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Abstract

We propose a novel direct sampling method (DSM) for the effective and stable inversion of the
Radon transform. The DSM is based on a generalization of the important almost orthogonality
property in classical DSMs to fractional order Sobolev duality products and to a new family of
probing functions. The fractional order duality product proves to be able to greatly enhance
the robustness of the reconstructions in some practically important but severely ill-posed inverse
problems associated with the Radon transform. We present a detailed analysis to better understand
the performance of the new probing and index functions, which are crucial to stable and effective
numerical reconstructions. The DSM can be computed in a very fast and highly parallel manner.
Numerical experiments are carried out to compare the DSM with a popular existing method, and
to illustrate the efficiency, stability, and accuracy of the DSM.
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1 Introduction
In this work, we consider the inverse problem of recovering a function from its Radon trans-

form. This problem arises when we aim at recovering an object from its projections in the computed
tomography (CT). Accurate, stable, and fast numerical reconstruction methods are of great im-
portance in practice in view of the broad and increasing applications of CT scan in, e.g., medical
imaging, flaw detection, and baggage security scanning.

To recover a function from its Radon transform, analytical inversion formulas are available. And
some popular approaches nowadays are based on these formulas along with various low pass filters,
known as filtered back projections (FBP). Two major reasons for the popularity of the FBP method
are its easy implementation and its relatively low computational complexity [26]. The method
performs very well when the measurement data is very accurate and available from all directions.
Nonetheless, the measurement data may be highly noisy and is only available in a limited range or
only a number of angles, in many applications. For instance, to minimize adverse effects brought
by radiation exposure upon a patient’s body during the scanning process, low dose CT is widely
employed for lung cancer detection [31]. However, this may lead to severely polluted measurement
data [23], and in this case, it is difficult for traditional methods to work stably. Another instance is
when we apply the CT scan in luggage security checks, we may only be able to collect measurement
data from a small number of or/and a limited range of angles. Those scenarios are usually named
as sparse tomography and limited angle tomography [15, 20]. It is challenging to develop efficient
and effective reconstruction methods in these scenarios as the corresponding inverse problems are
severely ill-posed [25], and the data may not be adequate to sustain the robustness of traditional
methods.

Comprehensive reviews of traditional reconstruction methods, including the FBP method, the
Fourier method, and the algebraic reconstruction method, can be found in two popular monographs
[19, 25]. In order to tackle those aforementioned ill-posed scenarios, many alternative numerical
reconstruction methods have been developed in recent years, based on various strategies, including
wavelet or shearlet approximations [14, 28], Bayesian method with appropriate priors [8], the PDE
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approach making use of the propagation of X-rays [20], and the deep learning technique to complete
missing data [5]. Many of these methods work well in the sparse tomography [15], the limited angle
tomography [5, 14, 20], and the low dose CT [8]. These methods have demonstrated good potential
in improving existing methods and were already applied in many real life scenarios. We would like
to remark that since these algorithms usually involve more advanced mathematical or statistical
tools, they may either employ certain optimization functional or leverage on the availability of a
huge training dataset, which may lead to higher computational and storage complexities than the
standard FBP methods. Instead, we will propose a method that avoids high computational and
storage complexities, and at the same time obtain a reasonable reconstruction in these difficult
cases and challenging scenarios.

In this work, we design a novel direct sampling method (DSM) for the inversion of the Radon
transform. This type of methods was originally motivated by the almost orthogonality property
between the fundamental solution of the forward problem and a properly chosen family of probing
functions under certain Sobolev duality products. The DSMs have been constructed and developed
for various highly nonlinear and severely ill-posed inverse problems; see, e.g., [9, 10, 11, 18, 22, 27],
including the wave and non-wave type inverse problems. These developments have demonstrated
that the DSMs are robust against noise and could generate reasonable reconstruction results even
with highly limited measurement data. These attractive features motivate us naturally to design
a DSM for inverting the Radon transform, and this is the main focus of the current work. A
key observation in our development is that if the measurement data is directly back-projected
by the dual of the Radon transform, the result can be represented by an integral equation with
the Green’s function associated with (a fractional) Laplacian as its kernel. This suggests us to
make full use of the important almost orthogonality property between the Green’s function and a
special family of probing functions under a fractional order Sobolev duality product. The choice of
the fractional order operator arises naturally considering the ill-posedness of the inverse problem
under noisy and incomplete measurement data, and turns out to be able to greatly enhance the
robustness of the new DSM. In the meantime, in order to generate more satisfactory reconstruction
results, we introduce the probing functions that depend on the sampling interval, which can further
render a point-wise convergence of the index function in certain scenarios. From the perspective
of the numerical computations, the DSM can be computed with low computational efforts and
simultaneously with the measurement process. With these features, the new DSM is expected to
find applications in tackling some inverse problems associated with the Radon transform, such as
those arising from security scanning, cancer detection, and portable CT scanner. These will be
further verified numerically in section 6.

The rest of the paper runs as follows. Section 2 introduces basic motivations and principles
behind direct sampling type methods for the inversion of the Radon transform, including our
detailed choices of probing and index functions. Section 3 provides mathematical justifications
for the novel DSM and investigates how the choice of some critical parameters in the sampling
algorithm affects the reconstruction. Section 4 extends the newly proposed DSM to the limited
angle tomography and the exponential Radon transform. Section 5 presents some strategies for
the numerical implementation to enhance the robustness and reduce the computational complexity
of the new DSM. Section 6 demonstrates a series of numerical experiments by the new sampling
method for some highly ill-posed scenarios, along with a comparison with the popular FBP method.

2 Principles of DSMs in inverting the Radon transform
In this section, we explain the basic principles of direct sampling type methods for the inversion

of the Radon transform. The spirit of direct sampling type methods is to leverage upon an almost
orthogonality property between the family of fundamental solutions of the forward problem and a
set of probing functions under an appropriately chosen duality product [9, 10, 11]. With this in
mind, we first represent the measurement data with the Green’s function of (a fractional) Laplacian
and then introduce a fractional order Sobolev duality product for the coupling of the measurement
data and the probing function. At the same time, a family of probing functions will be constructed.
Finally, an index function is defined to generate a direct sampling method for the inversion of the
Radon transform.

Let us consider the target function to be recovered as f , which is contained in L2(Ω), where Ω
is a compact set in Rn (n = 2, 3). Moreover, we assume B(0, r1) ⊆ Ω ⊆ B(0, r2), with 0 < r1 ≤ r2,
where B(x, r) is the ball centered at x with radius r. The Radon transform of a function f and its
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dual acting on a function g ∈ L∞(Sn−1 × Rn) are defined respectively by

Rf(θ, t) :=

∫
x·θ=t

f(x)dxL =

∫
Rn
f(x)δ(t− x · θ)dx , R∗g(x) :=

∫
Sn−1

g(θ, x · θ)dθ , (2.1)

where θ ∈ Sn−1, t ∈ R, x ∈ Ω, and t = x · θ represents a hyperplane with normal direction θ and
distance t to the origin. We shall first focus on the case that Rf(θ, t) is avaliable for all θ ∈ Sn−1

and for all t ∈ Iθ, where Iθ is defined such that

Ω ⊂
⋃
t∈Iθ

{x : t = x · θ} . (2.2)

In other words, we have measurements for all hyperplanes that intersect with the convex hull of
Ω. In section 4.1, we shall further consider the application of DSM for reconstruction with limited
angle measurement, i.e., t is only available for a subset of Iθ.

A crucial motivation in our subsequent design of a DSM is the following inherent mathematical
connection between the Radon transform and (a fractional) Laplacian [16]:

R∗Rf(x) =
cn
dn

∫
Ω

f(y)Gx(y)dy with dn =
π1/2

(4π)
n−1

2 Γ(n2 )
and cn =

Γ(n−1
2 )

2π
n+1

2

, (2.3)

where Gx(y) = |x−y|−1 is the Green’s function for the (fractional) Laplacian operator (−∆)(n−1)/2.
The fractional Laplacian can be defined through various approaches which are equivalent to one
another under appropriate assumptions on the regularity of f [21]. We shall consider two definitions
via a singular integral representation and a Fourier multiplier, respectively.

The following equivalent inversion formula will be frequently used in our subsequent analysis:

f(x) = (−∆)
(n−1)

2 us(x) with us(x) := dnR
∗Rf(x) . (2.4)

We shall call us as the measurement data since the dual transform or the back projection R∗ of
the Radon transform is standard and explicitly available after the Radon transform Rf(θ, t).

The relation (2.4) can be considered as the most important motivation for many existing re-
construction methods, e.g., the FBP and Fourier methods. These reconstruction methods involve
usually the application of a pseudo-differential operator on the noisy measurement data which is
not preferable for those ill-posed scenarios that were mentioned in the Introduction.

We remark that in order to allow (2.4) to be held in R2, we shall assume that f lies in the
Schwarz space which is the space of functions whose derivatives are all rapidly decreasing. This
assumption will not affect the feasibility of reconstructing the target function f ∈ L2(Ω). Using the
density of smooth functions in L2(Ω), all our upcoming analyses involving (2.4) (section 3) can be
first carried out for smooth functions, and then extended to a more general class of target functions
by a standard density argument.

To define an index function in a direct sampling method, we first introduce a duality product of
order γ > 0 for the coupling of the measurement data us with some appropriately selected probing
functions (to be defined):

〈v, w〉Hγ(Rn) :=

∫
Rn
v (−∆)γwdx , ∀ v ∈ L2(Rn) , w ∈ H2γ(Rn) . (2.5)

We remark that v will be often the noisy measurement data in our proposed DSM, and the parameter
γ is called the Sobolev scale of the duality product.

The new DSM will reply on a critical index function, which involves an appropriately selected
family of probing functions. Before going on with more details, we first present one of the primary
motivations for employing the duality product in (2.5) and the construction of probing functions
for the inversion of the Radon transform. Letting us consider n = 2, then we choose w = us from
(2.4), v = Gz and Sobolev scale γ = 1 in (2.5). Then we can easily derive by the definition of the
Green’s function and the inversion formula in (2.4) that

((−∆)us ∗G0)(z) = F−1{|ω|F(f)F(G0)}(z) = f(z) , (2.6)

where F and F−1 denote the Fourier transform and the inverse Fourier transform, and ω is the
variable in the frequency domain. Therefore, this duality product can be linked with an exact
reconstruction formula. However, we may directly observe that taking the Laplacian on us will
cause numerical instability due to the noise in the data, especially at those scenarios we mentioned
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in the Introduction. Furthermore, essentially different from the previous DSMs [9, 10, 11] for which
the measurement data is collected on a partial boundary of the sampling domain, we now have the
data us inside Ω. Hence, it is not desirable in practice for our numerical methods to involve the
singularity of the Green’s function (as in (2.6)) in computations. For this reason, we shall introduce
and justify the following strategies (in sections 2.1 and 3.):

• To enhance the robustness against noise, a smaller Sobolev scale γ in the duality product
will be preferable when the measurement data is highly noisy. Moreover, we will illustrate in
section 3 the relationship between γ and the variance of the index function under a simplified
noise model.

