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Abstract. The 2-dimensional global rigidity has been shown to be equivalent to 3-connectedness

and redundant rigidity by a combination of two results due to Jackson and Jordán, and Connelly, re-

spectively. By the characterization, a theorem of Lovász and Yemini implies that every 6-connected

graph is redundantly rigid, and thus globally rigid. The 6-connectedness is best possible, since

there exist infinitely many 5-connected non-rigid graphs. Jackson, Servatius and Servatius used

the idea of “essential connectivity” and proved that every 4-connected “essentially 6-connected”

graph is redundantly rigid and thus global rigid. Since 3-connectedness is a necessary condition of

global rigidity, it is interesting to study 3-connected graphs for redundant rigidity and thus globally

rigidity. We utilize a different “essential connectivity”, and prove that every 3-connected essentially

9-connected graph is redundantly rigid and thus globally rigid. The essential 9-connectedness is

best possible. Under this essential connectivity, we also prove that every 4-connected essentially

6-connected graph is redundantly rigid and thus global rigid. Our proofs are based on discharging

arguments.
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1. Introduction

Undefined graph terminologies can be found in [2]. A d-dimensional framework is a pair

(G, p), where G(V,E) is a graph and p is a map from V to Rd. Roughly speaking, it is a straight

line realization of G in Rd. Two frameworks (G, p) and (G, q) are equivalent if ||p(u) − p(v)|| =

||q(u) − q(v)|| holds for every edge uv ∈ E, where || · || denotes the Euclidean norm in Rd. Two

frameworks (G, p) and (G, q) are congruent if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for every

pair u, v ∈ V . A framework (G, p) is generic if the coordinates of all the points are algebraically

independent. A graph G is globally rigid if every framework (G, q) which is equivalent to a generic

framework (G, p) is congruent to (G, p). A graph is rigid if for every generic framework (G, p) there

exists an ε > 0 such that if (G, q) is equivalent to (G, p) and ||p(u) − q(u)|| < ε for every u ∈ V ,

then (G, q) is congruent to (G, p). A graph G is minimally rigid if G is rigid and G − e is not

E-mail address: xgu@westga.edu, mengwei@sxu.edu.cn, mrolek1@kennesaw.edu, m15064013175@163.com,gyu@wm.edu.

Research of the first author was partially supported by a grant from the Simons Foundation (522728). The work

was done while the second and fourth author were at William & Mary as visiting scholars. The second author is

partially supported by Shanxi University and the National Natural Sciences Foundation for Young Scientists of China

(11701349). The fourth author is partially supported by the Chinese Scholarship Council. The research of the last

author was supported in part by a summer research grant from William & Mary.

1

ar
X

iv
:2

10
6.

08
53

9v
1 

 [
m

at
h.

C
O

] 
 1

6 
Ju

n 
20

21



rigid for all e ∈ E. Laman [10] provides a combinatorial characterization of minimally rigid graphs

in R2, given below.

Let G be a graph with vertex set V (G) and edge set E(G). For a subset X ⊆ V (G), G[X] and

E(X) denote the subgraph of G induced by X and the edge set of G[X], respectively. A graph G is

sparse if |E(X)| ≤ 2|X|−3 for every X ⊆ V (G) with |X| ≥ 2. If in addition |E(G)| = 2|V (G)|−3,

then G is minimally rigid. In history, Pollaczek-Geiringer [12,13] was the first who made notable

progress on properties of minimally rigid graphs. Laman [10] rediscovered and characterized the

minimally rigid graphs in R2 using the edge count property. A minimally rigid graph is also known

as a Laman graph now.

By definition, any sparse graph is simple. A graph G is rigid if G contains a spanning minimally

rigid subgraph. It is not hard to see that every rigid graph with at least 3 vertices is 2-connected.

A cover of a graph G is a collection X = {X1, X2, ..., Xt} of subsets of V (G) such that E(G) =

E(X1) ∪ E(X2) ∪ · · · ∪ E(Xt). Lovász and Yemini [11] obtained the following characterization of

rigid graphs.

Theorem 1.1 (Lovász and Yemini [11]). Let G = (V,E) be a graph. Then G is rigid if and only

if for all covers X of G, we have
∑

X∈X (2|X| − 3) ≥ 2|V | − 3.

Note that the subgraphs induced byX ∈ X in Theorem 1.1 need not to be edge-disjoint. However,

it is not hard to see the minimum of
∑

X∈X (2|X|−3) can be obtained when the subgraphs induced

by X ∈ X are pairwise edge-disjoint, and thus it suffices to consider the edge-disjoint case whenever

needed.

A graph G is redundantly rigid if G− e is rigid for all e ∈ E(G). Hendrickson [4] showed that

if a graph G is globally rigid, then G is 3-connected and redundantly rigid. He also conjectured

that 3-connectedness and redundant rigidity are sufficient for global rigidity. This conjecture was

solved by Connelly [3], Jackson and Jordán [5], respectively.

Theorem 1.2 (Connelly [3], Jackson and Jordán [5]). A graph G is globally rigid if and only if G

is 3-connected and redundantly rigid, or G is a complete graph on at most three vertices.

By way of Theorem 1.1, Lovász and Yemini [11] showed that every 6-connected graph G is

rigid. Their proof actually implies that G is redundantly rigid. Thus, every 6-connected graph is

globally rigid, by Theorem 1.2. The 6-connectedness is best possible, and Lovász and Yemini [11]

constructed infinitely many 5-connected non-rigid graphs.

After that, researchers tried to relax the connectivity condition. For example, Jackson and

Jordán [6] proved that a simple graph G is rigid if G is 6-edge-connected, G−v is 4-edge-connected

for every v ∈ V (G) and G − {u, v} is 2-edge-connected for every u, v ∈ V (G). Jackson, Servatius

and Servatius [7] provided another connectivity condition sufficient for global rigidity. They showed

that every “essentially 6-connected” graph is redundantly rigid, and thus is global rigid, where a

graph G is “essentially 6-connected” if it satisfies:

(1) G is 4-connected,

(2) for all pairs of subgraphs G1, G2 of G such that G = G1 ∪ G2, |V (G1) − V (G2)| ≥ 3 and

|V (G2)− V (G1)| ≥ 3, we have |V (G1) ∩ V (G2)| ≥ 5, and

(3) for all pairs of subgraphs G1, G2 of G such that G = G1 ∪ G2, |V (G1) − V (G2)| ≥ 4 and

|V (G2)− V (G1)| ≥ 4, we have |V (G1) ∩ V (G2)| ≥ 6.

This connectivity allows cuts of size 4 or 5, which can only separate at most two or three vertices

from the rest of graphs. In fact, various ideas of “essential connectivity” have been used for research.
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In [8], Jackson and Wormald defined the “essentially 4-connected” graphs to study longest cycles,

where a graph G is essentially 4-connected if G is 3-connected and for every 3-cut S of G, G−S has

exactly two components, one of which is a single vertex. To study Hamiltonian claw-free graphs,

Lai et al. [9] defined another version of “essentially k-connectivity”. In their paper, a graph G

with at least k + 1 vertices is essentially k-connected if there is no X ⊂ V (G) with |X| < k

such that at least two components of V −X are nontrivial, where a nontrivial component means

it contains at least one edge. Using this definition, Lai et al. [9] showed that every 3-connected

essentially 11-connected claw-free graph is Hamiltonian, which extends Thomassen’s conjecture on

line Hamiltonian graphs.

We need to point out that the definitions in [7–9] are not the same. Apparently, one main

difference is that the definition of [9] requires nontrivial components for cuts of small size, i.e.,

components with at least one edge. This requirement allows many vertices of low degrees in graphs

with high essential connectivity. For example, for 3-connected essentially 9-connected graphs, the

definition allows this graph contains many vertices of degrees 3 and 4. Without this requirement,

the number of low degree vertices is much more restricted. In fact, there are many graphs failing

to be high connected due to vertices of low degree, and we would like to study such graphs. Thus,

in this paper, we will use essentially k-connected graphs defined in [9].

The study of rigidity becomes more involved when we work on this essential connectivity. One

may see that this essential connectivity is not monotone, that is, we may decrease the essential

connectivity when adding edges to a graph. The proofs in [11] and [7] utilized useful facts that

each X in the cover induces a clique and every vertex lies in at least two X’s, which rely on the

benefit that adding edges does not decrease the (essential) connectivity.

Overcome this difficulty, we first extend the result of Lovász and Yemini [11]. The following

theorem is quite similar to the main result of [7], but they are not the same. For instance, the

result of [7] fails for a graph containing three or more vertices of degree 4 with the same neighbors,

while Theorem 1.3 allows many such vertices.

Theorem 1.3. Every 4-connected essentially 6-connected graph is redundantly rigid, and thus is

globally rigid.

The 5-connected non-rigid graphs constructed by Lovász and Yemini [11] show that the essential

6-connectedness in Theorem 1.3 is also best possible.

Lovász and Yemini [11] showed that every 6-connected graph is redundantly rigid, which implies

that the graph is also globally rigid. It is natural to ask, if the connectivity of a graph is less than 6,

what condition can make this graph to be redundantly rigid, and in addition, global rigid? It was

answered by [7] and Theorem 1.3 for 4-connected graphs. We provide an answer for 3-connected

graphs by giving the optimal essential connectivity. Recall that 3-connectedness is a necessary

condition for global rigidity.

Theorem 1.4. Every 3-connected essentially 9-connected graph is redundantly rigid, and thus is

globally rigid.

The proofs of Theorems 1.3 and 1.4 utilize discharging arguments, which does not appear ex-

plicitly in the literature, as far as we know. Note that Theorems 1.4 and 1.3 are also true for

multigraphs, since the removal of any multiple edges does not affect connectivity or essential con-

nectivity.
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The paper is organized as below. We prove Theorems 1.3 and 1.4 respectively in the next two

sections. In the last section, for every 3 ≤ t ≤ 8, we present examples of 3-connected essentially

t-connected non-rigid graphs.

For a vertex v ∈ V (G), let d(v) and N(v) denote the degree of v and the set of vertices adjacent

to v, respectively. A vertex v is called a k-vertex, k+-vertex and k−-vertex, if d(v) = k, d(v) ≥ k

and d(v) ≤ k, respectively. For X,Y ⊂ V (G) with X ∩ Y = ∅, let E[X,Y ] denote the set of edges

in G with one end in X and the other in Y and e(X,Y ) = |E[X,Y ]|.

2. The proof of Theorem 1.3

Suppose to the contrary that the statement is not true. Let G = (V,E) be a counterexample

such that |V (G)| is as small as possible, and subject to this condition, |E(G)| is as large as possible.

Thus G is not redundantly rigid, and there exists an edge e = uv such that T = G− e is not rigid.

By Theorem 1.1, there exists a cover T = {Y1, Y2, ..., Yt} such that
∑t

i=1(2|Yi| − 3) < 2|V | − 3.

Without loss of generality, we may assume that T = {Y1, Y2, ..., Yt} is a cover of T to minimize∑t
i=1(2|Yi| − 3). Let m = t + 1, Xi = Yi for i = 1, 2, · · · , t and Xm = Xt+1 = {u, v}. Let

X = {X1, X2, . . . , Xm}. Then X is a cover of G. For each X ∈ X , let µ(X) = 2|X| − 3. We have

(1)

m∑
i=1

µ(Xi) =

m∑
i=1

(2|Xi| − 3) =

t∑
i=1

(2|Yi| − 3) + (2|Xm| − 3) < 2|V | − 2.

Let X (x) = {Xi ∈ X : x ∈ Xi} for x ∈ V (G). For X ∈ X (x), we denote by σx(X) the value that

x gets from X. We use the following discharging rules.

(R1) If |X| = 2, then σx(X) = 1
2 for each x ∈ X.

(R2) If |X| = 3, then σx(X) = 1 for each x ∈ X.

(R3) Suppose |X| = 4. If X contains a 4-vertex x such that X (x) = {X1, X2} with |X1| = 2, |X2| =
4, then σx(X) = 3

2 and each of other vertices gets 1 from X. Otherwise, each vertex of X

gets 5
4 from X.

(R4) Suppose |X| ≥ 5.

(R4A) If N(x) ∪ {x} ⊆ X, then σx(X) = 2. Let V0(X) be the set of all those vertices x in X,

and let |V0(X)| = t0(X).

(R4B) If x ∈ X has only one neighbor x′ /∈ X and there is an X ′ = {x, x′} ∈ X , then σx(X) = 3
2 .

Let V1(X) be the set of all those vertices x in X, and denote |V1(X)| = t1(X). Let

V ′1(X) = {x′ ∈ N(x)\X : x ∈ V1(X)}.
(R4C) Otherwise, σx(X) = 1. Let V2(X) be the set of all those vertices x in X, and denote

|V2(X)| = t2(X). Let V ′2(X) = {x′ ∈ N(x)\X : x ∈ V2(X)}.
For x ∈ V (G), let µ(x) =

∑
X∈X (x) σx(X), i.e., the total charge that x gets from all X ∈ X (x).

Claim 2.1. µ(x) ≥ 2, for every vertex x ∈ V (G).

Proof. First let d(x) = 4. If |X (x)| = 4, then x is in four sets of size at least two, thus µ(x) ≥ 1
2 ·4 = 2

by (R1)-(R4). If |X (x)| = 3, then x is in at least one set of size at least three, thus µ(x) ≥ 1
2 ·2+1 = 2

by (R1)-(R4). If |X (x)| = 2, then x is either in two sets of size at least three, thus by (R2)-(R4),

µ(x) ≥ 1 + 1 = 2, or x is in a set of size two and in a set of size at least four, thus by (R1), (R3),

and (R4B), µ(x) ≥ 1
2 + min{2, 32} = 2.

Let d(x) ≥ 5. By (R4A), we may assume that |X (x)| ≥ 2. If |X (x)| ≥ 4, then x is in four sets

of size at least two, thus µ(x) ≥ 1
2 · 4 = 2 by (R1)-(R4). If x is in at least two sets of size at least
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three, then µ(x) ≥ 1 + 1 = 2 by (R2)-(R4). So we may assume that x is either in a set of size two

and a set of size at least five, or in two sets of size two and one set of size at least four. Thus,

in the former case, by (R1) and (R4B), µ(x) = 1
2 + 3

2 = 2. In the latter case, by (R1) and (R3),

µ(x) = 1
2 · 2 + 1 = 2. �

Now we will try to prove that for each X ∈ X , the final charge µ′(X) ≥ 0.

