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Abstract. We propose a stable Petrov-Galerkin discretization of a kinetic

Fokker-Planck equation constructed in such a way that uniform inf-sup sta-
bility can be inferred directly from the variational formulation. Inspired by

well-posedness results for parabolic equations, we derive a lower bound for the

dual inf-sup constant of the Fokker-Planck bilinear form by means of stable
pairs of trial and test functions. The trial function of such a pair is constructed

by applying the kinetic transport operator and the inverse velocity Laplace-

Beltrami operator to a given test function. For the Petrov-Galerkin projection
we choose an arbitrary discrete test space and then define the discrete trial

space using the same application of transport and inverse Laplace-Beltrami

operator. As a result, the spaces replicate the stable pairs of the continuous
level and we obtain a well-posed numerical method with a discrete inf-sup con-

stant identical to the inf-sup constant of the continuous problem independently
of the mesh size. We show how the specific basis functions can be efficiently

computed by low-dimensional elliptic problems, and confirm the practicability

and performance of the method with numerical experiments.

1. Introduction

In this manuscript we develop a stable and efficient Petrov-Galerkin approxima-
tion scheme for certain kinetic Fokker-Planck equations, including the equation

(1) ∂tu((t, x), v) + v · ∇xu((t, x), v) = ∆v

(
u((t,x),v)
q(x,v)

)
in Ω = It × Ωx × Ωv

with suitable inflow boundary conditions. Equation (1) describes a particle density
u dependent on time t ∈ It, position x ∈ Ωx ⊂ Rd, d ∈ {2, 3}, and direction v ∈
Ωv = Sd−1, where Sd−1 is the (d−1)-dimensional unit sphere and q ∈ L∞(Ωx×Ωv)
with q > 0 a.e. and q(x, ·) ∈ C1(Ωv) for a.e. x ∈ Ωx.

Formulations for particle densities governed by kinetic equations arise in various
contexts. Beyond the classical applications of radiative transfer and kinetic gas
theory (see e.g. [17, 20]), kinetic equations are, for instance, also used to describe
densities of tumor cells in multiscale descriptions of tumor spreading [25, 34]. In
this manuscript, we are mainly interested in the latter application. More precisely,
we focus on a discretization of a prototype of a glioma tumor equation described
in [34], where the velocity is driven by a Brownian motion resulting in the specific
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2 JULIA BRUNKEN AND KATHRIN SMETANA

Laplace-Beltrami term of (1). However, other variants including, e.g., ∇v terms,
are also included in the more general setting considered in the course of this work.

We aim for a finite element discretization with guaranteed stability. There-
fore, we focus on a Petrov-Galerkin discretization based on a stable variational
formulation of (1), since in such a framework the well-posedness of the discrete
scheme can often be inferred from respective results on the continuous level, see
e.g. [15, 19, 41, 44].

First, we establish a full-dimensional variational formulation for (1) based on
Bochner-type spaces, mapping the combined space-time domain Ωt,x = It × Ωx
to a Sobolev space defined on the velocity domain Ωv similar to spaces defined in
[1, 11]. Taking the viewpoint that the Fokker-Planck equation can be interpreted
as a “generalization” of a parabolic equation with a (d + 1)-dimensional kinetic
transport operator ∂t + v · ∇x instead of a one-dimensional time derivative ∂t, we
analyze the well-posedness of the variational formulation for (1) by combining re-
spective approaches developed for parabolic equations [26, 41, 44] and for transport
equations [10, 15, 19]. We show existence of a weak solution by verifying the dual
inf-sup condition. To that end, similarly to [26, 41], specific function pairs in the
trial and test spaces are constructed. We associate a test space function p to a
trial space function roughly defined as wp = p − (∆v)

−1(∂tp + v · ∇xp). Then the
bilinear form evaluated in wp and p can be bounded from below by the respective
norms of wp and p, which leads to a lower bound for the dual inf-sup constant.
This approach is a generalization of proofs for parabolic equations using a variant
of wp containing only the time derivative instead of the kinetic transport opera-
tor [26, 41] and of proofs for transport equations, where a “stable function pair”
consists roughly of −(∂tp + v · ∇xp) and p, when choosing the kinetic transport
operator in the linear transport equation, see [10, 15, 19]. Under an additional as-
sumption on the global traces of certain functions, we also show uniqueness of the
solution similar to proofs for parabolic equations [26] and transport equations [4],
and have a stability estimate dependent on the inf-sup constant, which is similar
to the respective estimates for parabolic equations.

To design the Petrov-Galerkin discretization, we use problem-specific trial spaces
ensuring stability: We first choose an arbitrary discrete test space Yδ and then define
the discrete trial space roughly as Xδ = Yδ + (∆v)

−1(∂t + v · ∇x)Yδ. The spaces
thus consist of pairs wδp, p

δ that are the discrete counterparts of the pairs wp, p
used in the proof for the lower bound of the dual inf-sup constant. This approach
automatically yields a well-posed discrete problem with the same stability constant
as for the continuous problem independently of the choice of the test space and
thus of the mesh size. The strategy to use an application of the transport operator
for defining a stable trial space was already used for linear first-order transport
equations [10] and for the wave equation [31] as an alternative to computing stable
test spaces by approximately inverting the transport operator [15, 19]. Our choice
ensures that the spaces can be efficiently computed in the course of the numerical
scheme, where we apply the high-dimensional transport operator and only solve
low-dimensional elliptic problems in the velocity domain due to the inverse Laplace-
Beltrami operator. As a result, we can guarantee the stability of the method with
low-dimensional computations that are not dominant in the computational costs of
the full solution process.
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Weak solutions and variational formulations for different types of kinetic Fokker-
Planck equations have been defined and analyzed in various works, see e.g. [1, 11,
18, 35, 43]. However, these approaches focus on the properties of the weak solution
without an orientation towards a subsequent discretization. On the other hand,
discretizations of kinetic Fokker-Planck equations are often not based on the direct
connection to a weak solution or do not specifically consider stability estimates. In
[37], a finite element discretization of a kinetic Fokker-Planck equation is described,
where the well-posedness of the discrete problem is however not analyzed. Applying
the framework of [22], a mixed variational formulation with a subsequent discretiza-
tion for a generalized Fokker-Planck equation is proposed in [29]. In the context of
neuronal networks, a Fokker-Planck equation is discretized with finite differences
in [14]. Another well-established approach to discretize kinetic equations is the
method of moments, applied to Fokker-Planck equations, for instance, in [27, 40],
while a related approach in the context of hierarchical model reduction is proposed
in [9]. For the related Vlasov-Fokker-Planck system there are, for instance, works
based on finite differences [39, 46] and streamline-diffusion discontinuous Galerkin
approximations [2, 3]. For the more general class of equations with nonnegative
characteristic form, discontinuous Galerkin methods [32, 33] and also sparse tensor
approximations [42] have been developed.

This paper is structured as follows. After a more detailed description of the
considered Fokker-Planck equation in section 2, we introduce the suitable Bochner-
type function spaces and establish density and trace properties in section 3. We then
derive the variational formulation and prove the existence and uniqueness results
in section 4. In section 5, we introduce the discrete scheme, show well-posedness
and describe an efficient computation. These properties of the proposed method
are finally confirmed for a numerical example in section 6.

2. The kinetic Fokker-Planck equation

In this paper we consider a simplified version of the kinetic Fokker-Planck equa-
tion developed in [34, sect. 2.4.2] that gives a mesoscopic description of the density
of glioma tumor cells. Let Ωx ⊂ Rd, d ∈ {2, 3} be the spatial domain1 with
piecewise C1 boundary that is globally Lipschitz and let It := (0, T ) be the time
interval. Moreover, let the velocity domain be the (d− 1)-dimensional unit sphere
Ωv := Sd−1, which corresponds to the assumption of particles with constant speed
but varying direction. As we will often treat space and time variables simultane-
ously, we denote by Ωt,x := It × Ωx the space-time domain. The full domain is
defined as Ω := Ωt,x × Ωv.

