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Abstract

Photoacoustic tomography (PAT) is an emerging imaging modality that aims at measuring
the high-contrast optical properties of tissues by means of high-resolution ultrasonic measure-
ments. The interaction between these two types of waves is based on the thermoacoustic effect.
In recent years, many works have investigated the applicability of compressed sensing to PAT,
in order to reduce measuring times while maintaining a high reconstruction quality. However,
in most cases, theoretical guarantees are missing. In this work, we show that in many mea-
surement setups of practical interest, compressed sensing PAT reduces to compressed sensing
for undersampled Fourier measurements. This is achieved by applying known reconstruction
formulae in the case of the free-space model for wave propagation, and by applying the the-
ories of Riesz bases and nonuniform Fourier series in the case of the bounded domain model.
Extensive numerical simulations illustrate and validate the approach.

Keywords: Photoacoustic tomography, compressed sensing, Riesz bases, Riesz sequences, frames,
structured sampling, nonuniform Fourier series.

1 Introduction

1.1 Physical Principles of Photoacoustic Tomography

Photoacoustic tomography (PAT) is a novel medical imaging modality, arguably the most advanced
among the so-called hybrid modalities [57, 56, 38]. As its name suggests, photoacoustic tomography
combines two different types of waves: electromagnetic (EM) and acoustic, i.e. light and ultrasound.
The aim of this imaging modality is to infer the optical properties of biological tissues, which are
relevant, for example, in the detection of tumours. The advantage of photoacoustic tomography with
respect to other imaging techniques is twofold: first, it is non-invasive, because the wavelengths of
the involved electromagnetic and acoustic waves are not dangerous for biological tissues. Secondly,
by using two types of waves, photoacoustic tomography combines their advantages, allowing to
reconstruct images that feature both a high contrast and a high resolution. In particular, the
high contrast is produced due to a much higher absorption of EM energy by cancerous cells, while
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ultrasound alone would not produce good contrast, since, from an acoustic point of view, both
healthy and cancerous tissues are mostly an aqueous substance. On the other hand, the good
(submillimeter) resolution is achieved thanks to the ultrasound measurements, whereas the EM
transmit poorly in biological tissues. The high quality of PAT images comes precisely from the
combination of both light and sound, and would not be possible with either acoustic imaging or
electromagnetic imaging modalities alone.

PAT is based on the thermoacoustic effect : when tissue is irradiated with a short pulse of elec-
tromagnetic radiation, it heats up and consequently expands. This expansion generates a pressure
wave that propagates through the object and can be measured outside of latter by wide-band ul-
trasonic transducers. The absorbed EM energy and the initial pressure it creates are much higher
in cancerous cells than in healthy tissues, since cancerous cells are much more absorbent. Thus, if
one could reconstruct the initial pressure, the resulting PAT tomogram would contain highly useful
diagnostic information.

1.2 Mathematical Models

From a mathematical point of view, the image reconstruction problem in photoacoustic tomography
can be interpreted as an inverse initial value problem for the wave equation. The unknown to
be determined is the initial pressure f that is generated by the thermoelastic expansion. The
propagating pressure wave p satisfies the wave equation and initial conditions:

∂ttp− c2∆p = 0, p|t=0 = f, ∂tp|t=0 = 0.

The wave pressure p is measured on a portion Γ ⊆ ∂Ω of an acquisition surface ∂Ω, which is the
boundary of a bounded open set Ω ⊆ Rd. The inverse problem of PAT consists of the reconstruction
of f . We assume that the support of f is contained within Ω and that the speed of sound c in
the medium is homogeneous and equal to 1. A more sophysticated model for PAT considers the
velocity c as non-constant [5, 13] or as another unknown of the problem [54, 47].

We consider here two possible models for photoacoustic tomography, depending on where the
wave equation is satisfied: the free-space model and the bounded domain model. The two settings
are different both from a mathematical and a practical point of view, as will be illustrated in the
following sections.

1.2.1 Free space model

This is the most popular model studied in the literature on PAT. According to the free-space model,
the pressure wavefront p that propagates across the body satisfies:

∂ttp−∆p = 0 in Rd × (0,+∞),

p(·, 0) = f in Rd,
∂tp(·, 0) = 0 in Rd.

(1)

In this scenario, the wave keeps propagating on the whole space Rd, passing through the observation
surface Γ ⊆ ∂Ω which is therefore not considered as a physical barrier for the wave. This acquisition
surface is merely the set of points were the ultrasound transducers are located, but they are not
assumed to have any impact on the wave. From a practical point of view, this means that the
transducers must be suitably designed to be small enough and not invasive, in order not to interfere
considerably with the pressure wavefront p.
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In the free-space model, the measurements of the transducers usually are of the form

g(x, t) := p(x, t), x ∈ Γ, t ∈ [0, T ], (2)

where T > 0 is the measurement time. In this case, thanks to the link with the spherical means
Radon transform, the inverse problem of the reconstruction of f is now fairly well understood,
and uniqueness and stability hold, provided that Γ and T are large enough. There exist several
reconstruction methods, including time-reversal, closed formulae and eigenfunction expansions. The
reader is referred to the review paper [38] and to the references therein.

1.2.2 Bounded domain model

Let us now turn to the bounded domain model [8, 39, 1, 35, 19, 6], which is considered in order
to take into account the effect of the ultrasonic transducers on the acoustic propagation. In this
case, given f ∈ H1

0 (Ω), the pressure p satisfies the wave equation only inside a Lipschitz bounded
domain Ω ⊆ Rd with Dirichlet boundary values and specified initial conditions:

∂ttp−∆p = 0 in Ω× (0,+∞),

p = 0 on ∂Ω× (0,+∞),

p(·, 0) = f in Ω,

∂tp(·, 0) = 0 in Ω.

(3)

In this case, the wave does not propagate outside the domain Ω, but is reflected on its boundary
∂Ω. The Dirichlet condition p|∂Ω×(0,+∞) = 0 models the reflection of the wave on the hard surface
∂Ω. In this setting, one measures the normal derivative on Γ ⊆ ∂Ω:

g(x, t) := ∂νp(x, t), x ∈ Γ, t ∈ [0, T ], (4)

where ν is the outward normal unit vector of ∂Ω. It can be shown that g ∈ L2(Γ× [0, T ]) ([6]). It
would be possible to consider Neumann boundary conditions instead of Dirichlet boundary condi-
tions, that is, to impose ∂νp|∂Ω×(0,+∞) = 0 (corresponding to a soft surface ∂Ω and to a resonating

cavity Ω). In this case, one would measure p(x, t) for (x, t) ∈ Γ× [0, T ], and the mathematics would
be similar. We opted for the Dirichlet condition to illustrate an even more different situation than
the free-space scenario, but everything extends, mutatis mutandis, to the problem with Neumann
boundary conditions.

In this context, the inverse problem with full measurements g 7→ f is nothing but the classical
observability problem for the wave equation, which is a well-known problem in control theory
[52, 44, 45, 37, 40, 24]. Roughly speaking, uniqueness always holds provided that T is large enough,
and stability depends on Γ: if Γ is large enough, then Lipschitz stability holds [45, 46] (e.g., if Ω is
a ball, a sufficient portion is more than half of its boundary; if Ω is a 2D square, a sufficient portion
is given by two adjacent sides, while one side does not suffice [28]); if Γ is simply relatively open
and nonempty, then logarithmic stability holds [41].

1.3 Compressed sensing in photoacoustic tomography

Compressed sensing (CS) is a developing area of signal processing that is less than fifteen years
old and aims to improve efficiency of signal recovery [17, 22, 26]. Indeed, the goal of compressed
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sensing is to exploit some prior knowledge on the unknown signal in order to reconstruct it from
fewer measurements than the standard theory would require. In recent years, much research has
been done on applying CS to PAT with the aim of speeding up the reconstruction by taking fewer
measurements, see [51, 29, 36, 53, 16, 30, 11, 14, 7, 31, 10]. Common to most of these works is the
following general model for CS PAT.

In the previous sections, the measurements of the acoustic wave were assumed to be collected
by point-like transducers. We therefore knew the values of g(x, t) = p(x, t) or g(x, t) = ∂νp(x, t)
for all times t ∈ [0, T ] and for all points x ∈ Γ ⊆ ∂Ω. The typical setting in CS PAT consists of
replacing these pointwise measurements with spatial averages of the form

gl(t) = (g(·, t),Φl)L2(Γ) =

®
(p(·, t),Φl)L2(Γ) for the free-space model,

(∂νp(·, t),Φl)L2(Γ) for the bounded domain model,
(5)

where Φl ∈ L2(Γ) ⊆ L2(∂Ω), l ∈ L ⊆ N, represent the masks yielding the averages. Throughout
the paper we will refer to Φl also as sensor, detector or transducer. Because of the fast sound
propagation, these are usually supposed to be independent of time. In the case when L = N and
{Φl}l∈N were an orthonormal basis of L2(Γ), the measurements {gl}l∈N would correspond to the
full, pointwise, measurement g. However, in practice, it is useful to do subsampling, and to consider
fewer measurements, under the assumption that the unknown f is sparse with respect to a suitable
dictionary.

This setting leads to the following two questions:

1. How should the masks {Φl}l be chosen? How many measurements are needed?

2. How can the reconstruction of f be performed from these undersampled measurements?

These questions are only partially addressed in the papers cited above. Overall, the works that
use CS for PAT can be divided into two broad categories depending on their answer to question
2: on the one hand, they can exploit compressed sensing to directly reconstruct the unknown
initial pressure f from the incomplete data {gl}l∈L. This is the so-called one-step approach and
is implemented, for instance, in [51, 29, 36, 11, 7]. In this scenario, f is assumed to be sparse in
a suitable basis (usually wavelets or curvelets) and the transducers are either point-like (as in the
early works [51, 29]) or binary patterns (for example, after being discretised, the Φl’s are represented
by Bernoulli or scrambled Hadamard matrices in [36, 11]).

On the other hand, a two-step approach consists in first using compressed sensing to complete
the partial measurements {gl}l∈L to obtain the full data g, and then reconstructing the unknown
f from the completed data g via a standard technique (usually time reversal or back-projection).
This is the case, for instance, in [53, 16, 30, 14, 31, 10]. Here, in order to be able to apply CS
techniques, sparsity is enforced by designing suitable temporal transformations that sparsify the
incomplete measurements. The detectors Φl’s, after being discretised, are usually represented by
binary matrices.

