3.

3. Convergence rate analysis. In this section, we present the convergence rate analysis
and establish Theorem 1.2. The proof proceeds by first analyzing the approximation error
and propagation error in sections 3.1 and 3.2, respectively, and then bounding the mean
squared error E[[|e||] via mathematical induction. We also give an alternative (simplified)
convergence analysis for the case a = 0 in section 3.4.

3.1. Bound on the approximation error. We begin with bounding the approximation
error Zl 0 ,L ; for any fixed £ > v. The summand 15 0.1 1s the usual approximation error (for
the Landweber method), and the remaining terms arise from the random row index. Thus,
the approximation error decays at the optimal rate.

Proposition 3.1. Let Assumption 1.1 be fulfilled, and
ho(k) _ 2(V+€) n¢(2a) 2(1—a)+max(1—2a O)
Then for any integer £ > v, o € [0,1), and k > 2¢, there holds

L

> T < cvpancg kY w?,
i=0
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with the constant

[ A+ 0> if ho(k) < 3,
vban 2(v + )% Zfzo(ho(%))i otherwise.

Proof. In view of the source condition (1.5) and Lemma 2.3, we have

=2y, (Bledl® < 2|y (B)BY|*|wl® < 20 (eco) ™ k=217 w2,

[1,k],0

Similarly, for any 1 <1 < /£,

[ )
[I75 0t (B)Bedl® < [ [ mj MLy, (B)BY |l
t=1 t=1

< (VTH) 2(v+i) *2Vk2(l/+z oszHQ ij2a Z)—2(V+i).
t=1

By the definition of I?,p since k > 20, k —1> % fori=1,...,¢, by Lemma 2.4(i),

I? < 9itl z( ) 2(v+i) —2yk2 v+i an”Q Z Hjt —2(v+1)
Ji€JT1 k)i t=1

< 2(2 —l)2u(u+2>2u _2V/{: 2v(l—a) HwH [ (V—i—l) n¢(2a) 2(1—a)+max(1— 2a0)

Clearly, the quantity in the square brackets is bounded by hg(k). Next we treat the two cases
ho(k) < & and ho(k) > 3 separately. If ho(k) < 3, we deduce

¢ l
D_La <20+ 0P kO wlP Y T ho(k)' < v ancy ™ ]
=0 =0

Further, when ho(k) > 3, since k > 2¢, we have ho(k) < ho(2¢), and thus we obtain

ZI <2 V+€)2V —2uk—2y(1 a)HwH Zh(] 2€ < Cufanc()zyk_2y (1-a ||w||2
=0

Finally, combining the last two estimates completes the proof. |

Remark 3.2. For any k satisfying ho(k) < %, the constant ¢, ¢, is actually independent
of a and n. Further, if £ < 2¢, then by setting £ to 0, we obtain

18,1 < 21721/”21/0621/]{:721/(1704) Hw”Q
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3.2. Bound on the propagation error. Now we bound the propagation error ZZ OIZ 2
which arises from the presence of the data noise £&. The summands for ¢ > 1 arise from the
stochasticity of the SGD iterates a:k We bound each summand IZ 9, 1 =0,..., ¢, separately,
or equivalently the following two quantities for k > 4i:

7 7i—1 9
AN 2 , i+
(3.1) 16,k = > J[ml Do m O K s (BB

Ji€J2,k),i t=1 Ji+1=1

I

]L_l

S 4 S d.n S (BYBE,

Ji€Tp k)i =1 Jipa=1

(3.2) 11(i, k) :

with the convention ZJoej[z,k],o ngl 7732‘t =1 and jo = k+ 1. The condition k£ > 4i implies
the following two elementary estimates:

(3.3) k—jin—i>§ Gi=12...[5),
(3.4) k—jiv1 < i+ 1)(k—jiq1 —4), jip1=[E+1,....k—i—1
First we bound I(7, k). The notation [-| denotes taking the integral part of a real number.

Lemma 3.3. Let I(i, k) be defined as in (3.1), and let Assumption 1.1 be fulfilled. Then for
any fized i € N and k > 41, the following estimate holds:

1(i, k) §2(22a*16*1(22‘ + 1)eo((2671)2(2i 4 1)2(20) k20— ) Hmax(1=20,0)y?
+ 250 (2271 (i 4 2)2k7°) " ) o) 2k

Proof. We abbreviate 1(i, k) as I. By the triangle inequality and Lemma 2.3, for any
€ (0,i+ %] and any ji11 # k —i (when jiy1 =k —4, ji=k—i+1,...,j1 = k), we have

7i—1
| 2 Mienllg,, BB < X mialllly L, (BB
Jit1=1 Ji+1=1
Ji—1
<s%(eco) k™ Yy (k= Gipa — )7
Jit1=1

By the identity (2.1), and since the quantity (Zf:l;ll Njis18°(€co) ™% (k — Jiy1 — 1)~ skas)Z is
independent of the indices {j1,...,J;}, there holds
i+l .
< > IR

Jir1€T[k—i k) i1 t=1

k—i—1 i 1
+ SS(GCO)istS Z Nji1 (k - ji-i—l - i)78< Z H 77]2t> ’
Ji+1=1 Jiej[jz‘+1+1vk]ai t=1
k—i—1 i 1
_ . N 2
=citt H J B + s°(eco) " Tk*® Z Njir (k= Jiyr — 1) 8( Z Hnjz‘t) :
Jj=k—i Jit1=1 J16JJZ+1+1 k)i t=1
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The two terms on the right are denoted by I}, and I'. For ¢ > 1, setting s = % +1<i+ % in
the first term, the inequalities k —i > 2k and co||B|| < (2¢)~! imply that

T, < Cg(26)7%71(%)(i+1)ak7(i+1)a < 671(220471671001{:701)%‘

1
Likewise, for i = 0, setting s = i + 1 5 gives I (26)7%co§k_a. Next we split I’ into two
summations I} and I, over the index jz+1, one from 1 to (4] and the other from [5] + 1 to
k — i — 1, respectively. It suffices to bound I} and I,. First, setting s to i + % in I} and then
applying the inequality

> it ¥ Hf“
Ji€ TG g +1.k0,1 =1 Ji€T1,k) i
and the estimate (3.3) lead to
(5]

I S(%)”%cék(”%)a(%)*(“f%)( Z Jz_ﬁ)( Z Hj—za) '

Jix1=1 Ji€Tp ki t=1

[

Then by Lemma 2.4(i) and the estimate (2.2), we obtain

1 i 1—
T <2971(2e7) 2 (2 + 1)2¢2 () (267 1)2(2i + 1)2¢(2a) k21— o) max(1-20.0)) 5, 5

For the term I, we analyze the cases i = 0 and i > 1 separately. Since ¢l B| < (2¢)~!
(cf. Assumption 1.1), if i = 0, then Lemma 2.3 with s = 3 gives

N

1,
L < (L)7cgk? Gk —5)”

Consequently, when ¢ = 0, we have
/ a —1 1 1-a ! / a+1 —1 1 1o
I <2% 2¢5k > and Ip +1) < 2% e 2¢ik 2.