To prescribe suitable inflow boundary conditions, we first define relevant bound-
aries. First, we denote by

Γ̂ := {0, T} × Ω̄x × Ωv ∪ [0, T ]× ∂Ωx × Ωv

the essential boundary of Ω. Then, we define the spatial out- and inflow domains
Γx±(v) := {x ∈ ∂Ωx : n(x) · v ≷ 0} ⊂ ∂Ωx, where n(x) is the unit outer normal to
∂Ωx at x. The full out- and inflow domains Γ+ and Γ− are then defined as

Γ± := {((t, x), v) ∈ ∂Ωt,x × Ωv : ( 1
v ) · n(t, x) ≷ 0} ⊂ Γ̂,

1One can also define a Fokker-Planck equation on a one-dimensional spatial domain, where
the velocity has to be defined as a one-dimensional projection variable, see, e.g., [40]. We leave
out this special case for ease of presentation.



4 JULIA BRUNKEN AND KATHRIN SMETANA

where n(t, x) is the unit outer normal to ∂Ωt,x at (t, x). The sets Γ± thus contain
both the temporal and the spatial boundaries, i.e., Γ− contains the “initial bound-
ary” and the (v-dependent) spatial inflow boundary whereas Γ+ contains the final
time boundary and the spatial outflow boundary.

The strong form of the Fokker-Planck equation then reads

(2)
∂tu((t, x), v) + v · ∇xu((t, x), v) = ∆v

(
u((t,x),v)
q(x,v)

)
in Ω,

u((t, x), v) = g((t, x), v) on Γ−,

where ∆v is the Laplace-Beltrami operator on the unit sphere Ωv = Sd−1, q ∈
L∞(Ωx×Ωv) is the so-called “tissue fiber orientation distribution” satisfying q(x, ·) ∈
C1(Ωv) for a.e. x ∈ Ωx and q ≥ αq > 0 a.e. in Ωx×Ωv and g : Γ− → R is the inflow
boundary condition that contains the initial condition g|{t=0} as well as the spatial
inflow boundary condition g|Γx−(v), v ∈ Ωv. Since q is assumed to be sufficiently

regular, we can bring the respective differential operator in (2) in divergence form.´
In section 4, we develop a variational formulation for this equation, where we

allow for a more general differential operator on Ωv and give specific conditions on
q and g leading to well-posedness.

3. Function spaces

To develop a variational formulation for (2) we first introduce the necessary
function spaces. Since we aim for a full space-time-velocity formulation, we use
Bochner spaces mapping the space-time domain Ωt,x to a space of functions on Ωv.

We start with the function space for the velocity variable: Since the equation
contains a Laplace-Beltrami operator on the velocity domain Ωv = Sd−1, we define
V := H1(Ωv) ⊂ L2(Ωv) as the Sobolev space of weakly differentiable functions on
the surface Ωv = Sd−1 with squared norm ‖φ‖2V = ‖φ‖2L2(Ωv) + ‖∇vφ‖2L2(Ωv). For

details on the definition of Sobolev spaces on manifolds, see [21, 30]. We denote
the dual space of V by V ′ := H−1(Ωv). The space V is a dense subspace of L2(Ωv)
and we will make use of the Gelfand triple V ↪→ L2(Ωv) ↪→ V ′, where we denote
the dual pairing by 〈·, ·〉V ′,V .

As a function space for the full domain, we will use the space L2(Ωt,x;V ) with
squared norm

(3) ‖w‖2L2(Ωt,x;V ) =

∫
Ωt,x

‖w(t, x)‖2V d(t, x).

From now on, we will denote the kinetic advection field ( 1
v ) by k ∈ C1(Ω̄,Rd+1),

k((t, x), v) := ( 1
v ), so that the kinetic space-time transport operator is given as

k · ∇t,xp = ∂tp+ v · ∇xp. We then define

(4) H1
FP(Ω) := {p ∈ L2(Ωt,x;V ) : k · ∇t,xp ∈ L2(Ωt,x;V ′)},

with squared norm

(5) ‖p‖2H1
FP(Ω) := ‖p‖2L2(Ωt,x;V ) + ‖k · ∇t,xp‖2L2(Ωt,x;V ′).

This definition is similar to the spaces used for other variants of the kinetic Fokker-
Planck equation, e.g., in [1, 5, 11]. We use ideas from [1] to show the following:

Proposition 3.1. The set C∞(Ω̄t,x × Ωv) is dense in H1
FP(Ω).
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Proof. For the proof one constructs approximations of a function f ∈ H1
FP(Ω) by

a mollification in Ωt,x analogously to [1, Prop. 7.1] and a suitable basis expansion
in Ωv. For more details see the supplementary material. �

To discuss the boundary behavior of functions in H1
FP(Ω), we introduce weighted

L2-spaces, as usually used for transport and kinetic equations (e.g. [6, 12], [16, XXI,
§2]) and for different versions of the kinetic Fokker-Planck equation [1, 11]. For any

Γ ⊆ Γ̂ we introduce L2(Γ, |k · n|) with squared norm

(6) ‖w‖2L2(Γ,|k·n|) :=

∫
Γ

w2 |k · n| ds.

Then, we can show that functions in H1
FP(Ω) admit local traces on Γ+ ∪ Γ−:

Proposition 3.2. For every compact set K ⊂ Γ+ (resp. K ⊂ Γ−), the trace
operator w 7→ w|K from C∞(Ω̄) to L2(K, |k · n|) extends to a continuous linear
operator on H1

FP(Ω).

For the proof we need to estimate the product of H1
FP(Ω) functions with different

test functions in the following way, where the proof can be found in Appendix A.

Lemma 3.3. Let φ ∈ C1(Ω̄). Then, the mapping f 7→ φf is continuous in H1
FP(Ω)

with the estimate
‖φf‖H1

FP(Ω) ≤ C‖φ‖C1(Ω)‖f‖H1
FP(Ω).

Proof of Proposition 3.2. We use ideas of the proof of a similar result for transport
equations, e.g., in [16, Chap. XXI, Thm. 1, p. 220]. Analogous results for spaces
similar to H1

FP(Ω) are also given in [1, Proofs of Lemmas 4.3, 7.6].
Given a compact set K ⊂ Γ+, let ηK ∈ C1(Ω̄) with ηK = 1 on K and supp ηK ∩

Γ− = ∅. We then obtain by integrating by parts for w ∈ C∞(Ω̄)∫
K

w2|k · n|ds =

∫
K

(ηKw)2|k · n|ds ≤
∫

Γ̂

(ηKw)2|k · n|ds

(∗)
=

∫
Γ̂

(ηKw)2k · nds = 2

∫
Ω

ηKwk · ∇t,x(ηKw) d((t, x), v)

≤ 2‖ηKw‖L2(Ωt,x,V )‖k · ∇t,x(ηKw)‖L2(Ωt,x,V ′)

≤ 2‖ηKw‖2H1
FP(Ω)

Lemma 3.3
≤ C‖ηK‖2C1(Ω)‖w‖

2
H1

FP(Ω).

We thus have continuity of the mapping w 7→ w|K for all w ∈ C∞(Ω̄), and by
density (Proposition 3.1) the mapping extends to a continuous operator H1

FP(Ω)→
L2(K, |k ·n|). For K ⊂ Γ− the claim can be shown analogously using |k ·n| = −k ·n
on supp ηK in (∗). �

This result ensures that H1
FP(Ω) functions have a trace on the non-characteristic

boundary2 Γ+ ∪Γ−. However, from the local existence of traces we cannot directly
deduce that these generally lie in global trace spaces as e.g. L2(∂Ω, |k · n|).

We now define

(7) H1
FP,Γ±(Ω) := clos‖·‖

H1
FP

(Ω)
{f ∈ C∞(Ω̄) : f ≡ 0 on Γ±}.