Recently, the use of deep learning (DL) for PAT has been investigated for various tasks, see
the review paper [32] and the references therein. Among these, DL has been used to learn efficient
regularisers that can be used as a penalty term in variational formulations of the PAT problem [9],
or to remove the artifacts and improve the quality of cheap and fast reconstructions [10].

Arguably, the main difficulty of applying CS to PAT is the role of sparsity. In fact, due to
the complexity of the forward wave operator, it is unclear how the sparsity assumptions on the
initial data f will affect the measurement g. For this reason, research on CS PAT has been mostly
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experimental in nature, and theoretical guarantees are still missing and difficult to derive. As an
example, [51] compares different sparsity bases for the unknown f via quantitative experiments.
On the other hand, two-step approaches circumvent the difficult physics of the wave equation by
using compressed sensing with a different aim, namely to complete the partial data. However, these
approaches need to assume sparsity of the measurements, or enforce it by applying empirically
crafted sparsifying transforms. Overall, both one- and two-step methods require a more solid
theoretical understanding of the role of sparsity.

The aim of this work is to lay a theoretical foundation to derive reconstruction algorithms that
allow the use of compressed sensing in PAT with rigorous guarantees. More precisely, we give
partial answers to the above questions, as we briefly summarise below.

1.4 Main contribution of this work

In this work, we consider several bounded domains Ω: the 2D disk and the 3D ball with Γ = ∂Ω,
both in the free-space model and in the bounded domain model, and the 2D square in the bounded
domain model with measurements on either one or two sides of the boundary. In all these cases,
we are able to construct sensors Φl so that the knowledge of gl allows for the reconstruction of a
subset of the generalised Fourier coefficients of f with respect to the eigenfunctions {ϕn,k}n,k∈N of
the Dirichlet Laplacian on Ω (which are naturally indexed by a double index). More formally, in
all the cases listed above, we prove a result of this type.

Meta-theorem. There exist sensors {Φl}l∈N ⊆ L2(Γ) and reconstruction maps {Rl}l∈N such that

Rl : gl 7−→
(
(f, ϕn,l)L2(Ω)

)
n∈N, l ∈ N.

Both the sensors and the reconstruction maps are explicitly constructed. In fact, {Φl}l∈N is an
orthonormal basis of L2(Γ).

This result shows that the physical undersampled measurements {gl}l∈L with a finite L ⊆ N
yield, by using the map Rl, the quantities

(f, ϕn,l)L2(Ω), n ∈ N, l ∈ L, (6)

which are undersampled generalised Fourier measurements. In other words, by suitably choosing the
sensors Φl, the problem of CS PAT may be reduced to a CS problem for undersampled
(generalised) Fourier measurements, which is arguably the most studied setup in CS. More
precisely, the problem of the recovery of a signal from subsampled Fourier measurements is now
well understood, even in this infinite-dimensional setting [3, 4, 7], provided that the unknown is
sparse in, e.g., a wavelet basis. However, there are two fundamental differences with respect to
classical CS.

1. In classical CS, the measurements consist of Fourier coefficients with respect to standard
complex exponentials. This is (substantially) the case with the 2D square, where the eigen-
functions of the Laplacian are trigonometric functions. However, in circular domains like the
2D disk and the 3D ball the situation is different, since the eigenfunctions are tensorised in
the radial and angular variables.

2. Here, the subsampling pattern of the Fourier coefficients (f, ϕn,l)L2(Ω) has a particular struc-
ture. More precisely, it is not possible to subsample a finite random subset of {(n, l) ∈ N×N},
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but the sampling is completely determined by the choice of L ⊆ N, which yields the structured
measurements (6). In other words, the subsampling pattern has the tensorised form N × L.
Few CS results with structured sampling patterns appeared recently in [15, 21, 2].

1.5 Structure of the paper

This work is structured as follows. In section 2 the free-space model is discussed, while Section 3 is
devoted to the bounded domain model for PAT. In Section 4 we discuss an example of structured
subsampling pattern arising in compressed sensing PAT. Some numerical simulations are shown
in Section 5. Appendix A contains the derivation for the 3D ball in the free-space model, and in
Appendix B we discuss some basic facts about Riesz bases of exponentials that are used in Section 3.

2 Free-space model for PAT

2.1 A general formula

We recall the free-space model for PAT:
∂ttp−∆p = 0 in Rd × (0,+∞),

p(·, 0) = f in Rd,
∂tp(·, 0) = 0 in Rd.

(7)

The solution p is naturally extended to an even function in the time variable, setting p(x, t) :=
p(x,−t) for t < 0 and x ∈ Rd.

In the following, we apply the Fourier transform both on the space variable x and in the time
variable t. With an abuse of notation, they are denoted by the same symbol ·̂, and the relevant
variable will be clear from the context.

Our first result is a general formula that allows for the recovery of the scalar products of f with
a family of functions ψρ from PAT measurements made with an arbitrary sensor Φ.

Theorem 2.1. Let Ω ⊆ Rd be a bounded Lipschitz domain and f ∈ H1
0 (Ω) be such that f̂ ∈ L1(Rd).

Let p be the solution to problem (7) and Φ ∈ L2(Γ) ⊆ L2(∂Ω). Define

g(t) = (p(·, t),Φ)L2(Γ) =

∫
Γ

p(x, t)Φ(x) dσ(x), t ∈ R.

Then
(f, ψρ)L2(Ω) = ĝ(ρ), ρ ∈ R, (8)

where

ψρ(y) = πρ
d
2

∫
Γ

Φ(x)|x− y|−( d2−1)J d
2−1(2πρ|x− y|) dσ(x), (9)

and J d
2−1 is the Bessel function of the first kind of order d

2 − 1.

Proof. By applying the spatial Fourier transform on the functions p and f , we obtain:®
p̂′′(ξ, t) + 4π2|ξ|2p̂(ξ, t) = 0,

p̂(ξ, 0) = f̂(ξ), p̂′(ξ, 0) = 0.
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For each fixed ξ ∈ Rd, the previous system is a second-order ordinary Cauchy problem in the time
variable, whose solution is

p̂(ξ, t) = f̂(ξ) cos(2π|ξ|t).
The measured data g is at each time t ∈ R:

g(t) =

∫
Γ

p(x, t)Φ(x) dσ(x)

=

∫
Γ

(∫
Rd
p̂(ξ, t)e2πiξ·xdξ

)
Φ(x) dσ(x)

=

∫
Rd
p̂(ξ, t)

(∫
Γ

Φ(x)e2πiξ·xdσ(x)

)
︸ ︷︷ ︸

c(ξ)

dξ

=

∫
Rd
f̂(ξ) cos(2π|ξ|t) c(ξ) dξ.

The use of the inversion formula is justified by the hypothesis f̂ ∈ L1(Rd), and the integrals were
interchanged thanks to Fubini’s theorem since Ω is bounded and therefore Φ ∈ L2(∂Ω) ⊆ L1(∂Ω).

Let us switch to spherical coordinates: writing ξ = ρω with ρ ∈ (0,+∞) and ω ∈ Sd−1, one has

g(t) =

∫ +∞

0

cos(2πρt)

(∫
Sd−1

f̂(ρω)c(ρω)dσ(ω)

)
ρd−1

︸ ︷︷ ︸
2h(ρ)

dρ = 2

∫ +∞

0

cos(2πρt)h(ρ) dρ.

Let us evenly reflect the function h: setting h(ρ) := h(−ρ) for ρ < 0, one has

g(t) =

∫
R
h(ρ) cos(2πρt) dρ =

∫
R
h(ρ)e2πiρt dρ,

so that h = ĝ. Thus, from the definition of h and using that supp f ⊆ Ω, we readily derive:

ĝ(ρ) =
ρd−1

2

∫
Sd−1

f̂(ρω)c(ρω)dσ(ω)

=
ρd−1

2

∫
Sd−1

(∫
Rd
f(y)e−2πiρω·ydy

)(∫
Γ

Φ(x)e2πiρω·xdσ(x)

)
dσ(ω)

= (f, ψρ)L2(Ω),

where

ψρ(y) =
ρd−1

2

∫
Γ

Φ(x)

(∫
Sd−1

e2πiρ(y−x)·ωdσ(ω)

)
dσ(x). (10)

Let us recall the following formula reported in [27, Appendix B.4]:∫
Sd−1

e−2πiζ·ωdσ(ω) = ÷dσSd−1(ζ) = 2π|ζ|−( d2−1)J d
2−1(2π|ζ|), ζ ∈ Rd.

Then, plugging in ζ = ρ(x− y), (9) follows immediately from (10).

7



We can apply the previous theorem to different masks Φl and measurements gl, l ∈ N. We
rewrite formula (8) to make the dependence on l explicit:

(f, ψl,ρ)L2(Ω) = ĝl(ρ), (11)

where ψl,ρ is defined as in the statement of the theorem. The previous formula gives an explicit
relation between the detector Φl and the probing function ψl,ρ (which depends also on the frequency
ρ ∈ R). It is valid in any dimension d, for any bounded open set Ω and for any portion Γ of the
acquisition surface on which detectors are located.

The previous formula provides an answer to our initial question: taking the Fourier transform
of the time-dependent data gl corresponds to measuring the moment of the unknown pressure f
against the function ψl,ρ, which depends on the chosen mask Φl. The main question is whether,
upon reasonable choices of the mask Φl, the corresponding probing functions ψl,ρ will help to
reconstruct the unknown function f .

While this question remains open for general domains, a positive answer may be given in the par-
ticular case where the masks Φl are chosen as the normal derivatives of the Dirichlet eigenfunctions
of the Laplacian in Ω.

Theorem 2.2 ([5, Theorem 3]). Let Ω ⊆ Rd be a bounded Lipschitz domain and f ∈ H1
0 (Ω) be

such that f̂ ∈ L1(Rd). Let p be the solution to problem (7) and Φ = ∂νψ ∈ L2(Γ) ⊆ L2(∂Ω) be the
normal derivative of a Dirichlet eigenfunction ψ ∈ H1

0 (Ω) satisfyingß
−∆ψ = λ2ψ in Ω,
ψ = 0 on ∂Ω,

where λ2 > 0 is the corresponding eigenvalue. Define

g(t) = (p(·, t),Φ)L2(Γ) =

∫
Γ

p(x, t)∂νψ(x) dσ(x), t ≥ 0.

Then g ∈ L1([0,+∞)) (in fact, compactly supported when d is odd) and

(f, ψ)L2(Ω) = − 1

λ

∫ +∞

0

g(t) sin(λt) dt. (12)

In the following subsections, we will apply these results to the 2D disk and 3D ball.