Claim 2.2. For each X ∈ X with |X| ≤ 4, µ′(X) ≥ 0.

Proof. If |X| = 2, then µ′(X) = 2·2−3− 1
2 ·2 = 0 by (R1). If |X| = 3, then µ′(X) = 2·3−3−1·3 = 0

by (R2). If |X| = 4, then µ(X) = 5. We will show that X contains at most two 4-vertices such

that X (x) = {X1, X2} with |X1| = 2, |X2| = 4. Thus, µ′(X) ≥ 5−max{32 · 2 + 1 · 2, 54 · 4} = 0.

Suppose to the contrary that X = {vi : i ∈ [4]} contains three such vertices v1, v2, v3 and let ui /∈
X denote the neighbor of vi, for i = 1, 2, 3. Note that X induces a clique. If V (G)−X−{u1, u2, u3}
induces at least one edge e′, then S = {u1, u2, u3, v4} separates {v1, v2, v3} and e′. We obtain

an essential 4-cut S, a contradiction. Thus we may assume that V (G) − X − {u1, u2, u3} is an

independent set or an empty set. In the former case, since G is 4-connected, every vertex in

V (G) − X − {u1, u2, u3} is adjacent to every vertex in {u1, u2, u3, v4}. Now S′ = {v1, v4, u2, u3}
separates {v2, v3} from V (G)−X−{u2, u3}, and is an essential 4-cut, a contradiction. In the latter

case, V (G) = X ∪ {u1, u2, u3} with |V (G)| = 7 and |E(G)| ≥ 4·7
2 = 14. Since X covers 6 edges and

Xi = {vi, ui} for i ∈ [3] covers one edge, there are more sets in X covering the other |E(G)|− 9 ≥ 5

edges. It follows that
∑

X∈X µ(X) ≥ 2 · 4− 3 + (2 · 2− 3) · 3 + 5 > 2|V (G)| − 2, a contradiction. �

Assume for a contradiction that for some X0 ∈ X with |X0| ≥ 5, µ′(X0) < 0. We will simply use

Vi and ti to denote Vi(X0) and ti(X0) for i = 0, 1, 2, respectively. Note that |X0| = t0 + t1 + t2.

Claim 2.3. t1 + 2t2 ≤ 5.

Proof. Suppose to the contrary that t1 + 2t2 ≥ 6. Then by (R1)-(R4),

µ′(X0) = 2|X0| − 3− 2t0 −
3

2
t1 − t2 =

1

2
(t1 + 2t2)− 3 ≥ 0,

a contradiction to the assumption that µ′(X0) < 0. �

Note that V (G) − X0 6= ∅, for otherwise, if X0 = V (G), then X contains at least V and Xm,

which implies that
∑m

i=1 µ(Xi) ≥ (2|V | − 3) + (2|Xm| − 3) = 2|V | − 2, contradicting (1).

Claim 2.4. V0 ∪ V1 is not an independent set.

Proof. By Claim 2.3 that t1 + 2t2 ≤ 5, we have t2 ≤ 2. Since |X0| ≥ 5, we have |V0 ∪ V1| =

|X0| − t2 ≥ 3. For each x ∈ V0 ∪ V1, x has at most one neighbor outside of X0 and at most 2

neighbors in V2. Since d(x) ≥ 4, x must have a neighbor in V0 ∪ V1. �

Claim 2.5. V (G)−X0 is an independent set.

Proof. Suppose to the contrary that V (G)−X0 is not an independent set.

We first claim that V0 is an independent set if V0 6= ∅. For otherwise, V1 ∪ V2 is a cut of size at

most t1 + t2 ≤ 5 such that both V0 and G−X0 are non-trivial, a contradiction.

We claim that each edge e ∈ E(G − X0) must be incident with a vertex in V ′1 . Otherwise, by

Claim 2.4, V0∪V1 is not an independent set, so V ′1∪V2 is an essentially cut and |V ′1∪V2| ≤ t1+t2 ≤ 5

since t1 + 2t2 ≤ 5, contrary to the fact that G is essentially 6-connected.
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First let V0 = ∅. As 5 ≤ |X0| = t1 + t2, and t1 + 2t2 ≤ 5 by Claim 2.3, t2 = 0 and t1 = 5. As each

vertex in V1 has degree at least 4 and has exactly one neighbor not in X0, each vertex in V1 has at

least three neighbors in V1. Observe that |V ′1 | ≥ 2, for otherwise, V ′1 is a cut of size one. Then some

vertex in V ′1 has at most b 5
|V ′1 |
c neighbors in V1 thus has at least 4 − b 5

|V ′1 |
c neighbors in G − X0.

Note that V ′1 is a cut if V (G) −X0 6= V ′1 . If |V ′1 | ≤ 3, then we should have 4 − b 5
|V ′1 |
c ≤ |V ′1 | − 1,

which is impossible. Therefore, |V ′1 | ≥ 4, and at least three vertices in V ′1 have exactly one neighbor

in V1. If there exists x′1x
′
2 ∈ E(G) with x′1, x

′
2 ∈ V ′1 such that x1, x2 are the unique neighbors of

x′1, x
′
2 in V1, respectively, then V ′1 ∪ {x1, x2} − {x′1, x′2} is an essential cut of size at most five, a

contradiction. Then we must have that x′ ∈ V ′1 has a unique neighbor x ∈ V1 such that x′w ∈ E(G)

and w ∈ G − X0 − V ′1 , which implies that V ′1 − x′ + x is an essential cut of size at most five, a

contradiction again.

Now let V0 6= ∅. Since V0 is independent, the neighbors of vertices in V0 are in V1 ∪ V2. As each

vertex has degree at least four, t1 + t2 ≥ 4. As t1 + 2t2 ≤ 5, we have t2 = 1 and t1 = 3, or t2 = 0

and 4 ≤ t1 ≤ 5. In either case, at least three vertices of V1 are adjacent to vertices in V0. Let

xx′ ∈ E(G) with x ∈ V1 and x′ ∈ V ′1 such that x has a neighbor in V0. Then S = (V1 ∪ V2)− x+ x′

is a cut of size at most five such that the component containing x is non-trivial. So G −X0 − x′
must be trivial, that is, x′ must be adjacent to all edges in G−X0. Let |V −X0| = t. Then

3(t− 1) ≤ |E[X0, V −X0 − x′]| ≤ t2 · (t− 1) + t1 − 1.

It follows that t ≤ 1 + t1−1
3−t2 . So t ≤ 2. Since V (G)−X0 is not an independent set, t ≥ 2. Therefore

t = 2. Let V (G) − X0 = {x′, x′′}. Then 6 ≤ |E[X0, {x′, x′′}]| ≤ 2t2 + t1 ≤ 5, by Claim 2.3, a

contradiction. �

By Claim 2.5, assume that V (G) − X0 consists of t isolated vertices. Since G is 4-connected,

each of these t vertices has degree at least 4. Then

4t ≤ |E[X0, V −X0]| ≤ t1 · 1 + t2 · t ≤ (5− 2t2) + t · t2,

which implies that t ≤ 5−2t2
4−t2 < 2. So let V (G)−X0 = {y}.

Since G is 4-connected, 4 ≤ d(y) ≤ t1 + t2. Then

µ′(X0) = 2|X0| − 3− 2t0 −
3

2
t1 − t2 =

1

2
t1 + t2 − 3 =

1

2
(t1 + 2t2)− 3 ≥ 2− 3 = −1.

For each X ∈ X (y) with |X| > 2, by definition of V1 and V0, X ∩ (V0 ∪ V1) = ∅ and X ∩ V2 6= ∅.
So |X| ≤ 1 + t2 ≤ 3. Therefore, µ′(X) ≥ 0 by our discharging rules.

Therefore, for every X ∈ X −X0, µ
′(X) ≥ 0 and µ′(X0) ≥ −1. It follows that

2|V | − 2 >
∑
X∈X

µ(X) =
∑
X∈X

µ′(X) +
∑

x∈V (G)

µ(x) ≥ −1 + 0 + 2|V | ≥ 2|V | − 1,

a contradiction, which completes the proof.

3. The proof of Theorem 1.4

Suppose to the contrary that the statement is not true. Let G = (V,E) be a counterexample

such that |V (G)| is as small as possible, and subject to this condition, |E(G)| is as large as possible.

Thus G is not redundantly rigid, and there exist an edge e = uv such that T = G− e is not rigid.

By Theorem 1.1, there exists a cover T = {Y1, Y2, ..., Yt} of T such that
∑t

i=1(2|Yi|− 3) < 2|V |− 3.

Without loss of generality, we may assume that T = {Y1, Y2, ..., Yt} is a cover of T to minimize
6



∑t
i=1(2|Yi| − 3). Let m = t + 1, Xi = Yi for i = 1, 2, · · · , t and Xm = Xt+1 = {u, v}. Let

X = {X1, X2, · · · , Xm}, which is then a cover of G. For each X ∈ X , let µ(X) = 2|X| − 3. Then

(2)

m∑
i=1

µ(Xi) =

m∑
i=1

(2|Xi| − 3) =

t∑
i=1

(2|Yi| − 3) + (2|Xm| − 3) < 2|V | − 2.

For each x ∈ V (G), let X (x) = {Xi ∈ X : x ∈ Xi}.
Remark (a): For any v1, v2 ∈ Xi, if |N(v1) ∪N(v2)| ≥ 9, then v1v2 ∈ E(G). Otherwise, the new

graph by adding an edge v1v2 is still 3-connected, essentially 9-connected and not a redundantly

graph, which contradicts the maximality of |E(T )|.
Remark (b): By the minimality of

∑m−1
i=1 (2|Xi| − 3), we can conclude that each Xi of size at

most 3 is a complete graph and if |Xi| = 4, then Xi induces at least 5 edges. Otherwise, we can

replace Xi with a few X’s of size 2, each of which induces an edge of E(Xi), to reduce the value of∑m−1
i=1 (2|Xi| − 3).

Claim 3.1. In graph G, every 3-vertex is only adjacent to 6+-vertices.

Proof. Here we give a brief idea of the proof. The proof involves routine case analysis and is tedious,

which is included in the appendix. Let x ∈ V (G) be a 3-vertex and N(x) = {v1, v2, v3}. Suppose

that v1 is a 5−-vertex. Let S = {v2, v3} ∪ (N(v1) − x). Then |S| ≤ 6 and one component in

G − S contains edge xv1. As G has no essential cut of size less than 9, the other components of

G − S must form an independent set, say T = {u1, . . . , ut}. Note that N(ui) ⊆ S. We will find

a spanning minimally rigid subgraph, namely a subgraph H such that |E(H)| = 2|V (H)| − 3 and

every subgraph H ′ of H satisfies |E(H ′)| ≤ 2|V (H ′)|−3, in G−e for every e ∈ E(G), which implies

that G is not a counterexample. �

In the rest of the proof, we will use a discharging argument to reach a contradiction. We will

distribute the µ(X) value of each X ∈ X to vertices of X, and we denote by σx(X) the value that

x gets from X. The following are the discharging rules.

(R1) Suppose |X| = 2. Then µ(X) = 1.

(R1A) If X = {v1, v2} with d(v1) = 3, then σv1(X) = 2
3 and σv2(X) = 1

3 .

(R1B) If X contains two 4+-vertices, then each vertex gets 1
2 from X.

(R2) Suppose |X| = 3. Then µ(X) = 3.

(R2A) If X = {v1, v2, v3} with d(v1) = 3, then σv1(X) = 4
3 and σv2(X) = σv3(X) = 5

6 .

(R2B) If X contains three 4+-vertices, then each vertex gets 1 from X.

(R3) Suppose |X| = 4. Then µ(X) = 5.

(R3A) If X contains a 3-vertex v1 and N(v1) ⊆ X, then σv1(X) = 2 and each of other vertices

gets 1 from X.

(R3B) If X contains a 4−-vertex v1 such that X (v1) = {X1, X2} with |X1| = 2, |X2| = 4, then

σv1(X) = 3
2 and each of other vertices gets 1 from X.

(R3C) Otherwise, each vertex of X gets 5
4 from X.

(R4) Suppose |X| ≥ 5. Then µ(X) = 2|X| − 3.

(R4A) If (N(x)∪ {x}) ⊆ X, then σx(X) = 2. Let V0(X) be the set of all those vertices x in X,

and denote |V0(X)| = t0(X).

(R4B) Suppose x ∈ X has only one adjacent vertex x′ /∈ X.
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(R4B1) If d(x′) = 3, and there is an X ′ = {x, x′} ∈ X , then σx(X) = 5
3 . Let V1(X) be the

set of all those vertices x in X, and let |V1(X)| = t1(X) and V ′1(X) = {x′ : x′ ∈
N(x) and x′ /∈ X,x ∈ V1(X)}.

(R4B2) If x 6∈ V1, then σx(X) = 3
2 . Let V2(X) be the set of all those vertices x in X, and

let |V2(X)| = t2(X) and V ′2(X) = {x′ : x′ ∈ N(x) and x′ /∈ X,x ∈ V2(X)}.
(R4C) Suppose x ∈ X has at least two adjacent vertices outside of X.

(R4C1) Suppose x has exactly two neighbors x′ and x′′ outside of X. If d(x′) = d(x′′) = 3

and there are X1 = {x, x′}, X2 = {x, x′′} ∈ X , then σx(X) = 4
3 . Let V3(X) be the

set of all those vertices x in X, and let |V3(X)| = t3(X) and V ′3(X) = {x′ : x′ ∈
N(x) and x′ /∈ X,x ∈ V3(X)}.