To avoid boundary integrals on the outflow domain in the variational formulation,
we will use H1

FP,Γ+
(Ω) as the test space for our variational formulation. With the

2The non-characteristic boundary is the part of the boundary where |k · n| 6= 0.
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restriction of functions in H1
FP,Γ+

(Ω) on the outflow boundary and the definition

through the closure, we can show that these functions have a trace in L2(Γ−, |k ·n|):

Proposition 3.4. There exists a linear continuous mapping γ− : H1
FP,Γ+

(Ω) →
L2(Γ−, |k · n|) such that

‖γ−(w)‖L2(Γ−,|k·n|) ≤ C‖w‖H1
FP(Ω) ∀w ∈ H1

FP,Γ+
(Ω).

Furthermore, the integration by parts formula∫
Ωt,x

〈k · ∇t,xw,w〉V ′,V d(t, x) = 1
2

∫
Γ−

w2k · nds

holds for all w ∈ H1
FP,Γ+

(Ω).

Proof. The proof is similar to the respective result for transport equations e.g. in
[10, Prop. 2.4], see also [1, sect. 4]. Let w ∈ C∞(Ω̄) with w ≡ 0 on Γ+. Performing
integration by parts we obtain∫

Ω

wk · ∇t,xw d((t, x), v) = −
∫

Ω

∇t,xw · kw d((t, x), v) +

∫
Γ−

w2 k · n︸︷︷︸
<0

ds,

and thus

‖w‖2L2(Γ−,|k·n|) =

∫
Γ−

w2 |k · n| ds = 2

∫
Ω

(−k · ∇t,xw)w d((t, x), v)

≤ 2‖ − k · ∇t,xw‖L2(Ωt,x;V ′)‖w‖L2(Ωt,x;V ) ≤ 2‖w‖2H1
FP(Ω).

By density (due to the definition of H1
FP,Γ+

(Ω)), the integration by parts formula

and the bound for ‖w‖L2(Γ−,|k·n|) hold for all w ∈ H1
FP,Γ+

(Ω). �

Remark 3.5. Similarly, it can be shown that the space H1
FP,Γ−

(Ω) admits a con-

tinuous trace operator γ+ : H1
FP,Γ−

(Ω)→ L2(Γ+, |k · n|).

To later show the uniqueness of the weak solution in section 4, we also need
to verify the existence of a global trace and the integration by parts formula for
certain functions in H1

FP(Ω) with vanishing trace on Γ−, but not necessarily in
H1

FP,Γ−
(Ω). This is established for spaces where the advective or kinetic terms lie

in L2(Ω) (see, e.g., [6, Thm. 2.2, Prop. 2.5]), [16, Chap. XXI, Remark 3]). Similar
or even stronger results for respective functions in H1

FP(Ω) are claimed to be proven
in [1, 5, 11], however, we believe the arguments to be incomplete, for more details
see the supplementary material.

Since we were not able to prove the existence of a global trace for H1
FP(Ω) func-

tions with vanishing trace on the inflow or the outflow boundary, we will formulate
the exact result needed for uniqueness of the weak solution as an assumption in
section 4.

4. Variational formulation

In this section, we develop a variational formulation for (2) and show its well-
posedness.
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Let a : Ωt,x×V ×V → R be a potentially (x, t)-dependent bilinear form defined
on the velocity space V . Moreover, let a satisfy the following assumptions:

the map (t, x) 7→ a((t, x);φ, ψ) is measurable on Ωt,x for all φ, ψ ∈ V,(8)

a((t, x); ·, ·) is bilinear for a.e. (t, x) ∈ Ωt,x,(9)

a((t, x);φ, ψ) ≤ ca‖φ‖V ‖ψ‖V with ca <∞ for all φ, ψ ∈ V, a.e. (x, t) ∈ Ωt,x,

(10)

a((t, x);φ, φ) + λa‖φ‖2L2(Ωv) ≥ αa‖φ‖
2
V with λa ∈ R, αa > 0

(11)

for all φ ∈ V, a.e. (x, t) ∈ Ωt,x.

Note that ca, λa, and αa are assumed to be independent of (x, t).

Example 4.1. For the strong form of the Fokker-Planck equation (2), a is given
for all φ, ψ ∈ V, a.e. x ∈ Ωx by

a(x;φ, ψ) =
(
∇v
(
q(x, v)−1φ(v)

)
,∇vψ(v)

)
L2(Ωv)

=
(
q(x, v)−1∇vφ(v),∇vψ(v)

)
L2(Ωv)

+
(
∇vq(x, v)−1φ(v),∇vψ(v)

)
L2(Ωv)

,

where ∇v is the tangential gradient on Ωv, see, e.g., [21] for a formal definition. If
q−1 ∈ L∞(Ωx × Ωv) with ∇vq−1 ∈ L∞(Ωx × Ωv) and q−1(x, v) ≥ lq > 0 for a.e.
(x, v), then a fulfills the conditions (8)–(11), for instance, with ca = ‖q−1‖L∞ +
‖∇vq−1‖L∞ , αa = 1

2 lq, and λa = ‖∇vq−1‖2L∞/(2lq) + 1
2 lq. Depending on q, other

estimates might be better, e.g., for q = q(x) and thus ∇vq = 0 we can get αa =
λa = lq.

Recalling the function spaces introduced in (3) and (7), we define the space-
time-velocity trial and test spaces as

(12) X := L2(Ωt,x, V ), Y := H1
FP,Γ+

(Ω).

with squared norms (cf. (3), (5))

‖w‖2X =

∫
Ωt,x

‖w(t, x)‖2V d(t, x),(13)

‖p‖2Y = ‖p‖2X + ‖k · ∇t,xp‖2X ′ .(14)

We then define the full bilinear form b : X × Y → R for w ∈ X , p ∈ Y by
(15)

b(w, p) :=

∫
Ωt,x

〈w(t, x),−k(t, x) · ∇t,xp(t, x)〉V,V ′ + a((t, x);w(t, x), p(t, x)) d(t, x).

The functional f : Y → R containing the boundary condition g ∈ L2(Γ−, |k · n|) is
given as

f(p) :=

∫
Γ−

gp |k · n| d((t, x), v) ∀ p ∈ Y,

which is well-defined due to Proposition 3.4, and we thus have f ∈ Y ′.
We call u ∈ X a weak solution of (2), if

(16) b(u, p) = f(p) ∀ p ∈ Y.
In the following, we examine the well-posedness of the variational formulation, using
the Banach-Nečas-Babuška (or inf-sup) Theorem (see e.g. [26, Thm. 2.6]). We first
prove existence of a weak solution in subsection 4.1. Then, in subsection 4.2 we
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also show uniqueness of the weak solution under an additional assumption on the
trace of certain H1

FP(Ω)-functions.

4.1. Existence of a weak solution. We show the existence of a weak solution
u to (16) by verifying a dual inf-sup condition. To that end, we construct stable
pairs of trial and test space functions such that the application of the bilinear form
to the function pairs can be estimated from below by the respective norms of the
functions. In these pairs, the trial space functions are derived from the test space
functions by the application of the kinetic transport operator and the inverse elliptic
velocity operator. We thus generalize similar proofs for parabolic equations [26, 41],
where a time derivative was used instead of the kinetic transport operator, and for
transport equations, where only an application of the transport operator was used
[10, 15, 19].

Theorem 4.2. The bilinear form b satisfies the dual inf-sup condition

inf
p∈Y
p 6=0

sup
w∈X
w 6=0

b(w, p)

‖w‖X ‖p‖Y
≥ β

with an inf-sup constant

β ≥ αa√
2 max{1, ca}

, if λa ≤ 0,(17)

β ≥ αa√
2 max{1, ca + λa}

e−λaT√
max{1 + 2λ2

a, 2}
, if λa > 0.(18)

Consequently, the variational formulation (16) has at least one weak solution u ∈ X .

Remark 4.3. The estimates for β are not worse than estimates for space-time
variational formulations for parabolic equations from [41]. In fact, for λa ≤ 0 and
assuming αa ≤ 1 and ca ≥ 1, the estimate in [41, (A.6)] roughly translates3 to

βparab ≥ α2
a/(
√

2c2a), while we have β ≥ αa/
√

2ca. The exponential dependence on
the final time T for the non-coercive case is the same for both types of equations.

