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Abstract

We study optimal liquidation in the presence of linear temporary and tran-
sient price impact along with taking into account a general price predicting
finite-variation signal. We formulate this problem as minimization of a cost-risk
functional over a class of absolutely continuous and signal-adaptive strategies.
The stochastic control problem is solved by following a probabilistic and convex
analytic approach. We show that the optimal trading strategy is given by a
system of four coupled forward-backward SDEs, which can be solved explicitly.
Our results reveal how the induced transient price distortion provides together
with the predictive signal an additional predictor about future price changes.
As a consequence, the optimal signal-adaptive trading rate trades off exploiting
the predictive signal against incurring the transient displacement of the execu-
tion price from its unaffected level. This answers an open question from Lehalle
and Neuman [29] as we show how to derive the unique optimal signal-adaptive
liquidation strategy when price impact is not only temporary but also transient.
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1 Introduction

The trading costs of executing large orders on an electronic trading platform often
arise from the notion of price impact. Price impact refers to the empirical fact that
the execution of a large order affects the risky asset’s price in an adverse manner
leading to less favorable prices. This typically induces additional execution costs for
the trader. As a result, a trader who wishes to minimize her trading costs due to price
impact has to split her order into a sequence of smaller orders which are executed
over a finite time horizon. At the same time, the trader also has an incentive to
execute these split orders rapidly because she does not want to carry the risk of an
adverse price move far away from her initial decision price. This trade-off between
price impact and market risk is usually translated into a stochastic optimal control
problem where the trader aims to minimize a risk-cost functional over a suitable
class of execution strategies. The corresponding optimal order execution problem has
been extensively studied in the literature and continues to be of ongoing interest in
research and practice. We refer to the monographs [13], [26], [30], as well as the
survey papers [21] and [23] for a thorough account for the developed price impact
models.

In practice, apart from focusing on the aforementioned trade-off between price
impact and market risk, many traders and trading algorithms also strive for using
short term price predictors in their dynamic order execution schedules. Most of such
documented predictors relate to orderbook dynamics as discussed in [28, 29, 31, 34].
An example of such price predicting indicator is the order book imbalance signal,
measuring the imbalance of the current liquidity in the limit order book; see, e.g.,
Section 4 of [29] and references therein. Another signal which was studied in the
literature in the context of optimal order execution is the order flow imbalance; we
refer to [12, 34, 7, 8] and references therein. More examples of trading signals being
used in practice can be found in a presentation by Almgren [2].

Consequently, one of the main challenges in the area of optimal trading with price
impact deals with the question of how to incorporate short term predictive signals
into a stochastic control framework of cost-risk minimization. Among the first to
address this issue were Cartea and Jaimungal [12] who showed how to account for a
Markovian signal in an optimal execution problem in the presence of linear temporary
and permanent price impact of Almgren and Chriss [3] type. Their framework was
then further generalized by Lehalle and Neuman [29], Section 3, and by Belak et al.
[9] who also allowed for non-Markovian finite variation signals; see also Casgrain and
Jaimungal [14] for incorporating latent factors into the modeling framework of [12].
Subsequently, a Markovian signal and transient price impact for a general class of im-
pact decay kernels as proposed by Gatheral et al. [22] were first confronted in Lehalle
and Neuman [29], Section 2. In contrast to purely temporary price impact, transient
impact on execution prices persists and decays over a certain period of time after each
trade. As a consequence, optimal trading strategies in the presence of purely tran-
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sient price impact are typically singular. Indeed, they tend to trigger a displacement
of the market price from its unaffected level via an instantaneous non-infinitesimal
block trade in order to systematically exploit the successively decaying impact at a
finite trading rate as, e.g., illustrated by the explicit results in Obizhaeva and Wang
[33]. Mathematically, this renders the analysis of optimal signal-adaptive trading
strategies with transient price impact much more intricate. A remedy, employed by
the authors in [29], consists of confining to deterministic (or static) strategies which
only use information of the predictive signal at initial time. The important ques-
tion about existence and characterization of an optimal signal-adaptive strategy with
transient price impact was left open. In fact, in Bellani et al. [10] it was shown that
a strategy which is updated by information from the signal several times during the
liquidation period can significantly improve the trading performance compared to an
optimal static strategy. A partial solution to this problem was proposed by Lorenz and
Schied [32], who considered an execution model with exponentially decaying transient
price impact, but without including a risk-aversion term in the cost functional. Un-
der the assumption that the signal is absolutely continuous with a square integrable
derivative the optimal adapted strategy was derived. Moreover, since only transient
price impact was considered in the model of [32], the optimal strategy is singular and
involves block trades. We will show in this paper that once assuming that the price
impact is both transient and temporary, we can omit these regularity assumptions on
the signal and obtain absolutely continuous optimal trading strategies. In addition,
we show that the influence of the risk-aversion term in the cost functional changes
drastically the qualitative behaviour of the optimal trading speed.

The main result in the present paper gives an answer to the open question from [29].
Specifically, in order to optimize trading costs in the presence of exponentially decay-
ing transient price impact as proposed by Obizhaeva and Wang [33] over a sensible
set of strategies adapted to the signal’s filtration, we adopt the price impact model
from Gârleanu and Pedersen [20]. We incorporate into the trader’s cost-risk func-
tional besides a linear transient price impact component à la Obizhaeva-Wang also
a linear temporary price impact component of Almgren-Chriss type. This unifying
framework with temporary and transient price impact quadratically smoothens the
problem and rules out singular optimizers by naturally constraining strategies to be
absolutely continuous. Moreover, it turns out that the probabilistic and convex ana-
lytic calculus of variations approach from Bank et al. [6] can be brought to bear to
compute explicitly optimal signal-adaptive strategies, also in a setup which allows for
more general non-Markovian signals compared to [29, 20, 32]. Following the anal-
ysis in [20], the crucial idea is to introduce the displacement of the execution price
from its unaffected level due to transient price impact as an additional state variable.
Then, similar to [6] the optimal control is characterized by a system of coupled linear
forward-backward stochastic differential equations (FBSDEs) which is augmented by
a linear forward equation for the transient price distortion as well as an associated ad-
joint linear backward SDE. This linear system can be decoupled and solved in closed
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form. Its solution provides an explicit description of the optimal trading rate. It turns
out that the transient price distortion provides together with the predictive signal an
additional predictor for future price changes. Accordingly, the optimal trading rate
compensates the exploitation of the predictive signal with the incurred transient price
impact.

Our results in this paper improve the results of Cartea and Jaimungal [12] and Be-
lak et al. [9] as we additionally allow for transient price impact. In our setting the
optimal strategy depends on the entire trading trajectory, unlike the Markovian op-
timal strategies in the strictly instantaneous price impact case. Our main results also
generalize the results of Graewe and Horst [24], Chen et al. [15], Gatheral et al. [22],
Schied et al. [36] and Strehle [37], who study optimal liquidation with both temporary
and transient price impact, but without a predictive price signal. This class of prob-
lems typically leads to deterministic optimal strategies. However, signal-adaptive
optimal execution schedules have major practical significance, as described above.
Finally, our paper is also related to a very recent work by Forde et al. [18], where
an optimal liquidation problem with power-law transient price impact and Gaussian
signals is studied.

Our findings also relate to a class of optimal portfolio choice problems: see,
e.g., Gârleanu and Pedersen [20], and Ekren and Muhle-Karbe [17] for a setup of
a portfolio optimizing agent that tries to exploit partially predictable returns while
facing linear temporary and transient price impact. Unlike in our optimal execution
framework, the trading time horizon in these optimal investment problems is infi-
nite, and the agent perpetually invests simultaneously in a few assets having their
own signals. The ansatz for the value function is typically a second order polynomial,
which makes the derivation of the latter as well as the corresponding optimal strategy
much easier than in the parabolic case where the time horizon is finite. Moreover,
both [20] and [17] study a Markovian setup via dynamic programming techniques:
[20] describes the optimal trading rate where the predictable returns are driven by a
jump-diffusion process, an assumption which is not needed in the present paper since
we allow a general signal in our model; [17] studies the case where the signal is a
Markovian diffusion process which interacts with the asset prices through their drift
vector and covariance matrix. They derive an asymptotic optimal trading strategy in
the case when both temporary and transient price impact tend to zero. In contrast,
we derive the optimal strategy not under the restriction of vanishing price impact.

The rest of the paper is organized as follows. In Section 2 we introduce our
optimal execution problem with temporary and transient price impact and predictable
finite-variation signal. Our main result, an explicit solution to our optimal stochastic
control problem, is presented in Section 3. Section 4 contains some illustrations. The
technical proofs are deferred to Section 5.

4



2 Model setup and problem formulation

Motivated by Lehalle and Neuman [29] we introduce in the following a variant of
the optimal signal-adaptive trading problem with transient price impact which was
studied in Section 2 therein.