(R4C2) Suppose x has exactly two neighbors x′ and x′′ outside of X. If d(x′) = 3 and

x 6∈ V3, then σx(X) = 7
6 . Let V4(X) be the set of all those vertices x in X, and let

|V4(X)| = t4(X) and V ′4(X) = {x′ : x′ ∈ N(x) and x′ /∈ X,x ∈ V4(X)}.
(R4C3) Otherwise, σx(X) = 1. Let V5(X) be the set of all those vertices x in X, and let

|V5(X)| = t5(X) and V ′5(X) = {x′ : x′ ∈ N(x) and x′ /∈ X,x ∈ V5(X)}.

For x ∈ V (G), let µ(x) =
∑

X∈X (x) σx(X), i.e., the total charge that x gets from X (x).

Claim 3.2. µ(x) ≥ 2, for every x ∈ V (G).

Proof. First let d(x) = 3. By (R3A), we may assume that |X (x)| ≥ 2. If |X (x)| = 3, then x is in

three sets of size at least two, thus by (R1A), µ(x) = 2
3 · 3 = 2. If |X (x)| = 2, then x is in a set

of size at least two and and in a set of size at least three, thus by (R1A), (R2A), (R3) and (R4),

µ(x) ≥ 2
3 + 4

3 = 2.

Let d(x) ≥ 4. By (R4A), we may assume that |X (x)| ≥ 2. We first assume that x has no

neighbors of degree 3. If each X ∈ X (x) has |X| ≥ 3, then by (R2)-(R4), x gets at least 1 from

each X ∈ X (x), thus µ(x) ≥ 2. So we may assume that |X (x)| ≥ 2 and t sets of X (x) have size

two. By (R1B) and (R2)-(R4), if t = d(x), then µ(x) ≥ 1
2 t ≥ 2; if t < d(x), then x gets at least

1 from sets of size more than two, thus µ(x) < 2 only if t = 1 and |X (x)| = 2, in which case, by

(R3B) and (R4B2), µ(x) ≥ 1
2 + 3

2 = 2.

Now we assume that x has a neighbor of degree 3. By Claim 3.1, d(x) ≥ 6. If X (x) does not

contain sets of size two, then by (R2)-(R4), x gets at least 5
6 from each X ∈ X (x), so µ(x) < 2 only

if x gets a 5
6 by (R2A) and a 1 by (R4C3), but these two cases cannot happen at the same time

since d(x) ≥ 6. So assume that t ≥ 1 sets of X (x) have size two. If |X (x)| = 2, then t = 1 and by

(R1) and (R4B), µ(x) ≥ min{13 + 5
3 ,

1
2 + 3

2} = 2. So let |X (x)| ≥ 3. Assume that X (x) contains s

sets of size three. If t+2s = d(x), then by (R1A) and (R2A), µ(x) = 1
3 t+

5
6s ≥

1
3(t+2s) ≥ 2. So let

t+2s < d(x), then by (R1A) and (R2)-(R4), µ(x) ≥ 1
3 t+

5
6s+1. Clearly, as t ≥ 1, µ(x) ≥ 2 if s ≥ 1.

So let s = 0. As |X (x)| ≥ 3 and by (R2)-(R4), x gets either 1
3 or at least 1 from each set in X (x),

we have µ(x) < 2 only if t = 2 and |X (x)| = 3, in which case, by (R4C1), µ(x) ≥ 1
3 · 2 + 4

3 = 2. �

Now we prove that for each X ∈ X , the final charge µ′(X) ≥ 0.

Claim 3.3. For each X ∈ X with |X| ≤ 4, µ′(X) ≥ 0.

Proof. If |X| = 2, then µ′(X) = 2 · 2− 3−max{23 + 1
3 ,

1
2 · 2} = 0 by Claim 3.1 and (R1). If |X| = 3,

then µ′(X) = 2 · 3− 3−max{43 + 5
6 · 2, 1 · 3} = 0 by Claim 3.1 and (R2). If |X| = 4, then µ(X) = 5.

We know that there are three 6+-vertices and one 3-vertex in (R3A) by Claim 3.1. We will show
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that X contains at most two 4-vertices when X (x) = {X1, X2} with |X1| = 2, |X2| = 4 for some

x ∈ X. Thus, µ′(X) ≥ 5−max{2 + 1× 3, 32 · 2 + 1 · 2, 54 · 4} = 0.

Suppose to the contrary that X = {vi : i ∈ [4]} in which |X1(vi)| = 2 and |X2(vi)| = 4 for i ∈ [3].

Let X1(vi) = {ui, vi}. Since for i ∈ [3], d(vi) = 4 and vi has exactly one neighbor outside of X, X

induces a clique. If V (G)−X − {u1, u2, u3} induces at least one edge e′, then S = {u1, u2, u3, v4}
separates {v1, v2, v3} and e′. We obtain an essentially 4-cut S, a contradiction. Thus we may assume

that V (G)−X − {u1, u2, u3} is an independent set. As |V (G)| ≥ 10, V (G)−X − {u1, u2, u3} 6= ∅.
Since G is 3-connected, every vertex in V (G)−X−{u1, u2, u3} is adjacent to at least three vertices

in S. Without loss of generality, we can assume that w ∈ V (G) −X − {u1, u2, u3} is adjacent to

u1. Now we choose S′ = {v1, v4, u2, u3} separating {v2, v3} and V (G) − X − {u2, u3}. Note that

v2v3, wu1 ∈ E(G), so we get that S′ is an essentially 4-cut, a contradiction. �

So we may only consider X ∈ X with |X| ≥ 5. Assume for a contradiction that for some X0 ∈ X
with |X0| ≥ 5, µ′(X0) < 0. We will simply use Vi, V

′
i , and ti to denote Vi(X0), V

′
i (X0) and ti(X0)

for i ∈ [5] ∪ {0}. Note that |X0| =
∑5

i=0 ti.

Claim 3.4. 2t1 + 3t2 + 4t3 + 5t4 + 6t5 ≤ 17.

Proof. By (R4), 0 > µ′(X0) = (2|X0|−3)−2t0− 5
3 t1−

3
2 t2−

4
3 t3−

7
6 t4−t5 = 1

3 t1+ 1
2 t2+ 2

3 t3+ 5
6 t4+t5−3.

It follows that 2t1 + 3t2 + 4t3 + 5t4 + 6t5 < 18, so the inequality in the claim. �

Notice that V (G) − X0 6= ∅, for if X0 = V (G), then {V,Xm} ⊆ X , which implies that∑
X∈X µ(X) ≥ (2|V | − 3) + (2|Xm| − 3) = 2|V | − 2, contradicting (2).

Claim 3.5. V (G)−X0 is an independent set.

Proof. Assume on the contrary that V (G)−X0 is not an independent set. We will reach a contra-

diction by a series of claims.

(c0) V0 is independent if V0 6= ∅.

Proof of (c0). For otherwise, X0 − V0 is an essential cut of order at most 8, by Claim 3.4. �

(c1) e(V0, V1 ∪ V3) = 0.

Proof of (c1). Let e = uv ∈ E(G) with u ∈ V0 and v ∈ V1 ∪ V3.
Assume that v ∈ V1 and vw ∈ E(G) with w ∈ V ′1 . By definition d(w) = 3 and by Claim 3.1,

d(v) ≥ 6. Since X0 − V0 − v +w is a cut of order
∑5

i=1 ti ≤ 8 and is not an essential cut, all edges

in E(G−X0) must be incident with w. Let ww′ ∈ E(G) with w′ 6∈ X0. By Claim 3.1, d(w′) ≥ 6.

Since ww′ is the only edge incident with w′ that is in E(G−X0), all other neighbors of w′ are in

V2 ∪ V4 ∪ V5. In particular, t2 + t4 + t5 ≥ 5. By Claim 3.4, t1 = 1, t2 = 5 and t3 = t4 = t5 = 0, and

the only neighbor of vertices of V2 in V (G)−X0 is w′. Therefore, w has no neighbor other than v

and w′, a contradiction to d(w) = 3.

Let v ∈ V3 and vw1, vw2 ∈ E(G) with w1, w2 ∈ V ′3 . By definition d(w1) = d(w2) = 3, and

by Claim 3.1, d(v) ≥ 6. Note that X0 ∪ {w1, w2} − V0 − v is a cut, whose order is at most

(t1 + t2 + t3 + t4 + t5) + 1 ≤ 1
2(17− 2t3) + 1 < 9, and is not an essential cut, all edges in E(G−X0)

must be incident with w1 or w2. Let w1w
′ ∈ E(G) with w′ 6∈ X0. By Claim 3.1, d(w′) ≥ 6.

Since w′w1, w
′w2 are the only potential edges incident with w′ that are in E(G − X0), all other

neighbors of w′ are in V2 ∪ V4 ∪ V5. In particular, t2 + t4 + t5 ≥ 4. By Claim 3.4, t3 = 1, t2 = 4

and t1 = t4 = t5 = 0, and the only neighbor of vertices of V2 in V (G)−X0 is w′. Therefore, w1, w2

have no neighbor other than v and w′, a contradiction to d(w1) = d(w2) = 3. �
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(c2) t1 = 0.

Proof of (c2). Let v1 ∈ V1. Then d(v1) ≥ 6 and v1 is adjacent to a 3-vertex u1 ∈ V ′1 .

We claim that v1 has no neighbors in V1. For otherwise, let v1v
′
1 ∈ E(G) with v′1 ∈ V1. Let

v′1u
′
1 ∈ E(G) with u′1 ∈ V ′1 . By definition, d(u1) = d(u′1) = 3. Then X0 − V0 − {v1, v′1} + {u1, u′1}

is a cut of order at most
∑5

i=1 ti ≤ 8 and is not an essential cut. It follows that all edges in

E(G−X0) are incident with u1 or u′1. Let u1u ∈ E(G) with u 6∈ X0. By Claim 3.1, d(u) ≥ 6, and

N(u) ⊆ {u1, u′1} ∪ V2 ∪ V4 ∪ V5. It follows that t2 + t4 + t5 ≥ 4. By Claim 3.4, t1 = 2, t2 = 4 and

t3 = t4 = t5 = 0. In particular, the only neighbor of vertices of V2 in V (G)−X0 is u. Then u1, u
′
1

have no neighbors other than v1, v
′
1 and u. So u1 = u′1, but then u should have 5 neighbors in V2,

a contradiction again.

From above and (c1), N(v1) ⊆ X0 − V0 − V1. As d(v1) ≥ 6, t2 + t3 + t4 + t5 ≥ 5. By Claim

3.4, we have that t1 = 1, t2 = 5, t3 = t4 = t5 = 0 and v1 is adjacent to every vertex in V2. Let

N(u1) = {v1, w1, w2}. By definition and the minimality of
∑m−1

i=1 (2|Xi| − 3), w1, w2 6∈ V2 thus

w1, w2 ∈ V (G) − X0. By Claim 3.1, d(wi) ≥ 6 for i ∈ [2] . It follows that w1 or w2 (say w1) is

adjacent to at most two vertices in V2. Let v2 ∈ V2 be adjacent to u2 ∈ V ′2 and v2w1 /∈ E(G). As

d(w1) ≥ 6, w1 must be adjacent to a vertex in V (G) −X0 − {u1, w1, u2}. So V2 ∪ {u1, u2} − v2 is

an essential 6-cut, a contradiction. �

(c3) t3 = 0.

Proof of (c3). For otherwise, let v1 ∈ V3 such that u1v1, u2v1 ∈ E(G) for 3-vertices u1, u2 ∈ V ′3 . By

Claim 3.1, d(v1) ≥ 6. By (c1) and (c2), 4 ≤ e(v1, X0) ≤ t2 + (t3 − 1) + t4 + t5. From Claim 3.4,

t4 = t5 = 0, and 3t2 + 4t3 ≤ 17. So (t2, t3) ∈ {(3, 2), (4, 1)} and v1 is adjacent to all vertices in

V2 ∪ V3 − v1.
By definition and the minimality of

∑m−1
i=1 (2|Xi| − 3), u1 and u2 have no neighbor in V2. Let

W = (N(u1)∪N(u2))∩(V (G)−X0). If W = {w1}, then t2 = 3, t3 = 2 and the neighbors of vertices

of V3 are u1 and u2. Since d(w1) ≥ 6, w1 has a neighbor in V (G)−X0−{u1, u2}. Then V2∪{u1, u2}
is an essential 5-cut, a contradiction. So we may assume that {w1, w2} ⊆ W . As t2 ≤ 4, some

vertex in W , say w1, is adjacent to at most two vertices in V2. Let v2 ∈ V2 be not adjacent to w1

and v2u
′ ∈ E(G) for u′ ∈ V ′2 . As d(w1) ≥ 6, w1 must have a neighbor in V (G)−X0 − {u1, u2, u′}.

Therefore, V2 ∪ V3 ∪ {u1, u2, u′} − {v1, v2} is an essential 6-cut, a contradiction. �

(c4) t5 < 2.

Proof of (c4). Assume that t5 ≥ 2. By Claim 3.4, t5 = 2 and t2 + t4 ≤ 1. As |X0| ≥ 5, t0 ≥ 2

and by (c0), t2 + t4 = 1 and each vertex in V0 is adjacent to all three vertices in V2 ∪ V4 ∪ V5.
Let V0 = {v1, v2, . . . }, V2 ∪ V4 = {u1}, V5 = {u2, u3}. Now {u2, u3} ∪ (N(u1)− V0) is a 4−-cut and

the component V0 ∪ {u1} contains edges, V (G)−X0 −N(u1) must be an independent set. When

u1 ∈ V4, let V ′4 = N(u1)∩ (V (G)−X0) = {u, u′} with d(u′) = 3. Note that N(u′) ⊆ V4∪V5∪u, for

otherwise, the vertex w ∈ N(w1) −X0 − u has degree at least 6, thus w must have a neighbor in

V (G)−X0−N(u1). It follows that {u,w1, u2, u3} is an essential cut of size 4, a contradiction. When

u1 ∈ V2, we let V ′2 = {u}. Since {u, u2, u3} is a cut and the component containing V0 contains edges,

all edges in V (G) −X0 must be adjacent to u. Let W = V (G) −X0 − N(u1) = {w1, w2, . . . , wk}
such that N(wi) = {u, u2, u3} for i ≥ 1. We will find a spanning minimally rigid subgraph H in

G− e for every e ∈ E(G).
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• t0 = 2. We claim that there exists either a K3,3 or a K3 in G− e. Note that the subgraph

induced by {u, u2, u3} ∪W contains a K3,k. If u1 ∈ V2, then k ≥ 4 since |V (G)| ≥ 10.