Meanwhile, when ¢ > 1, setting s = % +1<i+ % in Lemma 2.3 gives

T, <( %:1 )%’Hcé ka(%Jrl)(%)f(z#l)aI/Q/’
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with

k—i—1 % 1

5= ) (k—j¢+1—i)‘(%+1)( > H1>§'

Jir1=[5]+1 Ji€T; 141,k =1

Now Lemma 2.4(ii) and the estimates (3.4) and (2.2) yield

k—i—1
1 : (2 i
B Y (k= =) k= i)’
2
© in=lEe
(i+1): & 2t
ST Z (k= Jitr — 1) STmaX(lnk,l).
S AT I il2

Combining the last two identities gives

[N

Ty < 2%(i +2)il " 2e  max(Ink, 1) (22 L Leg(i + 2)%k )2, i > L.

Now by the estimate SUD;eN ”‘2 < 3 and the elementary inequality (for s € (0,1])
(3.5) E~*max(Ink,1) < s,
with s = PTO‘, we obtain

Ty < 12¢ ' p(a) (220 e Yoo (i + 2)2 ) 2k 2, i > 1,
and thus for ¢ > 1, there holds
L4+ T < 137 1(a) (229 e Teo(i + 202k %) TR < Be(a) (222 Le oo (i + 2)2k %) FE TR

The bounds on I} and I + I, and the triangle inequality complete the proof. [ |
The next result bounds the quantity I1(i, k).

Lemma 3.4. Let 11(i, k) be defined as in (3.2), and let Assumption 1.1 hold. Then for any
fized i € N, and for k > 41, the following estimate holds:

(Z k) (2(266—?_1)(46 (2,L-+1)2¢(2a)k—2(1—a)+max(1—2a,0))i+1
+36(a) (222 e Leg (i + 1)2k—a)”1>k1—a.

Proof. As before, we abbreviate I1(i, k) to II. By (2.1), II can be rewritten as

Z > H’Wbm S W(B)B”%HQ'

.77,+1 1J16‘731+1+1 k)i t=1
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Now we split the summation into three terms, i.e., j;41 = k — ¢, one from j;11 =1 to [%] and
one from j;11 = [%] +1to k—i—1, denoted by Ily, I1;, and Ils, respectively. Since k—1i > %k,
|B|| <1, and ¢o||B|| < (2¢)~! (cf. Assumption 1.1(i)), we obtain that, for any i > 0,
k
Iy = COH—Q H fZaHBerQ ”2 < Cz—&—l(COHBH>i+1(k . i)f2(i+1)o¢ < (22a7167100k—2a)1+1.
j=k—i

By Lemma 2.3 with s =i + § and (3.3),

[%] i+1
i 2i+1 2i+1 2i+1 —2
I, S(%) i+ Cok:( i+1)a (/{7 — i —Z) (2i+1) Z H] a
Jit1=1 Ji€T 5 g +1,40,0 =1
i+1

2041204 (2t D)a (k) ~(2i41) —20
<(5)* ek () Z > 1l

Jirr=1Ji€Tp5, 1 41,00 t=1
Meanwhile, Lemma 2.4 and the estimate (2.2) imply

i+1

Z o T < (d(2a)pmaxtiz2e0yiet,

Jiv1=1 J1€JJZ+1+1Yk]7,Lt 1
The last two estimates together imply

e _2(2&:—?_1) (46_2(22 + 1) ¢(2a)k,—2(1—oc)+max(1—2a,0))i—&-lkl—a.

Now we bound the term IIs. In this case, we analyze the cases ¢ = 0 and ¢ > 1 separately.
When ¢ = 0, by Lemma 2.3,

k—1 k—1

1 C _ —

M= ) iy, , ,(B)B2]* < I (s
i=l5]+1 =51+1

The estimates (2.2) and (3.5) with s =1 — « imply

Z 372k — )7t < 2(5) ¥ max(Ink, 1) < 22 g(a)k! 3
j=[5]+1
The last two estimates together show that for ¢ = 0, there holds
I, < 22% epgp(a) k' 2
Next, when i > 1, by Lemma 2.3 with s = “2,

k—i—1

i+l o
IIQ Z Z Hn]tn]1+1 j L1+Lk], Z(B)B 2 H

Jirr=[5]+1 Ji€ Ty +1.00.0 =1

k—i—1
<(12+61)7,+1k(7,+1)a z+1(§)72(1+1)a Z Z (k — jigr —4)"0FD,

jz‘+1=[§]+1 Ji€~7[j¢+1+1,k],i
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Now Lemma 2.4(ii) and (2.2) imply

k—i—1 k—i—1

Z Z (k—jig1 — 1)~ (i+1) < Z (k= jig1 — )~ (HI)M
7!
jz‘+1:[§]+1 Ji€Tj; 141,k ji+1:[§]+1
, o k—i—1 . '
1) 9 1)i
= . —{;l : (k= i1 =)~ < (Zj—') max(Ink, 1).
. Jir1=[£]+1 )

Combining the last two bounds with (3.5) with s =1 — « leads to
1 < g 2a—1 _—1 . Qk—a i+1k1—a >
5 < ,'gb(oz)(Q e co(i+1) ) , 1>1.
i!
Clearly, the preceding discussion shows that the last inequality holds actually also for ¢ = 0.

Therefore, the bounds on Ily, II, and IIy complete the proof of the lemma. [ |

Now we can bound the propagation error Zf:o Ig,i‘ The bound is largely comparable with
that for the Landweber method [18, Theorem 3.2].

Proposition 3.5. Let Assumption 1.1 be fulfilled, and let
hi(k) = 2(20 + 1)?ng(2a) k200 tmax(1=20.0)  gn g po (k) = 222710 4 2)%nck ™.
Then for any fired £ € N, and k > 44, there holds
¢
ZI;{Q < Cf,a,n,COSle_aa
i=0

with the constant cp o nc, given by

(240 4 1)co 4 203)p(a)? if hi(k), ha(k) < 1,
c _ {41 ' {41 .
tamaco (8(5 + 1)eo Z hi(40)* + 103 Z h2(4€)’) d(a)?  otherwise.
=0 =0

Proof. For i =0,1,...,¢, we bound the summands I?’2 by

.]7,71
s i+3
I, <2tnis® ) ||n]t|| > Wil (BB
JzEJQk ]7,+1 1
]7,_1

i+1, i+152 i+1112
+27 0 Z Hnﬁ Z n]z+1 ]+1+1k]2(B)BZ 2H ’

Ji€J[2,k,i t=1 Jit1=1

The two terms on the right-hand side, denoted by I?,2,1 and 132’2, can be bounded using
Lemmas 3.3 and 3.4, respectively. Indeed, for 13’271, Lemma 3.3 yields that for any k > 4¢ > 44,

122,1 §4<22a71671(2i + 1)00 (23672(22' + 1)2n¢(2a)k72(17a)+max(172a,0))i

+25(22% 1 (i + 2)2ncok_a)i) () 252k,
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Thus, by the definitions of hy(k), ho(k), for any k > 4¢, if hy(k) < § and ho(k) < 3, then the
condition ¢ < ¢ implies

¢ ¢
> Lo §4(22a_16‘1(2€+1)%2h1( +25Zh2 ) )26%k1

i=0 =0
< 4(2%%e (20 + 1)co + 50) p(a)26% k'~ a.