2.2 2D Disk

We first consider the case of a two-dimensional disk, namely choose d = 2, Ω = BR2(0, 1), Γ =
∂Ω = S1, where we identify S1 as the subset of complex numbers of modulus one.

We consider detectors of the form:

Φl(e
iθ) := eilθ, θ ∈ [0, 2π], l ∈ Z.

From a practical point of view, this choice corresponds to using two real detectors, modeled by the
trigonometric functions cos(lθ) and sin(lθ).

8



Theorem 2.3. Let Ω = BR2(0, 1), Γ = ∂Ω = S1, f ∈ H1
0 (Ω) be such that f̂ ∈ L1(R2), l ∈ Z and p

be the solution to problem (7) and define

gl(t) = (p(·, t),Φl)L2(S1) =

∫ 2π

0

p(eiθ, t)e−ilθ dθ, t ∈ [0,+∞).

Then

(f, ψ̃l,n)L2(Ω) =
1

2π2

(ĝl)
′(ρl,n)

jl,n J ′l (jl,n)
= −J ′l (jl,n)

∫ +∞

0

gl(t) sin(jl,nt) dt, n ∈ N+, (13)

where ρl,n =
jl,n
2π and jl,n is the nth positive zero of the Bessel function of the first kind Jl and

ψ̃l,n(r, θ) = eilθJl(jl,nr), r ∈ [0, 1], θ ∈ [0, 2π),

is an eigenfunction of the Dirichlet Laplacian in BR2(0, 1) in polar coordinates (see, e.g., [34]).

As anticipated in Section 1.4, the coefficients
(
(f, ψ̃l,n)L2(Ω)

)
l∈Z,n∈N+

can be interpreted as

generalised Fourier coefficients, since ψ̃l,n are eigenfunctions of the Dirichlet Laplacian and, up to
normalisation, form an orthonormal basis of L2(Ω). Classical compressed sensing has focused on
subsampled Fourier measurements, and from this point of view, we are interested in taking few
measurements, which corresponds to choosing few masks Φl for the detectors. We therefore have
data gl at our disposal for few l’s. For each of these l, by using one of the two reconstruction
formulas given in (13), we reconstruct the coefficients (f, ψ̃l,n)L2(Ω) for every n ∈ N+, since it
simply corresponds to selecting appropriate values for the free parameter n. This gives rise to a
peculiar compressed sensing problem with a precisely structured subsampling pattern.

Let us mention two issues that need to be addressed: first, from a computational point of view,
computing the derivative of ĝl can be problematic when the data is imprecise or corrupted by
noise; this is similar to the problem that occurs with the Hankel transform method described in
[38, §19.4.1.1], and could be addressed in a similar way. Secondly, since in dimension d = 2 the
acoustic wave never leaves the open set Ω = BR2(0, 1) but only decays [25], the computation of
(13) is inaccurate since gl is known only in the interval [0, T ] and not in [0,+∞), as it should be
necessary.

The proof of this result makes use of the following identity.

Lemma 2.4. Let ζ = |ζ|eα ∈ R2 with eα = (cosα, sinα) ∈ S1. The following identity holds:∫ 2π

0

e−2πiζ·eθeilθdθ = 2π(−i)leilαJl(2π|ζ|), l ∈ Z. (14)

Proof. We readily derive∫ 2π

0

e−2πiζ·eθeilθdθ =

∫ 2π

0

e−2πi|ζ|eα·eθeilθdθ =

∫ 2π

0

e−2πi|ζ| sin(π2−α+θ)eilθdθ.

By making the substitution β = π
2 − α + θ, so that dβ = dθ, and exploiting the 2π-periodicity of

the integrand function, we obtain∫ 2π

0

e−2πiζ·eθeilθdθ =

∫ 5
2π−α

π
2−α

e−2πi|ζ| sin β eil(β+α−π2 )dβ = eil(α−
π
2 )

∫ 2π

0

e−2πi|ζ| sin β eilβdβ.
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Finally, identity (14) follows immediately from the well-known integral representation of Bessel
functions [55, eq. (9.19)].

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. The second part of (13) is an immediate consequence of Theorem 2.2, since
ψ̃l,n is a Dirichlet eigenfunction of the Laplacian in the disk with eigenvalue j2

l,n and

∂νψ̃l,n = ∂rψ̃l,n|r=1 = jl,nJ
′
l (jl,n)Φl.

It remains to prove the first identity of (13).
By Theorem 2.1 we have

(f, ψl,ρ)L2(Ω) = ĝl(ρ), (15)

where, by (10), we can write

ψl,ρ(y) =
ρ

2

∫
Γ

Φl(x)

∫
S1
e2πiρ(y−x)·ω dσ(ω)dσ(x)

=
ρ

2

∫
S1
e2πiρy·ω

∫
Γ

Φl(x)e−2πiρx·ωdσ(x) dσ(ω), y ∈ Ω.

(16)

Let us obtain an explicit formula for ψl,ρ. Parametrising S1 in the usual way, writing x = eiθ = eθ
and ω = eiα = eα (α, θ ∈ [0, 2π]), equation (16) becomes

ψl,ρ(y) =
ρ

2

∫ 2π

0

e2πiρy·eα
∫ 2π

0

e−2πiρeθ·eαeilθdθdα, y ∈ BR2(0, 1). (17)

Using identity (14) twice, writing y = |y|eν in (17), so that −y = |y|eν+π, we have

ψl,ρ(y) =
ρ

2

∫ 2π

0

e2πiρy·eα
(
2π(−i)leilαJl(2πρ)

)
dα

= π(−i)lρJl(2πρ)

∫ 2π

0

e−2πiρ|y|eν+π·eαeilα dα

= (−1)l2π2ρJl(2πρ) eil(ν+π)Jl(2πρ|y|)
= 2π2ρJl(2πρ) eilνJl(2πρ|y|).

As a consequence, by (15) and L’Hôpital’s rule we have

1

2π2

(ĝl)
′(ρl,n)

jl,n J ′l (jl,n)
= lim
ρ→ρl,n

1

2π2

ĝl(ρ)

ρ Jl(2πρ)
= lim
ρ→ρl,n

(f, y 7→ eilνJl(2πρ|y|))L2(Ω) = (f, ψ̃l,n)L2(Ω),

since 2πρl,n = jl,n.

2.3 3D Ball

A similar result holds when the detectors are located on the surface of a sphere in 3 dimensions.
Let d = 3, Ω = BR3(0, 1), Γ = ∂Ω = S2. We use spherical coordinates, and write x ∈ S2 as
x = (sin θ cosϕ, sin θ sinϕ, cos θ) with θ ∈ [0, π] and ϕ ∈ [0, 2π]. We consider detectors of the form

Φl,m(x) = Y ml (x) = Pml (cos θ)eimϕ, l ∈ N,m ∈ {−l, ..., l},

10



where Y ml is the spherical harmonic function of degree l and order m and Pml is the associated
Legendre polynomial.

Theorem 2.5. Let Ω = BR3(0, 1), Γ = ∂Ω = S2, f ∈ H1
0 (Ω) be such that f̂ ∈ L1(R3), l ∈ N,

m ∈ {−l, ..., l} and p be the solution to problem (7) and define

gl,m(t) = (p(·, t),Φl,m)L2(S2) =

∫
S2
p(x, t)Φl,m(x) dσ(x), t ∈ [0,+∞).

Then

(f, ψ̃l,m,n)L2(Ω) =
(ĝl,m)′(ρl,m)

4πj2
l+ 1

2 ,n
j′l(jl+ 1

2 ,n
)

= −j′l(jl+ 1
2 ,n

)

∫ +∞

0

g(t) sin(jl+ 1
2 ,n
t) dt, n ∈ N+, (18)

where ρl,n =
j
l+1

2
,n

2π , jl+ 1
2 ,n

is the nth zero of the spherical Bessel function jl(x) =
√

π
2xJl+ 1

2
(x) (or,

equivalently, the nth zero of the Bessel function Jl+ 1
2
), and

ψ̃l,m,n(y) = jl(jl+ 1
2 ,n
|y|)Y ml (y/|y|), y ∈ BR3(0, 1),

is an eigenfunction of the Dirichlet Laplacian in BR3(0, 1) (see, e.g., [34]).

In 3D, thanks to Huygens’ principle it is possible to precisely compute the Fourier transform of
the data gl,m because it will vanish for sufficiently large times [25]. However, the computational
problem of taking the derivative needs to be addressed. As in the case of the 2D disk, also in this
context of a 3D ball the coefficients

(
(f, ψ̃l,m,n)L2(Ω)

)
l,m,n

can be interpreted as generalised Fourier

coefficients.
The proof of this result is very similar to that of Theorem 2.3. For the sake of completeness, it

is presented in Appendix A.

3 Bounded domain model for PAT

Let us now consider the bounded domain model for photoacoustic tomography. In this case, the
pressure wave satisfies the following Cauchy problem for the wave equation with Dirichlet boundary
conditions 

∂ttp−∆p = 0 in Ω× (0, T ),

p = 0 on ∂Ω× [0, T ],

p(·, 0) = f in Ω,

∂tp(·, 0) = 0 in Ω.

(19)

The solution may be written explicitly by using the orthonormal basis {ϕn}n∈N+ of L2(Ω) of
Dirichlet eigenfunctions of −∆:

p(x, t) =
∑
n∈N+

(f, ϕn)L2(Ω) cos(λnt)ϕn(x),

where {λ2
n}n are the corresponding eigenvalues.

11



Recall that, in the bounded-domain model, we measure the normal derivative of the pressure
wave on a portion Γ ⊆ ∂Ω of the boundary of the open set. As in the previous section, we do not
measure the normal derivative pointwise, but rather its moments against transducers modeled by
a family of functions {Φl}l. We have, for t ∈ [0, T ],

gl(t) = (∂νp(t),Φl)L2(Γ)

=
∑
n∈N+

(f, ϕn)L2(Ω)(∂νϕn,Φl)L2(Γ) cos(λnt). (20)

We shall now discuss how to choose the masks Φl and how to reconstruct (some of) the generalised
Fourier coefficients (f, ϕn)L2(Ω), depending on the domain Ω.