So there exists a K3,3 in G − e. If u1 ∈ V4, then k ≥ 3. So there exists a K3,3 in G − e
unless k = 3 and e ∈ E[{u, u2, u3},W ]. Next, we consider the case that k = 3 and

e ∈ E[{u, u2, u3},W ]. If N(u′) ⊆ V4 ∪ V5, then u′ is adjacent to u1, u2 and u3. So the

subgraph induced by {u1, u2, u3} ∪ {v1, v2, u′} contains a K3,3. If u′ is adjacent to u, then

we assume that N(u′) = {u1, u2, u}. In G− e, there exists a triangle u1u
′u.

If there exists a K3,3 in G− e, then we choose a K3,3 from G− e. Then we can easily add

each of the rest vertices one by one by joining it with two vertices in the already-formed

subgraph to obtain a spanning subgraph H in G−e. It is clear that e(H) = 3 ·3+2(n−6) =

2n− 3, and for any subgraph H ′ of H, let H0 = H ′ ∩K3,3, then

e(H ′) ≤ 2n(H ′ −H0) + e(H0) ≤ 2n(H ′ −H0) + 2n(H0)− 3 = 2n− 3.

If there exists a K3 in G−e, then we choose a K3 from G−e. Then add u2 and then easily

add each of the rest vertices one by one by joining it with two vertices in the already-formed

subgraph to obtain a spanning subgraph H in G − e, since u1 ia adjacent to all vertices

of X0. It is clear that e(H) = 3 + 2(n − 3) = 2n − 3, and for any subgraph H ′ of H, let

H0 = H ′ ∩K3, then

e(H ′) ≤ 2n(H ′ −H0) + e(H0) ≤ 2n(H ′ −H0) + 2n(H0)− 3 = 2n− 3.

• t0 ≥ 3. Note that every vertex in V0 is adjacent to u1, u2 and u3 in G. So there exists a

K3,3 in G. Now we claim that there exists either a K3,3 or a K2,3 + e′ in G − e. Clearly,

there exists a K3,3 in G − e unless t0 = 3 and e ∈ E[{u1, u2, u3}, V0]. Next, we consider

the case that t0 = 3 and e ∈ E[{u1, u2, u3}, V0]. If k ≥ 3, then the subgraph induced by

{u, u2, u3} ∪ {w1, . . . , wk} contains a K3,3 in G− e. If k ≤ 2, then u1 ∈ V4 and k = 2 since

t0 = 3 and |V (G)| ≥ 10. In this case, if N(u′) ⊆ V4 ∪ V5, then u′ is adjacent to u1, u2
and u3. So the subgraph induced by {u1, u2, u3} ∪ {v1, v2, v3, u′} contains a K3,3. If u′ is

adjacent to u, then u is adjacent to u2 since u is a 6+-vertex. So the subgraph induced by

{u, u2, u3} ∪ {u1, u2} contains a K2,3 + e′.

If there exists a K3,3 in G − e, then we choose a K3,3 from G − e. Then add each of

the rest vertices one by one by joining it with two vertices in the already-formed subgraph

to obtain a spanning subgraph H. Again, e(H) = 3 · 3 + 2(n − 6) = 2n − 3, and for any

subgraph H ′ of H, let H0 = H ′ ∩K3,3, then

e(H ′) ≤ 2n(H ′ −H0) + e(H0) ≤ 2n(H ′ −H0) + 2n(H0)− 3 = 2n− 3.

If there exists a K2,3 + e′ in G − e, then we choose a K2,3 + e′ from G − e. Then add

each of the rest vertices one by one by joining it with two vertices in the already-formed

subgraph to obtain a spanning subgraph H. Again, e(H) = 3 · 2 + 1 + 2(n − 5) = 2n − 3,

and for any subgraph H ′ of H, let H0 = H ′ ∩K2,3 + e′, then

e(H ′) ≤ 2n(H ′ −H0) + e(H0) ≤ 2n(H ′ −H0) + 2n(H0)− 3 = 2n− 3.

Therefore G contains a spanning minimally rigid subgraph in all cases, a contradiction to the

assumption that G is a counterexample. �

(c5) t4 = 0.
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Proof of (c5). For otherwise, let v1 ∈ V4 such that u1v1, u2v1 ∈ E(G) for vertices u1, u2 ∈ V ′4 such

that d(u1) = 3.

Let N(u1) = {v1, w1, w2} such that w1 6= u2. By Claim 3.1, d(v1), d(w1), d(w2) ≥ 6. Assume

that w1 ∈ X0. Then w1 ∈ V4 ∪ V5 and thus t4 + t5 ≥ 2. By Claim 3.4, |X0 − V0| = t2 + t4 + t5 ≤ 4.

It follows that v1 has a neighbor v in V0. Note that (X0 − V0 − v1) ∪ {u1, u2} is a cut of order at

most 5 and is not an essential cut. If w2 ∈ V (G)−X0 − u2, then all but w2u1 edges in E(G−X0)

must be incident with u2. If w2 /∈ V (G)−X0 − u2, then all edges in E(G−X0) must be incident

with u2. Let |V (G) − X0| = t. Then t ≥ 2 and e(X0, V (G) − X0) ≥ min{2(t − 3) + (6 − 2) +

[d(u2) − (t − 2)] + 2, 2(t − 1) + [d(u2) − (t − 1)]} ≥ 6 + (t − 1) = t + 5. On the other hand,

e(X0, V (G) − X0) ≤ t2 + 2t4 + t · t5. It follows that 5 + t(1 − t5) ≤ t2 + 2t4 ≤ 17−6t5−0.5t2
2.5 . So

2.5t(1− t5) + 6t5 + 0.5t2 ≤ 4.5, which is impossible as t ≥ 2 and t5 ≤ 1 by (c4).

So we may assume that w1 ∈ V (G)−X0. As t4 ≥ 1, we have that |X0−V0| = t2 + t4 + t5 ≤ 5 by

Claim 3.4. Assume that v ∈ V0 is a neighbor of v1. Then C = (X0 − V0 − v1) ∪ {u1, u2} is a cut of

order at most 6 and is not an essential cut. Therefore, w1 has no neighbor in V (G)−X0−{u1, u2}.
As d(w1) ≥ 6, it implies that t2 = 4, t4 = 1, t5 = 0 and w1 is adjacent to {u1, u2} ∪ V2. It follows

that w2 (which may be u2) has at least three neighbors in V (G)−X0−{u1, u2, w1} from d(w2) ≥ 6.

So there must exist an edge in E(G − X0 − {u1, u2}) and C is an essential cut, a contradiction.

Thus, N(v1) ∩X0 ⊆ X0 − V0. As d(v1) ≥ 6, |X0 − V0| = 5 with t2 = 4, t4 = 1, t5 = 0 by Claim 3.4

and v1 is adjacent to all vertices in V2. Suppose that w1 is not adjacent to at least two vertices in

V2. Let v2 ∈ V2 be not adjacent to w1 and v2u
′ ∈ E(G) for u′ ∈ V ′2 . Then w1 has a neighbor in

V (G) − X0 − {u1, u2, u′}. Thus, (X0 − V0 − {v1, v2}) ∪ {u1, u2, u′} is an essential cut of order at

most 6, a contradiction. So w1 is not adjacent to at most one vertex in V2. As d(w2) ≥ 6, w2 has

at least two neighbors z1, z2 in V (G)−X0 − {u1, w2, w1} and there must be at least one vertex in

{z1, z2}, say z1, such that z1 has no neighbor in V2. Let v ∈ V2 be adjacent to w1. Then z1 has a

neighbor in V (G)−X0 − {u1, w2, w1} and (X0 − V0 − {v1, v}) ∪ {u1, w2, w1} is an essential cut of

order at most 6, a contradiction. �

From (c1)-(c5) and Claim 3.4, 3t2 + 6t5 ≤ 17. So t2 + 2t5 ≤ 5.

Assume that t0 = 0. Then t2 = 5 and t5 = 0, since |X0| ≥ 5. As each vertex in V2 has exactly

one neighbor in V (G)−X0, each vertex in V2 has degree at most 5, in particular by Claim 3.1, no

vertex has degree three. Assume first that |V ′2 | ≤ 2. Then V (G) = X0 ∪ V ′2 , for otherwise, V ′2 is

a cut of order at most two. As V (G) − X0 is not independent, V ′2 contains two vertices that are

adjacent. Then one of them must have degree 3, but then the other must have degree at least 6,

which is impossible. So |V ′2 | ≥ 3. Then V ′2 contains vertices with exactly one neighbor in V2, say

x′1, . . . , x
′
s for some s ≥ 1. For each i ∈ [s], let xix

′
i ∈ E(G) with xi ∈ V2. For each x′i, if x′i is

adjacent to a vertex in V (G) − X0 − V ′2 , then V ′2 − x′i + xi is an essential 5-cut, a contradiction.

Thus all neighbors of x′i are in V2 ∪ V ′2 , in particular V (G) = X0 ∪ V ′2 . Since d(xi) ≤ 5, d(x′i) ≥ 4,

which implies that |V ′2 | ≥ 4 and thus s ≥ 4. We may assume that x′1x
′
2 ∈ E(G), as d(x′i) ≥ 4. Then

(V ′2 − {x1, x′2}) ∪ {x1, x2} is an essential cut of order at most 5, since x′1x
′
2 ∈ E(G) and x3 has a

neighbor in V2 − {x1, x2}, a contradiction.

Now let V0 6= ∅. Then t2 + t5 ≥ 3 since the neighbors of V0 are in V2 ∪ V5. By Claim 3.4 and

(c4), 3 ≤ t2 ≤ 5, t5 = 0, or 2 ≤ t2 ≤ 3, t5 = 1. Let v ∈ V2 with neighbor v′ ∈ V ′2 such that v has

a neighbor in V0. Then C = V2 ∪ V5 − v + v′ is a set of size at most 5 such that the component

containing v contains an edge. Since G is essentially 9-connected, the other components must be

trivial and all edges in V (G)−X0 must be adjacent to v′. We assume |V (G)−X0| = t. So we have
12



that ∑
v∈V (G)−X0

d(v) ≤ t2 + 2(t− 1) + tt5 = (2 + t5)t+ t2 − 2

for t ≥ 2. By Claim 3.1,
∑

v∈V (G)−X0
d(v) ≥ min{3t + 3, 4t}. A simple computation gives t2 =

1, t5 = 2, a contradiction to (c4). �

By Claim 3.5, assume that V (G)−X0 consists of t ≥ 1 isolated vertices. Since G is 3-connected,

each of these t vertices has degree at least 3, and thus |E[G −X0, V1 ∪ V2 ∪ V3 ∪ V4]| ≥ (3 − t5)t.
On the other hand, by definitions of Vi for 1 ≤ i ≤ 5 and Claim 3.4, we have

(3− t5)t ≤ |E[G−X0, V1 ∪ V2 ∪ V3 ∪ V4]| ≤ t1 + t2 + 2t3 + 2t4 ≤ t1 +
3

2
t2 + 2t3 + 2t4 ≤

1

2
(17− 6t5).

Therefore, t ≤ 17−6t5
6−2t5 < 3 and V (G) − X0 contains at most two isolated vertices. It follows that

3t ≤ |E[X0, G−X0]| ≤ t1 + t2 + 2t3 + 2t4 + 2t5. Therefore, 2t1 + 3t2 + 4t3 + 5t4 + 6t5 ≥ 6t, and

µ′(X0) = (2|X0|−3)−2t0−
5

3
t1−

3

2
t2−

4

3
t3−

7

6
t4−t5 = −3+

1

6
(2t1+3t2+4t3+5t4+6t5) ≥ −3+t ≥ −2.

We may claim that for each y ∈ G − X0 and X ∈ X (y), |X| ≤ 4. Suppose otherwise that

X ∈ X (y) with |X| ≥ 5. Note that X only needs to cover all edges in E[X ∩X0, X ∩ (G−X0)]. On

the other hand, each edge in E[X∩X0, X∩(G−X0)] may be covered with a set of order two, that is,

edges in E[X∩X0, X∩(G−X0)] may be covered with at most e(X∩X0, X∩(G−X0)) sets of order

two. It follows from the minimality of
∑m−1

i=1 (2|Xi|−3) that e(X∩X0, X∩(G−X0)) ≥ 2|X|−3 ≥ 7.

As |X| ≥ 5, X ∩ (V1 ∪ V3) = ∅. Also, X ∩ (G−X0) contains at most two vertices. Therefore,

7 ≤ e(X ∩X0, X ∩ (G−X0)) ≤ t2 + 2t4 + 2t5.

From Claim 3.4, 3t2 + 5t4 + 6t5 ≤ 17, so t4 + t5 ≤ 3. Furthermore, if t4 + t5 = 3 then t2 = 0, if

t4 + t5 = 2 then t2 ≤ 2, if t4 + t5 = 1 then t2 ≤ 4, and if t4 + t5 = 0 then t2 ≤ 5. In any case,

t2 + 2(t4 + t5) ≤ 6, a contradiction.

Therefore, µ′(X0) ≥ −2 and by Claim 3.3 for every X ∈ X −X0, µ
′(X) ≥ 0. It follows that

2|V | − 2 >
∑
X∈X

µ(X) =
∑
X∈X

µ′(X) +
∑

x∈V (G)

µ(x) ≥ −2 + 0 + 2|V | ≥ 2|V | − 2,

a contradiction, which completes the proof.

4. Non-rigid graphs that are 3-connected and essentially t-connected for t ≤ 8.

In this section, we will construct 3-connected essentially t-connected non-rigid graphs for each

t ≤ 8. We start with a 3-connected bipartite T = (X,Y ) such that each x ∈ X is a 3-vertex and

each vertex y ∈ Y is a t-vertex. Then G is obtained from T by replacing each y ∈ Y with Kt and

making vertices in NT (y) adjacent to different vertices of the Kt. See Figure 1 for the 3-connected

essentially t-connected for t ∈ {6, 7} graphs that are not rigid.