Let T > 0 denote a finite deterministic time horizon and fix a filtered prob-
ability space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions of right continu-
ity and completeness. The set H2 represents the class of all (special) semimartin-
gales P = (Pt)0≤t≤T whose canonical decomposition P = M̄ + A into a (local) mar-
tingale M̄ = (M̄t)0≤t≤T and a predictable finite-variation process A = (At)0≤t≤T
satisfies

E
[
〈M̄〉T

]
+ E

[(∫ T

0

|dAs|
)2
]
<∞. (2.1)

We consider a trader with an initial position of x > 0 shares in a risky asset. The
number of shares the trader holds at time t ∈ [0, T ] is prescribed as

Xu
t , x−

∫ t

0

usds (2.2)

where (us)s∈[0,T ] denotes her selling rate which she chooses from a set of strategies

A ,

{
u : u progressively measurable s.t. E

[∫ T

0

u2sds

]
<∞

}
. (2.3)

We assume that the trader’s trading activity causes price impact on the risky asset’s
execution price in the sense that her orders are filled at prices

St , Pt − λut − κY u
t (0 ≤ t ≤ T ), (2.4)

where P denotes some unaffected price process in H2 and

Y u
t , e−ρty + γ

∫ t

0

e−ρ(t−s)usds (0 ≤ t ≤ T ) (2.5)

with some y > 0. Specifically, motivated by Gârleanu and Pedersen [20] the trader’s
trading not only instantaneously affects the execution price in (2.4) in an adverse
manner through linear temporary price impact λ > 0 à la Almgren and Chriss [3];
it also induces a longer lasting price distortion Y u because of linear transient price
impact κ > 0 and γ > 0 as proposed by Obizhaeva and Wang [33]. We assume that
the transient price impact, which starts from an initial value y > 0, persists and
decays only gradually over time at some exponential resilience rate ρ > 0. Also note
that the unaffected price process P ∈ H2 includes a general signal process A which
is observed by the trader.
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We now suppose that the trader’s optimal trading objective is to unwind her
initial position x > 0 in the presence of temporary and transient price impact, along
with taking into account the asset’s general price signal A, through maximizing the
performance functional

J(u) , E

[∫ T

0

(Pt − κY u
t )utdt− λ

∫ T

0

u2tdt+Xu
TPT

− φ
∫ T

0

(Xu
t )2dt− %(Xu

T )2

] (2.6)

via her selling rate u ∈ A. The interpretation is as follows (cf. also Remark 2.1.1.)
below). The first three terms in (2.6) represent the trader’s terminal wealth; that
is, her final cash position including the accrued trading costs which are induced by
temporary and transient price impact as prescribed in (2.4), as well as her remaining
final risky asset position’s book value. The fourth and fifth terms in (2.6) implement
a penalty φ > 0 and % > 0 on her running and terminal inventory, respectively. Also
observe that J(u) <∞ for any admissible strategy u ∈ A.

Our main goal in this paper is to solve the corresponding optimal stochastic control
problem

J(u)→ max
u∈A

. (2.7)

Remark 2.1. 1. In case of purely temporary price impact, i.e., κ = 0, the perfor-
mance functional in (2.6) and the associated optimization problem in (2.7) is
quite standard in the literature on optimal trading and execution problems. It
was first introduced by [1, 19] and then subsequently studied, e.g., in [35, 4, 25,
12, 29, 9].

2. Our problem formulation in (2.6) with temporary and transient price impact is
very similar to the framework introduced in Gârleanu and Pedersen [20] which
was then further analyzed by Ekren and Muhle-Karbe [17]. In contrast to their
setup, we focus on a finite time horizon T <∞. We also allow for more general
price signal processes A and not only a linear factor process as in [20] or a
Markovian diffusion-type process as in [17]. Moreover, we obtain an explicit
solution to our optimization problem in (2.7), akin to the results established
by [20] in their simpler framework, and do not necessitate an asymptotic analysis
as carried out in [17].

3. As mentioned at the beginning of this section our framework presented above
also aims at following up on the optimal signal-adaptive trading problem in
the presence of transient price impact which was studied in Section 2 of [29].
Therein, the authors confine themselves to analyze only deterministic optimal
strategies. Indeed, optimal strategies in a purely transient price impact setup
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are typically singular (cf., e.g., [33, 22, 32, 5]) which renders the analysis for
signal-adaptive strategies mathematically much more intricate. As a remedy, we
adopt the approach from [20]. We incorporate into the cost functional in (2.6)
in addition to the transient price impact also a temporary impact component
via λ > 0 which rules out singular optimizers. This quadratically smoothens
the problem and very naturally constrains strategies to be absolutely continuous.
Also note that we do not require the signal processes A to be an integrated
Markov process as in [29].

4. For A ≡ 0, that is, without price signal process, but with terminal liquidation
constraint Xu

T = 0 P-a.s. the above optimization problem in (2.7) was studied
in Graewe and Horst [24] allowing for stochastic resilience and temporary price
impact processes (ρt)0≤t≤T and (λt)0≤t≤T , respectively. For the corresponding
explicitly available deterministic solution in the case of constant coefficients and
φ = 0 we refer to [15]. As, e.g, in [12, 29, 9], we do not incorporate a terminal
state constraint in our optimization problem in (2.7). Note, however, that the
terminal penalty % > 0 on the remaining risky asset position allows to virtually
enforce a liquidation constraint by choosing a large value for % (see also the
illustrations in Section 4 below).

3 Main result

Our main result is an explicit description of the optimal strategy for problem (2.7).
To state our result it is convenient to introduce for

L ,


0 0 −1 0
0 −ρ γ 0
−φ/λ κρ/(2λ) 0 ρ/(2λ)

0 0 κγ ρ

 ∈ R4×4 (3.1)

the functions S(t) = (Sij(t))1≤i,j≤4 given by the matrix exponential

S(t) , eLt (t ≥ 0). (3.2)

We further define G(t) = (Gi(t))1≤i≤4 as

G(t) , (%/λ,−κ/(2λ),−1, 0)S(t) (t ≥ 0) (3.3)

and let

v0(t) ,

(
1− G4(t)

G3(t)

S4,3(t)

S4,4(t)

)−1
, v1(t) ,

G4(t)

G3(t)

S4,1(t)

S4,4(t)
− G1(t)

G3(t)
,

v2(t) ,
G4(t)

G3(t)

S4,2(t)

S4,4(t)
− G2(t)

G3(t)
, v3(t) ,

G4(t)

G3(t)

(3.4)
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for all t ∈ [0,∞). The functions (S4,j(t))1≤j≤4 and (Gi(t))1≤i≤4 can be computed
explicitly and are given in (5.25)-(5.28) and (5.29)-(5.32), respectively, in Section 5.2
below. Lemma 5.5 therein also shows that v1(·), v2(·), v3(·) are well-defined. In addi-
tion, we make following assumption below (see also Remark 3.4.1.).

Assumption 3.1. We assume that the set of parameters ξ , (λ, γ, κ, ρ, %, φ, T ) ∈ R7
+

are chosen such that

G3(T − t)S4,4(T − t) 6= G4(T − t)S4,3(T − t) (0 ≤ t ≤ T ). (3.5)

Finally, let Et denote the expectation conditioned on Ft for all t ∈ [0, T ]. We are
now ready to state our main theorem.

Theorem 3.2. Under Assumption 3.1, there exists a unique optimal strategy û ∈ A
to problem (2.7). It is given in linear feedback form via

ût = v0(T − t)

(
v1(T − t)X û

t + v2(T − t)Y û
t

+
1

2λ

(
v3(T − t)Et

[∫ T

t

S4,3(T − s)
S4,4(T − t)

dAs

]
− Et

[∫ T

t

G3(T − s)
G3(T − t)

dAs

])) (3.6)

for all t ∈ (0, T ).