• We will introduce a special family of probing functions to avoid any singularities at the
sampling point z but still preserve the sharpness of the inversion formula.

2.1 Probing and index functions
We are now going to propose an appropriate family of probing functions based on the primary

motivation and principles of direct sampling type methods that we addressed earlier. For the
purpose, we first define two sets of auxiliary functions ζhα and ζ̃hα for any 0 < h < 1 and α ∈ R:

ζhα(x) :=

{
|x|−α , when |x| ≥ h ,
ψα(|x|) , when |x| < h ;

ζ̃hα(x) :=

{
|x|−α , when |x| ≥ h ,
h−α , when |x| < h ;

(2.7)

where ψα(x) is a smooth extension function such that ζhα(x) ∈ C2,1(Rn) and ||ζhα − ζ̃hα||L1(Rn) < h.
By the density of smooth functions in L2(Rn), we will present an explicit choice of the smooth
extension function ψα that we use in our numerical computations with verification of its desired
property in Appendix A.

In the sequel, ζhα is used to construct a crucial family of probing functions, and ζ̃hα will be
repeatedly employed in the theoretical justification of the DSM in section 3. These auxiliary
functions can be regarded as some delicate modifications of the Green’s function associated with
the (fractional) Laplacian (−∆)(n−1)/2. The modifications are necessary for two reasons. The
first is that the original Green’s function is singular at the origin, therefore we need to remove
the singularity but still preserve certain smoothness property. Secondly, a key parameter α is
introduced to realize a more satisfactory reconstruction result. Indeed, we will justify in section
3.2 that a reasonable and reliable choice is α = n+ 1.

We are now ready to define a crucial family of probing functions ηhz at any sampling point z ∈ Ω:

ηhz (x) := ζhn+1(x− z) . (2.8)

For the notational sake, we also denote

η̃hz (x) := ζ̃hn+1(x− z) . (2.9)

Before we move on to introduce the important index function for defining the direct sampling
method, we first provide some estimates of probing functions, which will be used repeatedly in the
verification of the new DSM in section 3.

Lemma 2.1. The following estimates hold for the probing and auxiliary functions ηhz and η̃hz :

(a) (−∆)γηhz (x) belongs to L∞(Rn) for 0 < γ < n
2 ;

(b) (−∆)γηhz (x) belongs to L2(Rn) for 0 < γ < 1;

(c) (−∆)γ η̃hz (x) belongs to L2(Rn) for 0 < γ < 1.

Proof. Without loss of generality, we assume that z is the origin.
To show part (a), we first consider the case γ ∈ (0, 1). By definition, the fractional Laplacian

of ηh0 for an arbitrary point x ∈ Rn can be written as

(−∆)γηh0 (x) =− cn,γ
2

lim
δ→0

∫
|y|>δ

ηh0 (x+ y) + ηh0 (x− y)− 2ηh0 (x)

|y|n+2γ
dy

=− cn,γ
2

(
I1 + I2

)
, with cn,γ =

4γΓ(n2 + γ)

πn/2|Γ(−γ)|
,

(2.10)
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where I1 and I2 are

I1 =

∫
|y|> |x|2

ηh0 (x+ y) + ηh0 (x− y)− 2ηh0 (x)

|y|n+2γ
dy , I2 = lim

δ→0

∫
δ<|y|< |x|2

ηh0 (x+ y) + ηh0 (x− y)− 2ηh0 (x)

|y|n+2γ
dy .

I1 can be bounded directly by

|I1| ≤
∫
|y|> |x|2

|ηh0 (x+ y) + ηh0 (x− y)− 2ηh0 (x)|
|y|n+2γ

dy ≤ 4||ηh0 ||L1(Rn)|x/2|−n−2γ . (2.11)

while I2 can be bounded by

|I2| ≤ lim
δ→0

∫
δ<|y|< |x|2

||D2ηh0 ||L∞(B(x,|x|/2))

|y|n+2γ−2
dy ≤ c2(n, γ)||D2ηh0 ||L∞(B(x,|x|/2))|x/2|2−2γ , (2.12)

by using the estimate

|ηh0 (x+ y) + ηh0 (x− y)− 2ηh0 (x)|
|y|n+2γ

≤
||D2ηh0 ||L∞(B(x,|x|/2))

|y|n+2γ−2
, where |y| < |x|

2
. (2.13)

from the second order Taylor’s theorem. Here the constant c2(n, γ) only depends on n and γ.
Combining (2.11) and (2.12), we conclude that (−∆)γηh0 ∈ L∞(Rn) for γ ∈ (0, 1).

Now we show (−∆)γηhz (x) ∈ L∞(Rn) for γ ∈ [1, n2 ). We first establish a result that will be used
twice in the following proof. For arbitrary g ∈ C0,1(Rn) ∩ L∞(Rn) and β ∈ (0, 1/2), we have

|(−∆)βg(x)| ≤ cn,β

[ ∫
B(0,1)

||g||C0,1(Rn)

|y|n+2β−1
dy +

∫
Rn\B(0,1)

2||g||L∞(Rn)

|y|n+2β
dy

]
(2.14)

≤ c3(n, β)
(
||g||C0,1(Rn) + ||g||L∞(Rn)

)
for cn,β defined in (2.10) and some constant c3(n, β) that only depends on n and β. The above
estimate implies (−∆)βg ∈ L∞(Rn) for any g ∈ C0,1(Rn) ∩ L∞(Rn) and β ∈ (0, 1/2).

Next, by the construction of the probing function in (2.8), we have (−∆)ηh0 ∈ C0,1(Rn)∩L∞(Rn)
which shows the case γ = 1. For γ > 1, to make use of the estimate in (2.14), we observe that the
order γ fractional Laplacian of the probing function can be written as

(−∆)γηh0 = (−∆)γ−1
(
(−∆)ηh0

)
with γ ∈ (1,

n

2
) .

This indicates (−∆)γηh0 ∈ L∞(Rn), by replacing g by (−∆)ηh0 and β by γ − 1 ∈ (0, 1/2) in (2.14).
To show part (b) that (−∆)γηh0 ∈ L2(Rn) for γ ∈ (0, 1), it suffices to show that |(−∆)γηh0 (x)| ≤

c|x|−n−ε for |x| > 2h, ε > 0, and some constant c that is independent of x. This property is satisfied
by I1 due to (2.11). Now we investigate I2 in (2.10) more carefully. By the definition of the probing
function, we have

||D2ηh0 ||L∞(B(x,|x|/2)) ≤ 4n2|x/2|−n−3 when |x| > 2h . (2.15)

Substituting this estimate into (2.12) implies that |I2| ≤ c2(n, γ)4n2|x/2|−n−1−2γ . Hence, we can
conclude that (−∆)γηh0 ∈ L2(Rn).

To show part (c) that (−∆)γ η̃h0 ∈ L2(Rn) for γ ∈ (0, 1). We first notice that for |x| > 2h,
all above estimates in (2.11), (2.12), and (2.15) hold after replacing ηh0 by η̃h0 since the point-wise
value of η̃h0 (x) for |x| < h is not involved in those estimations. Therefore, we have (−∆)γ η̃h0 ∈
L2(Rn \B(0, 2h)). Now, it only remains to show (−∆)γ η̃h0 belongs to L2(B(0, 2h)).

For γ ∈ (0, 1/2), with (2.14) and the definition in (2.7) which states that η̃h0 ∈ C0,1(Rn), we
have (−∆)γ η̃h0 ∈ L∞(B(0, 2h)) ⊂ L2(B(0, 2h)).

For γ ∈ [1/2, 1), denoting ηh0 := ηh0 − η̃h0 which satisfies ηh0 (x) = 0 if |x| > h. Then showing
(−∆)γ η̃h0 belongs to L2(B(0, 2h)) is equivalent to showing (−∆)γηh0 belongs to L2(B(0, 2h)). By
definition, for h < |x| < 2h, we have

|(−∆)γηh0 (x)| = cn,γ

∣∣∣∣ ∫
|y|<h

ηh0 (y)

|x− y|n+2γ
dy

∣∣∣∣ ≤ 4π2cn,γ ||ηh0 − η̃h0 ||L∞(Rn)(|x| − h)−2γ .

For |x| < h, similarly to the decomposition in (2.10), we have

|(−∆)γηh0 (x)| ≤ cn,γ
∣∣∣∣ ∫
|y|<h−|x|

ηh0 (x− y) + ηh0 (x+ y)− ηh0 (x)

2|y|n+2γ
dy

∣∣∣∣+ cn,γ

∣∣∣∣ ∫
h−|x|<|y|<2h

ηh0 (x)− ηh0 (x+ y)

|y|n+2γ
dy

∣∣∣∣
≤ c4(n, γ)

[
||D2(ηh0 − η̃h0 )||L∞(B(0,h))(h− |x|)2−2γ + 2||ηh0 − η̃h0 ||L∞(Rn)(h− |x|)2γ

]
,
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for some constant c4(n, γ) that is independent of x. Combining estimates for |x| > h and |x| < h,
we conclude that (−∆)γηh0 ∈ L2(B(0, 2h)) which leads to part (c) of the lemma.

We are now ready to introduce the crucial index function Ihγ that defines the direct sampling
method, more accurately speaking, it generates the numerical image at all sampling points z ∈ Ω :

Ihγ (z) :=
〈us, ηhz 〉Hγ(Rn)

n(z)
, with n(z) := 〈dnR∗R(1Ω), ηhz 〉Hγ(Rn) , (2.16)

where ηhz is the probing function introduced in (2.8) and dn is defined in (2.3). The normalization
term n(z) is taken to migrate the influence of the choice of h and γ on the magnitude of the index
function, which is independent of the measurement data us. In particular, this choice of n(z)
ensures that our method is exact for constant valued target function. In the following sections
3.1 and 3.3, we shall justify that the numerator of the index function, that is, the duality product
between us and ηhz , will approximately recover the target function f(z) up to a constant. With
this in mind, we observe that n(z) is simply an approximation to the characteristic function of the
sampling domain Ω, hence n(z) is nearly a constant for all sampling points in Ω.