Proof of Theorem 4.2. We start with the case of a being coercive, i.e., λa ≤ 0; the
non-coercive case will be treated afterwards via a temporal transformation.

To show the inf-sup condition we combine ideas from well-posedness results for
parabolic equations as e.g. in [26, 41] and for transport equations as, e.g., in [10].
To that end, we take 0 6= p ∈ Y arbitrary, but fixed. We want to construct a
suitable wp ∈ X and show b(wp, p) ≥ β‖wp‖X ‖p‖Y for a constant β independent of
p, which makes β a lower bound for the inf-sup constant.

Since p ∈ Y, we have rp := −k · ∇t,xp ∈ L2(Ωt,x;V ′) = X ′. Similar to [38, pp.
235], we define the bilinear form m : X × X → R by

m(w1, w2) :=

∫
Ωt,x

a((t, x);w1(t, x), w2(t, x)) d(t, x), ∀w1, w2 ∈ X .

Since the function (t, x) 7→ a((t, x);φ, ψ) is assumed to be measurable for all
φ, ψ ∈ V (see (8)) and a((t, x), ·, ·) is continuous and coercive with constants ca, αa
independent of (t, x) ((10) and (11) with λa ≤ 0), m is well-defined, continuous,

3More precisely, using the notation of this paper, the complete estimate in [41, (A.6)] reads

βparab ≥ min(αa/c2a, αa) / (2 max(α−2
a , 1) +M2

e )1/2, where Me is an additional positive constant

that appears due to a different boundary treatment and that we can leave out here.
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and coercive over X ×X with constants ca and αa. Therefore, by the Lax-Milgram
theorem it exists a unique zp ∈ X with

(19) m(zp, w) = 〈rp, w〉X ′,X ∀w ∈ X .
Due to the definitions of zp, rp, and m, there holds4

(20)

∫
Ωt,x

a(zp, w) d(t, x) =

∫
Ωt,x

〈−k · ∇t,xp, w〉V ′,V d(t, x) ∀w ∈ X .

We now define wp := p + zp ∈ X . To bound b(wp, p) from below we use (20) for
w = wp, and the integration by parts formula from Proposition 3.4:

(21)

b(wp, p) =

∫
Ωt,x

〈p+ zp,−k · ∇t,xp〉V,V ′ + a(p+ zp, p) d(t, x)

=

∫
Ωt,x

〈p,−k · ∇t,xp〉V,V ′ + a(zp, zp) + a(p, p) + 〈−k · ∇t,xp, p〉V ′,V d(t, x)

≥ αa(‖p‖2X + ‖zp‖2X ) + 2

∫
Ωt,x

〈−k · ∇t,xp, p〉V ′,V d(t, x).

= αa(‖p‖2X + ‖zp‖2X ) +

∫
Γ−

p2 |k · n| ds ≥ αa(‖p‖2X + ‖zp‖2X ).

Since we have 〈rp, w〉X ′,X = m(zp, w) ≤ ca‖zp‖X ‖w‖X for all w ∈ X , it holds

(22) ‖rp‖X ′ ≤ ca‖zp‖X .
Using the definition of wp, rp, and the norm of Y as defined in (5), we can then
estimate

(23)

‖wp‖X ‖p‖Y = ‖p+ zp‖X
(
‖p‖2X + ‖rp‖2X ′

)1/2
(22)

≤
[
‖p+ zp‖2X

(
‖p‖2X + c2a‖zp‖2X

)]1/2
≤
[
2
(
‖p‖2X + ‖zp‖2X

) (
‖p‖2X + c2a‖zp‖2X

)]1/2
≤
√

2 max{1, ca}
(
‖p‖2X + ‖zp‖2X

) (21)

≤
√

2 max{1, ca}
αa

b(wp, p).

Since p ∈ Y was chosen arbitrarily, we thus have

(24) inf
p∈Y

sup
w∈X

b(w, p)

‖w‖X ‖p‖Y
≥ β :=

αa√
2 max{1, ca}

,

i.e., the claim for coercive a.
To address the case that a fulfills the G̊arding inequality (11) with λa > 0, we use

a standard temporal transformation of the full problem as proposed e.g. in [41, 44].
We set ŵ := e−λatw for w ∈ X , p̂ = eλatp for p ∈ Y, and define the bilinear form

b̂ : X × Y → R by

(25) b̂(ŵ, p̂) :=

∫
Ωt,x

〈ŵ,−k · ∇t,xp̂〉V,V ′ + a((t, x); ŵ, p̂) + λa(ŵ, p̂)L2(Ωv) d(t, x).

Then it holds b(w, p) = b̂(ŵ, p̂) for all w ∈ X , p ∈ Y. The transformed bilinear form

b̂ is the same as b, with a transformed velocity bilinear form â : V ×V → R defined
by â((t, x);φ, ψ) = a((t, x);φ, ψ) +λa(φ, ψ)L2(Ωv) for φ, ψ ∈ V . Due to the G̊arding

4In the following, we omit the (t, x) dependence in the integrals.
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inequality (11) and continuity (10) of a, â is coercive with constant α̂a = αa and
continuous with constant ĉa = ca + λa. As in [41], we can estimate the norms of
ŵ ∈ X and p̂ ∈ Y by

‖ŵ‖X ≥ e−λaT ‖w‖X , ‖p̂‖Y ≥
(
max{1 + 2λ2

a, 2}
)− 1

2 ‖p‖Y ,

where we use ‖ψ‖V ′ ≤ ‖ψ‖L2(Ωv) ≤ ‖ψ‖V for the estimation of the Y-norm.
Then, the dual inf-sup constant of b can be bounded from below as follows

inf
p∈Y

sup
w∈X

b(w, p)

‖w‖X ‖p‖Y
= inf
p̂∈Y

sup
ŵ∈X

b̂(ŵ, p̂)

‖ŵ‖X ‖p̂‖Y
‖ŵ‖X
‖w‖X

‖p̂‖Y
‖p‖Y

≥ αa√
2 max{1, ca + λa}

e−λaT√
max{1 + 2λ2

a, 2}
.

Since the dual inf-sup condition implies surjectivity of the operator B : X → Y ′
defined by 〈B·, ·〉Y′,Y = b(·, ·) and thus existence of a weak solution to (16) (see for
instance [26, Lemma A.40, Remark A.41]), this concludes the proof. �

4.2. Uniqueness of the weak solution. As already mentioned in section 3, we
were not able to prove all necessary trace results in our specific function space. To
show uniqueness of the weak solution, we therefore assume the following:

Assumption 4.4. Let w ∈ H1
FP(Ω) such that w = 0 a.e. on Γ− and b(w, p) = 0

for all p ∈ Y. Then, we assume this implies w ∈ L2(∂Ω, |k · n|) and the integration
by parts formula

(26)

∫
Ωt,x

〈k · ∇t,xw,w〉V ′,V d(t, x) = 1
2

∫
∂Ω

w2k · nds

holds.

As discussed in more detail in the supplementary material, we do not know
how to prove Assumption 4.4, since, for instance, ideas from existing approaches
for the related space H1

NT(Ω) = {w ∈ L2(Ω) : k · ∇t,xw ∈ L2(Ω)} cannot be
readily transferred to the H1

FP(Ω) case. We therefore leave it as an open prob-
lem. We emphasize that the respective trace and integration by parts result holds
for all H1

NT(Ω)-functions with zero inflow or outflow trace (cf. [6, 12, 13],[16, Chap.
XXI]), and also for all H1

FP(Ω)-functions that can be approximated by smooth func-
tions vanishing on the inflow or outflow boundary (Proposition 3.4). Additionally,
Assumption 4.4 only refers to H1

FP(Ω)-functions with vanishing trace on Γ− and
satisfying a weak form of the differential equation with zero boundary condition.
This additional condition on the considered functions might make it possible to
show and exploit a higher regularity of the considered functions to prove existence
of suitable traces and (26).