Let n3 and nt denote the number of 3-vertex and t-vertex in T , respectively. Note that 3n3 = tnt,

n3 + tnt = n(G) and it follows that 2n(G) − 3 = 2 · 4n3 − 3 = 8n3 − 3. Let G′ be a spanning

subgraph of G. Then G′ contains at most (2t− 3) edges from each of the t-cliques. So when t ≤ 8

and n > 96,

|E(G′)| ≤ 3n3 + nt · (2t− 3) = 9n3 −
9

t
n3 =

9

4
(1− 1

t
)n(G′) < 2n(G′)− 3.

Then G does not contain a spanning minimally rigid subgraph, that is, G is not rigid.
13
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Figure 1. 3-connected essential t-connected non-rigid graphs for t = 6, 7

Next, we will show that the graph G is 3-connected and essentially t-connected. It is easy to see

that G − u − v is connected for all u, v ∈ V (G). Let S ∈ V (G) with |S| ≤ t − 1. Note that any

vertex of Kt is a t-vertex and adjacent to t − 1 vertices of degree t and one 3-vertex. Thus, there

must be a t-vertex u of any Kt is adjacent to a 3-vertex denoted by x in G − S. And then either

u is adjacent to other 3-vertices (except x) or x is adjacent to other t-vertices (except u). We can

extend this nontrivial component until there are only isolated vertices in G − S. So we have that

G is 3-connected and essentially t-connected.

5. Appendix: complete of Claim 3.1

Claim 3.1: In a 3-connected essentially 9-connected graph G, every 3-vertex is only adjacent

to 6+-vertices.

Proof. Let x ∈ V (G) be a 3-vertex and N(x) = {v1, v2, v3}. Suppose that v1 is a 5−-vertex

and d(v3), d(v2) ≥ d(v1). We will simply use di to denote d(vi) for i = 1,2,3, respectively. Let

N ′(v1) = N(v1) − {x, v2, v3}. Then let S = {v2, v3} ∪ N ′(v1) and |S| = s. Note that s ≤ 6 and

one component of G − S contains edge xv1. Let U = {x, v1}. We also have s ≥ 3, since G is 3-

connected. As G has no essential cut of size less than 9, the other components of G−S must form

an independent set, say T = {u1, . . . , ut}. Note that N(ui) ⊆ S. We will find a spanning minimally

rigid subgraph H∗ of G− e for every e ∈ E(G), which implies that G is not a counterexample.

First of all, we claim that s ≥ 4. If not, then s = 3 and v1 has at least one neighbor in {v2, v3}
by d(v1) ≥ 3. We know that all vertices in T are adjacent to S as d(v) ≥ 3 for v ∈ V (G). Since

|V (G)| ≥ 10, we have that t ≥ 10 − 2 − 3 = 5. It follows that there is a K3,3 between S and T

in G − e, for any e ∈ E(G). We will construct H∗ from this K3,3 by adding remaining vertices

one by one and joining each vertex to its (any) two neighbors in current H∗ in G − e. Denote

K3,3 ∩ T = {u1, u2, u3}. Then u4, . . . , ut ∈ V (H∗), since ui has at least two neighbors in K3,3 for

i ∈ {4, . . . , t} in G− e. If e is not incident with x, then we can add x and xv2, xv3 to H∗; and add

v1 and two incident edges other than e. If e is incident with x, then we can add v1 and two edges

in E[v1, S] to H∗; and add x and two incident edges incident other than e. Thus H∗ is a spanning

subgraph of G− e and |E(H∗)| = 3 · 3 + 2(n− 6) = 2n− 3. As |E(K3,3)| = 9 = 2|V (K3,3)| − 3, for

any subgraph H ′ of H∗ with |H ′| ≥ 2 and H0 = H ′ ∩K3,3, then

|E(H ′)| ≤ 2|V (H ′ −H0)|+ |E(H0)| ≤ 2|V (H ′ −H0)|+ 2|V (H0)| − 3 = 2|V (H ′)| − 3,

which implies that H∗ is a spanning minimally rigid subgraph of G − e and so G is not a coun-

terexample. This completes the proof of the claim that s ≥ 4..
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Let T0 = N(v2) ∩ N(v3) ∩ T and |T0| = t0. For s ≥ 4, we take the spanning subgraph H of G

that consists of the following types of edges.

type 1: all edges incident with vi in G, for i ∈ [3].

type 2: all edges between S and T in G.

We will prove several conclusions.

Conclusion 1. |E(H)| ≥ 2n− 2.

Proof. Suppose to the contrary that |E(H)| ≤ 2n − 3 = 2s + 2t + 1. Recall that 4 ≤ s ≤ 6. We

first consider the case s = 4. As |V (G)| ≥ 10, t ≥ 10− 2− 4 = 4. Note that

|EH [U, S] ∪ E(U)| = d1 + 2,

and

2s+ 2t+ 1 ≥ |E(H)| ≥ |E[S, T ]|+ |EH [U, S] ∪ E(U)| ≥ 3t+ (d1 + 2) ≥ 3t+ 5.

It implies that d1 = 3, t = 4 and d(v) = 3 for any v ∈ T . It follows that |EH(S)| = 0 from the simple

computation. Then any v ∈ T is not adjacent to one vertex v′ ∈ S since s = 4. If v′ ∈ N ′(v1), then

consider C = x ∪ (N ′(v1)− v′) ∪ (T − v) and |C| = 5. Since E[{v2, v3}, v′] = ∅, {v, v2} and {v1, v′}
belong to different nontrivial components of G−C, a contradiction. If v′ ∈ {v2, v3}, then consider

C = v1∪ ({v2, v3}− v′)∩ (T −v). Note that |C| = 5 and G−C contains two nontrivial components

{x, v′} and v ∪N ′(v1) since E[{v2, v3}, N ′(v1)] = ∅, a contradiction.

Next, we will show three useful facts before considering 5 ≤ s ≤ 6.

Fact 1: t+ |EH(S)| ≤ s.

Proof. Clearly, |EH [U, S] ∪ E(U)| = d1 + 2 and s ≤ d1 + 1. According to types 1 and 2, we have

that 2s+ 2t+ 1 ≥ |E(H)| ≥ |EH [U, S]∪E(U)|+ |EH(S)|+ 3|T | = (d1 + 2) + |EH(S)|+ 3t. A direct

computation shows that t+ |EH(S)| ≤ 2s+ 2t+ 1− (d1 + 2)− 2t ≤ s. �

Fact 2: There exists a vertex vi with i ∈ {2, 3} such that |N(vi) ∩N ′(v1)| ≤ 2.

Proof. Assume for a contradiction that both v2 and v3 have at least three neighbors in N ′(v1),

then |EH(S)| ≥ 6. By Fact 1, we know that |EH(S)| = s = 6 and t = 0. It implies that

|V (G)| = 2 + s+ t = 8, a contradiction. �

Fact 3: Suppose that |V (G)| ≤ 12. If |N(vi) ∩ N ′(v1)| ≤ 2 and viv1 /∈ E(G) for some

i ∈ {2, 3}, then every vertex in N(vi)∩T must be adjacent to all vertices in N ′(v1)−N(vi).

Proof. Without loss of generality we may assume that i = 2. Suppose to the contrary that there

is a vertex u ∈ N(v2) ∩ T and a vertex v ∈ N ′(v1) − N(v2) such that uv /∈ E(G). Let C =

V (G)− {v1, v, u, v2}. Note that |C| ≤ 12− 4 = 8 and vv1, uv2 ∈ E(G). Clearly, {v, v1} and {u, v2}
belong to different nontrivial components of G−C, which contradicts the fact that G is essentially

9-connected. �

Now we are ready to deal with the case 5 ≤ s ≤ 6.

When s = 5, we know that 4 ≤ d1 ≤ 5. Note that |V (G)| = 2 + s + t ≤ 2 + 2s = 12 by Fact 1.

Suppose that there is a vertex in {v2, v3}, say v2, such that v2 has no neighbors in N ′(v1)∪ v1. By

Fact 3, every vertex in N(v2)∩T must be adjacent to all vertices in N ′(v1). Note that |N ′(v1)| = 3.

Thus, the neighbors of v2 in T are 4+-vertices. Note that d2 ≥ d1 ≥ 4 and |N(v2) ∩ S| ≤ 1.

So |N(v2) ∩ T | ≥ 2. If |N(v2) ∩ T | ≥ 3, then |E(H)| ≥ |E[U, S] ∪ E(U)| + 3|T | + (4 − 3) · 3 ≥
(d1 + 2) + 3t + 3 ≥ 2s + 2t + 2, a contradiction. If |N(v2) ∩ T | = 2, then |N(v2) ∩ S| = 1
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as d(v2) ≥ 4 and |EH(S)| ≥ 1 by type 1. As |V (G)| ≥ 10, t = |V (G)| − 2 − s ≥ 3. Thus,

|E(H)| ≥ |E[U, S] ∪ E(U)| + |EH(S)| + 3|T | + (4 − 3) · 2 ≥ (d1 + 2) + 3t + 3 ≥ 2s + 2t + 2,

a contradiction. Therefore, each of {v2, v3} must have at least one neighbor in N ′(v1) ∪ v1 and

|EH(S)|+ |E[U, S] ∪ E(U)| ≥ d1 + 2 + |EH(S)| ≥ 8.

Since |E(H)| ≤ 2s + 2t + 1, 3t ≤ |E[S, T ]| ≤ (2s + 2t + 1) − 8. We get that t ≤ 3 by a direct

computation. Since t ≥ 3, we have t = 3 and |E[S, T ]| = 3t, that is, every vertex in T is a 3-

vertex. Thus, |EH(S)| + |E[U, S] ∪ E(U)| = 8. It follows that each of {v2, v3} must have exactly

one neighbor in N ′(v1) ∪ v1 and v2v3 /∈ E(G). Note that v1 is adjacent to at most one vertex in

{v2, v3}. There exists a vertex in {v2, v3}, say v2, such that every vertex in N(v2) ∩ T is adjacent

to all vertices in N ′(v1)−N(v2) and |N ′(v1)−N(v2)| ≥ 2 by Fact 3. Thus, each vertex in T0 is a

4+-vertex. Since d3, d2 ≥ d1 ≥ 4, we have that t0 = d2 + d3 − 4 − t ≥ 1. That is, there is at least

one vertex u in T0 of degree at least 4, a contradiction.

When s = 6, we have that d1 = 5 and v1 is not adjacent to v2 and v3.

We claim that t ≥ 5. Suppose to the contrary that t ≤ 4. Then |V (G)| = 2 + s + t ≤ 12. By

Fact 2, there is a vertex vi, i ∈ {2, 3}, say v2, such that |N(v2) ∩N ′(v1)| ≤ 2. According to Fact 3,

every vertex in N(v2) ∩ T is adjacent to all vertices in N ′(v1) − N(v2). Thus, the degree of each

vertex in T0 is at least 4. Note that

d2 + d3 − 2 = |N(v2) ∩N ′(v1)|+ |N(v3) ∩N ′(v1)|+ 2|N(v2) ∩ v3|+ |N(v2) ∩ T |+ |N(v3) ∩ T |.

Therefore, we have that

2s+ 2t+ 1 ≥ |E(H)| = |E[U, S] ∪ E(U)|+ |EH(S)|+ |E[S, T ]|
≥ (d1 + 2) + |N(v2) ∩N ′(v1)|+ |N(v3) ∩N ′(v1)|+ |N(v2) ∩ v3|+ 3|T |+ |T0|
≥ (d1 + 2) + (d2 + d3 − 2− 1)− (|N(v2) ∩ T |+ |N(v3) ∩ T |) + 3|T |+ |T0|
= d1 + d2 + d3 + 2t− 1,

since t + t0 ≥ |N(v2) ∩ T | + |N(v3) ∩ T |. As di ≥ 5, i ∈ [3] and s = 6, we get 13 ≥ 15 − 1 by the

computation, a contradiction. This completes the proof of the claim that t ≥ 5.

By Fact 1, we have that 5 ≤ t ≤ 6. We claim that vi must have at least one neighbor in N ′(v1)

for any i ∈ {2, 3}. Suppose to the contrary that there is a vertex vi, i ∈ {2, 3}, say v2, such that

N(v2) ∩N ′(v1) = ∅.
Let W (v) = {w : w ∈ N ′(v1) & vw /∈ E(G), for v ∈ N(v2) ∩ T}. We show that |W (v)| ≤ t− 4,

for any v ∈ N(v2) ∩ T . If not, then there is a vertex u ∈ N(v2) ∩ T such that |W (u)| ≥ t − 3.

Consider C = V (G) − ({v1, v2, u} ∪W (u)). Note that |C| ≤ 2 + s + t − (3 + t − 3) = 8. Clearly,

v1 ∪W (u) and {u, v2} belong to different components of G−C. Both of them contain at least one

edge, a contradiction to the fact that G is essentially 9-connected. Thus |W (v)| ≤ t− 4.

Therefore, we have that the degree of each vertex v in N(v2)∩T is at least |N ′(v1)|−|W (v)|+1 ≥
9− t. The degree of each vertex in T0 is at least 10− t.

Now we show that t0 ≥ 1. By Fact 1, |EH(S)| ≤ s − t = 6 − t. Since N(v2) ∩ N ′(v1) = ∅,
|N(v3) ∩ S| = |EH(S)|. Thus, |N(v3) ∩ T | ≥ d3 − 1− |N(v3) ∩ S| ≥ t+ d3 − 7. Therefore,

t0 ≥ |N(v2) ∩ T |+ |N(v3) ∩ T | − t ≥ (d2 − 2) + (t+ d3 − 7)− t = d2 + d3 − 9 ≥ 1.