We remark that, since us introduced in (2.4) is not compactly supported, the duality prod-
uct involved in the index function (2.16) is defined with respect to Rn. However, the numerical
implementation of the index function is still realized in a compact set due to the fact that the
target function f is often compactly supported in Ω. The implementation of the new DSM will be
presented in detail in section 5

The proposed index function leverages upon the very important almost orthogonality property
of the Green’s function Gx and the family of probing functions defined in (2.8) in fractional order
Sobolev duality products. Combining with the representation of the measurement data that we
introduced in (2.4), this desired property helps reconstruct the target function f with the index
function (see the careful verification in section 3). We now emphasize a very important feature of
the novel DSM. By the definition of the index function (2.16), the evaluation of the index function
does not involve any pseudo-differential operator applied to the noisy measurement data us, unlike
many existing numerical methods in inverting the Radon transform. This feature shall allow our
DSM to be stable under high level noise and limited measurement data, which is evident from many
numerical experiments in section 6.

Under the setting-ups above, the index function in (2.16) gives rise to our new algorithm:

Direct Sampling Method. Given the Radon transform Rf(θ, t) of the target function f for a
limited set of discrete angles θ ∈ Sn−1 and discrete points t ∈ R, we evaluate Ihγ (z) numerically to
approximate f(z) for every sampling point z in the domain Ω.

3 Verification of the index function
In this section, we verify mathematically that the proposed index function in (2.16) can indeed

recover the target function f in subsections 3.1 and 3.3, in two separate scenarios that the Sobolev
scale γ ∈ ((n − 1)/2, n/2) and γ ∈ (0, (n − 1)/2]. In particular, the verification for the latter case
relies on the alternative characterization of the index function that will be presented in subsection
3.2. Moreover, the choice of the key parameter α = n+ 1 in the definition of the probing function
(2.8) will also be explained in the same subsection. In subsection 3.4, we will demonstrate the
relationship between the Sobolev scale γ in (2.5) and the variance of the index function under a
particular noise model which provides crucial instruction on the choice of γ during the reconstruction
with noisy measurement data. In addition, the conclusion from subsection 3.4 implies the choice of
γ ≥ n/2 is not preferable in real applications and hence we only consider the possibility of γ < n/2
in the following discussion.

Throughout this section, with the help of the remarks that we mentioned after (2.4), we further
assume that the target function f is a smooth function.

3.1 Verification of the index function for (n− 1)/2 < γ < n/2

We will first focus on the numerator of the index function defined in (2.16), and verify that
the duality product between us = dnR

∗Rf and the probing function defined in (2.8) can recover
the target function as h → 0 for any sampling point z ∈ Ω. Especially, the parameter h could be
considered as the sampling interval in real applications.
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Lemma 3.1. For any f ∈ C0,1(Ω) and z ∈ Ω, it holds that

lim
h→0

h1+2γ〈us , ηhz 〉Hγ(Rn) = ||(−∆)γ−
n−1

2 η̃1
0 ||L1(Rn)f(z) , (3.1)

In particular, the convergence is uniform for all z ∈ Ω.

Proof. Firstly, based on the inversion formula (2.4) and the self-adjointness of the fractional Lapla-
cian which holds due to part (b) and (c) of Lemma 2.1, we can write

〈us, ηhz 〉Hγ(Rn) =

∫
Rn
us(x)(−∆)γηhz (x)dx =

∫
Rn

(−∆)γ−
n−1

2 f(x)ηhz (x)dx

=

∫
Rn
f(x)(−∆)γ−

n−1
2 η̃hz (x)dx+

∫
Rn

(−∆)γ−
n−1

2 f(x)[ηhz (x)− η̃hz (x)]dx .

(3.2)

For the second integration above, by definitions of ηhz and η̃hz in (2.8) and (2.9), we have∫
Rn

(−∆)γ−
n−1

2 f [ηhz − η̃hz ]dx ≤ ||(−∆)γ−
1
2 f ||L∞(Rn)||ζhn+1 − ζ̃hn+1||L1(Rn) ≤ ||(−∆)γ−

1
2 f ||L∞(Rn)h ,

(3.3)
where the boundness of the term ||(−∆)γ−

1
2 f ||L∞(Rn) follows from f ∈ C0,1(Rn) and the estimate

(2.14).
Moreover, by substituting η̃1

0

(
x
h

)
= hn+1η̃h0 (x) which comes from (2.7) and (2.9) into the defi-

nition of the fractional Laplacian operator, we further have the following rescaling property:

(−∆)γ−
n−1

2 (η̃h0 )(x) = hn+1+2γ
(
(−∆)γ−

n−1
2 η̃1

0

)(x
h

)
, (3.4)

For simplicity, we write β = γ− n−1
2 . By part (c) of Lemma 2.1 that (−∆)β η̃1

0 ∈ L2(Rn) ⊂ L1(Rn),
we can define a family of approximations to the identity for all f ∈ C0,1(Ω):

τhβ (x) =
h−n(−∆)β η̃1

0(xh )

||(−∆)β η̃1
0 ||L1(Rn)

= h1+2γ (−∆)β(η̃h0 )(x)

||(−∆)β η̃1
0 ||L1(Rn)

, lim
h→0

∫
Rn
f(y)τhβ (z − y)dy = f(z) . (3.5)

Then, combining (3.2) and (3.5), we conclude for a fixed sampling point z ∈ Ω that

lim
h→0

h1+2γ〈us, ηhz 〉Hγ(Rn) = lim
h→0

h1+2γ

∫
Rn
f(y)(−∆)γ−

n−1
2 ηhz (y)dy

=||(−∆)γ−
n−1

2 η̃1
0 ||L1(Rn) lim

h→0

∫
Rn
f(y)τhβ (z − y)dy

=||(−∆)γ−
n−1

2 η̃1
0 ||L1(Rn)f(z) .

(3.6)

In particular, for all z ∈ Ω, the convergence is uniform as the limit in (3.5) is uniform.

Lemma 3.1 indicates that the numerator of the index function can recover the target function
f up to a constant, when h is small enough.

We move the justification of the index function for the case of the Sobolev scale γ ≤ (n− 1)/2
to section 3.3. Before that, we next present an alternative characterization of the index function
which explains the choice of α in (2.8). This alternative characterization will be also essential to
our subsequent justification of the index function for γ ≤ (n− 1)/2.

3.2 Alternative characterization of the index function
In this subsection, we present an alternative characterization of the index function defined in

(2.16) for all possible choices of γ ∈ (0, n2 ). The characterization is mainly to obtain a dominating
term in the index function with respect to the small parameter h involved in the probing function
(2.7). More specifically, we shall show that the index function at the sampling point z approximately
equals to the average of (−∆)γus at the neighborhood of z. This characterization will be used in
twofold:

• We shall justify that the preferable choice of the key parameter α ∈ R involved in the probing
function is α = n+ 1, as we suggested in (2.8). To do so, we will estimate and investigate the
dominating term of the index function when the probing function (2.8) is used or replaced by
other functions ζhα with α 6= n+ 1;
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• The dominating term in the index function will provide an essential tool to help us justify that
the proposed DSM can approximately recover the target function f when γ ∈ (0, (n − 1)/2]
in the next subsection 3.3.

Let us first assume α = n + 1, which is the one used in the definition (2.8). To obtain a
dominating term of the numerator of the index function, we rewrite it, by using a direct addition
and subtraction, as

〈us, ηhz 〉Hγ(Rn) =

∫
Rn

(−∆)γus
[
ηhz − η̃hz

]
dx︸ ︷︷ ︸

φ1(z)

− 1

n− 1

∫
Rn

(−∆)γ+1us

[
ζ̃hn−1(x− z)− 1

|x− z|n−1

]
dx︸ ︷︷ ︸

φ2(z)

− 1

n− 1

∫
Rn

(−∆)γ+1us
1

|x− z|n−1
dx︸ ︷︷ ︸

φ3(z)

+

∫
Rn

[
(−∆)γusη̃

h
z +

1

n− 1
(−∆)γ+1usζ̃

h
n−1(x− z)

]
dx︸ ︷︷ ︸

φ4(z)

,

(3.7)

where ζ̃hn−1 is defined in (2.7) and the derivation of the constant 1/(n − 1) appeared in (3.7) will
be introduced in the analysis of φ4(z).

We now investigate the properties of the terms φi(z) (1 ≤ i ≤ 4) one by one. For φ1(z), the
estimate is identical with (3.3), so we have

|φ1(z)| ≤ ||(−∆)γ−
1
2 f ||L∞(Rn)h . (3.8)

Next, for φ2(z), recalling the definition of ζhn−1 in (2.7), we notice the integrand vanishes if
|x− z| > h, which leads to

|φ2(z)| =
∣∣∣∣ ∫
|x−z|≤h

(−∆)γ+1us

[
1

|x− z|n−1
− 1

hn−1
)

]
dx

∣∣∣∣ ≤ 4π||(−∆)γ+ 1
2 f ||L∞(Ω)h . (3.9)

To consider the term φ3(z), we know from [30] that for a smooth function g, the negative order
fractional Laplacian can be represented by

(−∆)−γg(z) = cn,−γ

∫
Rn

g(x)

|x− z|n−1
dx with cn,−γ =

Γ(n2 − γ)

4γπ
n
2 Γ(γ)

.

Using this property, taking g = (−∆)γ+1us and γ = 1/2, we have

φ3(z) =
1

c(n,− 1
2 )

(−∆)−
1
2

(
(−∆)γ+1us(z)

)
=

1

c(n,− 1
2 )

(−∆)γ+ 1
2us(z) . (3.10)

To summarize, we notice that the orders of φ1(z) and φ2(z) are O(h), and the magnitude of φ3(z)
is independent of the choice of h.

Finally, we come to analyse φ4(z). Since (−∆)ζ̃hn−1(x) = −(n − 1)ζ̃hn+1(x) for |x| > h , the
Green’s identity leads to

φ4(z) =

∫
Rn

[
(−∆)γusζ̃

h
n+1(x) +

1

n− 1
(−∆)γ+1usζ̃

h
n−1(x− z)

]
dx

=

∫
∂B(z,h)

(−∆)γus
∂

∂n−
1

|x− z|n−1
dxs +

1

hn+1

∫
B(z,h)

(−∆)γusdx

=
1

hn

∫
∂B(z,h)

(−∆)γusdxs +
1

hn+1

∫
B(z,h)

(−∆)γusdx ,

(3.11)

where n− denotes the normal vector pointing towards to z. The simplification of the integration
on ∂B(z, h) comes from the definition of ζ̃hn−1, since it is a constant inside B(z, h).