We now show uniqueness of the weak solution in the form of surjectivity of the
dual operator. To that end, we follow the general structure of respective proofs for
parabolic equations [26, Thm 6.6, p. 283] and transport equations [4, Thm. 16].
We take a function w ∈ X solving (16) with zero right-hand side and prove that
w = 0 by showing that w possesses space- and time derivatives, that w has trace
zero on the outflow boundary, and finally that w must therefore vanish on the whole
domain.
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Theorem 4.5. If Assumption 4.4 holds, then for all 0 6= w ∈ X we have

sup
p∈Y

b(w, p) > 0.

Proof. Let w ∈ X such that

(27) b(w, p) = 0 ∀ p ∈ Y.

To prove the claim, we need to show that w = 0. First, we show that w has a weak
derivative −k · ∇t,xw ∈ X ′ = L2(Ωt,x;V ′). To that end, let ψ ∈ C∞0 (Ωt,x) and

φ ∈ V be arbitrary. Then ψφ = 0 on Γ̂, and by approximating φ in C∞(Ωv) we
see that ψφ ∈ Y. Using the definition of the weak (t, x)-derivative and testing (27)
with p = ψφ we obtain∫

Ωt,x

〈k(t, x) · ∇t,xw(t, x), φ〉V ′,V ψ(t, x)d(t, x)

= −
∫

Ωt,x

〈w(t, x), k(t, x) · ∇t,xψ(t, x)φ〉V,V ′ d(t, x)

= −
∫

Ωt,x

a((t, x);w(t, x), ψ(t, x)φ) d(t, x)

= −
∫

Ωt,x

〈A(t, x)w(t, x), φ〉V ′,V ψ(t, x) d(t, x),

where the operatorAv(t, x) ∈ L(V, V ′) is defined as 〈Av(t, x)φ, ρ〉V ′,V = a((t, x);φ, ρ)
for all φ, ρ ∈ V , a.e. (t, x) ∈ Ωt,x. Due to the density of C∞0 (Ωt,x) in L2(Ωt,x) have

(28) − k · ∇t,xw = Avw ∈ X ′,

which especially means that w ∈ H1
FP(Ω).

Next, let K ⊂⊂ Γ− be an arbitrary but fixed compactly embedded subset of

Γ−. Moreover, let z ∈ C∞(Ω̄) with z = 0 on Γ̂ \ K. We show wz ∈ Y: Since
w ∈ H1

FP(Ω), due to Proposition 3.1 there is a sequence (wn)n∈N ⊂ C∞(Ω̄) with

‖wn − w‖H1
FP(Ω)

n→∞→ 0. Therefore, we have wnz ∈ C∞(Ω̄) with wz = 0 on Γ+.
Due to Lemma 3.3, it holds

‖wz − wnz‖H1
FP(Ω) ≤ C‖z‖C1(Ω)‖w − wn‖H1

FP(Ω)

and thus wnz → wz in H1
FP(Ω) as n→∞. Invoking the definition of Y in (12),(7)

we obtain wz ∈ Y.
Since K ⊂ Γ− is compact, we may apply Proposition 3.2 to infer that w has a

trace on K and w|K ∈ L2(K, |k · n|). Thanks to z|Γ̂ ∈ L∞(Γ̂) and supp z|Γ̂ ⊂ K,
we have∣∣∣∣∫

Γ̂

w2z |k · n| ds

∣∣∣∣ =

∣∣∣∣∫
K

w2z |k · n| ds

∣∣∣∣ ≤ ‖z‖L∞(K)‖w‖2L2(K,|k·n|) <∞.
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As a consequence we can apply the linear functional in (28) to wz ∈ Y ⊂ X ,
perform integration by parts, since the boundary integral exists, and use (27):

0 =

∫
Ωt,x

〈k · ∇t,xw +Avw,wz〉V ′,V d(t, x)

=

∫
Ωt,x

〈w,−k · ∇t,x(wz)〉V,V ′ + a(w,wz)d(t, x) +

∫
Γ̂

w2zk · nds

= b(w,wz)︸ ︷︷ ︸
=0

−
∫
K

w2z |k · n| ds = −
∫
K

w2z |k · n| ds.

Since z|K ∈ C∞0 (K) can be chosen arbitrarily and |k ·n| > 0 on K, the fundamental
lemma of calculus of variations yields w = 0 a.e. on K. As also K ⊂ Γ− was chosen
arbitrarily, we have w = 0 a.e. on Γ−.

Thanks to Assumption 4.4, it therefore holds w ∈ L2(∂Ω, |k · n|). We can thus
use integration by parts for (28) applied to w. Assuming first that a is coercive,
i.e., λa ≤ 0, we obtain

0 =

∫
Ωt,x

〈k · ∇t,xw +Avw,w〉V ′,V d(t, x)

=

∫
Ωt,x

〈k · ∇t,xw,w〉V ′,V d(t, x) +

∫
Ωt,x

a(w,w) d(t, x)

≥ 1
2

∫
Γ+

w2 k · n︸︷︷︸
>0

ds+ αa‖w‖2X ,

which implies w = 0.
If a is not coercive, we use the temporal transformation described in the proof

of Theorem 4.2. Setting ŵ = e−λatw and using the definition of b̂ in (25), we see

that (27) is equivalent to b̂(ŵ, p̂) = 0 for all p̂ ∈ Y. Since â is coercive, we have
proven that ŵ = 0 and thus also w = 0. �

We summarize our findings in the following theorem.

Theorem 4.6 (Well-posedness). There exists a solution u ∈ X to the variational
problem (16). If Assumption 4.4 holds, the solution is unique and satisfies the
stability estimate

‖u‖X ≤
1

β
‖f‖Y′

for β as defined in Theorem 4.2.

Proof. Standard inf-sup theory ensures the existence of a solution due to the con-
tinuity of b and the dual inf-sup condition stated in Theorem 4.2. Under Assump-
tion 4.4, Theorem 4.5 yields the dual surjectivity, which implies uniqueness and the
stability estimate. �

5. Discretization

We now design a stable and efficient discretization scheme for (16). To that
end, we use a Petrov-Galerkin projection onto problem-dependent discrete spaces
realizing the stable function pairs with test functions p ∈ Y and trial functions
wp ∈ X developed in the proof of Theorem 4.2. As a result, the discrete inf-sup
stability and thus the well-posedness of the discrete problem follow analogously to
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the continuous results with the same stability constant. We then illustrate for a
class of data functions how the trial space functions wδp can be efficiently computed
by solving low-dimensional elliptic problems in the velocity domain.

5.1. Stable Petrov-Galerkin schemes. To define an approximation of the so-
lution u ∈ X of (16), we use a Petrov-Galerkin projection onto suitable discrete
spaces: Given discrete trial and test spaces Xδ ⊂ X and Yδ ⊂ Y, the Petrov-
Galerkin approximation uδ ∈ Xδ is defined by

(29) b(uδ, vδ) = f(vδ) ∀vδ ∈ Yδ.

Well-posedness then depends on the inf-sup stability of the discrete problem. To
find a pair of spaces leading to a stable scheme, we transfer ideas from [10] to our
setting. In [10], a stable discretization with a discrete inf-sup constant equal to
one was built for a transport equation by fixing a discrete test space and defining a
problem dependent trial space with optimal stability properties. In this manuscript,
we will use the same strategy: We start with a discrete test space and define the
corresponding trial space based on the trial space functions used in the proof of
Theorem 4.2.

To that end, we first define a discrete space Vh ⊂ V for the discretization in the
velocity direction. Since the Y-norm contains a term in the X ′ = L2(Ωt,x, V

′)-norm
(see (14)) which is not computable, we consider the norm

(30) ‖w‖2L2(Ωt,x,Vh′)
:=

∫
Ωt,x

‖w(t, x)‖2Vh′ d(t, x), ‖ψ‖Vh′ := sup
φh∈Vh

〈ψ, φh〉V ′,V
‖φh‖V

instead of ‖ · ‖L2(Ωt,x,V ′) where necessary.