Meanwhile, if k£ does not satisfy the condition, by the monotonicity of hi(k) and ho(k) in k,
we have hi(k) < hi(4¢) and ha(k) < ha(4¢), and consequently,

4 y4
ZI 21 < 4(22a feT N 20+ 1)eg Y ha(40) +25) h2(4£)i)¢(a)252k1—a.

i=0 i=0

Next we bound the term I?,2,2‘ Actually, by Lemma 3.4, for any k > 4¢ > 44, there holds

I?’Q,Q g( (2z+1) (23 (2i + 1)2n¢(2a)k—2(1—a)+max(1—2a,o))z‘+1
+ 3¢(a) (221 (i + 1)2ncok;—a)i+1)52k1—a.
Then repeating the preceding arguments yields
(20 + 3p(a) )82k if hy(k), ho(k) < 3,

., < ¢ ¢
; A (2COZh (40! 4+ 3¢(cx Z (hao(40)) H1>52k1 @ otherwise.
=0 1=0

Now combining the bounds on ZZ ol 2 1, and ZZ 0 l 9.2 Yields the desired assertion. [ |

Remark 3.6. If k < 44, we can replace ¢ by 0. By Assumption 1.1(i), ¢y < 1, repeating
the argument of the proposition and Lemmas 3.3 and 3.4 yields

I 5 < 2c0(n(¢(20) + 3¢()) + 11¢(r)?) 52k .

Note that in the conditions hg(k), h1(k), ha(k) < &, ho and hy, apart from the factor ¢(2av),
do not depend sensitively on the exponent «, but for « close to zero, ho(k) < % essentially
requires a small ¢ = O(n~!), and furthermore, the larger £ is, the smaller ¢ should be in
order to fulfill the conditions. The latter condition also appears in the proof of Theorem 1.2
below.

3.3. Bound on the error E[||e¢||?]. To prove Theorem 1.2, we need a useful technical
estimate, where the notation k™#*(0:0) denotes Ink. Note that the restricted range of s is
sufficient for the proof of Theorem 1.2.
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Lemma 3.7. Let Assumption 1.1 hold. Then for any e,n € [0,1], s € (—o0, 0]U (max(0,1—
2a),+00), and k > 40 with e = e({ + 1) and €;, = n({+ 1), the following two estimates hold:

/+1

(3.6) > I7wiB*re-o=

Jor1€T e,k 041 t=1
<max(2?, 1)(22a—2ne—2nc(2)—277k—2a>€+1k—s,

{41

Ic
(5]
2
(3.7) S IIeim, L BB

Jer1=1Je€ T4, 4 +1,k),0 151

( —15 20) 3’%]@_55(8))”1]@_5,

1 £+1

—{—
(38) Z > im0 (BB

Jes1=[E1+1 Je€T 5, 41,00 t=1
<m0 (g2 =24 4 1) 202,

with the constant cs, and the exponents sc(s) and s, respectively defined by

2° if s <0,
Cs =

%2((;;_)‘9) if s > max(0,1 — 2a),

se(s) = 2¢(1 — a) — max(1 — 2, 0) — (£ + 1) "' max (s — max(1 — 2a,0),0),
sp = (2 — 2n)o — max(1 — 2, 0).

Proof. The proof is similar to that of Lemma 3.4. We denote the three terms on the
left-hand side by Iy, Iy, and I, respectively. It is easy to check that, for any n € [0,1], with
the inequalities co[|B|| < (2¢)7!, || B|| < 1 (cf. Assumption 1.1(i)), and k — ¢ > 3k,

/+1
L= > J[IB Pk — ) < (2% 21e 202 212 max(2°, 1)k

Jo+1€Tk—e,k) 041 t=1

For I, by the condition ||B|| <1 in Assumption 1.1 and Lemma 2.3 with s = /., we have

l+1

Le (|12 ,:—
Z S TIniimg, ., (BB P,

Je1=1Je€ T3, g +1,k)0 t1

I+1

2(1—e)(¢+1 o . —20. .—s
(e Z > It =g — 07550

Jer =1 Je€T 5y, 1 41,00 =1
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Now by the estimates (3.3) and (2.2), and Lemma 2.4(i),

041

]
> S Tk = dewa — 0725

Jer1=1 €5, 41,k t=1
(5]

SORS I DS ﬁjﬁ“)

Je1=1 Je€Tp ke =1
(5]

<7 (X2 a5Y) (papkmt2e0)

Jer1=1
Direct computation with (2.2) gives

(5]

.—(2a+s)
Z Je+1 <

Jer1=1

{ 2s(z)(2oé)(%)max(lf2a,0)k757 5 <0,

4551)2(024;—)3) ((25(205)kmax(lfQOz,O))ksfmax(lf2oz,0)kfs7 s> max(0,1 — 2@).

These two estimates together give (3.7). Similarly, Lemma 2.3 with s = ¢,, yields

k—f—1 041
\ —n)(¢ . ) o0,
I S(%)Qéncg(l M) 26,0 Z Z Hﬂt 2k — jpur — €) 2477]“;;1.

Jer1=[E14+1 Je€ T, +1.k0 t=1

Note that for jyy; = [%] +1,..., k=01, <max(1,2°)k™°, and thus Lemma 2.4(ii) and
the estimates (2.2) and (3.4) give

k—0—1 /+1
o Tk = e — 0753
Jes1=[E1+1 Je€ T3, 4100 t=1
k—0—1
<max(1,29)(5) 2k S (N 1) (k=G - 07
je+1:[§}+1 JZEJ[jZ+1+1,k]73
k—0—1

4
< max(1,2%) (Zzl) (%)—Q(er)ak—s Z (k — jog1 — £)"2ntt
je+1:[§}+1
< max(1, 25)WM(%)*2(5+1)ak75kmax((len)(ZJrl),O)’

where the last line follows from (2.2) and the identity —2¢,,4+-¢+41 = (1—-2n)(¢+1). Combining
the preceding estimates yields the bound (3.8) and completes the proof of the lemma. |

Now, we can prove the order-optimal convergence rate of SGD in Theorem 1.2.