The proof of Theorem 3.2 is deferred to Section 5.1. We observe that the optimal
trading rate û in (3.6) is affine-linear in both the current inventory X û as well as
the current price distortion Y û. The affine part comes from the general predictive
signal A. In particular, it turns out that the transient price displacement from the
unaffected level serves as an additional predictor for future price changes. As a conse-
quence, the optimal trading rate trades off exploiting the predictive signal A against
incurring transient price distortion Y û. These findings generalize the observations
made in Gârleanu and Pedersen [20] for optimal portfolio choice problems with in-
finite horizon in a Markovian setup. Put differently, the optimal stock holdings X û

prescribed by the optimal selling rate û in (3.6) together with the optimally con-
trolled price distortion Y û in (2.5) solve a two-dimensional system of coupled linear
(random) ordinary differential equations. Its solution can be computed numerically
via the associated fundamental solution. Specifically, introducing the process

ζ̂t ,
v0(T − t)

2λ

(
v3(T − t)Et

[∫ T

t

S4,3(T − s)
S4,4(T − t)

dAs

]
−Et

[∫ T

t

G3(T − s)
G3(T − t)

dAs

])
(3.7)

as well as the matrix-valued function

B(t) ,

(
−v0(T − t)v1(T − t) −v0(T − t)v2(T − t)
γv0(T − t)v1(T − t) γv0(T − t)v2(T − t)− ρ

)
(3.8)

for all t ∈ [0, T ], we obtain following
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Corollary 3.3. Under Assumption 3.1 let Φ(t) ∈ R2×2 be the unique nonsingular
fundamental solution to the matrix differential equation

Φ(0) = I, Φ̇(t) = B(t)Φ(t) (0 ≤ t ≤ T ) (3.9)

with identity matrix I ∈ R2×2 and B as defined in (3.8). Then the optimal stock
holdings X û and the corresponding optimally controlled price distortion Y û of the
optimal strategy û from Theorem 3.2 are given by(

X û
t

Y û
t

)
= Φ(t)

((
x
y

)
+

∫ t

0

ζ̂s Φ−1(s) b ds

)
, (3.10)

where b , (−1, γ)> ∈ R2.

Again, the proof of Corollary 3.3 can be found in Section 5.1.

Remark 3.4. 1. Assumption 3.1 merely ensures that v0(·) in (3.4) is well-defined.
In fact, showing that (3.5) holds for any values of parameters ξ ∈ R7

+ seems
intractable. However, given a set of parameters ξ and verifying that (3.5) is sat-
isfied is an easy task by using the explicit formulas for S4,3, S4,4, G3, G4 in (5.27),
(5.28), (5.31), (5.32). We numerically checked this for all ξ ∈ [0, 100]7, which
includes all reasonable values of parameters.

2. The special case where κ = 0 in the performance functional in (2.6), i.e., consid-
ering only temporary price impact, corresponds to Belak et al. [9], and Lehalle
and Neuman [29], Section 3. One can check with the explicit expressions from
Section 5.2 that our result in Theorem 3.2 retrieves the optimal solution from [9],
Theorem 3.1, as well as, in a Markovian setting, from [29], Proposition 3.2, in
the limiting case when κ tends to zero.

3. Note that our optimal strategy in Theorem 3.2 is adapted to the underlying
filtration (Ft)0≤t≤T and hence steadily updates its information about the price
signal process A. This is in stark contrast to the signal-adaptive optimal trad-
ing framework with transient price impact studied in Lehalle and Neuman [29],
Section 2, where strategies are confined to be static (i.e., deterministic), taking
only the information of the price signal at initial time 0 into account.

4 Illustration

Similar to Lehalle and Neuman [29] we will illustrate in this section our main result
in the special case where the signal process A is given by

At =

∫ t

0

Isds (t ≥ 0) (4.1)
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with I = (It)t≥0 following an autonomous Ornstein-Uhlenbeck process with dynamics

I0 = ι, dIt = −βIt dt+ σ dWt (t ≥ 0). (4.2)

Here, W = (Wt)t≥0 denotes a standard Brownian motion which is defined on our
underlying filtered probability space and β, σ > 0 are some constants. Having at
hand our general result from Theorem 3.2 we immediately obtain following optimal
trading strategy in this case.

Corollary 4.1. Assume that the signal process A is given by (4.1). Then the unique
optimal trading rate û ∈ A from Theorem 3.2 simplifies to

ût = v0(T − t)

(
v1(T − t)X û

t + v2(T − t)Y û
t (4.3)

+
It
2λ

(
v3(T − t)

∫ T

t

e−β(s−t)
S4,3(T − s)
S4,4(T − t)

ds−
∫ T

t

e−β(s−t)
G3(T − s)
G3(T − t)

ds

))
.

for all t ∈ (0, T ).

Remark 4.2. Observe that the optimal trading rate in (4.3) is signal-adaptive, i.e.,
adapted to the filtration generated by I, in contrast to the optimal solution presented
in Section 2.3 of [29].

In Figures 1 to 4 we plot the signal-adaptive optimal liquidation inventory X̂ ,
(X û

t )0≤t≤T with initial position x = 10 along with the corresponding optimal selling
rate (û)0≤t≤T and optimally controlled price distortion Ŷ , (Y û

t )0≤t≤T with y = 0
obtained from Corollary 4.1 (by using also Corollary 3.3) for three different realisations
of the signal process (At)0≤t≤T in (4.1). The trader’s planning horizon is T = 10. As
for the model parameters, we fix the values

κ = 1, γ = 1, ρ = 1, λ = 0.5, φ = 0.1, % = 10, (4.4)

as well as
ι = 1, β = 0.1, σ = 0.5, (4.5)

similar to the parameters in [29] (cf. also the empirical analysis in Section 4.2 therein).
As mentioned in Remark 3.4.1. above, one can easily check that Assumption 3.1
holds true with this set of parameter values. We also compare graphically our signal-
adaptive optimal liquidation strategy X̂ with (i) the inventory X̃ , (X̃t)0≤t≤T and
corresponding induced price distortion trajectory Ỹ , (Ỹt)0≤t≤T which ignores the
price signal, i.e., I ≡ 0 in (4.3); (ii) the optimal signal-adaptive inventory trajectory
X̄ , (X̄t)0≤t≤T for the purely temporary price impact case from Theorem 3.1 in [9].
Note that the former is simply the optimal strategy for the maximization problem
in (2.7) where the trader presumes that the unaffected price process P has no signal,
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signal's rate It

price signal At

2 4 6 8 10
time t

1

2

3

4

5

Scenario 1

price signal At

optimal signal-adaptive inventory X t

optimal signal-adaptive selling rate u t

2 4 6 8 10
time t

2

4

6

8

10

Figure 1: Upper panel: Realization of the signal rate It (solid grey) and corresponding
signal process At (dashed green). Lower panel: Optimal signal-adaptive inventory
(solid blue) and corresponding selling rate (solid black) for the same signal process
(dashed green) as in the upper panel.
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price signal At

optimal signal-adaptive inventory X t

optimal signal-adaptive price distortion -Y t

inventory X
˜
t w/o signal

price distortion -Y
˜
t w/o signal

optimal inventory X t from Belak et al.

2 4 6 8 10
time t

-2

2

4

6

8

10

Scenario 1

Figure 2: Comparison between the optimal signal-adaptive inventory (solid blue) and
corresponding price distortion (dashed blue) with the optimal inventory (solid red)
and corresponding price distortion (dashed red) ignoring the signal, as well as with the
optimal signal-adaptive inventory with purely temporary price impact (solid yellow)
for the same signal process (dashed green) as in Figure 1.
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price signal At

optimal signal-adaptive inventory X t

optimal signal-adaptive selling rate u t

2 4 6 8 10
time t

-10
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5
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Scenario 2

price signal At

optimal signal-adaptive inventory X t

optimal signal-adaptive price distortion -Y t

inventory X
˜
t w/o signal

price distortion -Y
˜
t w/o signal

optimal inventory X t from Belak et al.

2 4 6 8 10
time t

-10

-5

5

10

Figure 3: Upper panel: Similar to the lower panel of Figure 1, optimal signal-adaptive
inventory (solid blue) and corresponding selling rate (solid black) for a strongly de-
creasing price signal process (dashed green). Lower panel: Similar to Figure 2, com-
parison of the different optimal inventory and corresponding price distortion trajec-
tories for the same signal process (dashed green) as in the upper panel.

13



price signal At

optimal signal-adaptive inventory X t

optimal signal-adaptive selling rate u t
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Scenario 3

price signal At

optimal signal-adaptive inventory X t

optimal signal-adaptive price distortion -Y t

inventory X
˜
t w/o signal

price distortion -Y
˜
t w/o signal

optimal inventory X t from Belak et al.

2 4 6 8 10
time t

5
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15
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Figure 4: Upper panel: Similar to the upper panel of Figure 3, optimal signal-adaptive
inventory (solid blue) and corresponding selling rate (solid black) for a strongly in-
creasing price signal process (dashed green). Lower Panel: Similar to the lower panel
of Figure 3, comparison of the different optimal inventory and corresponding price
distortion trajectories.
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and the latter corresponds to the optimal strategy where κ = 0 in (2.6), i.e., the
trader ignores transient price distortion.