Let Yδ ⊂ Y be a discrete space for which we assume wδ(t, x) ∈ Vh for all wδ ∈ Yδ
and a.e. (t, x) ∈ Ωt,x. The space Yδ will be used as the test space for the Petrov-
Galerkin approximation. We define the discrete version of the Y-norm by

(31) ‖w‖2Yδ := ‖w‖2L2(Ωt,x,V ) + ‖k · ∇t,xw‖2L2(Ωt,x,Vh′)
.

Since we will make use of the function pairs developed in the proof of Theo-
rem 4.2, we assume for the discretization that the velocity bilinear form a is coer-
cive, i.e., λa ≤ 0. For problems, where a only satisfies the G̊arding inequality (11)
with λa > 0, a temporal transformation of the problem as described in section 4
can be performed. Then, the transformed problem with a coercive bilinear form â
can be discretized.

We now define a problem-dependent discrete trial space. For each pδ ∈ Yδ, we
denote fδp := −k · ∇t,xpδ(t, x) ∈ X ′. We then define the function zδp ∈ X as the
solution of

(32) a(zδp(t, x), φh) = 〈rδp(t, x), φh〉V ′,V , ∀φh ∈ Vh, a.e. (t, x) ∈ Ωt,x.

The function zδp is the discrete counterpart of zp defined in (19), here it is defined
pointwise in Ωt,x due to the discrete setting. Then, the discrete trial space Xδ ⊂ X
is defined as

Xδ := {pδ + zδp : pδ ∈ Yδ}.(33)

Proposition 5.1. If λa ≤ 0 in (11) and thus a is coercive, and if the discrete trial
and test spaces Xδ and Yδ are chosen according to (33), then there exists a unique
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solution uδ ∈ Xδ to (29). Moreover, we have discrete inf-sup estimate

(34) inf
pδ∈Yδ
pδ 6=0

sup
wδ∈Xδ
wδ 6=0

b(wδ, pδ)

‖wδ‖X ‖pδ‖Yδ
≥ βδ ≥ αa(

√
2 max{1, ca})−1.

Remark 5.2. For λa > 0 the respective result holds for the discretization of the
transformed problem according to (25) with â being coercive.

Proof. We can reuse all essential parts of the proof of the inf-sup constant for the
continuous problem to also prove discrete inf-sup stability of (29).

Let 0 6= wδ ∈ Xδ be fixed. Then, by definition of Xδ there is pδ ∈ Yδ such that
wδ = pδ + zδp with zδp defined as in (32). By using (32) and the same arguments as
in (21) we obtain

(35) b(wδ, pδ) = b(pδ + zδp, p
δ) ≥ αa

(
‖pδ‖2X + ‖zδp‖2X

)
.

As we have

〈rδp(t, x), φh〉V ′,V = a(zδp(t, x), φh) ≤ ca‖zδp(t, x)‖V ‖φh‖V ∀φh ∈ Vh, a.e. (t, x) ∈ Ωt,x

we can inflect that

(36) ‖rδp‖L2(Ωt,x,Vh′) ≤ ca‖z
δ
p‖X .

Therefore, we obtain analogously to (23), but using the discrete Yδ-norm,
(37)

‖wδp‖X ‖pδ‖Yδ = ‖pδ + zδp‖X
(
‖pδ‖2X + ‖rδp‖2L2(Ωt,x,Vh′)

)1/2

(36)

≤
[
‖pδ + zδp‖2X

(
‖pδ‖2X + c2a‖zδp‖2X

)]1/2
≤
[
2
(
‖pδ‖2X + ‖zδp‖2X

) (
‖pδ‖2X + c2a‖zδp‖2X

)]1/2
=
√

2 max{1, ca}
(
‖pδ‖2X + ‖zδp‖2X

) (35)

≤
√

2 max{1, ca}
αa

b(wδp, p
δ).

This means that b is inf-sup stable on the spaces (Xδ, ‖ · ‖X ), (Yδ, ‖ · ‖Yδ) with

constant βδ ≥ αa(
√

2 max{1, ca})−1. Since for all 0 6= pδ it holds b(wδp, p
δ) > 0

and thus wδp 6= 0, we have dim(Xδ) = dim(Yδ). Therefore, inf-sup stability already
guarantees well-posedness of the discrete problem (29). �

Remark 5.3. Due to the finite-dimensional spaces, the Petrov-Galerkin approxi-
mation uδ ∈ Xδ is unique even if Assumption 4.4 does not hold.

Remark 5.4 (Choice of λa in the case λa > 0). For possibly non-coercive problems,
there is usually some flexibility in the choice of αa and λa such that the G̊arding in-
equality (11) is fulfilled: On the one hand, if (11) holds for a specific λa, all λ̃a > λa
are also possible. On the other hand, often (11) holds for all λa > 0 with different
respective αa > 0; think, for instance, of a(ψ, θ) = (∇vψ,∇vθ)L2(Ωv), where (11)
holds for any λa > 0 with αa = min(1, λa). When using a temporal transforma-
tion before the discretization, the constant λa should not be too large: Since eλat

appears in the temporal transformation, a large λa leads to error amplification and
a very small effective inf-sup constant of the “non-transformed” discrete problem
(cf. (18)). Therefore, a suitable balancing of λa and αa with possibly small λa and
large αa should be sought to obtain a stable discretization when using the temporal
transformation.
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5.2. Efficient numerical scheme. Regarding the computational realization of
the Petrov-Galerkin approximation, we have to take into account the specific choice
of the discrete spaces according to (33). To assemble the linear system and to rep-
resent the discrete solution, the functions zδp defined by (32), have to be computed
for all basis functions of Yδ. We illustrate how this can be done very efficiently for
the case where a is coercive and has the separable form

(38) a((t, x), φ, ψ) = d(t, x)ã(φ, ψ),

where d ∈ L∞(Ωt,x) satisfies d(t, x) ≥ αd > 0 for a.e. (t, x) ∈ Ωt,x and ã : V ×V → R
is a coercive bilinear form.

To build the discrete test space, let first Ȳδ
t,x ⊂ H1(Ωt,x) be a discrete space in

the space-time domain with basis (pt,x,δi (t, x))
nt,x
i=1 and let Vh ⊂ V be the already

defined velocity discrete space with basis (ψhj (v))nvj=1. Denoting the tensor product

of these spaces by Ȳδ := Ȳδ
t,x ⊗ Vh, we then set

Yδ := span{pδi,j = pt,x,δi ψhj : pδi,j |Γ+ = 0} ⊂ Ȳδ ∩ Y.

We may then use this tensor product structure to efficiently solve (32): Fixing a

basis function pδi,j = pt,x,δi ψhj of Yδ, the right-hand side of (32) reads

〈−k · ∇t,xpδi,j(t, x), φh〉V ′,V =− ∂tpt,x,δi (t, x)

∫
Ωv

ψhj (v)φh(v) dv

−
d∑
k=1

∂xkp
t,x,δ
i (t, x)

∫
Ωv

vkψ
h
j (v)φh(v) dv

for all φh ∈ Vh, a.e. (t, x) ∈ Ωt,x. Using the separable form of a (38), we can rewrite
(32) as follows: Find zδi,j := zδ

pδi,j
∈ X , such that

d(t, x)ã(zδi,j(t, x), φh) = −∂tpt,x,δi (t, x)

∫
Ωv

ψhj (v)φh(v) dv

−
d∑
k=1

∂xkp
t,x,δ
i (t, x)

∫
Ωv

vkψ
h
j (v)φh(v) dv

∀φh ∈ Vh, a.e. (t, x) ∈ Ωt,x.

Hence, the computation of all zδi,j can be separated in the following way: We first

compute the solutions ρ1
j , ρ

v1
j , . . . , ρ

vd
j ∈ Vh to the problems

ã(ρ1
j , φ

h) =

∫
Ωv

ψhj (v)φh(v) dv, ∀φh ∈ Vh,

ã(ρvkj , φ
h) =

∫
Ωv

vkψ
h
j (v)φh(v) dv, ∀φh ∈ Vh, k = 1, . . . , d,

(39)

for all basis functions ψhj ∈ Vh, j = 1, . . . , nv. Then, the zδi,j are given by

(40) zδi,j(t, x, v) = −d(t, x)−1

(
∂tp

t,x,δ
i (t, x)ρ1

j (v) +

d∑
k=1

∂xkp
t,x,δ
i (t, x)ρvkj (v)

)
.