Proof of Theorem 1.2. Let ry, = E[HeiHZ]. We prove that for any € € (%, 1], there exist c,
and cy4 such that

(3.9) e < ek P+ a0k,
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with § = min(2v,1+4 (2¢ — 1)({+1))(1 — @) and v = 1 — . Then the desired assertion holds
by choosing € € (3,1) and ¢ € N such that (2¢ — 1)(£ + 1) > 2v — 1. The proof proceeds by
mathematical induction. We treat the cases (i) a € [0,3) U (3,1) and (ii) a = § separately.
First we consider case (i). If k < 4/, the estimate (3.9) holds for any sufficiently large ¢, and
Csx. Assume that it holds up to some k > 44, and we prove it for k + 1. It follows from
Theorem 2.5 and Propositions 3.1 and 3.5 that

—2v1,—2v(l—a 2 21.1—-a
Tk+1 <Cy,a,nCo k ( )HwH + 6&0617%005 k
/41

/+1 2 (4112
+ (2n)"F > H%J|HJ§M+LW(B)B P

Jer1€T)1,k), 041 t=1
Applying the induction hypothesis r; < cj P4 end?iY, j=1,2,..., k, to the recursion gives
Tht1 SCV’g,amC(;?Vk_QV(l_a) Hw”2 + c&a’nymgzkl_o‘ + (2n)£+1c*1 + (Zn)é“c**gzﬂ,

with

1+1

L= > JIndlm, ., BB,

Jot1€T1 k) 041 t=1
{41

Il = Z HthH ]z+ 1+1,k], ( )BZ—HH jé-i-l

Jot1€T01 k) 041 t=1

Using (2.1), we split each of I and II into three terms over the index jg41, one for jpi1 = k—¥¢,
one from 1 to [g], and one from [g] +1to k — ¢ —1, respectively. Now by Lemma 3.7,

(3.10) Tha1 Scy’gya’nco_%kﬂ”(l*a) |w|)® + Cg’a7n70052k17a

+e&i(k)(k+ 1) + e 86 (k) (k + 1),

where the functions &; and & are given by (for any €,n € [%, 1], which implies % <ty)
fl(k) %(21—%25625@1}(2&) 2726]{—85(6))@4-1 + (22—6%; (22a+1 _271(5 + 1)€2nn62 an sn)é—l-l

fg(k) :(214’26626(;5(2&)”6(2)—261{:*85(*'Y))@4’1 + (2+1) (22a+1 7271(6_’_ 1)62777102 277k,—sn)f—&-17

with the constants ¢, = 1+ ¢(20, — ), Lc, ¢, sc(-), and s, defined in Lemma 3.7. By choosing
1>e=mn>1and ¢such that (2¢ — 1)(¢ + 1) > 2v — 1, we have s.(8), se(—7), sy > 0, and

A & € p2e € 2B a -
a(k) < e ::%(21% 24 (2a)nc2 2 )£+1 I (2€+137 (2201~ 20(p 4 )Eancg 2mye

52(11{:) < ¢ ::(21+2€£§E¢(2a)ncg 26)f+1 + (22a+1 7217(6_’_1)6277 2— Qn)f-‘rl

( T

For small ¢g, ¢1,c < % hold, and then (3.9) follows by setting c, = 2% ¥y ? and

Cox = 2C1,am,c- This proves the theorem for case (i). In case (ii), repeating the preceding
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argument, by choosing 1 > € =7 > § and ¢ > 1 such that (2¢ — 1)(¢ + 1) > 2v — 1, gives

k_—se(ﬁ) — k—e+max(0,0)+(€+1)_lmax(ﬁ—maX(O,O),O) < k—e+(£+1)_1ﬁ Ink < k—% Ink < 4,

k—se(—y) — k—e+max(0,0)+(€+1)_lmax(—'y—max(0,0),O) <k €Ink< 6_1 and k%" < 1.

Then repeating the preceding argument shows that the assertion holds when

28 ¢(2a+ —2e\0 228¢, - 221\ ¢
&1(k) < e =250 B 2a)ne ) 4 G (2T e+ 1) < 4,
&2(k) < 2 :=(2"H 2 G(20)nc ) 4 (g (22 e+ Dy < 4,

which can be satisfied with sufficiently small ¢y. This completes the proof of the theorem. M

Remark 3.8. In practice, it is desirable to take small a. With the choice o = 0 and
e=mne¢E (%, 1), the proof requires that the initial stepsize ¢y satisfy

2/3¢(l3>(21+26£§5ncg—25)€+1 + 2%cy (26—2n(g + 1)5727%6(2)—271)“1

1)
9 _ ot
(21+2€€?€nc(2) Zeybrl 4 (Einl)! (26 Mg+ 1)€,2]’7nc(2) 27’) i <

IN
NI—= N

These two conditions are fulfilled provided that ncg*26 and ncgf

particular, with e = n close to %, the conditions essentially amount to cg = O(n~!), agreeing
with the condition in Remark 3.6. Under this condition, by choosing an a priori stopping
index k,(8) = O((|[w[[6~") %), we obtain the following bound: E[]je] ., [[2]? < 47 This
result is essentially identical to that for the Landweber method [7, Chapter 6], and higher

2
T are small constants. In

min(2v,1)
than the existing convergence rate O(§=in@»-1)+1) [18] for SGD. In particular, it proves that
SGD with small initial stepsizes is actually order-optimal.

Remark 3.9. One may slightly refine Theorem 1.2. Indeed, for any a € (0,1), let

Hi(k) := 2° max(v, £ + 1)*n¢(2a) k~(1-e)tmax(1-20.0)
Hy (k) == 2271 (¢ + 2)*ncok* In k.

Note that the following inequalities hold: ho(k) < Hi(k), hi(k) < Hy(k), and ha(k) < Ha(k).
Then there exists some kg, dependent of «, n, ¢, v, and ¢y, such that Hy(k), Ho(k) < % for
any k > ko. The claim (3.9) shows that the assertion holds for any k < ko with sufficiently
large ¢, and c.s. Then we refine the estimate by mathematical induction. Assume that the
assertion holds up to some k > kg, and prove it for k + 1. Since k > kg, h;(k) < %, i1=1,2,3,
it follows from the estimate (3.10), with § = min(2v,1 + (2¢ — )({ + 1))(1 — ), vy =1 — «,
e=1,and n= %, and Lemma 3.7 that

Tk+1 Scme’a’nca%k—%(l—a) HwH2 + Cf,a,n,COSle_a

+ e E1(k)(k 4+ 1) 7P + 0026 (k) (k + 1)1,

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/09/22 to 37.156.73.29 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1578 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

with the functions & (k) and &(k) given by

fl(k) :%@(23(6 + 1)2¢(2a)nk—2(1—a)+max(1—2a,0)+(€+1)*1(B—max(l—Qa,O)))K—‘,—l

+ (?2'_%21[;! (22"_1(6 + I)anok_o‘ In k)“‘l,

fz(k) :(23(€ + 1)2¢(2a)nk—2(1—a)+max(1—204,0))€+1 +

i (2207 0+ 1) ek~ Ink)

Since (/4 1)7(8 — max(1 —2a,0)) < 1 — a, the terms on the right-hand side can be bounded
by either Hj(k) or Ha(k), and thus for k > ko, we have Hy(k), Ho(k) < 3, and consequently

fo(2a . _
&i(k) <2mUFD(ESERD 1 820 and &(k) <27V + ).