3.1 2D Disk

Let Ω = BR2(0, 1) be the unit disk in R2. We start from equation (20), which expresses the mea-
surements gl as a series involving the eigenfunctions of the Dirichlet Laplacian. In polar coordinates
x = (ρ cos θ, ρ sin θ) ∈ BR2(0, 1), we can write eigenfunctions and eigenvalues as

ϕn,k(ρ, θ) =

√
2

|J ′n(jn,k)|
Jn(jn,kρ) einθ, n ∈ Z, k ∈ N+,

λn,k = jn,k, n ∈ Z, k ∈ N+,

where Jn is the Bessel function and jn,k is its kth positive zero, as in §2.2. We consider the measure
dθ
2π on Γ = ∂Ω. The normal derivatives of these eigenfunctions on the boundary ∂Ω of the disk are,
since ∂ν = ∂ρ|ρ=1:

∂νϕn,k(1, θ) =

√
2

|J ′n(jn,k)|
jn,k J

′
n(jn,k) einθ =: cn,ke

inθ, θ ∈ [0, 2π].

If we choose, similarly to the free-space model described in §2.2, the transducers Φl as Φl(θ) := eilθ,
then

(∂νϕn,k,Φl)L2(∂B(0,1)) = cn,kδn,l, n, l ∈ Z, k ∈ N+.

So, by (20), the measurements gl are, for fixed l ∈ N:

gl(t) =
∑
k∈N+

cl,k(f, ϕl,k)L2(Ω) cos(jl,kt), t ∈ [0, T ]. (21)

As in the free-space model, we now show that, for fixed l, all generalised Fourier coefficients
{(f, ϕl,k)L2(Ω)}k∈N+

may be reconstructed provided that T is large enough. The reader is referred
to Appendix B for a brief review on Riesz sequences, which are the main tool used in this section.

Proposition 3.1. Take T ≥ 1.01. For every l ∈ Z, the family {cos(jl,k·)}k∈N+ is a Riesz sequence
in L2([0, T ]) with lower bound independent of l. More precisely, we have

∑
k∈N+

|ak|2 ≤
2π T 2

T 2 − 1.018

∥∥∥ ∑
k∈N+

ak cos(jl,k·)
∥∥∥2

L2([0,T ])
, a ∈ `2. (22)

12



Further, the sequence (ak)k may be reconstructed from gl(t) =
∑
k∈N+

ak cos(jl,kt) as

ak =
(
gl, S

−1
l (cos(jl,k·))

)
L2([0,T ])

, k ∈ N+, (23)

where Sl : L
2([0, T ])→ L2([0, T ]) is the frame operator defined as

(Slg)(t) =
∑
k∈N+

(
g, cos(jl,k·)

)
L2([0,T ])

cos(jl,kt).

We will prove this result below. Let us now see how to apply it to our problem. By applying
the reconstruction formula (23) to (21) we obtain

(f, ϕl,k)L2(Ω) =

(
gl, S

−1
l (cos(jl,k·))

)
L2([0,T ])

cl,k
, k ∈ N+.

Furthermore, by (22), the reconstruction is stable, uniformly in l, in the sense that

∑
k∈N+

|(f, ϕl,k)L2(Ω)|2 ≤
0.55T 2

T 2 − 1.018
‖gl‖2L2([0,T ]),

since |cl,k|2 = |
√

2 jl,k|2 ≥ 2j2
0,1/ ≥ 2π

0.55 .
The proof of Proposition 3.1 is based on the behaviour of the zeros of Bessel functions.

Lemma 3.2 ([23]). Let ν ∈ R. The sequence {jν,k+1 − jν,k}k∈N+
is strictly decreasing for |ν| > 1

2 ,
constant for |ν| = 1

2 and increasing for |ν| < 1
2 . In all the three cases, the sequence converges to π

as k → +∞.

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Take l ∈ Z. We want to apply Corollary B.6, part 2, with λk = jl,k for
k ≥ 1. We estimate the quantity

γ := min
(

inf
k∈N+

(λk+1 − λk), 2λ1

)
,

by using Lemma 3.2 with ν = l: if l = 0, then

inf
k∈N+

(λk+1 − λk) = j0,2 − j0,1 ≥ 3.115, 2λ1 = 2j0,1 ≥ 4.8;

if l 6= 0, then
inf
k∈N+

(λk+1 − λk) = π, 2λ1 = 2jl,1 ≥ 2j0,1 ≥ 4.8.

In both cases, we have γ ≥ 3.115. Thus, since T ≥ 1.01, we have γ > π/T , and we can apply
Corollary B.6, part 2. We have that {cos(λk·)}k∈N+ is a Riesz sequence in L2([0, T ]) with lower
bound

A =
1

2π

(
1−

( π

Tγ

)2)
≥ 1

2π

(
1− 1.018

T 2

)
.

This proves (22). The remaining parts of the result immediately follow from Proposition B.2.
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3.2 3D Ball

The case of the 3D ball is very similar to the case of the 2D disk. Let Ω = BR3(0, 1) be the unit ball
in R3 and Γ = ∂Ω = S2. In spherical coordinates x = (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ) ∈ BR3(0, 1)
(ρ ∈ [0, 1], θ ∈ [0, π], ϕ ∈ [0, 2π]), the eigenfunctions and eigenvalues of the Dirichlet Laplacian are

ϕn,k,l(ρ, θ, ϕ) =

√
2

|j′(jn+ 1
2 ,k

)|
jn(jn+ 1

2 ,k
ρ)Y ln(θ, ϕ), n ∈ N, k ∈ N+, l ∈ {−n, ..., n},

λ2
n,k = j2

n+ 1
2 ,k
, n ∈ N, k ∈ N+,

where jn(x) =
√

π
2xJn+ 1

2
(x) is the nth spherical Bessel function and Y ln is the spherical harmonic

of degree n and order l.
The normal derivatives of these eigenfunctions on the boundary ∂Ω are, since ∂ν = ∂ρ|ρ=1:

∂νϕn,k,l(1, θ, ϕ) =
√

2jn+ 1
2 ,k

j′n(jn+ 1
2 ,k

)

|j′(jn+ 1
2 ,k

)|
Y ln(θ, ϕ) =: cn,kY

l
n(θ, ϕ).

In this case, we choose the transducers to be modeled by spherical harmonics, thus parametrized
by two indices. Explicitly, we define Φm,p := Y pm ∈ L2(∂B(0, 1)) = L2(S2) for fixed m ∈ N, p ∈
{−m, ...,m}. Thus

(∂νϕn,k,l,Φm,p)L2(∂B(0,1)) = cn,k δn,m δl,p, n ∈ N, k ∈ N+, l ∈ {−n, ..., n}.

In view of (20), for m ∈ N, p ∈ {−m, ...,m} the measurements are

gm,p(t) =
∑
k∈N+

cm,k(f, ϕm,k,p)L2(Ω) cos(jm+ 1
2 ,k
t), t ∈ [0, T ],

which is completely analogous to (21).
We can apply again Lemma 3.2 and Corollary B.6, part 2, with λk = jm+ 1

2 ,k
for k ≥ 1 and

obtain that {cos(jm+ 1
2 ,k
·)}k∈N+ is a Riesz sequence in L2([0, T ]) for every m ∈ N provided that

T > 1. We also obtain the bound∑
k∈N+

|(f, ϕm,k,p)L2(Ω)|2 ≤
1

2π2

∑
k∈N+

|cm,k(f, ϕm,k,p)L2(Ω)|2 ≤
1

π

T 2

T 2 − 1
‖gm,p‖2L2([0,T ]),

where we have used also that |cm,k| =
√

2jm+ 1
2 ,k
≥
√

2j 1
2 ,1

=
√

2π. This shows that the mea-

surement gm,p allows for the recovery of the generalised Fourier coefficients
(
(f, ϕm,k,p)L2(Ω)

)
k∈N+

.

Further, the reconstruction is stable, uniformly in m and p.

3.3 2D Square: reconstruction from one side

The case where Ω is a square was examined in detail in [39]. There, the authors presented a
reconstruction algorithm that approximates the generalised Fourier coefficients of f by considering
a windowed Fourier transform of the measurements gl with respect to some chosen smooth cutoff
functions. Our approach is different, since it relies on the theory of Riesz bases and does not require
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any arbitrary choice of auxiliar functions. Moreover, it provides an exact reconstruction scheme of
the generalised Fourier coefficients of f .

Let d = 2, Ω = [0, 1]2 ⊆ R2 be the unit square in R2. The eigenfunctions of the Dirichlet
Laplacian on Ω are

ϕn,k(x1, x2) = 2 sin(nπx1) sin(kπx2), n, k ∈ N+,

λn,k = π
√
n2 + k2, n, k ∈ N+.

Suppose we make measurements on only one side of the square. Without loss of generality, assume
we measure on the vertical side Γ = {1} × [0, 1]. On Γ, the normal derivative of the eigenvectors is

∂νϕn,k(1, x2) = ∂x1ϕn,k(1, x2) = (−1)n2nπ sin(kπx2), x2 ∈ [0, 1].

We choose detectors Φl ∈ L2(Γ), l ∈ N+, of the form

Φl(x2) :=
√

2 sin(lπx2), x2 ∈ [0, 1], (24)

so that
(∂νϕn,k,Φl)L2(Γ) = (−1)n

√
2nπ δk,l.

Therefore, for l ∈ N+ the measurements given in (20) are of the form:

gl(t) =
∑

n,k∈N+

(f, ϕn,k)L2(Ω)(∂νϕn,k,Φl)L2(Γ) cos(λn,kt)

=
∑
n∈N+

(−1)n
√

2πn(f, ϕn,l)L2(Ω) cos(λn,lt).
(25)

For each l ∈ N+, the reconstruction of
(
(f, ϕn,l)L2(Ω)

)
n

from the knowledge of gl on [0, T ] may be
performed as follows.

Proposition 3.3. Take T ≥ 1 and l ∈ N+. Then {cos(λn,l·)}n∈N+
is a Riesz sequence in L2([0, T ]).

In particular, there exists CTl > 0 such that∑
n∈N+

|an|2 ≤ CTl
∥∥∥ ∑
n∈N+

an cos(λn,l·)
∥∥∥2

L2([0,T ])
, a ∈ `2. (26)

Further, the sequence (an)n may be reconstructed from gl(t) =
∑
n∈N+

an cos(λn,lt) as

an =
(
gl, S

−1
l (cos(λn,l·))

)
L2([0,T ])

, n ∈ N+, (27)

where Sl : L
2([0, T ])→ L2([0, T ]) is the frame operator.