We can easily observe from (3.11) that the order of φ4(z) is O
(
h−1

)
, which is clearly larger than

φi(z) (1 ≤ i ≤ 3). Hence we can now conclude that the dominating term in the duality product
〈us, ηhz 〉Hγ is φ4(z), and it can be readily seen as a good approximation of the average of (−∆)γus
in a close neighborhood of the sampling point z. This fact will be used in the next section 3.3.

We are now ready to justify our choice of α = n+ 1 in the definition of the probing function in
(2.8). Firstly, the choice of α ≤ n is not applicable as ζhα /∈ L1(Rn). In this case, the index function
(2.16) which involves integration in Rn might not be always well defined and we can not ensure its
accuracy and stability of reconstruction.
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Secondly, for the choice of α > n + 1, there are two reasons that this option is not preferable.
The first one is that the L∞-norm of the auxiliary function ζhα in (2.7) is of order h−α. Hence, a
larger choice of α > n + 1 may lead to an issue of numerical instability. Let us discuss a special
case of α > n + 1 below, i.e., α = n + 3, and we will conclude that the dominating term in the
duality product between us and ζhn+3 is the same as the dominating term in the duality product
between us and ζhn+1 (the probing function we employed in DSM). We will compare the numerical
reconstructions (see Example 1, section 6), with α being n + 1, n + 2, and n + 3, to justify the
choice of α = n+ 1 in our DSM.

Let us now consider the case α = n + 3, that is, the probing function (2.8) used in the index
function (2.16) is replaced by ζhn+3. We first observe that (−∆)2ζ̃hn−1(x) = 1/e(n)ζ̃hn+3(x) for x > h

with e(n) = 1/3(n2 − 1). We rewrite the duality product between us and ζhn+3 like in (3.7):

〈us, ζhn+3(x− z)〉Hγ =

∫
Rn

(−∆)γus
[
ζhn+3(x− z)− ζ̃hn+3(x− z)

]
dx︸ ︷︷ ︸

φ̃1(z)

−e(n)

∫
Rn

(−∆)γ+2us

[
ζ̃hn−1(x− z)− |x− z|−n+1

]
dx︸ ︷︷ ︸

φ̃2(z)

− e(n)

∫
Rn

(−∆)γ+2us|x− z|−n+1dx︸ ︷︷ ︸
φ̃3(z)

+

∫
Rn

[
(−∆)γusζ̃

h
n−1(x− z) + e(n)(−∆)γ+2usζ̃

h
n+3(x− z)

]
dx︸ ︷︷ ︸

φ̃4(z)

.

The estimates for φ̃i(z) (1 ≤ i ≤ 3) are basically the same as the above estimates for φi(z)
(i ≤ 1 ≤ 3), expect the minor differences in replacing the order of the fractional Laplacian from
γ + 1/2 to γ + 3/2 in the right hand side of (3.9) and (3.10). For φ̃4(z), we can apply the Green’s
identity twice to derive

φ̃4(z) =
c5(n, γ)

hn+1

∫
∂B(z,h)

(−∆)γusdxs +
1

hn+2

∫
B(z,h)

(−∆)γusdx+O(h−1) , (3.12)

where c5(n, γ) is a positive constant independent of z and h. φ̃4(z) now still represents the average
of (−∆)γus over the neighborhood of z. We can conclude that the dominating term of the index
function with α = n+ 1 and α = n+ 3 are approximately the same. Although the order of φ̃4(z) in
(3.12) with α = n+3 is higher than φ4(z) in (3.11) with α = n+1, we point out that the difference
in order has minor influence on the accuracy of the reconstruction as the magnitude of φi(z) and
φ̃i(z), i = 1, 2, 3, are much smaller than both of φ4(z) and φ̃4(z). Moreover, as we are particularly
interested in reconstruction with noisy and inadequate measurement data, it is preferable to choose
a probing function that is smoother and has a smaller L∞-norm.

With the above considerations, in order to maintain the appropriate regularity of the probing
function as well as to minimize numerical instability, we shall, from now on, only consider a choice
of α in the range α ∈ (n, n+ 1]. From numerical experiments, we do not observe much difference in
the quality of numerical reconstruction for any choice of α ∈ (n, n+ 1], and therefore for simplicity,
we always choose the probing function (2.8) with α = n+1 instead of some other probing functions
ζhα with α 6= n+ 1.

3.3 Verification of the index function for 0 < γ ≤ (n − 1)/2 and the fre-
quency domain representation of the probing function

In this section, we shall first verify that our proposed index function Ihγ approximately recovers
the target function f when 0 < γ ≤ (n−1)/2, and then present a frequency domain representation of
the function η̃hz . This representation reveals the fact that the application of the probing function can
be regarded as applying a low pass filter on the measurement data, which helps us better understand
the importance and necessity of computing the duality product between the measurement data and
the chosen probing function ηhz .

To verify that the index function can properly recover the target function f , we first recall the
critical motivation for direct sampling type methods in (2.3), that us = dnR

∗Rf can be represented
by the convolution of f and a fast decaying kernel function Gx(y) = 1/|x− y|. It can be observed
that as Gx(y) is very large when x ≈ y and is relatively small otherwise. Hence, if we are given
noisy or inadequate measurement data, us is already an approximation to the target function f .
Furthermore, considering the reconstruction by the proposed DSM with γ ≤ (n − 1)/2, we next
show that our method can improve the approximation to the target function f compared with
the approximation provided by us without applying any pseudo-differential operator on the noisy
measurement data.
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Firstly, by the definition of the fractional Laplacian through a Fourier multiplier with a frequency
variable ω and the Plancherel theorem, we derive

||(−∆)γus − f ||L2(Rn) =

∫
Rn
|(|ω|2γ−(n−1) − 1)|2|F(f)|2dω ,

where F(f) denotes the Fourier transform of f . Therefore, we have

||(−∆)γ2us − f ||L2(Rn) ≤ ||(−∆)γ1us − f ||L2(Rn) ≤ ||us − f ||L2(Rn) for 0 < γ1 < γ2 <
n− 1

2
.

(3.13)
Combining (3.13) with the inversion formula (−∆)

n−1
2 us = f in (2.4), we notice that the L2-norm

of (−∆)γus − f coverages to 0 as γ → (n− 1)/2. We can conclude that for γ ∈ [0, (n− 1)/2], as γ
becomes larger, (−∆)γus recovers the target function f more accurately with us which is already
a reasonable approximation to the target function f .

Now we recall the alternative characterization of the index function that we obtained through
the discussion following (3.11) in the previous section 3.2. The dominating term of the duality
product 〈us, ηhz 〉Hγ(Rn) is the average of (−∆)γus at the neighborhood of the sampling point z.
Hence, this justifies that our index function can approximately recover f due to the approximation
property of (−∆)γus and the alternative characterization of the index function.

We shall remark that, although computing (−∆)
n−1

2 us recovers f exactly in the noise free case,
the choice of γ = (n− 1)/2 is not preferable in applications that we mentioned in the Introduction
due to numerical instability. This theoretical prediction will also be justified in the following section
3.4 and example 1 of section 6.

In the remaining part of this subsection, we would like to investigate the frequency domain
representation of the probing function. The main motivation for this part is that the discussion
following (3.13) implies that the reconstruction solely with (−∆)γus is already an approximation to
the target function f . Therefore, it is necessary for us to justify that the introduction of the duality
product and the probing function in the new DSM are essential in recovering the target function
f more stably. Firstly, by the definitions (2.5) and (2.16), the duality product allows us to avoid
applying a pseudo-differential operator directly on the noisy measurement data us. Moreover, we
will now show that our choice of the probing function induces a low pass filter in the frequency
domain. For this reason, it helps improve the quality of reconstruction with noisy measurement
data. To justify the low pass filtering property of the probing function, we consider the numerator
of the index function in the frequency domain which yields

〈us, ηhz 〉Hγ =

∫
Rn

(−∆)γusη̃
h
z dx+

∫
Rn

(−∆)γus[η
h
z − η̃hz ]dx = F−1

{
F(η̃h0 )F((−∆)γus)

}
+ φ1(z) ,

(3.14)
where F−1 denotes the inverse Fourier transform and φ1(z) is defined in (3.7) which is of the order
O(h) by (3.8). The representation of the duality product in (3.14) implies that the reconstruction
by the proposed DSM can be regarded as applying the filtering function induced by η̃h0 on (−∆)γus.
Therefore, we now investigate the Fourier transform of η̃h0 explicitly.

In R2, it follows after converting it into a Hankel transform that

F
(
η̃h0
)
(ω) =

∫ h

0

J0(2π|ω|r)r
h3

dr +

∫ ∞
h

J0(2π|ω|r)
r2

dr (3.15)

=
1

4π2|ω|2h3

∫ 2π|ω|h

0

J0(t)tdt+ 2π|ω|
[ ∫ ∞

0

J0(t)− 1

t2
dt+

∫ ∞
2π|ω|h

1

t2
dt+

∫ 2π|ω|h

0

1− J0(t)

t2
dt

]
.

We notice the following integrals regarding Bessel functions of the first kind in [1]:∫ x

0

J0(t)tdt = xJ1(x) ,

∫ ∞
0

1− J0(t)

t2
dt = 1 , (3.16)∫ x

0

1− J0(t)

t2
= − 1

x
−
[
1− πx

2
H0(x)

]
J1(x) +

[
x2 + 1

x
− πx

2
H1(x)

]
J0(x) .

where Hν is the Struve function of order ν. Combining the above computations, we conclude that

F(η̃h0 )(ω) =
1

h

J1(λ)

λ
+
λ

h

[(
λ2 + 1

λ
− πλ

2
H1(λ)

)
J0(λ)−

(
1− πλ

2
H0(λ)

)
J1(λ)−1

]
, λ = 2π|ω|h .

(3.17)
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Figure 1: Frequency domain representation of η̃h0 (cf. (2.7)) in R2 (left) and R3 (right), with the data
being band-limited to 1/(2h) and h = 0.1. The horizontal axis is |ω| and the vertical axis is F(η̃h0 )(|ω|).

In the first plot of Fig. 1, we plot the frequency domain representation of η̃h0 with respect to
|ω|. h is chosen as 0.1, and we suppose the data is band-limited to 1/(2h). We observe that the
frequency domain representation of η̃h0 decays smoothly to 0 as |ω| becomes larger. Hence, the
probing function can be approximately considered as a low pass filter since it cuts off the high
frequency component and smoothes the low frequency component of the measurement data in R2.