By choosing suitable ¢ > 2 — 2 (dependent of v), we can ensure & (k), & (k) < %, and then
taking the constants c, and c,, as before yields the desired assertion.

3.4. Error analysis for a« = 0. In this section, we revisit the case a = 0 separately and

derive an error bound directly with more explicit constants.

Lemma 3.10. Let Assumption 1.1(1) and (iii) hold with o = 0. Further, suppose that the
following condition holds:

(3.11) 2(1 + ¢(2€))ncg > <1 for some € € (3,1).
Then for any s > 0, there holds
E[I(I — coB)* B3 (Bel — A)|2] < 2|/(I — coB)*5"+* B (Bey — A9
Proof. We prove the assertion by mathematical induction. When k& = 1, the inequality

holds trivially true for any s > 0. Now we assume that it holds up to some £k — 1 > 1 and

prove it for k. With the condition a = 0, 7; = ¢o and Il " 0(B) = (I — ¢oB)?' 9+ for
3,31 7
any j/ > j > 1. By the definitions of H; and N]‘-;, we can rewrite H; as H; = A'¢ + AtN]‘.s.

Consequently, we derive from (2.4) that for any s > 0

(I — coB)*B~2(Bel — A'€)

k—1
=(I — coB)*B™2 ((I —coB)" 'Be} — Al + oY (I - cB)F ' BAE
j=1
k—1 '
teoY (I - coB)’“*J”BAtNJ‘-S)
j=1
1 kot . 1
=(I —cB)* "B 2(Be§ — A'0) +co » (I —coB)* T B2A'N},
j=1
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in view of the identity ¢ Z;’:ll(f —coB)* 1B = I — (I — coB)*~'. By the recursion (2.4)
and (2.10)—(2.11), we have the following bias-variance decomposition:

E[|(I — coB)*B~%(Be} — A'€)||?]

k—1
=||(I — coB)* "1 B~2(Be’ — ALE)||2 + ¢ > E[I(I = coB)* I~ 1+SBQAtN‘5|| ].
j=1

Next we denote the summation by I(s). Then the argument for NV ]‘5 in the proof of Theorem
5 and the condition ||B|| < 1 imply that for any € € (3, 1),

k—1

I(s) < ned Y E[|(I — coB)* 971 B3(Bel — A%)|?]
=1
j k_l k—j—1 ., —
<n@ (I - coB) | Y 11 — coB) 5 BIPE[|(I — coB) 7 T*B~3(Be] — A'€)||?).
j=1

With the identity ||(I — coB)™!|| = (1 — ¢o||B||)~! and the induction hypothesis

E[[[(I — coB) =" **B~2(Bel — A)|
<2|(I —cyB)" 7 **B 2(Bey — A2, j=1,....k—1,

we deduce
2nc% L Qk_l kg1 5
I(s) 1_COHBHH(I coB)"7 T*B73(Be; — AE)| > I —cB) 2 B
j=1

By Lemma 2.3 and the estimate (2.2),

k—1 k—2

k— 1
I(I—coB) = B =B+ >_ (I —coB)*77'B¥|
Jj=1 Jj=1
k—1
S(E)D (k=35 —1)7% < (Z)*(1+ ¢(20)).
j=1

This, the assumption co||B|| < (2¢)~! and the condition (3.11) imply
I(s) < ||(I — coB)'= **B%(Bey — A9,
This completes the induction step of the proof and thus also the proof of the lemma. |

Finally, we can state a refined error estimate for the case a = 0.

Theorem 3.11. Let Assumption 1.1 hold with o = 0. Under condition (3.11), there holds
E[le %] < 2% [lw]]® + 2.6k,

with constants ¢ = 2(6%)2” + 6nco(2(2€+§1))2“+1 and 2, = 3 + 6ncy.
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Proof. Under condition (3.11), the proof of Theorem 2.5 and Lemma 3.10 imply

E‘

-1

. 2
Eflef 2] <27 — coB)*~"er||* +260%)| 3 (1 — coB)* 1B
1

<.
Il

k—1
+ncg ) Bl —coB)* 7~ (Bej — AE)|”].
J

=1
Below we denote the last term by II. Note that
E[|[(I —coB)" 7~ (Be] — T)HQ]
<(1— o BIN Y|~ coB) + B:|E[|(I —COB) = B3 (Be} — A'E)|?
<2(1 = col BI)THI(T — COB)’“*]”BHH( —coB)'T B 3(Bey — A%)|%

By Lemma 2.3, the assumption co||B|| < (2¢)~!, and the estimates (2.2) and (3.5), we have

k—1 k—1
YOI =B ITBl < (eco) ™MD (k=4 —1)7" < 3(eco) ' max(Ink, 1) < 3(eco) k.
j=1 j=1

Meanwhile, by the Cauchy—Schwarz inequality, we have
1= _ -
I(I = coB) = (Biey — B~ A%)|* < 2(||ef (I — coB)* ' Bes || +6%(I - coB) = ||?).
Combining the preceding estimates with Assumption 1.1(ii) and Lemma 2.3 leads to

11 <6neok (|| (I — coB)¥ ™ B+ |[[[w]|* + 8%) < 6neo (22> 1k Juw||? + 5°k).

€co

Similarly, there hold
(I = coB)*ter|” < (Z2)* K~ |[w]?,

eco

k—1

(Zn BB < 3ok
=1

Combining the preceding estimates completes the proof of the theorem. |

e
—

H (I - coB)ti1B3|
1

.
Il

4. Numerical experiments and discussions. In this section, we provide numerical ex-
periments to complement the analysis. To this end, we employ three examples, denoted
by s-phillips (mildly ill-posed), s-gravity (severely ill-posed), and s-shaw (severely ill-
posed), adapted from phillips, gravity, and shaw in the public MATLAB package Regutools
[10] (available at http://people.compute.dtu.dk/pcha/Regutools/, last accessed on August 20,
2020). These examples are Fredholm/Volterra integral equations of the first kind, discretized
by means of either Galerkin approximation with piecewise constant basis functions or quadra-
ture rules, and all discretized into a linear system of size n = m = 1000. To explicitly control
the regularity index v in the source condition (1.5), we generate the true solution z! by