Proof. We apply Theorem B.7 to the sequences {πn}n∈N and {λn,l}n∈N, setting λ0,l := 0. Note
that {cos(πn·)}n∈N is a Riesz basis in L2([0, 1]). Furthermore,∑

n∈N
(λn,l − πn)2 = π2

∑
n∈N

(
√
n2 + l2 − n)2 = π2

∑
n∈N

( l2√
n2 + l2 + n

)2

< +∞,

Thus, the family {cos(λn,l·)}n∈N is a Riesz basis in L2([0, 1]). In particular, {cos(λn,l·)}n∈N+
is

a Riesz sequence in L2([0, 1]), and so also in L2([0, T ]) since T ≥ 1. Hence, (26) follows. The
reconstruction formula (27) is a consequence of Proposition B.2.
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As in the other cases, we can apply this result to the measurements gl given in (25) provided that
T ≥ 1. More precisely, from gl we first reconstruct the sequence

(
(−1)n

√
2πn(f, ϕn,l)L2(Ω)

)
n

and

then the sequence of Fourier coefficients
(
(f, ϕn,l)L2(Ω)

)
n
. Further, for l fixed, the reconstruction is

stable: ∑
n∈N+

|(f, ϕn,l)L2(Ω)|2 ≤
1

2π2

∑
n∈N+

|
√

2πn(f, ϕn,l)L2(Ω)|2 ≤
CTl
2π2
‖gl‖2L2([0,T ]),

The main drawback of this approach is the absence of quantitative and uniform estimates on
CTl . In fact, the stability deteriorates as l grows, as shown in the following lemma.

Lemma 3.4. Take T ≥ 1. Then
lim

l→+∞
CTl = +∞.

Proof. Intuitively, this follows from the fact that λ2,l − λ1,l → 0 as l → +∞, and so it becomes
harder and harder to distinguish the coefficients of the corresponding factors in the sum (25) as l
grows. More formally, if the constants CTl were uniformly bounded in l by a constant C, by using
that {ϕn,k}n,k∈N+

is an orthonormal basis of L2(Ω), we would obtain

‖f‖2L2(Ω) =
∑

n,l∈N+

|(f, ϕn,l)L2(Ω)|2 ≤
C

2π2

∑
l∈N+

‖gl‖2L2([0,T ]) =
C

2π2

∑
l∈N+

‖(∂νp,Φl)L2(Γ)‖2L2([0,T ]),

so that, by using that {Φl}l∈N+
is an orthonormal basis of L2(Γ),

2π2

C
‖f‖2L2(Ω) ≤

∫ T

0

∑
l∈N+

|(∂νp(·, t),Φl)L2(Γ)|2 dt =

∫ T

0

‖∂νp(·, t)‖2L2(Γ) dt = ‖∂νp‖2L2(Γ×[0,T ]).

However, Γ does not satisfy the geometric control condition [12], and the inverse problem is not
Lipschitz stable in this case (cfr. §1.2.2).

In other words, given a measuring time T ≥ 1 and a threshold l̄ ∈ N+, the reconstruction of(
(f, ϕn,l)L2(Ω)

)
n∈N+,1≤l≤l̄

is stable, but stability deteriorates as l̄→ +∞. More quantitatively, the

following result holds.

Proposition 3.5. Take l̄ ∈ N+ and

T >

√
l̄2 + 4 +

√
l̄2 + 1

3
. (28)

Then, for every 1 ≤ l ≤ l̄ we have

∑
n∈N+

|an|2 ≤ 2π
(

1−
(√l̄2 + 4 +

√
l̄2 + 1

3T

)2)−1∥∥∥ ∑
n∈N+

an cos(λn,l·)
∥∥∥2

L2([0,T ])
, a ∈ `2.

Proof. The distance between the square roots of two consecutive eigenvalues is

λn+1,l − λn,l = π
(»

l2 + (n+ 1)2 −
√
l2 + n2

)
=

π(2n+ 1)√
l2 + (n+ 1)2 +

√
l2 + n2

, (29)
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n

l

l̄

Figure 1: Example of a subsampling pattern for the 2D square with measurements on one vertical
side. The coefficients (f, ϕn,l)L2(Ω) corresponding to the dots in the horizontal strips are recovered,
with L = {1, 2, 5, 8, 10, 14, 17}.

which is increasing in n, so that its minimum is attained at n = 1. Thus

inf
n∈N+

(λn+1,l − λn,l) =
3π√

l2 + 4 +
√
l2 + 1

≤ 2π
√
l2 + 1 = 2λ1,l.

The result is now an immediate consequence of Corollary B.6, part 2.

As above, we can apply this result to the measurements gl given in (25), provided that T satisfies
(28). For 1 ≤ l ≤ l̄, the reconstruction is uniformly stable:

∑
n∈N+

|(f, ϕn,l)L2(Ω)|2 ≤
1

π

(
1−

(√l̄2 + 4 +
√
l̄2 + 1

3T

)2)−1

‖gl‖2L2([0,T ]),

and reconstruction may be performed using (27). As a consequence, in view of CS, the Fourier
coefficients recovered would be (f, ϕn,l)L2(Ω) for n ∈ N+ and l ∈ L, where L ⊆ {1, . . . , l̄} is
the subsampling pattern of the measurements. This is illustrated in Figure 1, in which L =
{1, 2, 5, 8, 10, 14, 17}.

3.4 2D square: reconstruction from two sides

In the previous subsection, we showed that if we activate only one side, namely a vertical side, we
can stably reconstruct the moments (f, ϕn,l)L2([0,1]2) for which l ≤ l̄ and for any n ∈ N+, where l̄ is
a frequency that guarantees uniform stability for a given measuring time T ≥ 1.

As a consequence, if we activate two adjacent sides, we can stably reconstruct the moments
for which at least one of the frequency indices (n or k) is smaller than l̄. What about the high
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frequencies, for which n and k are both high? We now present a reconstruction method that is able
to recover all the coefficients (f, ϕn,k)L2([0,1]2) for any pair of frequencies n, k ∈ N+. The stability of
this reconstruction is still an open question, even though we believe it is uniform and of Lipschitz
type.

Recall that the instability for high frequencies was due to the fact that, by (29), we have

lim
l→+∞

λn+1,l − λn,l = 0, n ∈ N+.

The key observation here is that, if we restrict to the tail n ≥ l, since the distance λn+1,l − λn,l is
increasing in n, by (29) we have

inf
n≥l

(λn+1,l − λn,l) = λl+1,l − λl,l =
π(2l + 1)√

l2 + (l + 1)2 +
√

2 l
≥ π√

2
, l ∈ N+.

In other words, these distances are bounded from below uniformly in l ∈ N+. This suggests a bound
of the type

+∞∑
n=l

|(f, ϕn,l)L2(Ω)|2 ≤ C‖gl‖2L2([0,T ]), l ∈ N+, (30)

for some absolute constant C > 0 (independent of l), provided that T is sufficiently large (in-
dependently of l). We have not been able to rigorously prove this estimate, but our numerical
experiments provided in Section 5 strongly support this bound. Choosing a few measurements
l ∈ Lver for some finite Lver ⊆ N+ allows for the stable reconstruction of the Fourier coefficients
(f, ϕn,l)L2(Ω) for l ∈ Lver and n ≥ l. By repeating the same argument for the measurements on the
horizontal side [0, 1]× {1}, we can stably recover the Fourier coefficients (f, ϕl,k)L2(Ω) for l ∈ Lhor

and k ≥ l. An example is shown in Figure 2, in which Lver = {1, 2, 5, 8, 10, 14, 17, 19, 25} and
Lhor = {1, 3, 6, 9, 11, 15, 18, 22, 27}. In the hypothetical full-measurement setting, this approach
yields a stable reconstruction method of all Fourier coefficients of f .

Remark 3.6. It is worth observing that the different behaviour of the stability constants with one
or two sides is perfectly consistent with the stability of the inverse problem with full measurements
discussed in §1.2.2: the inverse problem is Lipschitz stable with measurements taken on two adjacent
sides, but not with only one side.

4 An example of structured subsampling pattern

In this section, we discuss the subsampling pattern arising in the case of the 2D square with
measurements on one side (see Figure 1). This provides an example of the challenges of a compressed
sensing problem with a structured subsampling pattern.

According to §3.3, it is possible to stably reconstruct the generalised Fourier coefficients
(f, ϕn,l)L2(Ω) for l smaller than a chosen l̄ ∈ N+ and for all n ∈ N+. Our goal is to subsam-
ple the frequencies indexed by l, without losing information on the structured unknown signal f .
We will address the problem from a more abstract point of view.

Let the sampling basis {ψl1,l2}l1,l2∈N be an orthonormal basis of L2([0, 1]2) made of tensorised
functions:

ψl1,l2(x) = ψl1(x1)ψl2(x2), l1, l2 ∈ N, (31)
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n

k

Figure 2: Example of subsampling pattern for the 2D square with measurements on two sides. The
coefficients (f, ϕn,k)L2(Ω) corresponding to the black dots in the horizontal strips are recovered from
the measurements on the vertical side {1}× [0, 1], while those corresponding to the blue dots in the
vertical strips from the measurements on the horizontal side [0, 1]× {1}.

where {ψl}l∈N is an orthonormal basis of L2([0, 1]). In our previous discussion, this was the Fourier
basis, with ψl(s) =

√
2 sin(πls) for l ∈ N+. Similarly, let {ϕj1,j2 = ϕj1 ⊗ϕj2}j1,j2∈N be the sparsity

basis, for example a wavelet basis. The tensor symbol ⊗ simply means that the sparsity basis
admits a representation of the form (31), like the sampling basis.

Suppose that the unknown f ∈ L2([0, 1]2) is sparse with respect to the sparsity basis
{ϕj1,j2}j1,j2∈N. The problem is to reconstruct f from measurements of the form

(f, ψl1,l2), l1 ∈ N, l2 ∈ L ⊆ N,

where L ⊆ N is finite and possibly small.
Let us expand f on the sparsity basis

f =
∑

j1,j2∈N
cj1,j2ϕj1,j2 .

Then, for every l1 ∈ N and l2 ∈ L ⊆ N

(f, ψl1,l2) =
∑

j1,j2∈N
cj1,j2(ϕj1,j2 , ψl1,l2)

=
∑

j1,j2∈N
cj1,j2(ϕj1 , ψl1)(ϕj2 , ψl2)

=

( ∑
j1,j2∈N

cj1,j2(ϕj2 , ψl2)ϕj1 , ψl1

)
.
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Since {ψl1}l1∈N is an orthonormal basis, we have∑
j1,j2∈N

cj1,j2(ϕj2 , ψl2)ϕj1 =
∑
l1∈N

(f, ψl1,l2)ψl1 , l2 ∈ L.

And since {ϕj1}j1∈N is also an orthonormal basis, we can reconstruct(∑
j2∈N

cj1,j2ϕj2 , ψl2

)
=
∑
l1∈N

(f, ψl1,l2)(ψl1 , ϕj1), j1 ∈ N, l2 ∈ L.