Figure 1 on the upper panel shows a realization of the Ornstein-Uhlenbeck signal
rate process (It)0≤t≤T as in (4.2) in solid grey together with the resulting price signal
process (At)0≤t≤T from (4.1) in dashed green. On the lower panel, we illustrate the
corresponding optimal signal-adaptive inventory X̂ together with its selling rate û.
In Figure 2 we compare the optimal signal-adaptive inventory X̂ and corresponding
price distortion Ŷ (depicted in solid and dashed blue, respectively) for the same price
signal trajectory from Figure 1 with the optimal inventory X̃ and price distortion Ỹ
ignoring the signal (depicted in solid and dashed red, respectively). We also plot
in solid yellow the optimal inventory X̄ for the purely temporary price impact case.
Interestingly, one can observe some differences between the optimal strategies within
the different frameworks. As expected, in contrast to the strictly decreasing inven-
tory X̃ ignoring the price signal process, the signal-adaptive inventories X̂ and X̄
utilize their information about the upward trend of the latter and slow down the
liquidation of the risky asset midway. Moreover, the inventory X̄ taking into account
only temporary price impact does so more aggressively which results in trading also in
the opposite direction and buying some shares of the risky asset amid its liquidation
schedule.

Figures 3 and 4 illustrates in similar fashion the optimal inventory, selling rate and
price distortion trajectories for two extreme scenarios: A strongly decreasing price
signal (Figure 3) and a strongly increasing price signal (Figure 4). Again, we observe
that in a purely temporary price impact setup the trader tends to take more risks
by trading more boldly in the opposite direction to her selling intentions in order to
profit from the perceived information about the price signal’s tendencies. In fact,
recall that the feedback form of the optimal selling rate û in (4.3) compensates for
the induced price distortion Y û. It is therefore sensible to expect that this results
in the observed deceleration of the overall turnover rate as shown by the graphs in
Figures 1 to 4.

5 Proofs

5.1 Proof of Theorem 3.2

In fact, the probabilistic and convex analytic calculus of variations approach from Bank
et al. [6] can be brought to bear to prove our main Theorem 3.2. Indeed, note that
for any u ∈ A the map u 7→ J(u) in (2.6) is strictly concave. Therefore, it admits a
unique maximizer characterized by the critical point at which the Gâteaux derivative

〈J ′(u), α〉 , lim
ε→0

J(u+ εα)− J(u)

ε
(5.1)
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of the functional J vanishes for any direction α = (αt)0≤t≤T ∈ A; see, e.g., [16]. The
Gâteaux derivative in (5.1) can be readily computed.
Lemma 5.1. For u ∈ A we have

〈J ′(u), α〉 = E

[∫ T

0

αs

(
Ps − κY u

s − κ
∫ T

s

e−ρ(t−s)γutdt− 2λus

+ 2φ

∫ T

s

Xu
t dt+ 2%Xu

T − PT

)
ds

] (5.2)

for any α ∈ A.

Proof. Let ε > 0 and u, α ∈ A. Note that Xu+εα
t = Xu

t − ε
∫ t
0
αsds and Y u+εα

t =

Y u
t + εγ

∫ t
0
e−ρ(t−s)αsds for all t ∈ [0, T ]. Next, since

J(u+ εα)− J(u)

= ε E

[∫ T

0

(Pt − κY u
t )αtdt− κ

∫ T

0

ut

(∫ t

0

e−ρ(t−s)γαsds

)
dt

− 2λ

∫ T

0

utαtdt+ 2φ

∫ T

0

Xu
t

(∫ t

0

αsds

)
dt

+ 2%Xu
T

∫ T

0

αsds− PT
∫ T

0

αsds

]

+ ε2 E

[
− κγ

∫ T

0

(∫ t

0

e−ρ(t−s)αsds

)
αtdt− λ

∫ T

0

α2
tdt

− φ
∫ T

0

(∫ t

0

αsds

)2

dt− %
(∫ T

0

αsds

)2
]

we obtain the desired result in (5.2) after applying Fubini’s theorem twice. Also
observe that all terms are finite since u, α ∈ A.

Given the explicit expression of the Gâteaux derivative in (5.2) we can now derive
a first order optimality condition. It takes the form of a coupled system of linear
forward backward stochastic differential equations.
Lemma 5.2. A control û ∈ A solves the optimization problem in (2.7) if and only if
the processes (X û, Y û, û, Z û) satisfy following coupled linear forward backward SDE
system

dXu
t = − utdt, Xu

0 = x

dY u
t = − ρY u

t dt+ γutdt, Y u
0 = y

dut =
dPt
2λ

+
κρY u

t

2λ
dt− φXu

t

λ
dt+

ρZu
t

2λ
dt+ dMt, uT =

%Xu
T

λ
− κY u

T

2λ
,

dZu
t = ρZu

t dt+ κγutdt+ dNt, Zu
T = 0,

(5.3)
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for two suitable square integrable martingales M = (Mt)0≤t≤T and N = (Nt)0≤t≤T .

Remark 5.3. The appearance of the auxiliary process Zu in the above FBSDE sys-
tem (5.3) is very natural in our setup because of the two-dimensional controlled state
variable (Xu, Y u) in (2.2) and (2.5). In fact, the two processes u and Zu satisfying
the BSDEs in (5.3) correspond to the two associated so-called adjoint processes which
are arising in Pontryagin’s stochastic maximum principle; see, e.g., Carmona [11],
Chapter 4.2.

Proof. Since we are maximizing the strictly concave functional u 7→ J(u) over A, a
necessary and sufficient condition for the optimality of û ∈ A with corresponding
controlled state processes X û and Y û in (2.2) and (2.5), respectively, is given by

〈J ′(û), α〉 = 0 for all α ∈ A;

cf., e.g., [16]. By Lemma 5.1 this condition is equivalent to

E

[∫ T

0

αs

(
Ps − κY û

s − κ
∫ T

s

e−ρ(t−s)γûtdt− 2λus

+ 2φ

∫ T

s

X û
t dt+ 2%X û

T − PT
)
ds

]
= 0

(5.4)

for all α ∈ A. In the following we will argue that û ∈ A with (X û, Y û) satisfies the
first order condition in (5.4) if and only if (X û, Y û, û, Z û) satisfy the FBSDE system
in (5.3).

Necessity: Although necessity follows from the uniqueness of the optimal solution
together with the sufficiency argument below, we give the complete proof here in
order to shed light on the derivation of the FBSDE system in (5.3).

Assume that û ∈ A maximizes J , i.e., the first order condition in (5.4) is satisfied.
Then, by applying optional projection we also obtain that

E
[∫ T

0

αs

(
Ps − κY û

s − κEs
[∫ T

s

e−ρ(t−s)γûtdt

]
− 2λûs

+Es
[
2φ

∫ T

s

X û
t dt+ 2%X û

T − PT
])

ds

]
= 0

(5.5)

for all α ∈ A. But this implies that

Ps − κY û
s − κeρsEs

[∫ T

s

e−ρtγûtdt

]
− 2λûs + Es

[
2φ

∫ T

s

X û
t dt+ 2%X û

T − PT
]

= Ps − κY û
s − κeρs

(
Es
[∫ T

0

e−ρtγûtdt

]
−
∫ s

0

e−ρtγûtdt

)
− 2λûs

+ Es
[
2φ

∫ T

0

X û
t dt+ 2%X û

T − PT
]
− 2φ

∫ s

0

X û
t dt

= 0 dP⊗ ds-a.e. on Ω× [0, T ].

(5.6)
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Now, by introducing the square integrable martingales

M̃s , Es
[
2φ

∫ T

0

X û
t dt+ 2%X û

T − PT
]
, Ñs , Es

[∫ T

0

e−ρtγûtdt

]
, (5.7)

as well as the auxiliary square integrable process

Z û
s , κeρs

(∫ s

0

e−ρtγûtdt− Ñs

)
(5.8)

for all s ∈ [0, T ] (note that PT ∈ L2(Ω,FT ,P) because of (2.1); and that u ∈ L2(P×
[0, T ]) which also implies X û

T ∈ L2(Ω,FT ,P)), we can rewrite (5.6) as

Ps − κY û
s − κeρs

(
Ñs −

∫ s

0

e−ρtγûtdt

)
− 2λûs + M̃s − 2φ

∫ s

0

X û
t dt

= Ps − κY û
s + Z û

s − 2λûs + M̃s − 2φ

∫ s

0

X û
t dt

= 0 dP⊗ ds-a.e. on Ω× [0, T ].

(5.9)

Note that Z û in (5.8) satisfies the BSDE

dZ û
t = ρZ û

t dt+ κγûtdt− κeρtdÑt, Z û
T = 0. (5.10)

Also observe that the controlled forward dynamics of Y û in (2.5) satisfy

Y û
0 = y, dY û

t = −ρY û
t dt+ γûtdt. (5.11)

Hence, it follows from the representation in (5.9) that û satisfies the BSDE

dûs =
dPs
2λ
− κ

2λ
dY û

s −
φX û

s

λ
ds+

ρZ û
s

2λ
ds+

κγ

2λ
ûsds+

dM̃s

2λ
− κeρs

2λ
dÑs

=
dPs
2λ

+
κρY û

s

2λ
ds− φX û

s

λ
ds+

ρZ û
s

2λ
ds+

dM̃s

2λ
− κeρs

2λ
dÑs,

ûT =
ρX û

T

λ
− κY û

T

2λ
.