(AP A)
[(ALA)Y zellpo”

al =
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where . is the exact solution provided by the package, and || - ||~ denotes the maximum
norm of vectors. In the test, the exponent v is taken from the set {0,1,2,4}. Note that the
exponent v in the source condition (1.5) is slightly larger than v defined above, due to the
inherent regularity of . (which is less than one half for all examples). The exact data y' is
generated by y! = Az' and the noise data y° by

yf = y;[_}_eHyTHfoof’u izlw"vnv

where ;s are i.i.d. and follow the standard Gaussian distribution, and € > 0 represents the
relative noise level (the exact noise level being § = ||y® — yf||). SGD is always initialized with
z1 = 0, and the maximum number of epochs is fixed at 9e5, where one epoch refers to n SGD
iterations. All statistical quantities presented below are computed from 100 independent runs.
To verify the order optimality of SGD, we evaluate it against an order-optimal regularization
method with infinite qualification, i.e., the Landweber method [7, Chapter 6], since it is the
population version of SGD, converges steadily while enjoying order optimality, and thus serves
as a good benchmark for performance comparison in terms of the convergence rate. (However,
one may employ any other order-optimal method.) It is initialized with 1 = 0, with a constant

stepsize 0 jHQ, which can be much larger than that taken by SGD.

Table 1
Comparison between SGD and LM for s-phillips.

Method SGD(a = 0) SGD(a = 0.1) LM

v € Co €sgd ksgd Co €sgd ksgd €lm klm

0 1le3 4c/n 1.66e-2  4691.28 ¢/30 1.67e-2 2176.23 1.65e-2 5851
5e-3 4c/n 9.35e-2  782.10 ¢/30 9.49e-2  336.33  9.28e-2 1036
le-2 4c/n 1.29¢-1 204.90 c/SO 1.32e-1 69.69 1.28e-1 249
5e-2 4c/n 5.42e-1 108.90 ¢/30 5.57e-1 34.11 5.34e-1 136

1 1le3 c/n 3.48e-4  539.19 c/n 2.88e-4 2089.62 2.28e-4 157

5e-3 c/n 3.69e-3  73.44 c/n 3.32e-3 21894 2.74e-3 20
le-2 c/n 6.64e-3 57.81 c/n 6.12e-3  166.47  5.12e-3 16
5e-2 c/n 3.52e-2  29.40 c/n 3.31le-2  80.79  3.16e-2 8

2 le-3 ¢/(30n
5e-3  ¢/(30n

7.02¢-5 211554 ¢/(20m
4.47e-4 119748 ¢/(20n

) ) 5.48e-5 591291 3.22¢5 19
(30m) (20n) 4.13e-4 3201.63 3.76e-4 11
le-2  ¢/(30n) 1.09e-3  938.70  ¢/(20n) 1.04e-3 2441.85 9.82e-4 8
5e-2  ¢/(30n) 2.92e-2 63651 ¢/(20n) 2.90e-2 1597.56 1.57e-2
4 1e3 ¢/(30m) 9.77e-5  1966.38 ¢/(20m) 6.91e-5 3291.18 1.30e-5
(30n) (20n)
(30n) (20n)
(30n) (20n)

5e-3  ¢/(30n) 7.55e-4  879.51 ¢/(20n) 6.97e-4 2263.89 3.83e-4
le-2  ¢/(30n) 2.56e-3  785.94 ¢/(20n) 2.50e-3 1996.83 1.42e-3
5e-2  ¢/(30n) 5.23e-2  596.73 ¢/ 5.21e-2  1489.29  2.49e-2

W Ut O Co| Ot

4.1. Numerical results for general A. The numerical results for the three examples are
shown in Tables 1-3, where the notation egq = E[szsgd — 21]|2] denotes the mean squared
error achieved at the kgqth iteration (counted in epochs) by SGD, and ey, = ||xilm — |2
and ki, denote the squared £2 error and the stopping index for the Landweber method. The
stopping indices kgzq and ki, are taken such that the corresponding error is smallest for SGD
and the Landweber method, respectively, along the iteration trajectory. The choice of the
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stopping index is motivated by a lack of provably order-optimal a posteriori stopping rules
for SGD. The initial stepsize cg is also indicated in the tables, in the form of a multiple of
the constant ¢ = m In the experiments, we consider two decay rates for the stepsize
schedule, i.e., « = 0 and o = 0.1.

Table 2
Comparison between SGD and LM for s-gravity.

Method SGD(a = 0) SGD(a =0.1) LM

v € Co €sgd ksgd Co €sgd ksgd €lm Kim

0 1le3 ¢/20 9.37e-2  1000.50 ¢/10 9.39e-2  1894.14 9.3%e-2 27201
5e-3 ¢/20 3.29e-1 86.43 ¢/10 3.29e-1  134.85  3.27e-1 2515
le-2 ¢/20 5.81e-1 34.11 ¢/10 5.80e-1 34.17 5.73e-1 793
5e-2 ¢/20 2.23e0 5.61 ¢/10 2.22e0 6.03 2.07e0 149

1 1le-3 ¢/(30m) 5.90e-4 5604.80 c¢/(10n) 5.95e-4 8095.17 5.68e-4 99

(30n) (10n)
5e-3  ¢/(30n) 5.13e-3  2069.25 ¢/(10n) 5.14e-3 2707.74 5.02e-3 37
le2 ¢/(30n) 1.15e-2 1356.87 «¢/(10n) 1.15e-2 1688.04 1.12e-2 24
5e-2  ¢/(30n) 6.48e-2 61341 ¢/(10n) 6.48¢-2 709.08 6.19e-2 11
2 1e3 c¢/(50n) 1.32e-4 2441.85 ¢/(20n) 1.28¢-4 398334 6.82e5 23
5¢-3  ¢/(50n) T.Tde-4  1274.67 ¢/(20n) T7.64e-4 1940.70 6.06e-4 12
le-2  ¢/(50n) 1.92e-3 1047.03 ¢/(20n) 1.9le-3 1580.49 1.47e-3 10
5e-2  ¢/(50n) 2.35e-2  708.72 ¢/(20m) 2.34e-2 1013.31 1.61e2 6
4 1e3 ¢/(60n) 1.03e-4 221226 ¢/(30n) 8.38e-5 3982.77 1.30e-5 10
5e-3  ¢/(60n) 4.65e-4  1054.53 ¢/(30n) 4.24e-4 200271 2.04e-4 7
le-2 ¢/(60n) 1.29e-3  941.19  ¢/(30n) 1.25¢-3 1782.99 6.42e-4 6
5e-2  ¢/(60n) 2.25e-2  T46.67 ¢/(30n) 2.26e-2 1398.72 8.58e-3 3