We can reinterpret the previous argument in the following way: for each fixed j1 ∈ N we measure(∑
j2∈N

cj1,j2ϕj2 , ψl2

)
, l2 ∈ L,

which is a one-dimensional CS problem consisting in the reconstruction of
∑
j2∈N cj1,j2ϕj2 from

partial measurements with the subsampling pattern {ψl2}l2∈L. Therefore, if (cj1,j2)j2∈N is sparse,
then it is possible to do the reconstruction from measurements only in L by using the classical CS
theory. It is worth observing that the subsampling pattern L has to be chosen a priori independently
of j1 ∈ N, and in particular independently of the vector do be reconstructed. As a consequence, CS
results of uniform type are needed (see, e.g., [42]).

5 Numerical simulations

In this section we present numerical experiments for the bounded domain model, in the particular
case of the 2D unit square. We chose to focus on the bounded domain model and not on the free-
space model because the latter has been investigated more, and in particular the reconstruction
method given in Theorem 2.2 was already known, albeit not applied in a CS setting. On the other
hand, the reconstruction in the bounded domain model using the Riesz sequences is new, to the best
of our knowledge. Furthermore, considering the square instead of the disk allows us to illustrate
the stability issue and the dependence on the measurement surface Γ.

Two cases are considered:

1. full measurements are taken on one or two sides;

2. the measurements are taken on two sides and are randomly subsampled, and a sparsity pro-
moting algorithm is used (TV regularisation).

5.1 Setup and simulation of PAT data

In all simulations, the initial value f to be recovered is the Shepp-Logan phantom (see Figure 3).
To generate the measurements gl(t) = (∂νp(·, t),Φl)L2(Γ) for t ∈ [0, T ] and l ∈ N+, we solve the
wave equation with Dirichlet boundary conditions (19) on the unit square Ω = [0, 1]× [0, 1] ⊆ R2 to
obtain the solution p. This is done using a finite difference approximation [43], with a square mesh
of side length 2 ·10−4. For most simulations, the final time is T = 3 and the interval [0, T ] is divided
into N sub-intervals [ti−1, ti] of length ti − ti−1 =

√
2 · 10−4 for i = 1, . . . , N where N = 21, 214.

The time step is chosen in order to guarantee stability [43]. The choice of T ensures observability
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Figure 3: Shepp-Logan phantom.

of the wave equation when we measure on two sides [28, 6]. In general, observability is guaranteed
provided that T ≥ c(Ω) for some constant c(Ω) depending on the domain Ω and that Γ is large
enough; for the unit square, c([0, 1]2) = 2

√
2 and while two sides are enough, one side is not.

Given the solution p of the wave equation, we again use finite differences to approximate its
normal derivative on the boundary ∂νp(·, ti)|Γ for i = 1, . . . , N .

We finally compute the scalar products on the boundary. We obtain two matrix approximations
of the data {gl(t)}l∈N+,t∈[0,T ], one for the horizontal side Γ = [0, 1] × {1} and one for the vertical

side Γ = {1} × [0, 1], which we denote by Gh and Gv, respectively. These are defined as:

(Gh)l,i = (∂νp(ti),Φ
h
l )L2([0,1]×{1}), (Gv)l,i = (∂νp(ti),Φ

v
l )L2({1}×[0,1])

for l = 1, . . . , Lmax, i = 1, . . . , N , where we denote

Φhl (x1) :=
√

2 sin(lπx1), x1 ∈ [0, 1], Φvl (x2) :=
√

2 sin(lπx2), x2 ∈ [0, 1],

and Lmax has to be much smaller than N to avoid Gibbs phenomena. In our experiments we choose
Lmax = 256, which provides sufficiently high frequency information and it is suited to compute the
fast Fourier transform in the compressed sensing reconstructions.

We add zero-mean random Gaussian noise to the matrices Gh and Gv to obtain noisy matrices
G̃h and G̃v with relative noise defined as

δh =
maxl,i |(G̃h)l,i − (Gh)l,i|

maxl,i |(Gh)l,i|
, δv =

maxl,i |(G̃)vl,i − (Gv)l,i|
maxl,i |(Gv)l,i|

. (32)

which is a discretisation of a (relative) L∞([0, T ]) norm in the time variable and an `∞ norm in the
frequency l.

5.2 Reconstruction from one and two sides without subsampling

Our goal is to reconstruct the generalised Fourier coefficients {(f, ϕn,k)L2(Ω)}n,k of the phantom f
with respect to the eigenfunctions {ϕn,k}n,k of the Dirichlet Laplacian in the unit square. These
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are given by

ϕn,k(x1, x2) = 2 sin(nπx1) sin(kπx2), λn,k = π
√
n2 + k2.

Here, n, k = 1, . . . J , where we choose J = Lmax = 256.
We now illustrate how to perform such reconstruction given full measurements either on one

side or on two sides, i.e., whether we are given only one of the matrices Gh and Gv or both of them.

One side

Let us first consider the case where measurements are taken on one side only. Assume we are given
the measurements Gh on the horizontal top side. For fixed l ∈ {1, . . . , Lmax}, we solve the following
system, which arises by truncating and discretising (25):

Alfl = (Gh)l, (33)

where (Gh)l is the l-th row of the matrix Gh, fl =
(
(f, ϕn,l)L2(Ω)

)
n=1,...,J

∈ RJ and Al ∈ RN×J is

defined as
(Al)i,n = (−1)n

√
2πn cos(λn,lti).

Solving the linear system (33) yields the coefficients (f, ϕn,l)L2(Ω) for n = 1, . . . , J . Letting l vary,
we obtain all the generalised Fourier coefficients (f, ϕn,l)L2(Ω) for n, l = 1, . . . , J . However, since
the observability condition is not satisfied, this reconstruction cannot be stable. Indeed, as noticed
in Section 3.3, the reconstruction is unstable for large values of l (relative to the final time T ) and
therefore part of the coefficients must be discarded. Thus, we stably reconstruct all coefficients
(f, ϕn,l)L2(Ω) for n = 1, . . . , J and l = 1, . . . , l̄, where l̄� J and depends on the final time T ≥ c(Ω)
and on the noise level. Furthermore, we notice that - independently of T - the coefficients with
l ≤ n are stably reconstructed, while for l ≥ n the quality of the reconstruction depends on
T and quickly deteriorates as l grows. Therefore, when measuring on a horizontal side, we can
stably reconstruct the coefficients {(f, ϕn,l)L2(Ω)}l≤n. This observation corroborates our conjecture
explained in Section 3.4.

In the very same way, if we take measurements on the vertical side (i.e. if we are given the
matrix Gv), then the same considerations on stability apply by swapping the two indices and we
can stably reconstruct the coefficients (f, ϕl,k)L2(Ω) for l ≤ k.

Two sides

If we are given measurements on two sides, i.e. both matrices Gh and Gv are known, then we
can combine the two previous cases and stably reconstruct all the generalised Fourier coefficients.
First, for each side we solve the family of the associated linear systems and collect the two sets of
coefficients (f, ϕn,k)L2(Ω). Then, from the set corresponding to the horizontal measurements, we
extract only the coefficients (f, ϕn,k)L2(Ω) with k < n, while from the vertical measurements we
extract those with k > n. On the diagonal k = n, we average the two coefficients. Proceeding this
way, we stably obtain all coefficients (f, ϕn,k)L2(Ω) for n, k = 1, . . . , J .
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Figure 4: Example of our two-level subsampling scheme. The horizontal axis represents the n index
and the vertical axis represents the k index. The white part represents the sampled coefficients.
Here we fully sample both indices until J0 = 22, and then 30 + 30 vertical and horizontal half-lines
are non-uniformly randomly sampled between 23 and 256.

Reconstruction formula

In all the three cases, after stably recovering (part of) the generalised Fourier coefficients, we can
find an approximation of f using the partial sum

f(x1, x2) =
∑
n,k

(f, ϕn,k)L2(Ω)ϕn,k(x1, x2), (x1, x2) ∈ [0, 1]2, (34)

where the indices range over the set where the coefficients are stably recovered, which depends on
the side (or sides) where measurements are taken, as explained above.

5.3 Compressed sensing PAT

We next consider the problem of reconstructing all the generalised Fourier coefficients
{(f, ϕn,k)L2(Ω)}n,k=1,...,J from a subset of them which has a specific structure: we consider a com-
pressed sensing problem with generalised Fourier data where the frequencies are undersampled
with the structured pattern presented in Section 3.4. For the numerical experiments we acquire
PAT measurements on two sides and we consider a two-level sampling scheme as in [4, Section
4.1]: first, we fully sample the frequencies for which one of the indices is low, i.e. the frequencies
(n, k) ∈ ({1, . . . , J0} × {1, . . . , J}) ∪ ({1, . . . , J} × {1, . . . , J0}) for some J0 � J ; then we randomly
sample single indices n and k from the interval {J0 +1, . . . , J}, following a non-uniform distribution
that is more concentrated in the low frequencies (log-sampling, see [7]) and sample the Fourier co-
efficients indexed by the half lines {n} × {n, . . . , J} and {k, . . . , J} × {k}. We call Θ ⊂ {1, . . . , J}2
the set of the indices of the sampled coefficients. See Figure 4 for an example: the white pixels
denote the sampled coefficients and the axes represent the n and k indices.

Here, we chose not to impose sparsity constraints with respect to an orthonormal basis of
tensorised functions (e.g. wavelets) as in Section 4, but we assume that the unknown has a sparse
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gradient, which is known to give better results [48]. As in classical compressed sensing works [17],
we use Total Variation (TV) regularisation to recover f . Theoretical guarantees are provided in
[48, 50]. Let F ∈ RJ×J be the discretisation of an image in the unit square and ‖F‖TV its discrete
TV norm defined as

‖F‖TV =
∑
n,k

»
|(D1F )n,k|2 + |(D2F )n,k|2,

where D1 and D2 are the finite differences (D1F )n,k := Fn,k−Fn−1,k and (D2F )n,k := Fn,k−Fn,k−1.
To recover f from incomplete generalised Fourier samples we find a solution to the optimisation
problem

min ‖F‖TV subject to F̂n,k = (f, ϕn,k)L2(Ω), for (n, k) ∈ Θ, (35)

where we denoted by F̂n,k the coefficients of the 2D discrete sine transform (DST):

F̂n,k =
2

J + 1

J∑
n′,k′=1

Fn′,k′ sin

Å
πn

n′

J + 1

ã
sin

Å
πk

k′

J + 1

ã
,

which is the discretised version of the generalised Fourier coefficients of F .
In order to numerically solve the convex optimisation problem (35), we have adapted the Matlab

code `1-MAGIC [18] to our setting. In particular, we implemented the DST instead of the discrete
Fourier transform: up to a zero-padding, this is done by computing the fast Fourier transform and
taking its imaginary part.