For the case n = 3, we first consider the identity regarding the Fourier transform of a radial
function in R3:∫

R3

f(|x|)e−2πix·ωdx = 2π

∫ ∞
0

∫ π

0

f(r)e−2πir cos θ|ω|r2d(− cos θ)dr =
2

|ω|

∫ ∞
0

f(r)r sin(2πr|ω|)dr ,

then we can derive

F(η̃h0 )(ω) =
2

|ω|

[ ∫ h

0

r

h4
sin(2πr|ω|)dr +

∫ ∞
h

1

r3
sin(2πr|ω|)dr

]
=

2

|ω|

[
1

h44π2|ω|2

∫ 2π|ω|h

0

t sin(t)dt+ 4π2|ω|2
∫ ∞

2π|ω|h

sin(t)

t3
dt

]
=

4π

h

[
sin(λ)− λ cos(λ)

λ3
+ λ

(
−π + 2Si(λ)

4
+

sin(λ)

2λ2
+

cos(λ)

2λ

)]
, λ = 2πh|ω| ,

where Si is the sine integral function. We now draw the frequency domain representation of η̃h0
in the second plot of Fig. 1 with respect to |ω|. We also assume h = 0.1 and the data is band-
limited to 1/(2h), and the plot implies that the function η̃h0 can still be regarded as a low pass filter
since it cuts off the high frequency component and smoothes the low frequency component of the
measurement data in R3.

To conclude, the crucial family of probing functions defined in (2.8) for the new DSM allows
our reconstruction to be very stable under highly noisy measurement data since the application
of the probing function can be regarded as applying a low pass filter on the measurement data as
illustrated in Fig. 1.

3.4 Relationship between the Sobolev scale and the variance of the index
function

In this subsection, we consider a particular noise model from [19] that approximates the mea-
surement process to showcase some close relationship between the Sobolev scale γ in the duality
product (2.5) and the variance of the index function for γ ∈ (0, 1). We only consider the case γ < 1
since the L2-norm of (−∆)γ η̃hz is bounded for γ < 1 by part (c) of Lemma 2.1 and the boundedness
of the L2-norm is essential in our following discussion.

Suppose the collected data is polluted by a stationary zero-mean additive Gaussian noise, and
the noise distribution is independent of each other for projections on different hyperplanes, namely,
the noisy measurement takes the form:

Rf(θ, t) = Rfe(θ, t) + n(θ, t) , n(θ, t) ∼ N(0, σ2
0) , E

[
n(θ1, t1)n(θ2, t2)

]
= σ2

0δ(θ1 − θ2)δ(t1 − t2) ,
(3.18)

where E represents the expectation operator, and N(µ, σ2) stands for the normal distribution with
mean µ and standard deviation σ. And δ is the delta measure and the subscript e denotes the
exact value.
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Figure 2: ln(σ2
γ(0)) (cf. (3.20)) with respect to γ ∈ [0.2, 0.975] in R2 (left) and in R3(right).

Recalling the numerator of our proposed index function in (2.16), we can rewrite it as

〈us, ηhz 〉Hγ(Rn) =

∫
Rn

(−∆)γusη̃
h
z dx+

∫
Rn

(−∆)γus[η
h
z − η̃hz ]dx .

Since Rf ∈ L∞(Sn−1 × R), the expectation of the product of measurements is given by

E
[
us(x)us(y)

]
=

∫
Sn−1×Sn−1

[
Rfe(α, α · x)Rfe(β, β · y) + σ2

0δ(α− β)δ(α · x− β · y)

]
dαdβ

= ue(x)ue(y) +
∣∣Sn−1

∣∣2σ2
0δ(x− y) ,

(3.19)

where ue represents the exact value, and us is the measurement data with noise. From the above,
we see the variance of the index function at z ∈ Ω :

σ2
γ(z) = E

[
(Ihγ (z))2

]
− E

[
Ihγ (z)

]2
, with E

[
Ihγ (z)

]
=

∫
Rn us(−∆)γ η̃hz dx+ φ1(z)

n(z)
, (3.20)

where φ1(z) is defined in (3.7), and the order of φ1(z) is O(h) as we know from the estimate in
(3.8). By part (c) of Lemma 2.1, (−∆)γ η̃hz belongs to L2(Rn). Then one can derive the relationship
between the variance of the index function and the Sobolev scale γ:[

n(z)σγ(z)
]2

+O(h)

=

∫
Rn×Rn

[
E
[
us(x)us(y)

]
(−∆)γ η̃hz (x)(−∆)γ η̃hz (y)

]
dxdy −

[ ∫
Rn

E[us](−∆)γ η̃hz dx

]2

= σ2
0

∣∣Sn−1
∣∣ ∫

Rn
|(−∆)γ η̃hz |2dx = σ2

0

∣∣Sn−1
∣∣ ∫

Rn
|ω|4γ |F(η̃hz )(ω)|2dω .

(3.21)

We now substitute the representation of the normalization term n(z) defined in (2.16) into (3.21).
In Fig. 2, assuming Ω = [−0.5, 0.5]n for n = 2 (left) and n = 3 (right) with h = 0.025, we plot the
nature logarithm of the variance of the index function at the origin, i.e., ln(σ2

γ(0)), with respect
to γ ∈ [0.2, 0.975] where the step size of γ equals to 0.025. The constant σ0 in (3.21) is chosen
such that maxγ∈[0.2,0.975] σ

2
γ(0) = 1 for all γ. Our computation only considers γ ≥ 0.2 is due to

(3.13) which implies the accuracy of the reconstruction is not satisfactory for relatively small γ.
From Fig. 2, for both reconstructions in R2 and R3, the variance of the index function increases
exponentially with respect to γ. Hence, we shall not consider the possibility of very large γ, i.e.,
γ ≥ n/2, in real applications. This conclusion is also consistent with the motivation of DSM in
section 2 that we expect a smaller choice of the Sobolev scale γ will improve the robustness of the
reconstruction under high level of random noise.

We end this section with a summary of our theoretical predictions on the appropriate choice
of the Sobolev scale γ for applications, based on the discussions in section 3.3 and 3.4. For the
reconstruction from noisy and inadequate measurement data that we are particularly interested in,
we shall choose γ that is relatively small considering the relationship revealed in Fig. 2. Moreover,
for γ > 0 but is much smaller than (n− 1)/2, from (3.13) in section 3.3, the reconstruction results
may not be accurate enough. Hence, we may prefer to choose γ that is close to (n − 1)/2 for our
DSM, for instance, γ = 0.4 in R2 and γ = 0.9 in R3. This theoretical prediction will be verified in
example 1 of section 6.
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4 DSMs for some other tomography problems

4.1 Limited angle tomography
As we pointed out in section 3, the new DSM is expected to be robust against noise, due to the

property of the probing function as a low pass filter and the choice of the duality product which
avoids applying any pseudo-differential operator on the noisy measurement data. Therefore, we are
interested in whether the DSM also performs reasonably in the limited angle tomography, which is
another closely related and highly ill-posed inverse problem associated with the Radon transform.

We will focus on the two-dimensional case when detectors are distributed in the parallel geom-
etry. Recall the Radon transform for a smooth target function f :

Rf(θ, t) =

∫
x·θ=t

f(x)dxL , θ ∈ S1 , t ∈ R ,

where we assume θ ∈ [−Φ,Φ] for Φ < π/2, and s ∈ Iθ, with Iθ being the same as in (2.2). In this
case, the dual of the Radon transform with limited angle measurement is given by

R∗Φg(x) :=

∫
S1

g(θ, x · θ)XVΦ(θ)dθ , VΦ = [−Φ,Φ] ∪ [π − Φ, π + Φ] , (4.1)

where XV (θ) = 1 if θ ∈ V and XV (θ) = 0 otherwise.
The limited angle tomography will be very different from the case where we have measurements

from all directions as in section 2. In particular, the extra discontinuity of the characteristic
function in (4.1) will create undesirable artifacts when we apply a pseudo-differential operator on
the measurement data, including the proposed fractional Laplacian. A classification of artifacts
was deduced in the work [13] with an argument using microlocal analysis and the wavefront set.

If we employ the same index function as in equation (2.16), with us replaced by uΦ
s = 1/2R∗ΦRf ,

the numerator of the index function becomes

〈uΦ
s , η

h
z 〉Hγ(R2) =

∫
R2

uΦ
s (−∆)γηhz (x)dx . (4.2)

We now consider the above duality product in the frequency domain. Recalling the Fourier slice
theorem, i.e., Ft(Rf)(θ, t) = F(f)(tθ) [25], where Ft is the one-dimensional Fourier transform with
respect to t, we can rewrite uΦ

s as

uΦ
s (x) =

∫
S1

F−1
t {FtRf}(θ, x · θ)XVΦ(θ)dθ =

∫
S1

∫
R
F(f)(θτ)e2πiτ(x·θ)dτXVΦ(θ)dθ

=

∫
R2

F(f)(ω)
XVΦ

(ω/|ω|)
|ω|

e2πiω·xdω =

(
f ∗ F−1

(
XVΦ

(ω/|ω|)
|ω|

))
(x) .

(4.3)

Hence, the duality product between the measurement data and the probing function with a small
choice of the Sobolev scale γ < 1/2 becomes

〈uΦ
s , η

h
z 〉Hγ(R2) = F−1

(
XVΦ

(ω/|ω|)|ω|2γ−1F(η̃h0 )F(f)

)
(z) +

∫
R2

(−∆)γuΦ
s (η̃hz − ηhz )dx , (4.4)

where the order of the second integration in the right hand side is O(h) with an estimate similar
to (3.3). In this case, the duality product with a relatively small Sobolev scale combining with the
probing function will serve as a low pass filter in the frequency domain to improve the numerical
stability of the reconstruction.

Similarly to [13], we will further employ the modified back projection operator to improve the
accuracy of the reconstruction:

R̃∗Φg(x) :=

∫
S1

g(θ, x · θ)ΨVΦ
(θ)dθ , (4.5)

where ΨVΦ
is defined as

ΨVΦ
(θ) =


1 , θ ∈ [−Φ,Φ] ∪ [π − Φ, π) ∪ [−π,−π + Φ] ;

1− |θ|−Φ
λ , θ ∈ [−Φ− λ,−Φ) ∪ (Φ,Φ + λ] ;

1− (π−Φ)−|θ|
λ , θ ∈ [π − Φ− λ, π − Φ) ∪ (−π + Φ,−π + Φ + λ] ;

0 , otherwise .
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where λ is a fixed value representing the range of data that is smoothed. This modified back
projection operator basically extends the original characteristic function XVΦ

to a linear function.
The realization of ΨVΦ

is achieved by a direct extension of the measurement data.
To conclude, the index function for reconstructing f at the sampling point z reads now as

Iγh (z) =
〈uΦ
s , η

h
z 〉Hγ(R2)

n(z)
with uΦ

s =
1

2
R̃∗ΦRf and n(z) = 〈1

2
R∗R(1Ω), ηhz 〉Hγ(R2) . (4.6)

We shall demonstrate the robustness of the DSM in this limited angle tomography numerically in
example 5 of section 6.