First we comment on the SGD results. Clearly, for each fixed v, the mean squared error
esgd (and also eyy) decreases to zero as the noise level € tends to zero, but it takes more
iterations to reach the optimal error, and the decay rate depends on the regularity index v
roughly as the theoretical prediction O(¢ #erl) The larger the regularity index v, the faster
the error decays, and the fewer iterations it needs in order to reach the optimal error. The
results obtained by SGD with o = 0 and « = 0.1 are largely comparable with each other, but
generally the former imposes a more stringent condition on the initial stepsize ¢y than the
latter so as to achieve comparable accuracy. This is attributed to the fact that polynomially
decaying stepsize schedules have a built-in variance reduction mechanism as the iteration
proceeds. Nonetheless, at the low-regularity index (indicated by v = 0 in the table), the
initial stepsize can be taken independent of n. Next we compare the results of SGD with
the Landweber method. For all regularity indices, SGD, with an either constant or decaying
stepsize schedule, can achieve an accuracy comparable with that of the Landweber method,
provided that the initial stepsize cg for SGD is taken to be of order O(n~!). Generally,
the larger the index v is, the smaller the value ¢y should be taken in the stepsize schedule
in order to fully realize the benefit of smooth solutions. This observation agrees well with
the observation in Remark 3.6. These observations hold for all three examples, which have
different degree of ill-posedness. Thus they are fully in line with the convergence analysis in
section 3.

In order to shed further light on the convergence behavior of SGD, we present numerical
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Table 3
Comparison between SGD and LM for s-shaw.

Method SGD(a =0) SGD(a = 0.1) LM

v € Co €sgd ksgd Co €sgd ksgd €lm kim

0 le3 c 2.81e-1  2704.92 2c 2.8le-1  5853.54 2.81le-1 760983
5e-3 c 5.37e-1 67.14 2c 5.33e-1 94.92 5.25e-1 18588
le-2 c 7.08e-1 42.42 2c 6.98e-1 60.18 6.67e-1 12385
5e-2 c 3.91e0 10.59 2c 3.66e0 14.91 2.91e0 3392

1 1le-3 2¢/n 1.21e-4  275.70 4c/n 1.26e-4  453.00  5.95e-5 144
5e-3 2¢/n 1.45e-3  142.05 4e/n 1.48e-3  202.50  1.26e-3 71
le-2 2¢/n 5.75e-3  113.01 4c/n 5.62e-3  148.11  5.21e-3 54
5e-2 2¢/n 1.51e-1  64.77 de/n 1.54e-1  97.02 1.47e-1 36

2 1le-3 2¢/n 1.53e-4  255.27 4c/n 1.29e-4  746.46  6.36e-5 50
5e-3 2¢/n 2.00e-3  84.60 de/n 1.73e-3  235.08 1.51e-3 37
le-2 2¢/n 6.43e-3 64.77 4e/n 6.05e-3  172.32  5.71e-3 30
5e-2 2¢/n 8.17e-2 11.88 4c/n 8.00e-2 29.49 7.08e-2 5

4 1e-3 ¢/(30n) 5.79e-5 1966.38 ¢/(10n) 5.92e-5 2863.35 3.13e-5
5e-3  ¢/(30n) 6.00e-4  941.19  ¢/(10n) 6.06e-4 1116.81 3.7le-4
le2 ¢/(30n) 1.99e-3 82845 ¢/(10n) 2.00e-3 1002.93 1.01e-3
5e-2  ¢/(30n) 3.6le-2 645.75 ¢/(10n) 3.6le-2  T46.67  6.45e-3

= s Ol ©

results with four different values of ¢q (i.e., min(c, nc*), 10c*, ¢*, and %, with ¢* from the
tables) in Figures 4.1 and 4.2 for the examples with » = 1 and exact and noisy data, respec-
tively. In the case of exact data, the mean squared error egq consists of only approximation
and stochastic errors, and it decreases to zero as the iteration proceeds. With a large initial
stepsize, the error egq decreases quickly during the initial iterations, but only at a slow rate
O(k*(lf‘l)), whereas with a small ¢y, the initial decay is much slower. The asymptotic de-
cay rate matches the optimal decay O(k=2*(1=®)) only when ¢y decreases to O(n~'), which
otherwise exhibits only a slower decay O(k~™(2»1(1=2)) and thus an undesirable saturation
phenomenon. Note that for small ¢, the asymptotic decay O(k=2"(1=%)) kicks in only after
a sufficient number of iterations, which agrees with the condition ho(k) < %, etc., in the
analysis. Further, there is an interesting transition layer for medium cy (but still of order
O(n~1)), for which it first exhibits the desired asymptotic decay and then eventually shifts
back to a slower decay rate. The presence of the wide transition region indicates that the
optimal convergence can still be achieved for noisy data even if the employed c¢j is larger than
the critical value suggested by the theoretical analysis in section 3. These observations hold
for both constant and polynomially decaying stepsize schedules. These numerical results show
that a small initial stepsize cq is necessary for overcoming the saturation phenomenon of SGD.

These empirical observations remain largely valid also for noisy data in Figure 4.2. It is
observed that the asymptotic decay rate is higher for smaller initial stepsizes, but now only up
to a certain iteration number, due to the presence of the propagation error, which increases
monotonically as the iteration proceeds and eventually dominates the total error. This leads
to the familiar semiconvergence behavior in the second and third columns of Figure 4.2. The
proper balance between the decaying approximation error and the increasing propagation error
determines the attainable accuracy. One clearly observes that the larger cg is, the faster the

*
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asymptotic decay kicks in, but also the quicker the SGD iterate starts to diverge, which can
greatly compromise the attainable accuracy along the trajectory, leading to the undesirable
saturation phenomenon. When the initial stepsize cg becomes smaller, the attainable accuracy
improves steadily. In particular, with a sufficiently small ¢y, the attained error is optimal (but
of course at the expense of a much increased computational complexity). This observation
naturally leads to the important question of whether it is possible to design novel stepsize
schedules (possibly not of polynomially decaying type) that enjoy both fast preasymptotic
and asymptotic convergence behavior.

10* 10* 10*
102 102 10%
= 100 ko] 100 - 100\\
CIJ?) d)9 OJUU”
1021 —c 102 H—c/30 102} —c
—10c/n —c/(3n) —20c/n
10'4 c/n 1 0'4 ¢/(30n) 10'4 2c/n
c/(10n) —¢/(300n) —cl/(5n)
10-6 2 3 4 5 6 2 3 4 5 6 7 10-6 2 3 4 5 6 7
102 10° 10* 10° 10 102 10% 10* 10° 10% 10 102 10° 10* 10° 10%° 10
k k K
10* 10* 10*
102 102 102
- 10° - 10° - 10°
P 2 2
® 10— ® 102 [—crt0 ® 102[—c
—10c¢/n —c/n —40c¢/n
1074 c/n 107 c/(10n) 107 4c/n .
—c/(10n) —c/(100n) ~ —4c/(10n) AN
102 10° 10* 10% 10% 107 102 10° 10* 10° 10°% 107 102 10° 10* 10° 10% 107
k k k
s-phillips s-gravity s-shaw

Figure 4.1. The convergence trajectory of the SGD error with different initial stepsize co for the examples
with v = 1. The top and bottom rows are for « = 0 and o = 0.1, respectively.