(5.12)

Consequently, together with the forward dynamics of X û in (2.2), we can conclude
from (5.11), (5.12) and (5.10) that the processes (X û, Y û, û, Z û) satisfy the FBSDE
system in (5.3) with suitably chosen square integrable martingales M = (Mt)0≤t≤T
and N = (Nt)0≤t≤T in terms of M̃ = (M̃t)0≤t≤T and Ñ = (Ñt)0≤t≤T given in (5.7).

Sufficiency: Let us now assume that (X û, Y û, û, Z û) is a solution to the FBSDE
system in (5.3) and û ∈ A. We have to show that û with controlled states (X û, Y û)
satisfies the first order condition in (5.4) or, equivalently, in (5.5). To this end, first
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note that the unique strong solution û to the associated linear backward SDE in (5.3)
is indeed given by (5.9), i.e.,

2λûs = Ps − κY û
s − κeρs

(
Ñs −

∫ s

0

e−ρtγûtdt

)
+ M̃s − 2φ

∫ s

0

X û
t dt

with M̃ and Ñ as defined in (5.7). Plugging this into (5.4) and applying Fubini’s
theorem yields

E
[∫ T

0

αs

(
κeρs

(
Ñs −

∫ T

0

e−ρtγûtdt

)
− M̃s + 2φ

∫ T

0

X û
t dt+ 2%X û

T − PT
)
dt

]
= E

[∫ T

0

αs

(
κeρs

(
Ñs − ÑT

)
− M̃s + M̃T

)
dt

]
= E

[∫ T

0

αs

(
κeρs

(
Ñs − Es[ÑT ]

)
+ Es[M̃T ]− M̃s

)
dt

]
= 0

for all α ∈ A since Ñ and M̃ are martingales. Consequently, the first order condition
in (5.4) is satisfied and û ∈ A is optimal.

Proof of Theorem 3.2. Step 1: In view of Lemma 5.2 we have to solve the linear
FBSDE system in (5.3). One possibility to achieve this is to adapt the approach
in [9]. Introducing

Xu
t ,


Xu
t

Y u
t

ut
Zu
t

 , Mt ,


0
0

Pt − 2λMt

2λNt

 (0 ≤ t ≤ T ), (5.13)

the linear system in (5.3), together with matrix L in (3.1), can be written as

dXu
t = LXu

t dt+
1

2λ
dMt (0 ≤ t ≤ T ) (5.14)

with initial conditions Xu,1
0 = x, Xu,2

0 = y and terminal conditions

(%/λ,−κ/(2λ),−1, 0)Xu
T = 0 and (0, 0, 0, 1)Xu

T = 0. (5.15)

Observe that the unique solution of (5.14) can be represented in terms of the matrix
exponential S(t) = exp(At) = (Sij(t))1≤i,j,≤4 introduced in (2.4) as

Xu
T = S(T − t)Xu

t +
1

2λ

∫ T

t

S(T − s)dMs (0 ≤ t ≤ T ). (5.16)
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Next, following the same idea as in the proof of Theorem 3.1 in [9], we use the first
terminal condition in (5.15) and multiply (5.16) by (%/λ,−κ/(2λ),−1, 0) to obtain

0 = G(T − t)Xu
t +

1

2λ

∫ T

t

G(T − s)dMs

= G1(T − t)Xu
t +G2(T − t)Y u

t +G3(T − t)ut +G4(T − t)Zu
t

+
1

2λ

∫ T

t

G3(T − s)(dPs − 2λdMs) +

∫ T

t

G4(T − s)dNs (0 ≤ t ≤ T )

with G = (Gi)i=1,...,4 as defined in (3.3). Since G3(T − t) 6= 0 for all t ∈ [0, T ] (see
Lemma 5.5 (iii) below) we get

ut =− G1(T − t)
G3(T − t)

Xu
t −

G2(T − t)
G3(T − t)

Y u
t −

G4(T − t)
G3(T − t)

Zu
t

− 1

2λ

∫ T

t

G3(T − s)
G3(T − t)

(dPs − 2λdMs)−
∫ T

t

G4(T − s)
G3(T − t)

dNs (0 ≤ t ≤ T ).

Taking conditional expectation in the latter equation and using the fact that P ∈ H2,
as well as that M , N are square integrable martingales, we arrive at the identity

ut =− G1(T − t)
G3(T − t)

Xu
t −

G2(T − t)
G3(T − t)

Y u
t −

G4(T − t)
G3(T − t)

Zu
t

− 1

2λ
Et
[∫ T

t

G3(T − s)
G3(T − t)

dAs

]
(0 ≤ t ≤ T ).

(5.17)

Moreover, using also the second terminal condition in (5.15) and multiplying (5.16)
by (0, 0, 0, 1) gives us

0 = S4,·(T − t)Xu
t +

1

2λ

∫ T

t

S4,·(T − s)dMs

= S4,1(T − t)Xu
t + S4,2(T − t)Y u

t + S4,3(T − t)ut + S4,4(T − t)Zu
t

+
1

2λ

∫ T

t

S4,3(T − s)(dPs − 2λdMs) +

∫ T

t

S4,4(T − s)dNs (0 ≤ t ≤ T ),

where we used the notation S4,· = (S4,1, S4,2, S4,3, S4,4). Since S4,4(T − t) 6= 0 for all
t ∈ [0, T ] (see Lemma 5.5 (ii) below), solving for Zu and taking once more conditional
expectation as above yields

Zu
t =− S4,1(T − t)

S4,4(T − t)
Xu
t −

S4,2(T − t)
S4,4(T − t)

Y u
t −

S4,3(T − t)
S4,4(T − t)

ut

− 1

2λ
Et
[∫ T

t

S4,3(T − s)
S4,4(T − t)

dAs

]
(0 ≤ t ≤ T ).

(5.18)

20



Finally by (3.5), v0 in (3.4) is well-defined. Hence, plugging (5.18) into (5.17) and
solving for u yields

ut = v0(T − t)
(
G4(T − t)
G3(T − t)

S4,1(T − t)
S4,4(T − t)

− G1(T − t)
G3(T − t)

)
Xu
t

+ v0(T − t)
(
G4(T − t)
G3(T − t)

S4,2(T − t)
S4,4(T − t)

− G2(T − t)
G3(T − t)

)
Y u
t

+
1

2λ
v0(T − t)

(
G4(T − t)
G3(T − t)

Et
[∫ T

t

S4,3(T − s)
S4,4(T − t)

dAs

]
− Et

[∫ T

t

G3(T − s)
G3(T − t)

dAs

])
as claimed in (3.6).

Step 2: It remains to argue that û in (3.6) belongs toA. First, due to Lemma 5.5 (i)
and assumption (3.5) we can conclude that

sup
0≤t≤T

|v0(T − t)| <∞.

Together with Lemma 5.5 (ii) and (iii) it then follows that the coefficients in front of
X û and Y û in (3.6) are bounded on [0, T ]. By the same arguments we obtain that
there exists a constant C > 0 such that

sup
0≤t≤T

{
G4(T − t)
G3(T − t)

Et
[∫ T

t

S4,3(T − s)
S4,4(T − t)

dAs

]
− Et

[∫ T

t

G3(T − s)
G3(T − t)

dAs

]}
≤ C E

[∫ T

0

|dAt|
]
<∞

due to (2.1). Together with (2.2) and (2.5) we use these bounds in (3.6) to get

E[û2t ] ≤ C1 + C2

∫ t

0

E[û2s] ds (0 ≤ t ≤ T )

for some positive constants C1, C2. From Gronwall’s lemma it then follows that

sup
0≤t≤T

E[û2t ] <∞,

so clearly û ∈ A by Fubini’s theorem.

Proof of Corollary 3.3. Simply observe that the optimally controlled state variable
Xû = (X û, Y û) prescribed in (3.6) and (2.5) satisfies following two-dimensional linear
(random) ordinary differential equation

Xû
0 = (x, y), dXû

t = B(t)Xû
t dt+ ζ̂t b dt (0 ≤ t ≤ T ) (5.19)

with (ζ̂t)0≤t≤T as given in (3.7) and b = (−1, γ)> ∈ R2. Hence, it follows from
standard existence and uniqueness results for linear ODEs (cf., e.g., Karatzas and
Shreve [27], Section 5.6, and the references therein) that Xû is given by

Xû
t = Φ(t)

(
Xû

0 +

∫ t

0

ζ̂s Φ−1(s) b ds

)
(0 ≤ t ≤ T ),
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where Φ denotes the unique nonsingular solution to the matrix differential equation
in (3.9).