Thus,

|E(H)| ≥ |E[U, S] ∪ E(U)|+ 3|T |+ (10− t− 3) · t0 ≥ d1 + 2t+ 9 = 2s+ 2t+ 2.
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This leads to a contradiction, completing the proof of the claim that vi has at least one neighbor

in N ′(v1) for any i ∈ {2, 3}.
It implies that |EH(S)| ≥ 2. So

|E(H)| ≥ |E[U, S] ∪ E(U)|+ |EH(S)|+ 3|T | ≥ (d1 + 2) + 2 + 3t ≥ 2s+ 2t+ 2,

a contradiction. This completes the proof of Conclusion 1. �

Thus H is a spanning subgraph of G with |E(H)| ≥ 2n−2, and we can find a spanning subgraph

H1 of H− e with |E(H1)| = 2n−3 for any e ∈ E(G). If H1 is a spanning minimally rigid subgraph

of G − e, then we are done. So we assume that H1 is not a spanning minimally rigid subgraph of

G−e, that is, there is a subgraph Z ⊆ H1 of size at least 2 such that |E(Z)| > 2|V (Z)|−3. Choose

Z ⊆ H1 such that Z is a minimal subgraph. That is, |E(Z)| > 2|V (Z)| − 3. But for any proper

subgraph Z ′ of Z, |E(Z ′)| ≤ 2|V (Z ′)| − 3. Clearly, |V (Z)| ≥ 4 and dZ(v) ≥ 3 for each z ∈ V (Z).

Conclusion 2. Z must satisfy one of the following conditions.

(a) |V (Z) ∩ S| ≥ 3.

(b) V (Z) = {x, v1, v2, v3} and Z is a K4.

Proof. Suppose that |V (Z) ∩ S| ≤ 2. Then |N(v) ∩ Z| ≤ 2 for any v ∈ T , which implies that

V (Z) ∩ T = ∅ by the minimality of Z. As |V (Z)| ≥ 4 and |V (Z) ∩ S| ≤ 2, U ⊆ V (Z) and Z must

be a K4. Since x is not adjacent to N ′(v1), N
′(v1) * V (Z) and V (Z) = {x, v1, v2, v3}. �

We pick a spanning subgraph Z0 of Z such that |E(Z0)| = 2|V (Z0)| − 3. A Laman graph

(minimally rigid graph) G is maximal if no Laman graph properly contains G. We will show that

we can obtain a spanning minimally rigid subgraph H∗ of G−e by adding the remaining vertices of

G and some edges in E(G) to Z0. Firstly, if xi ∈ V (G)−V (Zi−1) and xi has at least two neighbors

in Zi−1 in G − e, then add vertex xi and two edges (other than e) between xi and Zi−1 to Zi−1.

Denote by Zi the resulting graph. So V (Zi) = V (Zi−1) ∪ xi and |E(Zi)| = |E(Zi−1)|+ 2. Suppose

that i ∈ [k], that is, we can add at most k vertices to Z0.

Clearly, |E(Zk)| = |E(Z0)| + 2k = 2|V (Zk)| − 3. For any subgraph H ′ ⊆ Zk with |H ′| ≥ 2, we

have that |E(H ′)| ≤ 2|V (Z0 ∩H ′)| − 3 + 2(|V (H ′)| − |V (Z0)|) ≤ 2|V (H ′)| − 3. For convenience, let

S′ = V (Zk) ∩ S and T ′ = V (Zk) ∩ T . Let S − S′ = {w1, w2, . . .} and T − T ′ = {u1, u2, . . .}.

Conclusion 3. If S′ * N ′(v1) and U * Zk, then the following hold.

(a) e ∈ E[U, S′] ∪ E(U).

(b) Let U = {x1, x2}. If x1 ∈ U has at least two neighbors in S′, then x2 /∈ Zk and x2 has at most

one neighbor in S′.

Proof. By Conclusion 2, |S′| ≥ |V (Z) ∩ S| ≥ 3.

(a) If e /∈ E[U, S′] ∪ E(U), then there is a vertex say x1 ∈ U that has at least two neighbors in S′

and x1 ∈ Zk. Another vertex x2 ∈ U must have at least two neighbors in S′ ∪ x1 and x2 ∈ Zk, a

contradiction.

(b) If x2 ∈ Zk, then |N(x1) ∩ (x2 ∪ S′)| ≥ 3 and x1 ∈ Zk, a contradiction. Thus, x2 /∈ Zk. If

|N(x2)∩S′| ≥ 2, then e ∈ E[x2, S
′], as x2 /∈ Zk. So in G−e, x1 has at least two neighbors in S′ and

x1 ∈ Zk. Since x2x1 ∈ E(G− e) and |E[x2, S
′]− e| ≥ 1, we have that x2 ∈ Zk, a contradiction. �

Next, we construct Zk′ , when U * Zk and S′ * N ′(v1). Note that |S′| ≥ 3 by Conclusion 2. Let

U ′ = U −Zk. In G, there must exist a vertex, say x1 ∈ U that has at least two neighbors in S′ and
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another vertex, say x2 ∈ U that has at least one neighbor in S′. By Conclusion 3(b), x2 ∈ U ′. If

U ′ = U , then add x1, x2 and e1, e2 ∈ E[x1, S
′], e3 ∈ E[x2, S

′], x1x2 to Zk and delete e to get Zk′ . If

U ′ = x2, then we add x2 and x1x2, e3 ∈ E[x2, S
′] and delete e to get Zk′ . Therefore, we have that

|E(Zk′)| = 2|V (Zk′)| − 4.

Conclusion 4. Let S0 = {w : w ∈ S − S′ & N(w) ∩ (Zk − U) = ∅} and S1 = {w : w ∈
S − S′ & |N(w) ∩ (Zk − U)| = 1}. If S′ * N ′(v1) and U * Zk, then |S0| ≥ 2.

Proof. By Conclusion 3, e ∈ E[U, S′] ∪ E(U) and S − S′ 6= ∅. So |N(w) ∩ (Zk − U)| ≤ 1 for each

w ∈ S − S′ and S0 ∪ S1 = S − S′. Suppose to the contrary that |S0| ≤ 1. If S0 = {w1}, then

we add each vertex w ∈ S1 and its two incident edges e1 ∈ E[w,U ], e2 ∈ E[w,Zk − U ] to Zk′ .

Then add the remaining vertices of T one by one by joining it with two neighbors in the existing

subgraph. At last, add w1 and three incident edges including e′ ∈ E[w1, U ]. If S0 = ∅, then choose

w1 ∈ S1 and add each vertex w ∈ S1 − w1 and two incident edges e1 ∈ E[w,U ], e2 ∈ E[w,Zk − U ]

to Zk′ . Then add the remaining vertices of T one by one by joining it with two neighbors in the

already-formed subgraph. At last, add w1 and three incident edges including e′ ∈ E[w1, U ]. Note

that |E(Zk′)| = 2|V (Zk′)| − 4. Thus,

|E(H∗)| = |E(Zk′)|+ 2|V (G)− V (Zk)|+ 1 = 2|V (G)| − 3.

We will show that |E(H ′)| ≤ 2|V (H ′)| − 3 for any subgraph H ′ ⊆ H∗ with |H ′| ≥ 2, to reach

a contradiction. Clearly, if H ′ ⊆ Zk, then |E(H ′)| ≤ 2|V (H ′)| − 3. Suppose that V (H ′) ⊆
V (H∗)− V (Zk). If U ′ ∩ V (H ′) = ∅, then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|+ |E[S − S′]|
≤ max{|V (H ′)| − 1, 2(|V (H ′)| − 2) + 1, 2(|V (H ′)| − 3) + 2}
≤ 2|V (H ′)| − 3.

If |U ′ ∩ V (H ′)| = 1, then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|+ |E[S − S′]|
+ |E[U ′ ∩ V (H ′), (S − S′) ∩ V (H ′)]|
≤ max{(|V (H ′)| − 2) + 1, 2(|V (H ′)| − 3) + 1 + 2, 2(|V (H ′)| − 4) + 2 + 3}
≤ 2|V (H ′)| − 3.

If |U ′ ∩ V (H ′)| = 2, then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|+ |E[S − S′]|
+ |E[U ′ ∩ V (H ′), (S − S′) ∩ V (H ′)]|+ |E(U ′)|
≤ max{(|V (H ′)| − 3) + 1, 2(|V (H ′)| − 4) + 1 + 2, 2(|V (H ′)| − 5) + 2 + 3}+ 1

≤ 2|V (H ′)| − 3.

Next, we consider that V (H ′) ∩ V (Zk) 6= ∅ and V (H ′) ∩ (V (H∗) − V (Zk)) 6= ∅. Note that Zk

is the unique maximal Laman subgraph in H∗ − w1. Since |N(w1) ∩ Zk| ≤ 1, we have that

|E(H ′)| ≤ 2|V (H ′)| − 3. This completes the proof of Conclusion 4. �

Conclusion 5. 2 ≤ |S − S′| ≤ 3.
18



Proof. By Conclusion 2, if 6 ≥ s ≥ 5, then |S′| ≥ |V (Z) ∩ S| ≥ 3 and |S − S′| ≤ 3. If s = 4, then

|S′| ≥ |V (Z)∩ S| ≥ 2 and |S − S′| ≤ 2. Suppose to the contrary that |S − S′| ≤ 1. Then all but at

most one vertex in T are adjacent to at least two vertices in S′ in G− e, that is, |T − T ′| ≤ 1.

If T − T ′ = u1, then u1 is adjacent to w1 ∈ S − S′ and is incident with e in G as d(u1) ≥ 3.

Note that |N(w1) ∩ Zk| ≤ 1 since w1 ∈ S − S′ and w1 is not incident with e. It implies that

|N(w1)∩(V (G)−V (Zk))| ≥ 2 and U * Zk. By Conclusion 3(a), e ∈ E(U)∪E[U, S′], a contradiction

to the fact that e is incident with u1. So we assume that T = T ′. If S = S′, then U ⊆ Zk and

V (Zk) = V (G). Note that Zk is a spanning minimally rigid subgraph of G− e, a contradiction. If

S−S′ = w1, then |N(w1)∩ (V (G)−V (Zk))| ≥ 1 and U * Zk. Note that S′ * N ′(v1), we have that

e ∈ E(U)∪E[U, S′] by Conclusion 3(a). As e is not incident with w1, |N(w1)∩(V (G)−V (Zk))| ≥ 2.

It follows that x, v1 /∈ Zk and w1 is adjacent to x and v1. So d(w1) = 3 and w1 ∈ {v2, v3}. As

|S| ≥ 4 and N(v1)∩{v2, v3} 6= ∅, d(v1) ≥ 4, a contradiction to the fact that d(v2), d(v3) ≥ d(v1). �

It is not hard to see that d(v1) ≥ 4. Otherwise if d(v1) = 3, since s ≥ 4, it follows that s = 4

and v1 is not adjacent to v2 and v3. By conclusion 2, |S′| ≥ |V (Z) ∩ S′| ≥ 3 and |S − S′| ≤ 1, a

contradiction to Conclusion 5. It implies that 3-vertices are only adjacent to 4+-vertices.

To complete the proof, we now construct a spanning minimally rigid subgraph H∗ by considering

the following cases.

Case 1: S′ * N ′(v1).

Subcase 1.1: S − S′ ⊆ N ′(v1) and |S − S′| = 2.

(i) Suppose that U ⊆ V (Zk).

We claim that |T − T ′| ≥ 2. If e /∈ E[S − S′, Zk], then |T − T ′| ≥ 2 as N(S − S′) ⊆ v1 ∪ (T − T ′)
and G is 3-connected. If e ∈ E[S − S′, Zk], then |N(S − S′) ∩ (Zk − v1)| ≤ 1 and |T − T ′| ≥ 1 as

N(S −S′) ⊆ Zk ∪ (T − T ′) and G is 3-connected. As u1 is not incident with e, |N(u1)∩S′| ≤ 1 for

u1 ∈ T − T ′. It follows that d(u1) = 3 and u1 is adjacent to w1 and w2. Since 3-vertices are only

adjacent to 4+-vertices, w1 and w2 are 4+-vertices. There exists a vertex in S − S′, say w1, that is

not incident with e. As N(w1) ⊆ {v1, w2} ∪ (T − T ′), we get that |T − T ′| ≥ 2.

Let N ′(vi) = N(vi) ∩ (T − T ′) and N ′′(vi) = N(vi) ∩ (S − S′) for i ∈ {2, 3}. We show that

|N ′(vi)| ≥ 2 for any i ∈ {2, 3}. Suppose to the contrary that there is a vertex, say v2, such that

|N ′(v2)| ≤ 1. Consider C = v1 ∪N ′(v2) ∪ (S′ − v2) ∪N ′′(v2). Note that |C| ≤ 6 as |N ′′(v2)| ≤ 1.

We have that (S−S′−N ′′(v2))∪ (T −T ′−N ′(v2)) and {x, v2} lie in different components of G−C
and xv2 ∈ E(G). As |T −T ′| ≥ 2, there is at least one edge in (S−S′−N ′′(v2))∪ (T −T ′−N ′(v2)).
So C is an essential cut, a contradiction. Since all but at most one vertex in T − T ′ can be only

adjacent at most one vertex in S′, we have that |T − T ′| ≥ 3 and there are three different vertices

u1, u2 and u3 in T − T ′ such that u1v2, u2v3, u3v3 ∈ E(G) and ui is adjacent to w1, w2 for i ∈ [2].

We add wi and v1wi to Zk and obtain Zk+2, where i ∈ {1, 2}. Then for i ∈ {1, 2}, add ui and

uiw1, uiw2, uivi+1 to Zk+2 and obtain Zk+4.

If e /∈ E(Zk+4), then add remaining vertices in T − T ′ one by one by joining it with two vertices

in the already-formed subgraph in G− e to get H∗. Thus, we have that

|E(H∗)| = |E(Zk+4)|+ 2(|T − T ′| − 2) = 2|V (G)| − 3.

If e ∈ E(Zk+4), then u3 is adjacent to w1 and w2. We add u3 and u3w1, u3w2, u3v3 to Zk+4 and

obtain Zk+5. And then add remaining vertices in T − T ′ one by one by joining it with two vertices

in the already-formed subgraph in G− e and get Zn′ . And delete e from Zn′ to get H∗. Thus, we
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have that

|E(H∗)| = |E(Zk+5)− e|+ 2(|T − T ′| − 3) = 2|V (G)| − 3.