Furthermore, our above discussion applies to the case that the measurement is in the fan beam
geometry when the range of measurement angles is limited. The proposed index function can
be employed after replacing uΦ

s in (4.6) by the back-projected data obtained from the fan beam
measurement.

4.2 Exponential Radon transform
We now discuss the application of the DSM to a special inverse problem of the exponential

Radon transform. The exponential Radon transform appears in the radionuclide imaging and can
be regarded as a generalization of the Radon transform [32].

First, assuming f is smooth and compactly supported in Ω, we denote Tµf(θ, t) and T ∗ν g(x) as

Tµf(θ, t) :=

∫
Rn
f(x)eµx·θ

⊥
δ(t− x · θ)dx , T ∗ν g(x) :=

∫
Sn−1

g(θ, θ · x)eνx·θ
⊥
dθ , (4.7)

for x ∈ Rn, θ ∈ Sn−1, and t ∈ R. We note that θ⊥ can be defined through a fixed rotation rule, for
instance, rotating θ clockwise for π/2 in R2. The Radon transform is a special case of (4.7) with
µ = 0. With a change of variable, the measurement data after back projection becomes

uµ(x) := T ∗µT−µf(x) =

∫
Rn

∫
Sn−1

f(y)eµ(y−x)·θ⊥δ(y · θ − x · θ)dθdy =

∫
Rn
f(y)

eµ|x−y|

|x− y|
dy . (4.8)

Considering a special case of the exponential Radon transform, that is, n = 3 and µ = ik with
k > 0 :

uik(x) = T ∗ikT−ikf(x) =

∫
Ω

f(y)
eik|x−y|

|x− y|
dy = (f ∗ G̃0)(x) , (4.9)

where G̃x satisfies (∆ + k2)G̃x = 4πδx. Hence, an inversion formula for the measurement is

f(x) = (4π)−1(∆ + k2)uik(x) . (4.10)

We observe that, with the index function defined in (2.16), f(x) can be reconstructed by employing
Ĩ(x) = Ihγ (x) + k2uik(x) and all our early discussions could be extended to this scenario.

5 Numerical implementations
In this section, we introduce some numerical implementations of the proposed DSM, especially

the evaluation of the duality product (2.5) between the measurement data and the probing function.
With several strategies that are employed to reduce the computational time of our method, we will
compare the computational complexity of DSM with the popular FBP method.

We first recall the definition of the index function in (2.16), since both (−∆)γηhz and f are
contained in L2(Rn), the numerator of Ihγ (z) can be written as

〈us, ηhz 〉Hγ(Rn) = dn

∫
Rn
R∗Rf(x)(−∆)γηhz dx = dn

∫
Rn

[ ∫
Sn−1

Rf(θ, x · θ)dθ)
]
(−∆)γηhz (x)dx

= dn

∫
Sn−1

[ ∫
Rn
Rf(θ, x · θ)(−∆)γηhz (x)dx

]
dθ . (5.1)

Now we investigate more carefully the integration of the product between the Radon transform
of the target function f and the fractional Laplacian of the probing function in Rn. We first notice
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that if supp{f} ⊆ Ω ⊆ B(0, r2), then Rf(θ, t) = 0 for |t| > r2. With this observation, we know the
integral part with respect to θ in (5.1) equals to∫

Rn
Rf(θ, x · θ)(−∆)γηhz (x)dx =

∫
R

∫
x·θ=t

(−∆)γηhz (x)Rf(θ, t)dxdt

=

∫
|t|<r2

R((−∆)γηh0 )(θ0, t− z · θ)Rf(θ, t)dt =

∫
|t|<r2

(−∆t−τ )γR(ηh0 )(θ0, t− τ)Rf(θ, t)dt
(5.2)

for a fixed angle θ0, where we have employed in the second equality of (5.2) the following property
regarding the Radon transform for an arbitrary radial function g0 ∈ L2(Rn) that satisfies g0(x) =
g0(|x|) and gz(x) = g(x− z) :

R(gz)(θ, t) = R(g0)(θ0, t− z · θ)

for a fixed angle θ0 and arbitrary angles θ. The last equality in (5.2) holds due to the intertwining
property between the fractional Laplacian and the Radon transform, which can be derived through
the Fourier slice theorem, i.e., Ft(Rf)(θ, t) = F(f)(tθ), and the representation of the fractional
Laplacian through a Fourier multiplier.

For the notational sake, we define H(θ, τ) :=
∫
|t|<r2(−∆t−τ )γR(ηh0 )(θ0, t − τ)Rf(θ, t)dt. Then

(5.1) can be computed by
〈us, ηhz 〉Hγ(Rn) = dnR

∗(H(θ, τ))(z) .

To summarize, the implementation of the DSM for reconstructing the target function f consists
of the following steps:

• In the off-line computation, for a set of discrete sampling point zj ∈ Γz ⊂ Ω ⊆ B(0, r2), we
take h = minzi,zj∈Γz |zi − zj |. Then we choose a set of uniformly distributed points

Γτ = {τk = −r2 + hk ; hk < 2r2 + h , k ∈ N} ⊂ R ,

and compute (−∆τ )γR(ηh0 )(θ0, τk) with θ0 = 0 and τk ∈ Γτ ∪ r2 + Γτ ∪−r2 + Γτ . Finally, for
each sampling point zj , we compute n(zj) defined in (2.16).

• Given the measurement data Rf(θi, tj) with measurement angles θi ∈ Γθ ⊂ Sn−1 and discrete
measurement points tj ∈ Γt(θ) ⊂ Iθ ⊂ R defined by (2.2):

1. For each θi ∈ Γθ, τk ∈ Γτ , we compute

H(θi, τk) = h
∑
j

(−∆t−τ )γR(ηh0 )(θ0, tj − τk)Rf(θi, tj) ; (5.3)

2. For each sampling point zj , we apply the back-projection operator R∗ on H(θi, τk) to
obtain 〈us, ηhzj 〉Hγ(Rn). Then we divide it by n(zj) to obtain the index function Ihγ (zj)
which recovers the target function f(zj).

Comparison between computational complexities of DSM and FBP. We now recall
the implementation of the FBP method, which applies the ramp filter composed with a proper
low pass filter on the t variable of Rf(θ, t), and then back-projecting it to recover f . In general,
for the standard case that measurement points tj are uniformly distributed, the step of filtering
in an FBP reconstruction requires O(N logN) flops for N discretization points. Considering the
computational complexity of our DSM, except for the step of back-projection that we share with
the FBP method, the method only requires two extra steps. The first is to compute H(θ, τ) with
(5.3). In this step, we can observe that the matrix representation of (−∆t−τ )γR(ηh0 )(θ0, tj − τk) is
a Toeplitz matrix since the value of entries only depend on tj − τk. Hence, with the fast Fourier
transform, the computation of (5.3) costs O(N logN) flops. The second extra step required by
DSM is to divide the duality product by the normalization term n(zj) which only costs O(N)
flops. To conclude, the overall computational complexity of the DSM is of the same order as the
traditional FBP method. However, as we shall observe from a series of numerical experiments
in section 6, DSM provides more robust and accurate reconstructions. We like to mention that
the traditional methods which yield reasonable reconstructions in those challenging situations have
much higher computational complexities, for instance, they often involve minimizing a functional
with certain regularization [15].
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6 Numerical experiments
A series of numerical experiments are carried out in this section to illustrate the robustness and

accuracy of the novel DSM for a number of representative applications in two and three dimensions.
For two-dimensional experiments, we take the sampling domain Ω = [−0.5, 0.5]× [−0.5, 0.5], with
the mesh size h = 2−1× 10−2. Detectors are placed in parallel arrays and the angular increment is
0.25 degree except for Example 4.

The Radon transform of the target function f supported in Ω is available at a set of discrete
angles Γθ, which are uniformly distributed in [−π/2, π/2) (except for Example 5) and at discrete
points Γt(θ) ⊂ Iθ defined by (2.2). Two original images are examined, with the first one being an
image containing four objects with different shapes, and the second one being the classical head
phantom image.

A stationary additive Gaussian random noise is added to the Radon transform of f in all
experiments:

Rfs(θ, t) := Rfe(θ, t) + εδ , θ ∈ Γθ , t ∈ Γt(θ) , (6.1)

where ε is the standard normal distribution, Rfe is the exact data, and δ = mean(Rfe)×(noise level).
We will also investigate the reliability of the proposed DSM under another type of random noise,
i.e., the ’salt and pepper’ noise, which corresponds to the dysfunction of detectors. This type of
noise can be caused by mechanical issues or sudden disturbances on detectors, and as a result, a
certain portion of data will be corrupted. The noise level, in this case, represents the percentage of
the measurement data that is incorrect, and the incorrect data is randomly set to be the minimum
or the maximum of all available data in a particular experiment.

In each of the following examples, we first generate the exact measurement data Rfe(θ, t) and
then impose the noise on the exact data as in (6.1) to obtain Rfs(θ, t). Then the index function
(2.16) is evaluated with the basic computational strategies introduced in section 5. To compare
the DSM with some existing methods, we choose the FBP method with the ’Hamming’ filter for
reconstructing the image in the MATLAB R2019B. This corresponds to adding the Hamming
window on the classical ramp filter.

To compare the numerical reconstruction qualities, we compute the discrete L2-norm error and
L∞-norm error of the reconstruction. We write by IDSM and IFBP the images reconstructed by
the new DSM and the FBP method, respectively, and by IO and IO the original image and its
average in Ω, respectively. We further define

Err2DSM :=
||IDSM − IO||2
||IO||2

, Err∞DSM :=
||IDSM − IO||∞
||IO||∞

, (6.2)

where || · ||2 and || · ||∞ denote the discrete L2-norm and L∞-norm. Similar quantities are also
computed for the FBP method and denoted by Err2FBP and Err∞FBP .

To fairly compare the reconstruction quality of DSM and FBP, we plot the normalized index
function ĨDSM (z) = IDSM (z)/maxy∈Ω |IDSM (y)| and ĨFBP (z) = IFBP (z)/maxy∈Ω |IFBP (y)| in
each plot. In all the figures, images in the same row are generated with the same measurement
data to demonstrate certain numerical phenomena; Plots with subtitles ’DSM’, ’FBP’, and ’f(x)’
plot ĨDSM (z), ĨFBP , and the original image being recovered.