4.2. On Assumption 1.1(iii). The convergence analysis in section 3 requires Assumption
1.1(iii). This appears largely to be a limitation of the analysis technique. To illustrate this,
we compare the results of the systems with a general matrix A and of one that satisfies
Assumption 1.1(iii). The latter can be constructed from the former as follows. Let A = ULV?
be the singular value decomposition of A. Then we replace A by A = U'A and 39 by §° = Uty®
so that A satisfies Assumption 1.1(ii)(iii). The numerical results for s-phillips are shown in
Table 4. Tt is observed that the results obtained by SGD with A and A are largely comparable
with each other for all the noise levels and smooth indices, especially when the amount of
the data noise is not too small. Although not presented, the observations are identical for
other examples, including multiplying the matrix A by an arbitrary orthonormal matrix, as
long as ¢ is sufficiently small. These observations are also confirmed by the corresponding
trajectories: The trajectories of the mean squared error for the three examples with v = 1
for A and A nearly overlap when the data is not too small (as in most practical inverse
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10* 10* 10*
102 10? 10?
he] =] =]
o 10° o5 10° oF 100
—cC —c/30 —cC
2 [—10c/n 2| —c/(3n) 2| —20c/n
10 10 10
c/n c/(30n) 2c/n
—c/(10n) ¢/(300n) c/(5n)
10-4 2 3 4 5 10»4 2 3 4 5 6 7 10-4 2 3 4 5 6
10 10 10 10 102 10 10* 10° 10° 10’ 102 10° 10* 10° 10
k k K
10* 10* 10*
102 102 102
S .0 S .0 5.0
o3 10 o3 10 o3 10
—cC —c/30 —cC
2| —10c/n o[ —c/(3n) 21— 20c/n
10 c/n 10 c/(30n) 10 2c/n
4 —c/(10n) 4 —¢/(300n) 4 —c/(5n)
10 10° 10
102 100 104 10° 102 10° 10* 10° 108 102 10° 10* 10° 10°
k k k
s-phillips s-gravity s—shaw

Figure 4.2. The convergence trajectory of the SGD error (with oo = 0) with different initial stepsize co for
the examples with v = 1. The top and bottom rows are for e =1le-2 and e=5e-2, respectively.

Table 4 _
Comparison between SGD with o =0 for s-phillips with A and A.

Method SGD with A SGD with A

v € co e k e k

0 1le3 de/n 1.66e-2  4691.28 1.65e-2  4738.4
5e-3 4c/n 9.35e-2  782.10 9.28e-2  835.35
le-2 4c/n 1.29e-1  204.90 1.28e-1  198.75
Se-2 de/n 5.42e-1  108.90  5.40e-1  111.85

1 1le-3 c/n 3.48e-4  539.19  2.29e-4  507.55
5e-3 c/n 3.69e-3 73.44 2.87e-3 71.2
le-2 c/n 6.64e-3  57.81  5.72¢-3  57.75
5e-2 c/n 3.52e-2 29.40 3.84e-2 30.4

2 1e-3 ¢/(30m) 7.02¢-5 2115.54 3.49e-5  2021.6
5e-3  ¢/(30n) 4.4Te-d 1197.48 3.66e-4 1186.10
le-2  ¢/(30n) 1.09e-3  938.70  9.90e-4  934.75
5e-2  ¢/(30n) 2922 63651 2.94e-2  639.60

4 1e3 ¢/(30n) 9.77e-5 1966.38 2.49e-5 1103.00

(30n)
(30n)
(30n)

5e-3  ¢/(30m) 7.55e-4  879.51 6.34e-4  869.40
le-2  ¢/(30m) 2.56e-3  785.94 2.43e-3  781.80
5e-2  ¢/(30m) 5.23e-2  596.73  5.24e-2  597.60

problems) (cf. Figure 4.3). For exact data, the trajectories overlap up to a certain point
around le-4 (which depends on the value of ¢p), and the value of leveling off is observed to
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further decrease by choosing smaller ¢g. One interesting open question is thus to establish the
saturation-overcoming phenomenon without Assumption 1.1(iii), as the experimental results
suggest.

10* 10* 10%
10? 102 10?
10° 0
i 10° 10
(0] N [0} (0]
10 » 102
1074 10
_ 4l 1074 ——
108H—A4 1074 [—A4 —A
—A —A 10'5 —A
108 10°®
102 10%  10* 10° 108 102 10® 10* 10° 10° 102 10®  10*  10°  10°
K k k
10* 10*
102 102
10° 10°
(0] (0]
1072 1072
104 H—A4 104 H—A4
—A —A
-6 -6
10 10
102 10° 10 10° 102 10®  10* 108
k
10* 104
102 102 102
o 100 @ 10° @ 100
-2 -2 2
10 —A 10 — A 10 —i
— A —A —A
104 104 10
102 10° 10% 102 10°  10*  10° 102 10 10*  10°
K k k
s-phillips s-gravity s-shaw

Figure 4.3. The convergence of the error e versus iteration number for the examples with v =1, computed
using A and A. The rows from top to bottom are for e =0, € = le-3, and € = 5e-2, respectively.

5. Concluding remarks. In this work, we have presented a refined convergence rate analy-

sis of stochastic gradient descent with a polynomially decaying stepsize schedule for linear
inverse problems, using a finer error decomposition. The analysis indicates that the satu-
ration phenomenon exhibited by existing analysis actually does not occur provided that the
initial stepsize cg is sufficiently small. The analysis is also confirmed by several numerical
experiments, which show that with a small ¢g, the accuracy of SGD is indeed comparable to
the order-optimal Landweber method.

The numerical experiments show that Assumption 1.1(iii) is actually not needed for the
optimality as long as the initial stepsize cq is sufficiently small, although the analysis requires
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the condition. Omne outstanding issue is to close the gap between the mathematical theory
and practical performance. The study naturally leads to the question of whether there is
a “large” stepsize schedule that can achieve optimal convergence rates. The numerical ex-
periments indicate that within polynomially decaying stepsize schedules, a small value of ¢
seems to be necessary for achieving order optimality. But the analysis in this work does not
cover nonpolynomial schedules, e.g., stagewise SGD [35, 9], which may potentially overcome
the saturation phenomenon. Intuitively, the small initial stepsize can be viewed as a form of
implicit variance reduction, and thus it is also of interest to analyze existing explicit variance
reduction techniques, e.g., SVRG [20] and SAG [24]. The current work discusses only deter-
ministic noise. Naturally it is also of interest to extend the analysis to the case of random
noise; see, e.g., the work [1, 12] for relevant results for statistical inverse problems in a Hilbert
space setting.

Acknowledgment. The authors would like to thank the two anonymous referees for their
many constructive comments, which have greatly helped improve the quality of the paper.
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