5.2 Computing the matrix exponential

To compute the matrix exponential S(t) = (Sij(t))0≤i,j≤4 = eLt for all t ∈ [0,∞) in
(3.2) we diagonalize matrix L in (3.1), i.e., decompose L = UDU−1 with diagonal
matrix D ∈ R4×4 and invertible matrix U ∈ R4×4. Then, it follows that

S(t) = UeDtU−1 (t ≥ 0), (5.20)

where eDt ∈ R4×4 is again a diagonal matrix. Introducing the constants θ , λρ2 +
ρκγ + φ, as well as

c1 ,
θ

λ
> 0, c2 ,

√
(θ − 2φ)2 + 4φρκγ

λ2
> 0, (5.21)

it can be easily checked that the eigenvalues of A are given by

ν1 , −
√
c1 − c2

2
, ν2 , −ν1, ν3 , −

√
c1 + c2

2
, ν4 , −ν3, (5.22)

with corresponding eigenvectors

vi ,


ρ−νi
κγνi
νi−ρ

κ(νi+ρ)
νi−ρ
κγ

1

 (i = 1, 2, 3, 4).

Also note that c1− c2 > 0 in (5.22): Indeed, c1 > c2 is equivalent to θ2 > (θ− 2φ)2 +
4φρκγ and hence to −4φλρ2 < 0, which is satisfied. Consequently, we obtain that

D ,


ν1 0 0 0
0 −ν1 0 0
0 0 ν3 0
0 0 0 −ν3

 , U ,


−ν1−ρ

κγν1
−ν1+ρ

κγν1
−ν3−ρ

κγν3
−ν3+ρ

κγν3
ν1−ρ

κ(ν1+ρ)
ν1+ρ

κ(ν1−ρ)
ν3−ρ

κ(ν3+ρ)
ν3+ρ

κ(ν3−ρ)
ν1−ρ
κγ

−ν1+ρ
κγ

ν3−ρ
κγ

−ν3+ρ
κγ

1 1 1 1

 (5.23)

satisfy L = UDU−1 with

U−1 =

1

4ρ2(ν21 − ν23)
−2γκν1ν

2
3(ν1 + ρ) −κ(ν21 − ρ2)(ν23 − ρ2) 2γκρ2(ν1 + ρ) −(ν23 − ρ2)(ν1 + ρ)2

−2γκν1ν
2
3(ν1 − ρ) −κ(ν21 − ρ2)(ν23 − ρ2) −2γκρ2(ν1 − ρ) −(ν23 − ρ2)(ν1 − ρ)2

2γκν21ν3(ν3 + ρ) κ(ν21 − ρ2)(ν23 − ρ2) −2γκρ2(ν3 + ρ) (ν21 − ρ2)(ν3 + ρ)2

2γκν21ν3(ν3 − ρ) κ(ν21 − ρ2)(ν23 − ρ2) 2γκρ2(ν3 − ρ) (ν21 − ρ2)(ν3 − ρ)2

 .
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Thus, the matrix exponential S(t) = (Sij(t))1≤i,j≤4 in (3.2) is given by

S(t) = U


eν1t 0 0 0
0 e−ν1t 0 0
0 0 eν3t 0
0 0 0 e−ν3t

U−1 (t ≥ 0). (5.24)

In particular, due to the fact that all entries in the last row of U in (5.23) are equal
to one, we easily get that the functions (S4,j(T − t))1≤j≤4 are given by

S4,1(T − t) =
γκν1ν3

ρ2(ν21 − ν23)

(
ν1ν3 cosh(ν3(T − t))− ν1ν3 cosh(ν1(T − t))

+ ρν1 sinh(ν3(T − t))− ρν3 sinh(ν1(T − t))
)
, (5.25)

S4,2(T − t) =
κ(ν21 − ρ2)(ν23 − ρ2)

2ρ2(ν21 − ν23)

(
cosh(ν3(T − t))− cosh(ν1(T − t))

)
, (5.26)

S4,3(T − t) =
γκ

ν21 − ν23

(
ν1 sinh(ν1(T − t))− ν3 sinh(ν3(T − t))

+ ρ cosh(ν1(T − t))− ρ cosh(ν3(T − t))
)
, (5.27)

S4,4(T − t) =
1

2ρ2(ν21 − ν23)

((
ν21 − ρ2

)(
ν23 + ρ2

)
cosh(ν3(T − t))

−
(
ν21 + ρ2

)(
ν23 − ρ2

)
cosh(ν1(T − t))

+ 2ρν3
(
ν21 − ρ2

)
sinh(ν3(T − t))

− 2ρν1
(
ν23 − ρ2

)
sinh(ν1(T − t))

)
(5.28)

for all t ∈ [0, T ]. In addition, slightly more involved but still elementary computations
reveal that the functions G(t) = (Gi(t))1≤1≤4 = (%/λ,−κ/(2λ),−1, 0)S(t) introduced
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in (3.3) are given by

G1(T − t) =
1

2λρ2(ν21 − ν23)
(5.29)((

2%ν23(ν21 − ρ2) + γκν21ν
2
3

)
cosh(ν1(T − t))

+
(
2λν1ν

2
3(ν21 − ρ2)− γκρν1ν23

)
sinh(ν1(T − t))

−
(
2%ν21(ν23 − ρ2) + γκν21ν

2
3

)
cosh(ν3(T − t))

−
(
2λν21ν3(ν

2
3 − ρ2)− γκρν21ν3

)
sinh(ν3(T − t))

)
,

G2(T − t) =
1

4γλρ2ν1ν3(ν21 − ν23)
(5.30)(

ν1ν3(ν
2
3 − ρ2)

(
2(ν21 − ρ2)(%− λρ) + γκ(ν21 + ρ2)

)
cosh(ν1(T − t))

− ν3(ν23 − ρ2)
(
2(ν21 − ρ2)(%ρ− λν21) + 2γκρν21

)
sinh(ν1(T − t))

− ν1ν3(ν21 − ρ2)
(
2(ν23 − ρ2)(%− λρ) + γκ(ν23 + ρ2)

)
cosh(ν3(T − t))

+ ν1(ν
2
1 − ρ2)

(
2(ν23 − ρ2)(%ρ− λν23) + 2γκρν23

)
sinh(ν3(T − t))

)
,

G3(T − t) =
1

2λν1ν3(ν21 − ν23)
(5.31)(

ν1ν3
(
γκρ− 2λ(ν21 − ρ2)

)
cosh(ν1(T − t))

− ν3
(
γκν21 + 2%(ν21 − ρ2)

)
sinh(ν1(T − t))

− ν1ν3
(
γκρ− 2λ(ν23 − ρ2)

)
cosh(ν3(T − t))

+ ν1
(
γκν23 + 2%(ν23 − ρ2)

)
sinh(ν3(T − t))

)
,

G4(T − t) =
(ν21 − ρ2)(ν23 − ρ2)

4γκλρ2ν1ν3(ν21 − ν23)
(5.32)(

ν1ν3
(
2%+ γκ+ 2λρ

)
cosh(ν1(T − t))

+ 2ν3
(
ρ%+ λν21

)
sinh(ν1(T − t))

− ν1ν3
(
2%+ γκ+ 2λρ

)
cosh(ν3(T − t))

− 2ν1
(
ρ%+ λν23

)
sinh(ν3(T − t))

)
for all t ∈ [0, T ]. Finally, let us collect some useful properties of the eigenvalues ν1
and ν3 and the functions S4,j(·), Gj(·) for all j ∈ {1, . . . , 4}.

Lemma 5.4. For any positive constants λ, γ, κ, ρ, φ we have

ν21 ≤ ρ2 ≤ ν23 (5.33)

with ν1 and ν3 given in (5.22).
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Proof. First, from (5.21) and (5.22) we get

ν21 − ρ2 =
φ+ γκρ− λρ2 −

√
4γκφρ+ (φ− ρ(γκ+ λρ))2

2λ

and we argue that
ν21 − ρ2 < 0 (5.34)

by considering following two cases: if φ + γκρ− λρ2 ≤ 0, then (5.34) holds trivially.
Otherwise, if φ + γκρ− λρ2 > 0, then (5.34) is equivalent to −4λρ3κγ < 0, which is
satisfied. Next, again due to (5.21) and (5.22) we have

ν23 − ρ2 =
φ+ γκρ− λρ2 +

√
4γκφρ+ (φ− ρ(γκ+ λρ))2

2λ
,

and we obtain similarly that
ν23 − ρ2 > 0. (5.35)

Indeed, if φ+γκρ−λρ2 ≥ 0, then (5.35) holds trivially. Otherwise, if φ+γκρ−λρ2 < 0,
then (5.35) is again equivalent to −4λρ3κγ < 0, which is satisfied. Finally, (5.34)
and (5.35) imply (5.33).