Example 1. We examine in this example the influence of the Sobolev scale γ (cf. (2.5)) and
parameter α (cf. (2.8)) on the reconstruction to validate our previous theoretical predictions and
also to provide some important practical guidance on their choice for the subsequent examples.
Reconstructions by DSM (with γ = 0.3, 0.4, 0.5, 0.6) and reconstructions by DSM (with α = 3, 4,
5) are shown in Fig. 3.

We compute the four images in the first row of Fig. 3 with the same measurement data under
different choices of γ = 0.3, 0.4, 0.5, and 0.6 with α = 3 and 20% additive Gaussian noise. We may
observe that the reconstruction is sharper but less stable as γ increases. Denoting Err2γ=λ as the
discrete L2-norm error of the reconstruction by DSM with γ = λ as in (6.2), then the corresponding
reconstruction errors are given by

Err2γ=0.3 = 0.171 , Err2γ=0.4 = 0.135 , Err2γ=0.5 = 0.153 , Err2γ=0.6 = 0.342 .

The above numerical results follow from our previous theoretical conclusions at the end of section 3.4
that we expect a smaller γ will provide more stable reconstruction results with noisy measurement
data, i.e., comparing γ = 0.4, 0.5, and 0.6; but at the same time, the reconstruction is not accurate
enough for γ that is too small, i.e., comparing γ = 0.3 and 0.4. Hence, for the following examples,
we will mainly employ γ = 0.4 to enhance both the numerical stability and the accuracy of the
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(a) DSM: γ = 0.3.
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(b) DSM: γ = 0.4.
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(c) DSM: γ = 0.5.
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(d) DSM: γ = 0.6.
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(e) DSM: α = 3.
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(f) DSM: α = 4.
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(g) DSM: α = 5.
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(h) f(x).

Figure 3: Example 1. Influence of choices of γ and α: reconstruction by DSM under 20% additive
Gaussian noise and α = 3 with γ = 0.3, 0.4, 0.5, and 0.6 (first row); reconstruction by DSM under
30% additive Gaussian noise and γ = 0.4 with α = 3, 4, 5 and the original image (second row).

reconstruction. Moreover, to illustrate the feasibility of the proposed DSM with other choices of γ,
we also employ γ = 0.55 in the second case of example 2 to demonstrate that our method performs
stably for a wide range of γ due to the choice of the probing function which serves as a low pass
filter as we discussed in section 3.3.

Next, we would like to justify our preference of choosing α = n + 1 (α = 3 in R2) fo recon-
struction. We compute the first three images in the second row with the same measurement data
under different choices of α = 3, 4, and 5 with γ = 0.4 and 30% additive Gaussian noise. Denoting
Err2α=λ as the discrete L2-norm error of the reconstruction with α = λ, then the corresponding
reconstruction errors are given by

Err2α=3 = 0.151 , Err2α=4 = 0.173 , Err2α=5 = 0.189

We observe that the reconstruction becomes less accurate as α becomes larger under high level
Gaussian noise. The above observation echoes with the analysis in section 3.2. This suggests the
choice of α = 3 in most real applications, namely, α = n+ 1 in Rn as justified in section 3.2.

Example 2. This example involves additive Gaussian noise in the data. The reconstructions
by DSM (with γ = 0.4 in the first row and with γ = 0.55 in the second row) and FBP are shown
in Fig. 4. The corresponding reconstruction errors are given respectively by

Err2DSM = 0.135 , Err2FBP = 0.293 , Err∞DSM = 0.143 , Err∞FBP = 0.245 ,

for the reconstructions in the first row with the noise level being 20%, and by

Err2DSM = 0.237 , Err2FBP = 0.279 , Err∞DSM = 0.202 , Err∞FBP = 0.223 ,

for the reconstructions in the second row with the noise level being 20%.
From the numerical reconstructions, we can observe that the DSM is very robust against strong

Gaussian noise in the measurement data. And based on the L2-norm error and the L∞-norm error
of the reconstruction, we can see that the DSM performs obviously better than FBP.

Example 3. In this example, we consider the ’salt and pepper’ type noise in the measurement
data. The reconstructions by DSM (with γ = 0.4) and FBP are shown in Fig. 5. The corresponding
reconstruction errors are given respectively by

Err2DSM = 0.180 , Err2FBP = 0.530 , Err∞DSM = 0.173 , Err∞FBP = 0.454 ,

for the reconstruction in the first row with the noise level being 8%, and by

Err2DSM = 0.269 , Err2FBP = 0.369 , Err∞DSM = 0.232 , Err∞FBP = 0.300 ,

for the reconstruction in the second row with the noise level being 8%.
From the numerical reconstructions, we notice that the DSM is quite stable and accurate when

the measurement data is severely polluted by the ’salt and pepper’ type noise. And based on the
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(a) DSM: γ = 0.4.
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(b) FBP.
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(c) f(x).
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(d) DSM: γ = 0.55.
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(e) FBP.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) f(x).

Figure 4: Example 2. Under additive Gaussian noise: 20%.
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(a) DSM: γ = 0.4.
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(b) FBP.
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(c) f(x).
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(d) DSM: γ = 0.4.
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(e) FBP.
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(f) f(x).

Figure 5: Example 3. Under ’salt and pepper’ noise: 8%.
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(a) DSM: γ = 0.4.
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(b) FBP.
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(c) f(x).
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(d) DSM: γ = 0.4.
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(e) FBP.
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(f) f(x).

Figure 6: Example 4. Sparse measurements with 5% additive Gaussian noise

L2-norm error and the L∞-norm error of the reconstruction, we can see that the DSM performs ob-
viously better than FBP. Moreover, comparing reconstruction results of DSM and FBP in Fig. 5(a)
and (b), DSM can recover the shape of the triangle and the ellipse much more accurately.

Example 4. This example studies a relatively challenging case with a limited number of projec-
tion angles in Γθ, sparsely distributed over [−π/2, π/2). The reconstructions by DSM (with γ = 0.4)
and FBP are shown in Fig. 6. The corresponding reconstruction errors are given respectively by

Err2DSM = 0.165 , Err2FBP = 0.463 , Err∞DSM = 0.203 , Err∞FBP = 0.478 ,

for the reconstruction in the first row with projections from 18 angles, and by

Err2DSM = 0.214 , Err2FBP = 0.650 , Err∞DSM = 0.266 , Err∞FBP = 1.064 ,

for the reconstruction in the second row with projections from 10 angles.
As we may see from the reconstructions, the DSM demonstrates its strong robustness in this

highly ill-posed scenario especially with respect to the L∞-norm error of the reconstruction. More-
over, for reconstructions in the second row with projections only from 10 directions, DSM still
allows us to identify the shape and the location of objects in a reasonable manner while it is diffi-
cult to obtain useful information from the reconstruction by the FBP method. This shows a great
potential of the DSM in real applications when projection angles are very sparsely distributed.

Example 5. In this example, we consider the projection angles limited to a specific range as in
section 4.1. The back projection operator needed in both the DSM and FBP reconstructions takes
the form (4.5) with λ = π/18. The reconstructions by DSM (with γ = 0.4) and FBP are shown in
Fig. 7. The corresponding reconstruction errors are given respectively by

Err2DSM = 0.179 , Err2FBP = 0.268 , Err∞DSM = 0.175 , Err∞FBP = 0.239 ,

for the reconstruction in the first row with Φ = π/3 (cf. (4.1)), and by

Err2DSM = 0.217 , Err2FBP = 0.348 , Err∞DSM = 0.211 , Err∞FBP = 0.333 ,

for the reconstruction in the second row with Φ = 2π/9.
As we may see from the numerical reconstructions, especially from the second case where the

projections are restricted only on a very narrow range with Φ = 2π/9, we can see that the DSM
performs obviously better than FBP, based on the L2-norm error and the L∞-norm error of the
reconstruction. As we can see from Fig. 7(a), the shape of objects are recovered more accurately
compared with FBP.

Example 6. In this example, we consider a three-dimensional reconstruction. The reconstruc-
tion by DSM (with α = 4, γ = 0.9) and FBP method under 1% Gaussian noise are shown in Fig. 8,
with the mesh size h = 10−2. For this example, the measurement data is available for 900 discrete
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(a) DSM: γ = 0.4.
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(b) FBP.
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(c) f(x).
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(d) DSM: γ = 0.4.
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(e) FBP.
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(f) f(x).

Figure 7: Example 5. Limited angle tomography, with 10% additive Gaussian noise: reconstructions
with Φ = π/3 (first row) and Φ = 2π/9 (second row).

(a) f(x). (b) DSM: α = 4, γ = 0.9. (c) FBP: Hamming filter.

Figure 8: Example 6. Reconstruction in R3, with 1% additive Gaussian noise.

angles Γθ ⊂ S2, and discrete measurement points Γt(θ) ⊂ Iθ as defined in (2.2). We point out that
the distribution of measurement angles in this example is relatively sparse considering the difficulty
of the three-dimensional reconstruction. The three objects are one rectangular box and two balls
located in Ω = [−0.5, 0.5]3 as illustrated in Fig. 8(a). The target function f(x) = 0.5 if x lies in
these three objects and f(x) = 0.3 otherwise. The corresponding reconstruction errors are given
respectively by

Err2DSM = 0.061 , Err2FBP = 0.140 , Err∞DSM = 0.361 , Err∞FBP = 0.778 ,

To better illustrate reconstruction results, in Fig. 8, we set IDSM (z) = 0 if |IDSM (z)| < 0.4 and
IDSM (z) = 1 if |IDSM (z)| ≥ 0.4 for z ∈ Ω to represent the support of objects reconstructed by
the DSM, and we do the same for IFBP . From Fig. 8(b), we see that DSM can recover the basic
shape, size, and position of the three objects quite reasonably, with three objects well separated,
especially the two balls that are rather close to each other. While the reconstruction by the FBP
method in Fig. 8(c) generates many improper noisy points in the whole sampling domain. This
example demonstrates the accuracy of DSM in reconstructing the support of objects in R3 with
noisy measurement data.

7 Concluding remarks
We have proposed a novel stable, fast, and parallelable direct sampling method for the inversion

of the Radon transform, which is severely ill-posed when the measurement data is noisy and very
limited as it appears frequently in real applications.

The DSM leverages on an important almost orthogonality property under a fractional order
duality product. A family of probing functions is constructed by modifying the Green’s function
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associated with a related fractional Laplacian. As a result of the choices of the appropriate duality
product space and probing functions, the novel DSM can generate fast and satisfactory reconstruc-
tion results in challenging cases when the measurement data is highly noisy and limited. So DSM
may have good potential applications in many real scenarios, such as security scanning, cancer
detection, and portable CT scanner, and so on.