5.4 Results

5.4.1 Reconstruction from one and two sides without subsampling

In Figure 5 we present the reconstructions obtained from PAT noisy measurements taken either on
one or two sides, using different noise levels with δv ≈ δh.

Here we simulated the wave equation on the unit square until time T = 3 and took measurements
using Lmax = 256 trigonometric masks Φl on each side. The black-and-white squares at the bottom-
right corner of each picture represent the generalised Fourier coefficients used for that reconstruction,
as in Figure 4: the white pixels represent the coefficients used. We call it the sampling square.

The three reconstructions in the first row are obtained from measurements taken on two sides,
the right and the top one, with increasing levels of noise. For these simulations we used all recovered
coefficients (f, ϕn,k)L2(Ω), where n, k = 1, . . . , 256. This is reflected in the sampling squares, which
are completely white.

We note that the reconstructions have a high resolution even with very high levels of noise.
One reason for this is the fact that we are extracting only the stable coefficients from each side.
Another reason for such a sharp reconstruction is the fact that the main features of the phantom
are jump singularities, which are preserved by the measurements and are not particularly affected
by Gaussian noise, whose effect is only to blur the background.

In the second and third rows we show reconstructions with measurements taken on a single side.
Here we used slightly more than half of the recovered coefficients, as explained in Section 5.2. More
precisely, in addition to the stable half of the coefficients, we used those with (n, k) ∈ {1, . . . , 20}2
in the case of 0.01% noise, (n, k) ∈ {1, . . . , 15}2 for 5% noise and (n, k) ∈ {1, . . . , 8}2 for 25% noise.
This can be seen by looking at the sampling square of each figure closely. We clearly see how the
wave front set of the phantom influences the reconstruction quality. The edges with normal vector
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Two sides

Right side

Top side

Noise level: 0.01% 5% 25%

Figure 5: Reconstructions from one and two sides for different levels of noise δh ≈ δv. The mea-
surements are taken until time T = 3 using Lmax = 256 trigonometric masks on each side. The
bottom-right black-and-white squares represent the generalised Fourier coefficients used for the
reconstructions.
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Final time: T = 3 T = 10

Figure 6: Reconstructions from measurements with 5% noise δh, acquired from the top side and
with different measurement times. The measurements are done until time T = 3 on the left and
until T = 10 on the right. In both cases we use 256 trigonometric masks and we are able to stably
recover the coefficients (f, ϕn,k)L2(Ω) with k ≤ n. In the left reconstruction the coefficients with
n ≤ k ≤ 15 are also stably computed, while in the right one we recover those up to n ≤ k ≤ 50.

parallel to the side of the measurements are poorly reconstructed, while the others are recovered
also with high level of noise. This is a well-known issue in tomography.

In Figure 6 we show two reconstructions from one side - the top one - with measurements taken
on different time intervals. The measurements are also affected by 5% additive Gaussian noise δh.
The final time for the left image is T = 3, while on the right it is T = 10. In both cases, we measure
scalar products against trigonometric masks Φl with l = 1, . . . , 256. As mentioned previously in
Section 5.2, we are unable to stably recover all coefficients (f, ϕn,k)L2(Ω) for n, k = 1, . . . , 256, but
only a subset of them depending on the final time T (through the parameter l̄). We clearly see that
a longer measurement time allows for a much sharper reconstruction. Namely, in the case T = 3
we are able to recover coefficients with (n, k) ∈ {1, . . . , 15}2, while for T = 10 we can push up to
(n, k) ∈ {1, . . . , 50}2. In both cases we stably recover also the coefficients with k ≤ n, as in Figure 5.
Note that the artifacts appearing in the case T = 10 are mostly due to the Gibbs phenomenon.
These reconstructions corroborate the theoretical findings obtained in Section 3.3.

5.4.2 CS-PAT with TV regularisation

In Figure 7 we present two different compressed sensing reconstructions. The aim of this comparison
is to show that the specific subsampling pattern in the frequency domain for the coefficients of the
DST arising from PAT measurements is comparable to other subsampling patterns, when it comes
to solve the convex optimisation problem (35).

In this figure, the coefficients of the DST are directly computed from the phantom, and not
from the PAT measurements. In both reconstructions, we consider two-level subsampling schemes:
for the first one, inspired by PAT measurements, we fully sample the frequencies for which at least
one of the indices n or k is smaller than 10 and then use a non-uniform log-sampling scheme ([7])
for the higher frequencies. For the second sampling scheme, first we fully sample the frequencies
(n, k) ∈ {1, . . . , 30}2 and then use a quadratic sampling scheme for the higher frequencies. The
first row shows the structured sampling pattern coming from the PAT model, while the second
row shows the quadratic sampling pattern. In both cases we obtain a perfect reconstruction of the
phantom. In order to achieve exact reconstruction, we had to sample 20% of the frequencies in the
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Figure 7: Comparison of compressed sensing reconstructions. In the first row, the sampling
pattern in the frequency domain for the coefficients of the DST comes from the PAT model, while
in the second one we use a different sampling pattern. In both cases the coefficients are directly
computed from the phantom and not by solving the wave equation. In the second column we show
the reconstruction obtained by setting the unknown coefficients to zero. The last column shows the
solution obtained by solving the convex optimisation problem (35). In both cases we obtain exact
reconstruction. The first row uses 20% of the DST coefficients, corresponding to 13% of the masks
{Φl}l, while the second row uses 8% of them.

first case, while in the second one only 8% were enough. From the point of view of the masks {Φl}l,
in the first row we only used 13% out of the Lmax = 256 on each side. We called minimum energy
solution the one obtained from the partial sum (34) by setting to zero the unknown coefficients.

In Figure 8 we present compressed sensing reconstructions where the coefficients of the DST have
been obtained from PAT measurements as explained in Section 5.2. Since the PAT measurements
are an approximation of the DST, we had to increase the number of coefficients used in order
to have high resolution reconstruction, resulting in a 25% subsampling in the frequency domain -
which corresponds to using 18% of the masks {Φl}l for each side. More precisely, we fully sample
(n, k) for n = 1, . . . , 16, k = 1, . . . , 256 and n = 1, . . . , 256, k = 1, . . . , 16. For higher frequencies
we randomly select 30 horizontal and vertical half-lines. Note that the reconstruction quality, both
with and without noise, is comparable to the quality obtained using all coefficients as in Figure 5.
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Figure 8: Compressed sensing reconstruction from PAT measurements. Left: 25% subsampling
pattern in the frequency domain, corresponding to 18% of the masks {Φl}l. Center: reconstruction
via TV minimisation from noiseless data. Right: reconstruction via TV minimisation with 25%
additive Gaussian noise in the PAT data.

6 Conclusions

In this paper, we have shown for the first time that the approaches based on CS for PAT may be
theoretically justified by reducing the inverse problem to a CS problem for undersampled generalised
Fourier measurements. This is achieved by a suitable inversion in the time domain applied to the
compressed data. The results in this paper are preliminary and open the way for several future
directions. We discuss three open questions below.

• The approach based on this work makes use of the explicit geometries of the domains consid-
ered, both in the free-space model and in the bounded-domain model. Even if these domains
are of practical relevance and many works on PAT have considered special geometries, it
would be interesting to investigate whether it is possible to extend the results to more general
domains.

• The CS problems for undersampled Fourier measurements that arise are peculiar in the sense
that the subsampling patterns are not fully random but have a particular structure. In a
particular case, these were studied in Section 4. In finite dimension, CS results with structured
sampling patterns have been studied in [15, 2]. However, we are not aware of any work in
our structured infinite-dimensional setting. A thorough theoretical and numerical analysis of
these CS problems goes beyond the scopes of this work, and is left for future research.

• We provided numerical evidence for the uniform stability of the reconstruction problems in the
case of the 2D square with measurements on two adjacent sides. However, we were not able
to prove this. The rigorous proof of the stability estimate given in (30) is an open question
and we leave it for future work.
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A Proof of Theorem 2.5

The proof is based on the following lemma.

Lemma A.1. Let ξ = |ξ|eξ ∈ R3. For every l ∈ N and m ∈ {−l, ..., l} the following identity holds:∫
S2
Y ml (x)e2πiρx·ξdσ(x) = 4πil−2m jl(2πρ|ξ|)Y ml (eξ). (36)

Proof. Write eξ = (sin θξ cosϕξ, sin θξ sinϕξ, cos θξ) ∈ S2. By direct calculation:∫
S2
Y ml (x)e2πiρx·ξdσ(x)

=

∫ π

0

∫ 2π

0

Pml (cos θ)eimϕe2πiρ(ξ1 sin θ cosϕ+ξ2 sin θ sinϕ+ξ3 cos θ) sin θ dϕ dθ

=

∫ π

0

Pml (cos θ)e2πiρξ3 cos θ sin θ
(∫ 2π

0

e2πiρ sin θ(ξ1,ξ2)·(cosϕ,sinϕ)eimϕ dϕ
)
dθ.

Using Lemma 2.4, and noticing that the argument of the vector (ξ1, ξ2) is ϕξ, we can rewrite this
integral as∫ π

0

Pml (cos θ)e2πiρξ3 cos θ sin θ
(

2πi−meimϕξJm
(
2πρ sin θ|(ξ1, ξ2)|

))
dθ

= 2πi−meimϕξ
∫ π

0

Pml (cos θ)Jm(2πρ|ξ| sin θ sin θξ)e
2πiρ|ξ| cos θξ cos θ sin θ dθ.

Thanks to the main result in [49], the previous integral can be expressed in terms of the spherical
Bessel function jl:∫

S2
Y ml (x)e2πiρx·ξdσ(x) = 2πi−meimϕξ

(
2il−mPml (cos θξ)jl(2πρ|ξ|)

)
= 4πil−2meimϕξPml (cos θξ)jl(2πρ|ξ|)
= 4πil−2m jl(2πρ|ξ|)Y ml (θξ, ϕξ).

This concludes the proof.