The full solution process thus consists of the following steps:

(1) Precompute ρ1
j , ρ

vk
j , i.e., solve (d+ 1)× nv problems of size nv, which can

be done in parallel.
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(2) Assemble the stiffness matrix [b(pδi,j + zδi,j , p
δ
k,l)](k,l),(i,j), using (40), and

assemble the load vector [f(pδk,l)](k,l).

(3) Solve the linear system of equations to obtain the coefficient vector [ui,j ](i,j).

(4) Compose the solution uδ =
∑
i,j ui,j(p

δ
i,j + zδi,j) ∈ Xδ by again using (40)

for zδi,j .

Compared to using finite element spaces without any stabilization, the additional
costs thus only lie in the nv-sized problems (step 1) and possibly more nonzero
elements in the stiffness matrix. These effects only depend on the dimension nv
of Vh. Therefore, the proposed discretization strategy is especially well-suited for
using specific spaces Vh of low dimension, which can be achieved for example by
using polynomial bases or a hierarchical model reduction approach as proposed in
[9].

In order to efficiently compute the problem-dependent basis functions, we heavily
rely on the separable form of the bilinear form a given in (38), which is unfortu-
nately often not fulfilled for realistic data. For general bilinear forms, (32) remains
a variational problem in all dimensions that is not directly decomposable in single
low-dimensional problems. However, as the velocity operator is elliptic, for realistic
data functions we usually expect the problem to be well-suited for model reduction
strategies. Therefore, it might be possible to use low-rank approximations as done
in a related setting in [7] to find sufficiently accurate approximate solutions to (32)
in a computationally efficient manner.

More generally, due to the high-dimensionality of the problem, it is especially
desirable to combine the approach proposed in this manuscript with further approx-
imations as the already mentioned hierarchical model reduction [9] or tensor-based
methods that have already been used in similar Petrov-Galerkin settings [7, 31]
and to discretize kinetic equations like the radiative transfer equation [28, 45] or
the Vlasov equation [23, 24, 36].

6. Numerical experiments

We investigate the properties of the method developed in section 5 by imple-
menting the discretization for the Fokker-Planck equation (1) on a two-dimensional
spatial domain as well as for a modified stationary equation. We are especially in-
terested in the convergence of the discretization error, analyzing how sharp the
lower bound for the inf-sup constant is and examining the efficiency in light of the
nonstandard discrete spaces . The source code to reproduce all results is provided
in [8].

6.1. Test Cases. Let Ωx = (0, 1)2 ⊂ R2 be the spatial domain and It = (0, 0.75)
be the time interval. We parametrize Ωv = S1 by the angle ϕ ∈ [0, 2π), leading to

v =
( cosϕ

sinϕ

)
and ∆vu = ∂2

∂ϕ2u.

We consider the Fokker-Planck equation (2) for a constant q ∈ R+. Then, the
equation reads

(41)
∂tu((t, x), ϕ) +

( cosϕ
sinϕ

)
· ∇xu((t, x), ϕ) = q−1 ∂2

∂ϕ2u((t, x), ϕ) in Ω,

u((t, x), ϕ) = g((t, x), ϕ) on Γ−,
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where we choose the initial condition

g((0, x), ϕ) :=

{
1

2π (128r(x)3 − 48r(x)2 + 1), r(x) < 1
4 ,

0, r(x) ≥ 1
4 ,

with r(x1, x2) :=
√

(0.5− x1)2 + (0.5− x2)2 and zero spatial inflow boundary con-
ditions g|Γx−(ϕ) ≡ 0 for all ϕ ∈ [0, 2π).

The corresponding velocity bilinear form

a(ψ, ρ) := q−1

∫ 2π

0

ψ′(ϕ)ρ′(ϕ) dϕ ∀ψ, ρ ∈ V = H1(Ωv)

fulfills the G̊arding inequality (11) for any λa > 0 with αa = min(q−1, λa). As
mentioned in Remark 5.4, a choice with possibly large αa and possibly small λa is
desirable to obtain good results when using a temporal transformation according
to (25). We only consider cases where 0.1 ≤ q−1 ≤ 1, therefore we select λa = q−1,
αa = q−1. Then, we discretize the transformed problem, where the transformed
velocity bilinear form coincides with the scaled V -scalar product, i.e., â = q−1(·, ·)V .

For the discretization we choose Vh ⊂ V as the continuous linear FE space on
[0, 2π) with periodic boundary condition and uniform mesh with size hv = 2π/nv.

The space Ȳδ
t,x ⊂ H1(Ωt,x) is chosen as the continuous Q2 FE space on a 3D

rectangular mesh with uniform 1D mesh sizes ht = 0.75/nt and hx1
= hx2

= 1/nx.
The trial space Xδ is computed as described in subsection 5.2 by first solving 3nv
problems of dimension nv. From the definition we see that Xδ ⊂ X̄δ

t,x ⊗ Vh, with
Xδt,x ⊂ L2(Ωt,x) being the respective discontinuous Q2 FE space. After computing
the transformed solution ûδ ∈ Xδ, we obtain the discrete solution to (41) by setting
uδ := etûδ.

To investigate the convergence rate of the newly proposed scheme, we addition-
ally consider a stationary (and thus lower-dimensional) problem with a manufac-
tured solution u(x1, x2, ϕ) = sin2(πx1) sin2(πx2) sin2(ϕ) and corresponding right-
hand side f0; therefore slightly deviating from the original problem. More precisely,
we consider

(42)
( cosϕ

sinϕ

)
· ∇xu(x, ϕ) + c u(x, ϕ) = d ∂2

∂ϕ2u(x, ϕ) + f0(x, ϕ) in Ωx × Ωv

with reaction and velocity diffusion constants c, d ∈ R, c, d > 0 and zero inflow
boundary conditions on Γ− ⊂ ∂Ωx × Ωv. Note that we require c > 0 here in order
to obtain a coercive bilinear form a : V × V → R

a(ψ, ρ) =

∫ 2π

0

dψ′(ϕ)ρ′(ϕ) + c ψ(ϕ)ρ(ϕ) dϕ ∀ψ, ρ ∈ V.

Then, the bilinear form a is coercive with constant αa = min(c, d) > 0 and con-
tinuous with constant γv = max(c, d). The variational formulation for the station-
ary equation (42) is based on Xst := L2(Ωx;H1(Ωv)), and Yst = clos‖·‖Yst

{w ∈
C1(Ωx × Ωv) : w = 0 on Γst,+}, where

Γst,+ = {(x, v) ∈ ∂Ωx × Ωv :
( cosϕ

sinϕ

)
· nx > 0},

‖w‖2Yst
= ‖w‖2Xst

+ ‖
( cosϕ

sinϕ

)
· ∇xw‖2X ′st .

The space-velocity bilinear form is

bst(w, p) :=

∫
Ωx

〈w(x),−( cos
sin ) · ∇xp(x)〉V,V ′ + a(w(x), p(x)) dx, ∀w ∈ Xst, p ∈ Yst
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Figure 1. Plots of the solution uδ of (41) with q−1 = 0.8 for hv = hx1 =

hx2 = ht = 1/16. Left: Solution for fixed t = 0.375 and ϕ = 1.75π (upper)

and ϕ = 0 (lower). Right: Spatial density, i.e., moment
∫ 2π
0 u(·, ·, ϕ)dϕ for

different t.

Table 1. Discretization of (41): Computed discrete inf-sup constants βδ of the

transformed problem in relation to the respective lower bound βlb for varying
mesh sizes with n = 1/hx1 = 1/hx2 = 1/ht = 2π/hv .

q−1 = 0.8 q−1 = 0.4 q−1 = 0.1

n βδ βδ/βlb βδ βδ/βlb βδ βδ/βlb

4 0.8878 1.569 0.6418 2.269 0.45005 6.365

8 0.81141 1.434 0.44126 1.56 0.18668 2.64

16 0.80072 1.415 0.40317 1.425 0.11112 1.573

and the functional describing the source term is defined as

fst(p) :=

∫
Ωx

∫ 2π

0

f0(x, ϕ)p(x, ϕ) dϕdx ∀p ∈ Yst.