Along this research direction, there are several important topics that are worth exploring in the
future. For instance, a more systematic derivation and optimal choice of other effective probing
functions are very interesting, which can provide more concrete guidance in practice when DSM
is applied. Moreover, the validation of the DSM for the sparse tomography and the limited angle
tomography are also very important due to the wide applications of these imaging techniques.
From our analyses in this work, it is feasible to generalize direct sampling type methods to many
other tomography problems, for instance, the general exponential Radon transform, the cone-
beam computed tomography, the geodesic Radon transform, and so on. In the meantime, the
generalization should preserve similar nice features to the ones of DSM in this work.

Appendix A Choice of the smooth extension function ψn+1 in (2.8).

In this appendix, we shall present our choice of the smooth extension function ψn+1 in the
definition of the auxiliary function ζhn+1 (2.7) which is further employed to define the crucial probing
function in (2.8). We shall point out that the smooth extension function for other choices α in (2.7)
can be constructed similarly.

We notice that, to allow ζhn+1 possess desired properties stated in (2.7), it is sufficient to require
ψn+1 : [0, h]→ R to satisfy

ψn+1 ∈ C2,1
(
[0, h]

)
;


ψn+1(h) = h−n−1 ,

ψ′n+1(h) = −(n+ 1)h−n−2 ,

ψ′′n+1(h) = (n+ 1)(n+ 2)h−n−3 ;


ψn+1(0) = h−n ,

ψ′n+1(0) = 0 ,

ψ′′n+1(0) = 0 ;

(A.1)

and for B(0, h) ⊂ Rn and h < 1,∫
B(0,h)

|ψn+1(|x|)− h−n−1|dx ≤ h . (A.2)

Our choice of ψn+1(t) is to construct a polynomial that matches desired boundary conditions
when t = h and t = 0 in (A.1), and then we restrict the support of the function ψn+1(t) − h−n−1

to meet the requirement (A.2). For simplicity, we write k = n+ 1 and b = h− h2/n, then ψk(t) is
defined as

ψk(t) :=
1

hk

[
1 +

(
k2 + k

2h4
+

4k

h5

)
(t− b)3− 1

h2

(
k2 + k

h4
+

7k

h5

)
(t− b)4 +

1

h4

(
k2 + k

2h4
+

3k

h5

)
(t− b)5

]
(A.3)

for t ∈ [b, h], and ψk(t) := 0 for t ∈ [0, b) .
Therefore, the first and second order derivatives of ψk(t) for t ∈ [b, h] are

ψ′k(t) =
1

hk

[
3

(
k2 + k

2h4
+

4k

h5

)
(t− b)2 − 4

h2

(
k2 + k

h4
+

7k

h5

)
(t− b)3 +

5

h4

(
k2 + k

2h4
+

3k

h5

)
(t− b)4

]
,

ψ′′k (t) =
1

hk

[
6

(
k2 + k

2h4
+

4k

h5

)
(t− b)− 12

h2

(
k2 + k

h4
+

7k

h5

)
(t− b)2 +
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h4

(
k2 + k

2h4
+

3k

h5

)
(t− b)3

]
;

In this case, it is straightforward to verify that ψk(t) satisfies (A.1).
To show that the condition (A.2) is satisfied by ψk, we first notice, for t ∈ [b, h], ψk(t) − h−k

equals to

ψk(t)− 1

hk
=

(t− b)3

hk

(
t− b
h
− 1

)[(
k2 + k

2h4
+

3k

h5

)(
t− b
h

)
−
(
k2 + k

2h4
+

4k

h5

)]
.

The above shows ψk(t)−h−k > 0 for t ∈ [0, h]. We now integrate ψk(|x|)−h−k directly by replacing
t− b by τ :∫
B(0,h)

∣∣∣∣ψk(|x|)− 1

hk

∣∣∣∣dx =|Sn−1|
∫ h

h−h2

n

tn−1 (t− b)3

hk

(
t− b
h
− 1

)[(
k2 + k

2h4
+

3k

h5

)(
t− b
h

)
−
(
k2 + k

2h4
+

4k

h5

)]
dt

=
|Sn−1|
hk+2

∫ h2

n

0

(τ + h− h2

n
)n−1τ3(τ − h)

[(
k2 + k

2h4
+

3k

h5

)
τ −

(
k2 + k

2h4
+

4k

h5

)
h

]
dτ .
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As h < 1, for n = 2, we have∫
B(0,h)

∣∣∣∣ψk(|x|)− 1

hk

∣∣∣∣dx =
hπ

13440
(−30h4 + 473h3 − 294h2 − 3612h+ 5040) <

hπ

13340
(473 + 5040) < h ;

and for n = 3, we have∫
B(0,h)

∣∣∣∣ψk(|x|)− 1

hk

∣∣∣∣dx =
hπ

688905
(25h5 − 810h4 + 10914h3 − 41076h2 + 3402h+ 136080)

≤ hπ

688905
(25 + 10914 + 3402 + 136080) < h .

We have verified that our choice of ψn+1(t) in (A.3) satisfies the requirements (A.1) and (A.2) which are a
proper candidate to be employed in the numerical computation.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, With Formulas,
Graphs, and Mathematical Tables, Dover Publications, 1974.

[2] G. Acosta and J. P. Borthagaray, A fractional Laplace equation: Regularity of solutions
and finite element approximations, SIAM J. Numer. Anal., 55 (2017), pp. 472–495.

[3] J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural
networks, Inverse Problems, 33 (2017), 124007.

[4] M. Ainsworth and C. Glusa, Hybrid finite element-spectral method for the fractional Lapla-
cian: Approximation theory and efficient solver, SIAM J. Sci. Comput., 40 (2018), pp. A2383–
A2405.

[5] R. Anirudh, H. Kim, J. J. Thiagarajan, K. Aditya Mohan, K. Champley, and
T. Bremer, Lose the views: Limited angle CT reconstruction via implicit sinogram comple-
tion, in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Silver Spring, 2018,
IEEE Computer Society, pp. 6343–6352.

[6] M. Bergounioux and E. Trélat, A variational method using fractional order hilbert spaces
for tomographic reconstruction of blurred and noised binary images, J. Funct. Anal., 259 (2010),
pp. 2296–2332.

[7] L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates
and regularity, Ann. Inst. H. Poincaré Anal. Non Lineairé, 33 (2016), pp. 767–807.

[8] Y. Chen, J. Ma, Q. Feng, L. Luo, P. Shi, and W. Chen, Nonlocal prior bayesian
tomographic reconstruction, J. Math. Imaging Vis., 30 (2008), pp. 133–146.

[9] Y. T. Chow, K. Ito, K. Liu, and J. Zou, Direct sampling method for diffusive optical
tomography, SIAM J. Sci. Comput., 37 (2015), pp. A1658–A1684.

[10] Y. T. Chow, K. Ito, and J. Zou, A direct sampling method for electrical impedance tomog-
raphy, Inverse Problems, 30 (2014), 095003.

[11] Y. T. Chow, K. Ito, and J. Zou, A time-dependent direct sampling method for recovering
moving potentials in a heat equation, SIAM J. Sci. Comput., 40 (2018), pp. A2720–A2748.

[12] F. Demengel, G. Demengel, and R. Erné, Functional spaces for the theory of elliptic
partial differential equations, Springer, 2012.

[13] J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle
tomography, Inverse Problems, 29 (2013), 125007.

[14] E. Garduño and G. T. Herman, Computerized tomography with total variation and with
shearlets, Inverse Problems, 33 (2017), 44011.

[15] K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki, and S. Sil-
tanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), pp. B644–B665.

[16] S. Helgason, The Radon Transform, Birkhäuser, Basel, 1980.
[17] Y. Huang and A. M. Oberman, Numerical methods for the fractional Laplacian: A finite

difference-quadrature approach, SIAM J. Numer. Anal., 52 (2014), pp. 3056–3084.
[18] K. Ito, B. Jin, and J. Zou, A direct sampling method to an inverse medium scattering

problem, Inverse Problems, 28 (2012), 025003.
[19] A. C. Kak and M. G. Slaney, Principles of Computerized Tomography, SIAM, Philadelphia,

1988.

22



[20] M. V. Klibanov and L. H. Nguyen, PDE-based numerical method for a limited angle X-ray
tomography, Inverse Problems, 35 (2019), 45009.

[21] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc.
Appl. Anal., 20 (2017), pp. 7–51.

[22] J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse
Probl. Imaging, 7 (2013), pp. 757–775.

[23] H. Lu, T. Hsiao, X. Li, and Z. Liang, Noise properties of low-dose CT projections and
noise treatment by scale transformations, in IEEE Nucl. Sci. Symp. Conf. Rec. (2001), vol. 3,
IEEE, 2001, pp. 1662–1666.

[24] V. Minden and L. Ying, A simple solver for the fractional Laplacian in multiple dimensions,
SIAM J. Sci. Comput., 42 (2020), pp. A878–A900.

[25] F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, 1986.

[26] X. Pan, E. Y. Sidky, and M. Vannier, Why do commercial CT scanners still employ
traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009),
1230009.

[27] R. Potthast, A study on orthogonality sampling, Inverse Problems, 26 (2010), 074015.

[28] M. Rantala, S. Vanska, S. Jarvenpaa, M. Kalke, M. Lassas, J. Moberg, and
S. Siltanen, Wavelet-based reconstruction for limited-angle X-ray tomography, IEEE Trans.
Med. Imaging, 25 (2006), pp. 210–217.

[29] L. E. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace
operator, Commun. Pur. Appl. Math., 60 (2007), pp. 67–112.

[30] P. R. Stinga, User’s guide to the fractional laplacian and the method of semigroups, Fract.
Differ. Calc., (2019), pp. 235–266.

[31] The National Lung Screening Trial Research Team, Reduced lung-cancer mortality
with low-dose computed tomographic screening, N. Engl. J. Med., 365 (2011), pp. 395–409.

[32] O. Tretiak and C. Metz, The exponential radon transform, SIAM J. Appl. Math., 39
(1980), pp. 341–354.

23


	1 Introduction
	2 Principles of DSMs in inverting the Radon transform
	2.1 Probing and index functions

	3 Verification of the index function
	3.1 Verification of the index function for (n-1)/2< < n/2
	3.2 Alternative characterization of the index function
	3.3 Verification of the index function for 0<(n-1)/2 and the frequency domain representation of the probing function
	3.4 Relationship between the Sobolev scale and the variance of the index function

	4 DSMs for some other tomography problems
	4.1 Limited angle tomography
	4.2 Exponential Radon transform

	5 Numerical implementations
	6 Numerical experiments
	7 Concluding remarks
	A Choice of the smooth extension function n+1 in (2.8).