Lemma 5.5. For any positive constants λ, γ, κ, ρ, %, φ, T we have

(i)

sup
0≤t≤T

|S4,j(T − t)| <∞ and sup
0≤t≤T

|Gj(T − t)| <∞ (j ∈ {1, . . . , 4}),

(ii)
1 ≤ inf

0≤t≤T
S4,4(T − t) ≤ sup

0≤t≤T
S4,4(T − t) <∞,

(iii)
−∞ < inf

0≤t≤T
G3(T − t) ≤ sup

0≤t≤T
G3(T − t) < −1.

Proof. (i): This follows directly from the explicit expressions in (5.25)–(5.32).
(ii): It suffices to show that the continuously differentiable mapping t 7→ S4,4(T−t)

in (5.28) is decreasing on [0, T ] with S4,4(0) = 1. To achieve this, it is convenient to
introduce

I1(t) , (ν21 − ρ2)(ν23 + ρ2) cosh(ν3(T − t)),
I2(t) , − (ν21 + ρ2)(ν23 − ρ2) cosh(ν1(T − t)),
I3(t) , 2ρν3(ν

2
1 − ρ2) sinh(ν3(T − t)),

I4(t) , − 2ρν1(ν
2
3 − ρ2) sinh(ν1(T − t))

(5.36)
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for all t ∈ [0, T ] and to rewrite S4,4 in (5.28) as

S4,4(T − t) =
1

2ρ2(ν21 − ν23)

(
I1(t) + I2(t) + I3(t) + I4(t)

)
. (5.37)

We claim that

d

dt
S4,4(T − t) =

1

2ρ2(ν21 − ν23)
(I ′1(t) + I ′2(t) + I ′3(t) + I ′4(t)) ≤ 0 (5.38)

for all t ∈ [0, T ]. First, since c2 > 0 in (5.21) we have that ν21 − ν23 = −c2 < 0 and
hence

1

2ρ2(ν21 − ν23)
< 0. (5.39)

Moreover, by virtue of Lemma 5.4, together with the fact that ν1, ν3 < 0 in (5.22),
which also implies sinh(ν1(T − t)) ≤ 0 and sinh(ν3(T − t)) ≤ 0 for all t ∈ [0, T ], it
follows that

I ′1(t) = −ν3(ν23 + ρ2)(ν21 − ρ2) sinh(ν3(T − t)) ≥ 0,

I ′2(t) = ν1(ν
2
1 + ρ2)(ν23 − ρ2) sinh(ν1(T − t)) ≥ 0,

I ′3(t) = −2ρν23(ν21 − ρ2) cosh(ν3(T − t)) ≥ 0,

I ′4(t) = 2ρν21(ν23 − ρ2) cosh(ν1(T − t)) ≥ 0

and thus our claim in (5.38). Finally, observe that S4,4(0) = 1.
(iii): First, we emphasize the dependence of G3(·) in (5.31) on % by writing

G3(T − t; %) ,G3(T − t)

=
1

2λν1ν3(ν21 − ν23)(
ν1ν3

(
γκρ− 2λ(ν21 − ρ2)

)
cosh(ν1(T − t))

− ν3
(
γκν21 + 2%(ν21 − ρ2)

)
sinh(ν1(T − t))

− ν1ν3
(
γκρ− 2λ(ν23 − ρ2)

)
cosh(ν3(T − t))

+ ν1
(
γκν23 + 2%(ν23 − ρ2)

)
sinh(ν3(T − t))

)
(0 ≤ t ≤ T ).

Note that similar to (5.39) above ν1, ν3 < 0 implies

1

2λν1ν3(ν21 − ν23)
< 0. (5.40)

Moreover, using Lemma 5.4 and having in mind that sinh(ν1(T − t)) ≤ 0 and
sinh(ν3(T − t)) ≤ 0 for all t ∈ [0, T ], one can easily check that

G3(T − t; %) ≤ G3(T − t; 0) (0 ≤ t ≤ T ). (5.41)
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Indeed, using the definition of G3, inequality (5.41) is equivalent to

ν1(ν
2
3 − ρ2) sinh(ν3(T − t)) ≥ ν3(ν

2
1 − ρ2) sinh(ν1(T − t)) (0 ≤ t ≤ T ), (5.42)

which holds true because the left-hand side is non-negative and the right-hand side
is non-positive.

Next, introducing

K1(t) , ν1ν3
(
γκρ− 2λ(ν21 − ρ2)

)
cosh(ν1(T − t)),

K2(t) , − γκν3ν21 sinh(ν1(T − t)),
K3(t) , − ν1ν3

(
γκρ− 2λ(ν23 − ρ2)

)
cosh(ν3(T − t)),

K4(t) , γκν1ν
2
3 sinh(ν3(T − t))

for all t ∈ [0, T ] allows us to write

G3(T − t; 0) =
1

2λν1ν3(ν21 − ν23)

(
K1(t) +K2(t) +K3(T ) +K4(t)

)
(0 ≤ t ≤ T ).

Let us also define

G̃3(T − t) ,
1

2λν1ν3(ν21 − ν23)

(
K1(t) +K3(t)

)
. (5.43)

Since |ν1| < |ν3| in (5.22) we obtain

K2(t) +K4(t) = −γκν3ν21 sinh(ν1(T − t)) + γκν1ν
2
3 sinh(ν3(T − t)) ≥ 0 (5.44)

for all t ∈ [0, T ]. In fact, note that |ν1| < |ν3| implies

− ν3 sinh(−ν3(T − t)) ≥ −ν1 sinh(−ν1(T − t)), (5.45)

which is equivalent to (5.44). Together with (5.40) we can therefore conclude that

G3(T − t; %) ≤ G3(T − t; 0) ≤ G̃3(T − t) (0 ≤ t ≤ T ). (5.46)

We will now argue that the continuously differentiable mapping t 7→ G̃3(T−t) in (5.43)
is increasing on [0, T ]. The bounds on G3 in (iii) will then follow from (5.46) together
with G̃3(0) = −1. To this end, simply observe that

K ′1(t) = −ν21ν3(γκρ− 2λ(ν21 − ρ2)) sinh(ν1(T − t)) ≤ 0,

K ′3(t) = ν1ν
2
3

(
γκρ− 2λ(ν23 − ρ2)

)
sinh(ν3(T − t)) ≤ 0,

because of Lemma 5.4, (5.22) and the fact that

γκρ− 2λ(ν23 − ρ2) = −φ+ λρ2 −
√

4γκφρ+ (φ− ρ(γκ+ λρ))2 ≤ 0, (5.47)
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which holds true due to a similar reasoning as in the proof of Lemma 5.4 above.
More precisely, if −φ+λρ2 ≤ 0, then (5.47) holds trivially. Otherwise, if −φ+λρ2 >
0, then (5.47) is equivalent to 2γκφρ + 2λρ3γκ + ρ2γ2κ2 > 0, which is satisfied.
Consequently, recalling (5.40) we obtain in (5.43) that

d

dt
G̃3(T − t) ≥ 0 (0 ≤ t ≤ T )

as desired.

References
[1] A. Almgren. Optimal trading with stochastic liquidity and volatility. SIAM J.

Financial Math., 3:163–181, 2012.

[2] R. Almgren. Real time trading signals. Presentation from Kx25, the international
kdb+ user conference, NYC, 2018., https://kx.com/media/2018/05/Almgren-
Kx25-May2018.pdf, 2018.

[3] R. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal
of Risk, 3(2):5–39, 2000.

[4] S. Ankirchner, M. Jeanblanc, and T. Kruse. BSDEs with singular terminal
condition and a control problem with constraints. SIAM Journal on Control
and Optimization, 52(2):893–913, 2014. doi: 10.1137/130923518. URL http:
//dx.doi.org/10.1137/130923518.

[5] P. Bank and M. Voß. Optimal investment with transient price impact. SIAM
Journal on Financial Mathematics, 10(3):723–768, 2019. URL https://doi.
org/10.1137/18M1182267.

[6] P. Bank, H.M. Soner, and M. Voß. Hedging with temporary price impact. Math-
ematics and Financial Economics, 11(2):215–239, 2017. ISSN 1862-9660. URL
http://dx.doi.org/10.1007/s11579-016-0178-4.

[7] K. Bechler and M. Ludkovski. Optimal execution with dynamic order flow im-
balance. SIAM J. Financial Math., 6(1):1123–1151, 2015.

[8] K. Bechler and M. Ludkovski. Order flows and limit order book resiliency on the
meso-scale. Market Microstructure and Liquidity, 3(4), 2017.

[9] C. Belak, J. Muhle-Karbe, and K. Ou. Liquidation in target zone models.
Market Microstructure and Liquidity, 2019. URL https://doi.org/10.1142/
S2382626619500102.

28

http://dx.doi.org/10.1137/130923518
http://dx.doi.org/10.1137/130923518
https://doi.org/10.1137/18M1182267
https://doi.org/10.1137/18M1182267
http://dx.doi.org/10.1007/s11579-016-0178-4
https://doi.org/10.1142/S2382626619500102
https://doi.org/10.1142/S2382626619500102


[10] C. Bellani, D. Brigo, A. Done, and E. Neuman. Static vs adaptive strategies for
optimal execution with signals. arXiv:1811.11265, 2018.