Well-posedness of the weak formulation of (42) follows completely analogously
to the time-dependent case, as a is coercive and fst ∈ Y ′st. As in the time-dependent
case, we choose Vh as linear FE space and Ȳδ

x ⊂ H1(Ωx) as continuous Q2 FE space
on a 2D uniform rectangular mesh.

6.2. Numerical results. We first compute the discrete solution to (41) for q−1 =
0.8 and hv = hx1

= hx2
= ht = 1/16. The assembly of the system matrices which

includes the computation of the Xδ basis functions as described in subsection 5.2
takes up about 11% of the computational time in our experiments. Hence, the
additional low-dimensional problems in Vh are not dominant in the computational
costs. In Fig. 1, plots of the solution are shown, where we see that the dynamics
of the solution are captured well and that no instabilities or oscillations occur.

To investigate whether the estimate for the discrete inf-sup constant from sec-
tion 5 is sharp, we compute the constants for the transformed problem with â(·, ·) =
q−1(·, ·)V for different q−1 and different mesh sizes. In Table 1, we show the evalu-
ated constants in relation to the lower bound (34), which is given for this test case

as q−1/(
√

2 max(1, q−1)). We see that the estimate is sharp up to a factor of about√
2.
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Figure 2. Discretization of (42) with d = 0.1, c = 0.1. Left: L2-errors
‖u− uδ‖L2(Ωx×Ωv), right: Xst-errors ‖u− uδ‖L2(Ωx,V ). Upper plots: conver-

gence in nx = 1/hx1 = 1/hx2 for different fixed nv = 2π/hv . Lower plots:

Convergence in nv for different fixed nx.

Table 2. Discretization of (42): Computed discrete inf-sup con-
stants βδ in relation to the lower bound βlb for varying mesh sizes

with n = 1/hx1 = 1/hx2 = 2π/hv and varying values for the

constants d and c.

d = 0.4, c = 1 d = 0.1, c = 1 d = 0.1, c = 0.1
n βδ βδ/βlb βδ βδ/βlb βδ βδ/βlb

4 0.61855 2.187 0.41087 5.811 0.30579 4.324

8 0.44891 1.587 0.18628 2.634 0.14924 2.111

16 0.40915 1.447 0.11688 1.653 0.10585 1.497

32 0.40202 1.421 0.1033 1.461 0.10041 1.42

48 0.40088 1.417 0.10137 1.434 0.10008 1.415

Table 3. Ratio of nonzero

elements in the stiffness ma-

trix for varying mesh sizes

n nnz
nentries

nnz
(nx1nx2n

2
v)

4 20.05% 39.3

8 5.52% 53.05

16 1.463% 58.98

32 0.378% 61.61

48 0.17% 62.44

64 0.096% 62.84

To examine the convergence behavior of our scheme, we compute discrete so-
lutions to (42), where the exact solution is known. We compare the discretiza-
tion errors for different mesh sizes in the L2(Ωx × Ωv) norm as well as in the Xst

norm in Fig. 2. We see that the L2-error converges with second order in both
hx1 = hx2 = 1/nx and hv = 2π/nv. The Xst-error, which includes the L2-norm of
the v-derivative, converges with second order in hxi and first order in hv. For a
further investigation of the estimate for the discrete inf-sup constant we compute
the constants for the discretization of (42) for different mesh sizes and reaction
and diffusion constants c and d; see Table 2. The estimate (34) is given here as

βδ ≥ min{c, d}/(
√

2 max{1, c, d}), which is min{c, d}/
√

2 for all considered data
values in Table 2. As can be seen in the table, the estimate is here again sharp up
to a factor of about

√
2.

Since the basis functions of the discrete trial space Xδ are not chosen as standard
nodal basis functions but have larger support, one can ask if the choice of spaces
still leads to an efficient numerical scheme. Therefore, in Table 3 we list the ratio
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of nonzero elements in the stiffness matrix, which decreases significantly with larger
problem sizes. However, as Xδ includes solutions of problems in Ωv, the nonzero
elements increase linearly in the dimension of the x-discretization and quadratically
in the dimension of Vh.

7. Conclusions

In this paper, we present a stable Petrov-Galerkin discretization of a kinetic
Fokker-Planck equation. Based on an estimate for the dual inf-sup constant of
the bilinear form, where “stable pairs” of trial and test functions are introduced,
we propose a discretization where these pairs are directly built into the spaces:
By defining the discrete trial space dependent on the chosen discrete test space
through the application of the kinetic transport and the inverse velocity Laplace-
Beltrami operator, we obtain a well-posed numerical scheme with the same lower
bound of the discrete inf-sup constant as for the continuous problem independently
of the mesh size. We show that under suitable conditions on the data functions
these spaces can be computed efficiently. Numerical experiments show favorable
convergence orders of the discretization error for a manufactured solution of the
stationary equation (order 2 in x both in the L2-norm and the X -norm, order 2
and 1 in v for the respective norms). For both the examined time-dependent and
stationary test cases, the estimate of the discrete inf-sup constant is sharp up to a
factor of

√
2.

The new method is especially beneficial for spaces with few degrees of freedom
in the velocity domain. Therefore, a promising application might be a combination
with a hierarchical model order reduction scheme such as [9], which realizes small
spaces in the velocity domain and has stability problems that might be resolved
using the new method.

Appendix A. Proofs of function space results

Proof of Lemma 3.3. We estimate ‖φf‖H1
FP(Ω). Using the definition of the V -norm

and the product rule we obtain for the first term5

‖φf‖2X = ‖φf‖2L2(Ω) + ‖(∇vφ)f + φ∇vf‖2L2(Ω)

≤ ‖φ2‖L∞(Ω)‖f‖2L2(Ω) + 2‖|∇vφ|2‖L∞(Ω)‖f‖2L2(Ω) + 2‖φ2‖L∞(Ω)‖∇vf‖2L2(Ω)

≤ 2
(
‖φ‖2L∞(Ω) + ‖∇vφ‖2L∞(Ω)

)
‖f‖2X .(43)

By using the product rule, the identification 〈·, ·〉X ′,X = (·, ·)L2(Ω), and the density

of C∞(Ω) in H1
FP(Ω) we see that for arbitrary ψ ∈ X it holds

〈k · ∇t,x(φf), ψ〉X ′,X = 〈k · ∇t,xf, φψ〉X ′,X + (f(k · ∇t,xφ), ψ)L2(Ω)

≤ ‖k · ∇t,xf‖X ′‖φψ‖X + ‖f(k · ∇t,xφ)‖L2(Ω)‖ψ‖L2(Ω).

(43)

≤
√

2
(
‖φ‖2L∞(Ω) + ‖∇vφ‖2L∞(Ω)

) 1
2 ‖k · ∇t,xf‖X ′‖ψ‖X

+ ‖k · ∇t,xφ‖L∞(Ω)‖f‖L2(Ω)‖ψ‖L2(Ω)

≤
√

2
(
‖φ‖L∞(Ω) + ‖∇vφ‖L∞(Ω) + ‖k · ∇t,xφ‖L∞(Ω)

)
‖f‖H1

FP(Ω)‖ψ‖X .

5As introduced in section 4, we write X = L2(Ωt,x, V ).
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We thus have

‖k · ∇t,x(φf)‖X ′ ≤ 2
√

2
(
‖φ‖L∞(Ω) + ‖∇vφ‖L∞(Ω)

+‖k · ∇t,xφ‖L∞(Ω)

)
‖f‖H1

FP(Ω).
(44)

Combining (43) and (44) and using that |k| is bounded in Ω, we thus have

‖φf‖H1
FP(Ω) ≤ C‖φ‖C1(Ω)‖f‖H1

FP(Ω).
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