Proof of Theorem 2.5. The second part of (18) is an immediate consequence of Theorem 2.2, since
ψ̃l,m,n is a Dirichlet eigenfunction of the Laplacian in the disk with eigenvalue j2

l+ 1
2 ,n

and

∂νψ̃l,m,n = jl+ 1
2 ,n

j′l(jl+ 1
2 ,n

) Φl,m.
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It remains to prove the first identity of (18).
By Theorem 2.1 we have

(f, ψl,m,ρ)L2(Ω) = ĝl,m(ρ), (37)

where, by (10), we can write for y ∈ Ω

ψl,m,ρ(y) =
ρ2

2

∫
S2

Φl,m(x)

(∫
S2
e2πiρ(x−y)·ωdσ(ω)

)
dσ(x)

=
ρ2

2

∫
S2
e−2πiρy·ω

(∫
S2

Φl,m(x)e2πiρx·ωdσ(x)

)
dσ(ω).

(38)

We can now explicitly determine ψl,m,ρ. Write y = |y|ey ∈ BR3(0, 1), then by using formula (36)
twice we have:

ψl,m,ρ(y) =
ρ2

2

∫
S2
e−2πiρy·ω

(∫
S2
Y ml (x)e2πiρx·ωdσ(x)

)
dσ(ω)

= 2ρ2πil−2m jl(2πρ)

∫
S2
e−2πiρy·ωY ml (ω)dσ(ω)

= 8
(
ρπil−2m

)2
jl(2πρ) jl(2πρ|y|) Y ml (−ey)︸ ︷︷ ︸

=(−1)lYml (ey)

= 8π2ρ2jl(2πρ) jl(2πρ|y|)Y ml (ey).

By (37) and L’Hôpital’s rule we have

(ĝl,m)′(ρl,m)

4πj2
l+ 1

2 ,n
j′l(jl+ 1

2 ,n
)

= lim
ρ→ρl,n

1

8π2

ĝl,m(ρ)

ρ2 jl(2πρ)

= lim
ρ→ρl,n

(f, y 7→ jl(2πρ|y|)Y ml (ey))L2(Ω)

= (f, ψ̃l,m,n)L2(Ω),

since 2πρl,n = jl+ 1
2 ,n

.

B Riesz Bases

In this section, we review some of the basic notions related to Riesz bases of exponentials; for
further details, the reader is referred to [58, 20].

B.1 Riesz Bases in Hilbert spaces

We start by introducing the concept of Riesz sequence of a Hilbert space, which generalises that of
linearly independent set.

Definition B.1. Let H be a Hilbert space and {fk}k∈N ⊆ H.
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1. {fk}k∈N is a Riesz sequence if there exist constants A,B > 0 such that

A
∑
k∈N
|ck|2 ≤

∥∥∥∑
k∈N

ckfk

∥∥∥2

≤ B
∑
k∈N
|ck|2 (39)

for every finite sequence {ck}k ⊆ CN.

2. {fk}k∈N is a Riesz basis if it is a Riesz sequence and it is complete, namely span{fk}k = H.

3. The optimal bounds such that the Riesz condition (39) holds are called Riesz bounds.

In particular, a Riesz sequence is a Riesz basis for its closed span. If {fk}k is a Riesz basis, then
every element f ∈ H can be expressed as a linear combination

f =
∑
k∈N

ckfk (40)

in a unique way. If {fk}k is a Riesz sequence, its synthesis operator is given by

T : `2(N) −→ H, {ck} 7−→
∑
k∈N

ckfk.

The adjoint of the synthesis operator is the analysis operator :

T ∗ : H −→ `2(N), f 7−→ {〈f, fk〉}k∈N.

By using (39), it can be easily proven that

‖T‖ = ‖T ∗‖ ≤ B 1
2 , ‖T−1‖ ≤ A− 1

2 .

The synthesis operator is central in the study of basis-like properties of the set {fk}k. In fact, its
surjectivity is related to the possibility of expanding elements in H as a combination of the {fk}k,
while its injectivity is linked to the uniqueness of such expansions.

We can compose the synthesis and analysis operators T and T ∗ to obtain the frame operator
S := TT ∗

S = TT ∗ : H −→ H, f 7−→
∑
n∈N
〈f, fk〉fk,

which may be used to recover the unique coefficients {ck}k in the expansion (40).

Proposition B.2 ([20]). Let {fk}k∈N ⊆ H be a Riesz sequence with frame operator S and let

f =
∑
k∈N

ck fk ∈ span{fk}k (41)

be an arbitrary element in span{fk}k. Then

ck = 〈f, S−1fk〉, k ∈ N, (42)

where {S−1fk}k is called the bi-orthogonal sequence of {fk}k∈N in span{fk}k.

Therefore, in order to recover the coefficients of an element f ∈ span{fk}k with respect to a
Riesz sequence {fk}k∈N, it is sufficient to find the inverse of the frame operator S associated to the
Riesz sequence. This goal can be achieved in practice by approximating the frame operator S with
a sequence of finite-dimensional matrices of increasing size.
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B.2 Riesz bases of exponentials

The theory of Fourier series guarantees that { 1√
2π
eik ·}k∈Z is an orthonormal Basis for L2([0, 2π]).

As a consequence, {eik ·}k∈Z is a Riesz basis in L2([0, 2π]) with Riesz bounds A = B = 2π. In
this section, we will focus on Riesz bases which are similar to the Fourier basis, but allow for
non-uniformly spaced frequencies.

Definition B.3. A Riesz basis for L2(I) of the form {eiλk·}k∈Z, where I ⊆ R is a bounded interval
and {λk}k∈Z ⊆ R is a real sequence, is called a Riesz basis of exponentials. An expansion of the
form

f(t) =
∑
k∈Z

cke
iλkt (43)

in the L2(I) sense, for f ∈ L2(I), is called nonharmonic Fourier series.

We will be interested in recovering the coefficients {ck}k∈Z which appear in the expansion (43).
For this problem to make sense, such coefficients must be unique, which happens precisely when
{eiλk·}k∈Z is a Riesz sequence.

In general, the upper and lower Riesz conditions in (39) are unrelated. In the context of families
of exponentials, however, the situation is different: if the sequence {λk}k∈Z consists of distinct
points, the existence of a lower Riesz bound for {eiλk·}k∈Z in L2(−π, π) implies the existence of the
upper bound. In other words, the lower condition is enough to guarantee that {eiλk·}k∈Z is a Riesz
sequence. This is the content of the following theorem:

Theorem B.4 ([20, Theorem 9.8.5]). Take {λk}k∈Z ⊆ R. Suppose that there exists a constant
A > 0 such that

A
∑
k∈Z
|ck|2 ≤

∥∥∥∑
k∈Z

cke
iλk·
∥∥∥2

L2(I)
(44)

for all finite scalar sequences {ck}k∈Z. Then {eiλk·}k∈Z is a Riesz sequence in L2(I).

The following criterion gives a sufficient condition for inequality (44) to hold.

Theorem B.5 ([58], Chapter 4, Section 3, Theorem 3). If {λk}k∈Z is an increasing sequence of
real numbers such that

γ := inf
k∈Z

(λk+1 − λk) >
π

T
,

then {eiλk·}k∈Z satisfies the lower Riesz inequality (44) in L2([−T, T ]) with lower bound

A =
2

π

(
1−

( π

Tγ

)2)
.

The following consequence of this result regarding families of cosines is readily derived.

Corollary B.6. Take T > 0.

1. If {λk}k∈N is an increasing sequence of non-negative numbers such that λ0 = 0 and

γ := inf
k∈N

(λk+1 − λk) >
π

T
,

then {cos(λk·)}k∈N is a Riesz sequence in L2([0, T ]) with lower bound

A =
1

2π

(
1−

( π

Tγ

)2)
.
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2. If {λk}k∈N+ is an increasing sequence of positive numbers such that

γ := min
(

inf
k∈N+

(λk+1 − λk), 2λ1

)
>
π

T
,

then {cos(λk·)}k∈N+
is a Riesz sequence in L2([0, T ]) with lower bound

A =
1

2π

(
1−

( π

Tγ

)2)
.

Proof. 1. Let {ck}k∈N be a finite sequence. Setting λ−k = −λk and c−k = ck for k ≥ 1 we have

∑
k∈N

ck cos(λkt) =
∑
k∈N

ck
eiλkt + e−iλkt

2
= c0 +

∑
k∈Z∗

ck
2
eiλkt. (45)

By construction we have

inf
k∈Z

(λk+1 − λk) = γ >
π

T
.

Therefore, by (45) and Theorem B.5 we have∥∥∥∑
k∈N

ck cos(λk·)
∥∥∥2

L2([0,T ])
=

1

2

∥∥∥c0 +
∑
k∈Z∗

ck
2
eiλk·

∥∥∥2

L2([−T,T ])

≥ 4A

2

(
|c0|2 +

∑
k∈Z∗

|ck
2
|2
)

= 2A

Ñ
|c0|2 +

1

2

∑
k∈N+

|ck|2
é

≥ A
∑
k∈N
|ck|2,

This shows the lower bound. The upper bound is an immediate consequence of (45) and of Theo-
rem B.4.

2. Let {ck}k∈N+ be a finite sequence. Setting λ−k = −λk and c−k = ck for k ≥ 1 we have

∑
k∈N+

ck cos(λkt) =
∑
k∈N+

ck
eiλkt + e−iλkt

2
=
∑
k∈Z∗

ck
2
eiλkt. (46)

Note that the new sequence of frequencies is given by {λk : k ∈ Z∗} = {. . . ,−λ2,−λ1, λ1, λ2, . . . },
and so its minimum distance is given by γ. Therefore, arguing as above, by (46) and Theorem B.5
we have∥∥∥ ∑

k∈N+

ck cos(λk·)
∥∥∥2

L2([0,T ])
=

1

2

∥∥∥ ∑
k∈Z∗

ck
2
eiλk·

∥∥∥2

L2([−T,T ])
≥ 4A

2

∑
k∈Z∗

|ck
2
|2 = A

∑
k∈N+

|ck|2.

This shows the lower bound. The upper bound is an immediate consequence of (46) and of Theo-
rem B.4
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The next result deals again with families of cosines. For these systems to be a Riesz basis, it is
sufficient to check the behaviour of the tail of {λk}k∈N.

Theorem B.7 ([33, Lemma 4]). Let {λn}n∈N, {µn}n∈N ⊆ [0,+∞) be sequences of nonnegative
distinct real numbers (λm 6= λn and µm 6= µn for m 6= n) such that∑

n∈N
(λn − µn)2 < +∞.

Then {cos(λn·)}n∈N is a Riesz basis in L2([0, 1]) if and only if {cos(µn·)}n∈N is a Riesz basis in
L2([0, 1]).
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