It is remaining to show that |E(H ′)| ≤ 2|V (H ′)| − 3 for any subgraph H ′ ⊆ H∗ with |H ′| ≥ 2.

Clearly, if H ′ ⊆ Zk, then |E(H ′)| ≤ 2|V (H ′)| − 3. If V (H ′) ⊆ V (H∗)− V (Zk), then

|E(H ′)| ≤ |H ′ ∩ (S − S′)| · |H ′ ∩ (T − T ′)|
≤ max{|V (H ′)| − 1, 2(|V (H ′)| − 2)}
≤ 2|V (H ′)| − 3.

Next, we consider that V (H ′1) = V (H ′) ∩ V (Zk) 6= ∅ and V (H ′2) = V (H ′) − V (H ′1) 6= ∅. Let

W = {w1, w2, u1, u2, u3}. It is easy to check that for any subset W ′ ⊆ W and any subgraph

Z ′ ⊆ Zk, |EH∗(W
′ ∪ V (Z ′))| − |E(Z ′)| ≤ 2|W ′|. Each vertex in V (H∗) − V (Zk) − W is a 2-

vertex in H∗. Thus, every time we add any subset Y ⊆ V (H∗) − V (Zk) into Zk, we have that

|EH∗(Y ∪V (Z ′))|−|E(Z ′)| ≤ 2|Y | for any subgraph Z ′ ⊆ Zk. Thus, |E(H ′)| ≤ |E(H ′1)|+2|V (H ′2)| ≤
2|V (H ′)| − 3.

(ii) Suppose that U * V (Zk).

As U * Zk, |S′| ≥ 3 by Conclusion 2. So |S| ≥ 5. Since |N(x) ∩ S′| ≥ 2, v1 /∈ Zk and

|N(v1) ∩ S′| = 1 by Conclusion 3(b). So |S′| = 3. As |N(x) ∩ Zk| = 2, x /∈ Z. It follows that

|T ∩V (Z)| ≥ 1 from |V (Z)| ≥ 4. Since dZ(v) ≥ 3 for any v ∈ Z, all vertices in T ∩V (Z) are adjacent

to all vertices in S′. According to Conclusion 4, |S0| ≥ 2 and so S − S′ = S0. Let N(v1) ∩ S′ = z1
and S0 = {w1, w2}. We claim that |T − T ′| ≥ 6. Suppose to the contrary that |T − T ′| ≤ 5. Then

{x, z1} ∪ (T − T ′) is an essential cut of size at most 7, as {v1, w1, w2} and (S′ − z1) ∪ T ′ belong to

different nontrivial components, a contradiction.

Let N ′(vi) = N(vi) ∩ (T − T ′) for i ∈ {2, 3}. Next, we show that |N ′(vi)| ≥ 4 for i ∈ {2, 3}.
Suppose to the contrary that there is a vertex, say v2, such that |N ′(v2)| ≤ 3. Then C = {x, v1} ∪
N ′(v2) ∪ (S − S0 − v2) is an essential cut of size at most 8, as S0 ∪ (T − T ′ −N ′(v2)) and v2 ∪ T ′
belong to different nontrivial components, a contradiction. As e ∈ E(U)∪E[U, S′], in G− e, there

are three vertices u1, u2 and u3 in T − T ′ such that u1v2, u2v3, u3v2 ∈ E(G) and ui is adjacent to

w1 and w2 for i ∈ [3].

Note that |E(Zk′)| = 2|V (Zk′)| − 4. We will construct H∗ in the following steps. First, we add

wi and v1wi to Zk′ and obtain Zk′+2, where i ∈ {1, 2}. We then add ui and uiw1, uiw2, uivi+1 to

Zk′+2 for i ∈ [2] and obtain Zk′+4. In the last step, we add u3 and u3w1, u3w2, u3v2 to obtain Zk′+5,

and add remaining vertices in T − T ′ one by one by joining it with two neighbors in V (Zk′+5) to

get H∗. Thus, we have that

|E(H∗)| = |E(Zk′)|+ 2 + 3 · 3 + 2(|T − T ′| − 3) = 2|V (G)| − 3.

Let W = U ′∪{w1, w2, u1, u2, u3}. It is easy to check that for any subset W ′ ⊆W and any subgraph

Z ′ ⊆ Zk, |EH∗(W
′ ∪ V (Z ′))| − |E(Z ′)| ≤ 2|W ′|.
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It is remaining to show that |E(H ′)| ≤ 2|V (H ′)| − 3 for any subgraph H ′ ⊆ H∗ with |H ′| ≥ 2.

Clearly, if H ′ ⊆ Zk, then |E(H ′)| ≤ 2|V (H ′)| − 3. If V (H ′) ⊆ V (H∗)− V (Zk), then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|
+ |E[U ′ ∩ V (H ′), (S − S′) ∩ V (H ′)]|+ |E(U ′ ∩ V (H ′))|
≤ max{|V (H ′)| − 1, 2(|V (H ′)| − 2), (|V (H ′)| − 2) + 1, 2(|V (H ′)− 3|) + 2,

(|V (H ′)| − 3) + 1 + 1, 2(|V (H ′)| − 4) + 2 + 1}
≤ 2|V (H ′)| − 3.

Next, we consider that V (H ′1) = V (H ′)∩V (Zk) 6= ∅ and V (H ′2) = V (H ′)−V (H ′1) 6= ∅. Each vertex

in V (H∗)−V (Zk)−W is a 2-vertex in H∗. Thus, every time we add any subset Y ⊆ V (H∗)−V (Zk)

into Zk, we have that |EH∗(Y ∪ V (Z ′))| − |E(Z ′)| ≤ 2|Y | for any subgraph Z ′ ⊆ Zk. Thus,

|E(H ′)| ≤ |E(H ′1)|+ 2|V (H ′2)| ≤ 2|V (H ′)| − 3, completing the proof.

Subcase 1.2: |(S − S′) ∩N ′(v1)| = 1 and |(S − S′) ∩ {v2, v3}| = 1.

For convenience, suppose that w1 ∈ N ′(v1) and w2 = v2.

(i) Suppose that U ⊆ V (Zk).

We first show that |T − T ′| ≥ 2. As there is a vertex, say w1, in S − S′ that has only one

neighbor in Zk, |T − T ′| ≥ d(w1)− 1− (|S −S′| − 1) = 1. If T − T ′ = u1, then d(w1) = 3 and w1 is

adjacent to w2. It follows that d(w2), d(u1) ≥ 4 since 3-vertices are only adjacent to 4+-vertices. As

N(u1) ⊆ S, |N(u1) ∩ S′| ≥ 2 and so e ∈ E[u1, S
′]. However, in this case, w2 only can be adjacent

to at most three vertices, a contradiction. Thus, |T − T ′| ≥ 2.

If |N(w2) ∩ V (Zk)| = 2, then e ∈ E[w2, V (Zk)] since w2 ∈ S − S′. As all vertices in T − T ′ are

adjacent to at most one vertex in Zk, each vertex u ∈ T − T ′ is adjacent to w1 and w2. We will

construct H∗ in the following steps. First add w1, w2 and w1v1, E[w2, V (Zk)]−e to Zk to get Zk+2.

For i ∈ [2], add ui ∈ T − T ′ and three edges incident with ui including u1w1, u2w2 to Zk+2 and get

Zk+2+i. In the last step, we add remaining vertices in T − T ′ one by one by joining it with two

neighbors in V (Zk+4) to get H∗. Thus, we have that

|E(H∗)| = |E(Zk)|+ 2 + 3 · 2 + 2(|T − T ′| − 2) = 2|V (G)| − 3.

Let W = {w1, w2, u1, u2}. It is easy to check that for any subset W ′ ⊆ W and any subgraph

Z ′ ⊆ Zk, |EH∗(W
′ ∪ V (Z ′))| − |E(Z ′)| ≤ 2|W ′|.

Next, suppose that N(w2)∩V (Zk) = x. Let {z1, z2} ⊆ S′∩N ′(v1) and N ′(zi) = N(zi)∩ (T −T ′)
for i ∈ [2]. Then we claim that |N ′(zi)| ≥ 2 for any i ∈ [2]. Suppose to the contrary that there is a

vertex, say z1, such that |N ′(z1)| ≤ 1. Consider C = N ′(z1)∪(S−z1−w2)∪x and |C| ≤ 1+4+1 = 6.

Since all vertices in w2 ∪ (T − T ′ −N ′(z1)) are not adjacent to all vertices in {v1, z1} ∪ T ′. Thus,

w2 ∪ (T −T ′−N ′(z1)) and {v1, z1}∪T ′ belong to different components of G−C and v1z1 ∈ E(G).

As |N ′(z1)| ≤ 1 and |T − T ′| ≥ 2, there is at least one edge in w2 ∪ (T − T ′ −N ′(z1)). So C is an

essential cut, a contradiction. Since all but at most one vertex in T − T ′ can be only adjacent at

most one vertex in S′, we have that |T − T ′| ≥ 3 and there are three different vertices u1, u2 and

u3 such that u1z1, u2z2, u3z1 ∈ E(G) and ui is adjacent to w1 and w2 for i ∈ [2].

We will construct H∗ in the following steps. First add w1, w2 and v1w1, xw2 to Zk and obtain

Zk+2. Then for i ∈ [2], add ui and uiw1, uiw2, uizi to Zk+2 and obtain Zk+4.

If e /∈ E(Zk+4), then add remaining vertices in T−T ′ one by one by joining it with two vertices in

Zk+4 in G− e to get H∗. Thus, we have that |E(H∗)| = |E(Zk+4)|+ 2(|T −T ′| − 2) = 2|V (G)| − 3.
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Let W = {w1, w2, u1, u2}. It is easy to check that for any subset W ′ ⊆ W and any subgraph

Z ′ ⊆ Zk, |EH∗(W
′ ∪ V (Z ′))| − |E(Z ′)| ≤ 2|W ′|.

If e ∈ E(Zk+4), then u3 is adjacent to w1 and w2. We add u3 and u3w1, u3w2, u3z1 to Zk+4 and

obtain Zk+5. In the last step, we add remaining vertices in T − T ′ one by one by joining it with

two vertices in Zk+5 in G − e to get Zn′ , and delete e from Zn′ to get H∗. Thus, we have that

|E(H∗)| = |E(Zk+5)− e|+ 2(|T −T ′|− 3) = 2|V (G)|− 3. Let W = {w1, w2, u1, u2, u3}. It is easy to

check that for any subset W ′ ⊆W and any subgraph Z ′ ⊆ Zk, |EH∗(W
′∪V (Z ′))|−|E(Z ′)| ≤ 2|W ′|.

It is remaining to show that |E(H ′)| ≤ 2|V (H ′)| − 3 for any subgraph H ′ ⊆ H∗ with |H ′| ≥ 2.

Clearly, if H ′ ⊆ Zk, then |E(H ′)| ≤ 2|V (H ′)| − 3. If V (H ′) ⊆ V (H∗)− V (Zk), then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|
≤ max{|V (H ′)| − 1, 2(|V (H ′)| − 2)}
≤ 2|V (H ′)| − 3.

Next, we consider that V (H ′1) = V (H ′) ∩ V (Zk) 6= ∅ and V (H ′2) = V (H ′) − V (H ′1) 6= ∅. Note

that each vertex in V (H∗)− V (Zk)−W is a 2-vertex in H∗. Thus, every time we add any subset

Y ⊆ V (H∗) − V (Zk) into Zk, we have that |EH∗(Y ∪ V (Z ′))| − |E(Z ′)| ≤ 2|Y | for any subgraph

Z ′ ⊆ Zk. Thus, |E(H ′)| ≤ |E(H ′1)|+ 2|V (H ′2)| ≤ 2|V (H ′)| − 3.

(ii) Suppose that U * V (Zk).

In this case, |N(v1) ∩ S′| ≥ 2 implies that x /∈ Zk and |N(x) ∩ S′| = 1 by Conclusion 3(b). We

first show that T ∩ V (Z) 6= ∅. Suppose to the contrary that T ∩ V (Z) = ∅. Then V (Z) ⊆ v1 ∪ S′.
As Z ⊆ H, we know that every vertex in N ′(v1) ∩ V (Z) can only be adjacent to v1 and v3 in H.

Since dZ(v) ≥ 3 for each v ∈ Z, N ′(v1)∩V (Z) = ∅, a contradiction to the fact that |V (Z)∩S| ≥ 3.

Thus |T ∩ V (Z)| ≥ 1 and each vertex in T ∩ V (Z) is adjacent to at least three vertices in S′.

According Conclusion 4, |S0| ≥ 2 and so S−S′ = S0. We also have that |T −T ′| ≥ 6, for otherwise

if |T − T ′| ≤ 5, then {v1, w1} ∪ (T − T ′)∪ v3 is an essential cut of size at most 8, since {x,w2} and

(S′ − v3) ∪ T ′ belong to different nontrivial components, a contradiction.

Let N ′(z) = N(z) ∩ (T − T ′) for z ∈ S′. We show that there are at least two vertices z1, z2 ∈
N ′(v1) ∩ S′ such that |N ′(zi)| ≥ 3 for i ∈ [2]. Suppose to the contrary that there is at most

one vertex, say z1, such that |N ′(z1)| ≥ 3. Let S∗ = N ′(v1) ∩ S′ − z1. Then 1 ≤ |S∗| ≤ 2.

Thus, |N ′(S∗)| =
∑

z∈S∗ |N ′(z)| ≤ 4. Then C = {x, v1} ∪ N ′(S∗) ∪ {z1, v3} is an essential cut of

size at most 8, as S0 ∪ (T − T ′ − N ′(S∗)) and S∗ ∪ T ′ belong to different nontrivial components,

a contradiction. Therefore, there are three different vertices u1, u2 and u3 in T − T ′ such that

u1z1, u2z2, u3z1 ∈ E(G) and ui is adjacent to w1 and w2 for i ∈ [3].