[11] R. Carmona. Lectures on BSDEs, Stochastic Control, and Stochastic Dif-
ferential Games with Financial Applications. Financial Mathematics. Society
for Industrial and Applied Mathematics, 2016. ISBN 9781611974232. URL
https://books.google.com/books?id=0p4tDAAAQBAJ.

[12] Á. Cartea and S. Jaimungal. Incorporating order-flow into optimal execu-
tion. Mathematics and Financial Economics, 10(3):339–364, 2016. ISSN 1862-
9660. doi: 10.1007/s11579-016-0162-z. URL http://dx.doi.org/10.1007/
s11579-016-0162-z.

[13] Á. Cartea, S. Jaimungal, and J. Penalva. Algorithmic and High-Frequency Trad-
ing (Mathematics, Finance and Risk). Cambridge University Press, 1 edition,
October 2015. ISBN 1107091144. URL http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=ASIN/1107091144.

[14] P. Casgrain and S. Jaimungal. Trading algorithms with learning in latent alpha
models. Mathematical Finance, 29(3):735–772, 2019. doi: 10.1111/mafi.12194.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/mafi.12194.

[15] Y. Chen, U. Horst, and H.H. Tran. Portfolio liquidation under transient price
impact - theoretical solution and implementation with 100 NASDAQ stocks.
Preprint available on arXiv:1912.06426, 2019.

[16] I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Society
for Industrial and Applied Mathematics, 1999. doi: 10.1137/1.9781611971088.
URL http://epubs.siam.org/doi/abs/10.1137/1.9781611971088.

[17] I. Ekren and J. Muhle-Karbe. Portfolio choice with small temporary and
transient price impact. Mathematical Finance, 29(4):1066–1115, 2019. doi:
10.1111/mafi.12204. URL https://onlinelibrary.wiley.com/doi/abs/10.
1111/mafi.12204.

[18] M. Forde, L. Sánchez-Betancourt, and B. Smith. Optimal trade execution for
gaussian signals with power-law resilience. Quantitative Finance, 0(0):1–12,
2021. doi: 10.1080/14697688.2021.1950919. URL https://doi.org/10.1080/
14697688.2021.1950919.

[19] P. Forsyth, J. Kennedy, T. S. Tse, and H. Windclif. Optimal trade execution: a
mean-quadratic-variation approach. Journal of Economic Dynamics and Control,
36:1971–1991, 2012.

29

https://books.google.com/books?id=0p4tDAAAQBAJ
http://dx.doi.org/10.1007/s11579-016-0162-z
http://dx.doi.org/10.1007/s11579-016-0162-z
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1107091144
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1107091144
https://onlinelibrary.wiley.com/doi/abs/10.1111/mafi.12194
http://epubs.siam.org/doi/abs/10.1137/1.9781611971088
https://onlinelibrary.wiley.com/doi/abs/10.1111/mafi.12204
https://onlinelibrary.wiley.com/doi/abs/10.1111/mafi.12204
https://doi.org/10.1080/14697688.2021.1950919
https://doi.org/10.1080/14697688.2021.1950919


[20] N. Gârleanu and L. H. Pedersen. Dynamic portfolio choice with frictions.
Journal of Economic Theory, 165:487 – 516, 2016. ISSN 0022-0531. doi:
https://doi.org/10.1016/j.jet.2016.06.001. URL http://www.sciencedirect.
com/science/article/pii/S0022053116300382.

[21] J. Gatheral and A. Schied. Dynamical models of market impact and algorithms
for order execution. In Jean-Pierre Fouque and Joseph Langsam, editors, Hand-
book on Systemic Risk, pages 579–602. Cambridge University Press, 2013.

[22] J. Gatheral, A. Schied, and A. Slynko. Transient linear price impact and Fred-
holm integral equations. Math. Finance, 22:445–474, 2012.

[23] S. Gökay, A. Roch, and H.M. Soner. Liquidity models in continuous and discrete
time. In Giulia di Nunno and Bern Øksendal, editors, Advanced Mathematical
Methods for Finance, pages 333–366. Springer-Verlag, 2011.

[24] P. Graewe and U. Horst. Optimal trade execution with instantaneous price
impact and stochastic resilience. SIAM Journal on Control and Optimization,
55(6):3707–3725, 2017. doi: 10.1137/16M1105463. URL https://doi.org/10.
1137/16M1105463.

[25] P. Graewe, U. Horst, and J. Qiu. A non-markovian liquidation problem and
backward SPDEs with singular terminal conditions. SIAM Journal on Control
and Optimization, 53(2):690–711, 2015. doi: 10.1137/130944084. URL http:
//dx.doi.org/10.1137/130944084.

[26] O. Guéant. The Financial Mathematics of Market Liquidity. New York: Chap-
man and Hall/CRC, 2016.

[27] I. Karatzas and S.E. Shreve. Brownian motion and stochastic calculus, volume
113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edi-
tion, 1991. ISBN 0-387-97655-8.

[28] C. A. Lehalle and O. Mounjid. Limit Order Strategic Placement with Adverse
Selection Risk and the Role of Latency, October 2016. URL http://arxiv.
org/abs/1610.00261.

[29] C. A. Lehalle and E. Neuman. Incorporating signals into optimal trading. Fi-
nance and Stochastics, 23(2):275–311, 2019. doi: 10.1007/s00780-019-00382-7.
URL https://doi.org/10.1007/s00780-019-00382-7.

[30] C. A. Lehalle, S. Laruelle, R. Burgot, S. Pelin, and M. Lasnier. Market
Microstructure in Practice. World Scientific publishing, 2013. URL http:
//www.worldscientific.com/worldscibooks/10.1142/8967.

30

http://www.sciencedirect.com/science/article/pii/S0022053116300382
http://www.sciencedirect.com/science/article/pii/S0022053116300382
https://doi.org/10.1137/16M1105463
https://doi.org/10.1137/16M1105463
http://dx.doi.org/10.1137/130944084
http://dx.doi.org/10.1137/130944084
http://arxiv.org/abs/1610.00261
http://arxiv.org/abs/1610.00261
https://doi.org/10.1007/s00780-019-00382-7
http://www.worldscientific.com/worldscibooks/10.1142/8967
http://www.worldscientific.com/worldscibooks/10.1142/8967


[31] A. Lipton, U. Pesavento, and M. G. Sotiropoulos. Trade arrival dynamics and
quote imbalance in a limit order book, December 2013. URL http://arxiv.
org/abs/1312.0514.

[32] Christopher Lorenz and Alexander Schied. Drift dependence of optimal trade
execution strategies under transient price impact. Finance Stoch., 17(4):743–770,
2013. ISSN 0949-2984. doi: 10.1007/s00780-013-0211-x. URL http://dx.doi.
org/10.1007/s00780-013-0211-x.

[33] A. A. Obizhaeva and J. Wang. Optimal trading strategy and supply/demand
dynamics. Journal of Financial Markets, 16(1):1 – 32, 2013. ISSN 1386-
4181. doi: http://dx.doi.org/10.1016/j.finmar.2012.09.001. URL http://www.
sciencedirect.com/science/article/pii/S1386418112000328.

[34] A. Kukanov R. Cont and S. Stoikov. The price impact of order book events.
Journal of Financial Econometrics, 12(1):47–88, 2014.

[35] A. Schied. A control problem with fuel constraint and Dawson–Watanabe su-
perprocesses. Ann. Appl. Probab., 23(6):2472–2499, 2013. ISSN 1050-5164. doi:
10.1214/12-AAP908. URL http://dx.doi.org/10.1214/12-AAP908.

[36] Alexander Schied, Elias Strehle, and Tao Zhang. A hot-potato game under
transient price impact: the continuous-time limit. working paper, 2015.

[37] E. Strehle. Optimal execution in a multiplayer model of transient price impact.
Market Microstructure and Liquidity, 03(03n04):1850007, 2017. doi: 10.1142/
S2382626618500077. URL https://doi.org/10.1142/S2382626618500077.

31

http://arxiv.org/abs/1312.0514
http://arxiv.org/abs/1312.0514
http://dx.doi.org/10.1007/s00780-013-0211-x
http://dx.doi.org/10.1007/s00780-013-0211-x
http://www.sciencedirect.com/science/article/pii/S1386418112000328
http://www.sciencedirect.com/science/article/pii/S1386418112000328
http://dx.doi.org/10.1214/12-AAP908
https://doi.org/10.1142/S2382626618500077

	1 Introduction
	2 Model setup and problem formulation
	3 Main result
	4 Illustration
	5 Proofs
	5.1 Proof of Theorem 3.2
	5.2 Computing the matrix exponential