We will construct H∗ in the following steps. We first add w1, w2 and v1w1, xw2 to Zk′ and

obtain Zk′+2. For i ∈ [2], add ui and uiw1, uiw2, uizi to Zk′+2 and obtain Zk′+4, and add u3 and

u3w1, u3w2, u3z1 to Zk′+4 to obtain Zk′+5. In the last step, we add remaining vertices in T − T ′
one by one by joining it with two neighbors in V (Zk′+5) to get H∗. Thus, we have that

|E(H∗)| = |E(Zk′)|+ 2 + 3 · 3 + 2(|T − T ′| − 3) = 2|V (G)| − 3.

Let W = U ′∪{w1, w2, u1, u2, u3}. It is easy to check that for any subset W ′ ⊆W and any subgraph

Z ′ ⊆ Zk, |EH∗(W
′ ∪ V (Z ′))| − |E(Z ′)| ≤ 2|W ′|.
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It is remaining to show that |E(H ′)| ≤ 2|V (H ′)| − 3 for any subgraph H ′ ⊆ H∗ with |H ′| ≥ 2.

Clearly, if H ′ ⊆ Zk, then |E(H ′)| ≤ 2|V (H ′)| − 3. If V (H ′) ⊆ V (H∗)− V (Zk), then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|
+ |E[U ′ ∩ V (H ′), (S − S′) ∩ V (H ′)]|+ |E(U ′ ∩ V (H ′))|
≤ max{|V (H ′)| − 1, 2(|V (H ′)| − 2), (|V (H ′)| − 2) + 1, 2(|V (H ′)− 3|) + 2,

(|V (H ′)| − 3) + 1 + 1, 2(|V (H ′)| − 4) + 2 + 1}
≤ 2|V (H ′)| − 3.

Next, we consider that V (H ′1) = V (H ′)∩V (Zk) 6= ∅ and V (H ′2) = V (H ′)−V (H ′1) 6= ∅. Each vertex

in V (H∗)−V (Zk)−W is a 2-vertex in H∗. Thus, every time we add any subset Y ⊆ V (H∗)−V (Zk)

into Zk, we have that |EH∗(Y ∪ V (Z ′))| − |E(Z ′)| ≤ 2|Y | for any subgraph Z ′ ⊆ Zk. Thus,

|E(H ′)| ≤ |E(H ′1)|+ 2|V (H ′2)| ≤ 2|V (H ′)| − 3, completing the proof.

Subcase 1.3: |S − S′| = 3.

Then s = 6 and d(v1) = 5 since |S′| ≥ |V (Z)∩S| ≥ 3 by Conclusion 2. Thus, |S′| = |V (Z)∩S| = 3

and |S′∩{v2, v3}| = 2 & |S′∩N ′(v1)| = 1 or |S′∩N ′(v1)| = 2 & |S′∩{v2, v3}| = 1. As |N(x)∩Z| ≤ 2

and |N(v1) ∩ Z| ≤ 2, x, v1 /∈ V (Z). Note that |V (Z)| ≥ 4, so T ∩ V (Z) 6= ∅. It follows that every

vertex in T ∩ V (Z) is adjacent to all vertices in S′.

We show that |T − T ′| ≥ 4. Suppose to the contrary that |T − T ′| ≤ 3. If U ⊆ V (Zk), then at

most one vertex say w in S − S′ has another neighbor in Zk − U . If U * V (Zk), then |S1| ≤ 1 by

Conclusion 4. So there must exist a vertex say w1 ∈ N ′(v1)∩(S−S′) such that N(w1)∩(Zk−U) = ∅.
Suppose that v2 ∈ S′. Then C = (T − T ′) ∪ (S − w1 − v2) ∪ x is an essential cut of size at most 8,

as {v1, w1} and v2 ∪ T ′ belong to different nontrivial components, a contradiction.

Let N ′(zi) = N(zi) ∩ (T − T ′) for zi ∈ S′ and i ∈ [3]. We show that |N ′(zi)| ≥ 3 for any i ∈ [3].

Suppose that for some i ∈ [3], say i = 1, |N ′(z1)| ≤ 2. If U ⊆ V (Zk), then at most one vertex

say w in S − S′ has another neighbor in Zk − U . If U * V (Zk), then |S0| ≥ 2 by Conclusion

4. So there must exist two vertices, say w1, w2 ∈ S − S′ such that N(wi) ∩ (Zk − U) = ∅ for

i ∈ [2]. Then C = {x, v1} ∪ (S − w1 − w2 − z1) ∪ N ′(z1) is an essential cut of size at most 7, as

(T −T ′−N ′(z1))∪{w1, w2} and z1∪T ′ belong to different nontrivial components, a contradiction.

Since all but at most one vertex in T − T ′ can be only adjacent at most one vertex in S′, we have

that |T − T ′| ≥ 8 and there are three different vertices ui ∈ T − T ′ for i ∈ [3] and w1, w2 ∈ S − S′
such that in G− e, ui has a neighbor in S′ and is adjacent to w1, w2.

(i) Suppose that U ⊆ V (Zk).

We add wi and an edge in E[wi, U ] to Zk and obtain Zk+2, where i ∈ [2]. Then add ui and three

incident edges including uiw1, uiw2 and an edge in E[ui, S
′] to Zk+2 and obtain Zk+4 for i ∈ [2].

If e /∈ E(Zk+4), then add the rest vertices of T − T ′ and w3 one by one by joining it with two

neighbors in the already-formed subgraph in G − e to get H∗. If e ∈ E(Zk+4), then add u3 and

three incident edges including u3w1, u3w2 and an edge in E[u3, S
′] to Zk+4 and obtain Zk+5. Add

the rest vertices of T −T ′ and w3 one by one by joining it with two neighbors in the already-formed

subgraph and delete e to get H∗. In both cases,

|E(H∗)| = |E(Zk)|+ 2|V (G)− V (Zk)| = 2|V (G)| − 3.
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At last, we will check that |E(H ′)| ≤ 2|V (H ′)| − 3 for any subgraph H ′ ⊆ H∗ with |H ′| ≥ 2.

Clearly, if H ′ ⊆ Zk, then |E(H ′)| ≤ 2|V (H ′)| − 3. If V (H ′) ⊆ V (H∗)− V (Zk),

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|+ |E(S − S′)|
≤ max{|V (H ′)| − 1, 2(|V (H ′)| − 2) + 1, 2(|V (H ′)| − 3) + 2}
≤ 2|V (H ′)| − 3.

Next, we consider that V (H ′1) = V (H ′) ∩ V (Zk) 6= ∅ and V (H ′2) = V (H ′) − V (H ′1) 6= ∅. Let

W = {w1, w2, u1, u2, u3}. It is easy to check that for any subset W ′ ⊆ W and any subgraph

Z ′ ⊆ Zk,

|EH∗(W
′ ∪ V (Z ′))| − |E(Z ′)| ≤ 2|W ′|.

Since we add all vertices in V (G)− V (Zk)−W one by one by joining it with two neighbors in the

already-formed subgraph, we have that for any subset Y ⊆ V (H∗)− V (Zk),

|EH∗(Y ∪ V (Z ′))| − |E(Z ′)| ≤ 2|Y |,

for any subgraph Z ′ ⊆ Zk. Thus, |E(H ′)| ≤ |E(H ′1)|+ 2|V (H ′2)| ≤ 2|V (H ′)| − 3.

(ii) Suppose that U * V (Zk).

We add wi and an edge in E[wi, U ] to Zk′ and obtain Zk′+2, where i ∈ [2]. Then for i ∈ [3],

add ui and three incident edges including uiw1, uiw2 and an edge in E[ui, S
′] to Zk′+2 and obtain

Zk′+5. Add the rest vertices of T − T ′ and w3 one by one by joining it with two neighbors in the

already-formed subgraph to get H∗. Clearly,

|E(H∗)| = |E(Zk)|+ 2|V (G)− V (Zk)| = 2|V (G)| − 3.

At last, we will check that |E(H ′)| ≤ 2|V (H ′)| − 3 for any subgraph H ′ ⊆ H∗ with |H ′| ≥ 2.

Clearly, if H ′ ⊆ Zk, then |E(H ′)| ≤ 2|V (H ′)| − 3. Suppose that V (H ′) ⊆ V (H∗) − V (Zk). If

U ′ ∩ V (H ′) = ∅, then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|+ |E(S − S′)|
≤ max{|V (H ′)| − 1, 2(|V (H ′)| − 2) + 1, 2(|V (H ′)| − 3) + 2}
≤ 2|V (H ′)| − 3.

If |U ′ ∩ V (H ′)| = 1, then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|+ |E(S − S′)|
+ |E[U ′ ∩ V (H ′), (S − S′) ∩ V (H ′)]|
≤ max{(|V (H ′)| − 2) + 1, 2(|V (H ′)| − 3) + 1 + 2, 2(|V (H ′)| − 4) + 2 + 3}
≤ 2|V (H ′)| − 3.

If |U ′ ∩ V (H ′)| = 2, then

|E(H ′)| ≤ |V (H ′) ∩ (S − S′)| · |V (H ′) ∩ (T − T ′)|+ |E(S − S′)|
+ |E[U ′ ∩ V (H ′), (S − S′) ∩ V (H ′)]|+ |E(U ′)|
≤ max{(|V (H ′)| − 3) + 1, 2(|V (H ′)| − 4) + 1 + 2, 2(|V (H ′)| − 5) + 2 + 3}+ 1

≤ 2|V (H ′)| − 3.
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Next, we consider that V (H ′1) = V (H ′) ∩ V (Zk) 6= ∅ and V (H ′2) = V (H ′) − V (H ′1) 6= ∅. Let

W = U ′ ∪ {w1, w2, u1, u2, u3}. It is easy to check that for any subset W ′ ⊆ W and any subgraph

Z ′ ⊆ Zk,

|EH∗(W
′ ∪ V (Z ′))| − |E(Z ′)| ≤ 2|W ′|.

Since we add all vertices in V (G)− V (Zk)−W one by one by joining it with two neighbors in the

already-formed subgraph, we have that for any subset Y ⊆ V (H∗)− V (Zk),

|EH∗(Y ∪ V (Z ′))| − |E(Z ′)| ≤ 2|Y |,

for any subgraph Z ′ ⊆ Zk. Thus, |E(H ′)| ≤ |E(H ′1)|+ 2|V (H ′2)| ≤ 2|V (H ′)| − 3.

Case 2: S′ ⊆ N ′(v1).
In this case, we have that |N ′(v1) ∩ V (Z)| ≥ 3 by Conclusion 2. Let

T ′′ = {u ∈ T : |NG−e(u) ∩ V (Z)| ≥ 2}.

In G − e, we add the rest vertices of v1 ∪ T ′′ to Z0 one by one by joining it with two neighbors

in Z0 and get Zh. Note that V (Zh) ⊆ V (Zk) and v2, v3 /∈ V (Zh). As x has at most one neighbor

in V (Z), x /∈ V (Z) by the minimality of the |V (Z)|. Since Z ⊆ H, S ∩ V (Z) is independent

in H. We also know that v1 ∪ T is an independent set. Therefore, Z is a bipartite graph and

|V (Z)| ≥ 7. It implies that |T ′′| ≥ |Z ∩ T | ≥ 7 − 5 = 2. Since v2, v3 /∈ V (Zk), there is a vertex,

say v2 that is adjacent to at most one vertex in Zk. It follows that v2 is adjacent to at most one

vertex in Zh. Let Y = N(v2) ∩ Zh. Then |Y | ≤ 1. We will show that |T − T ′′| ≥ 5. Consider

C = v1 ∪ (S − V (Z) − v2) ∪ (T − T ′′) ∪ Y . Note that {x, v2} and (T ′′ ∪ (V (Z) ∩ S)) − Y belong

to different components of G − C. As |T ′′| ≥ 2 and |V (Z) ∩ S| ≥ 3, there must be an edge in

(T ′′ ∪ (V (Z) ∩ S))− Y . This implies that C is an essential cut. Since G is essentially 9-connected,

|C| ≥ 9 and |T − T ′′| ≥ 5.

We add x and xv1 to Zh and add all vertices in S−V (Z) one by one by joining it with a neighbor

in U and get Zh′ . Let ` = |S − V (Z)|+ 1. Note that |T − T ′′| ≥ 5 ≥ `+ 1. Let

W = {ui : ui ∈ T − T ′′ & ui is not incident with e}.

If e ∈ Zh′ , then e is not incident with any vertex in T − T ′′ and |W | = |T − T ′′| ≥ ` + 1. Let

W ′ ⊆W and W ′ = {u1, . . . , u`+1}. Then add all vertices in W ′ one by one by joining it with three

neighbors in Zh′ to get Zh′+`+1. At last, add the rest vertices of T − T ′′ one by one by joining

it with two neighbors in the already-formed subgraph and delete e to get H∗. If e /∈ Zh′ , then

|W | ≥ |T − T ′′| − 1 ≥ `. Let W ′ ⊆ W and W ′ = {u1, . . . , u`}. Then add all vertices in W ′ one by

one by joining it with three neighbors in Zh′ and get Zh′+`. At last, add the rest vertices of T −T ′′
one by one by joining it with two neighbors in the already-formed subgraph in G− e and get H∗.

Clearly, in both cases,

|E(H∗)| = |E(Zh)|+ 2|V (G)− V (Zh)| = 2|V (G)| − 3.

For any subgraph H ′ ⊆ H∗, if |E(H ′)| ≤ 2|V (H ′)| − 3, then we are done. Otherwise, there is a

minimal subgraph Z ⊆ H∗ such that |E(Z)| > 2|V (Z)| − 3. By the process of adding vertices and

edges, there is some uj0 ∈W ′ such that uj0 ∈ V (Z) and NH∗(uj0) ⊆ V (Z). As in H∗ every vertex

in W ′ has at least two neighbors in S − V (Z) and must have a neighbor in {v2, v3}, we have that

{v2, v3} ∩ V (Z) 6= ∅. Note that Z ⊆ H∗ ⊆ H. Thus, we can regard Z as a new Z. Then we get Z0

and Zk in the same way. Let S′ = S ∩Z. Note that Z * N ′(v1) and so S′ * N ′(v1), which is same

as Case 1. �
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