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Finding Sparse Solutions for Packing and Covering Semidefinite

Programs

Khaled Elbassioni∗ Kazuhisa Makino†

Abstract

Packing and covering semidefinite programs (SDPs) appear in natural relaxations of many combinatorial optimization

problems as well as a number of other applications. Recently, several techniques were proposed, that utilize the particular

structure of this class of problems, to obtain more efficient algorithms than those offered by general SDP solvers. For

certain applications, such as those described in this paper, it may be desirable to obtain sparse dual solutions, i.e., those

with support size (almost) independent of the number of primal constraints. In this paper, we give an algorithm that finds

such solutions, which is an extension of a logarithmic-potential based algorithm of Grigoriadis, Khachiyan, Porkolab and

Villavicencio (SIAM Journal of Optimization 41 (2001)) for packing/covering linear programs.

1 Introduction

1.1 Packing and Covering SDPs

We denote by S
n the set of all n × n real symmetric matrices and by S

n
+ ⊆ S

n the set of all n × n positive semidefinite

matrices. Consider the following pairs of packing-covering semidefinite programs (SDPs):

z∗I = max C •X (PACKING-I)

s.t. Ai •X ≤ bi,∀i ∈ [m]

X ∈ R
n×n, X � 0

z∗I = min bT y (COVERING-I)

s.t.
m∑

i=1

yiAi � C

y ∈ R
m, y ≥ 0

z∗II = min C •X (COVERING-II)

s.t. Ai •X ≥ bi,∀i ∈ [m]

X ∈ R
n×n, X � 0

z∗II = max bT y (PACKING-II)

s.t.
m∑

i=1

yiAi � C

y ∈ R
m, y ≥ 0

where C,A1, . . . , Am ∈ S
n
+ are (non-zero) positive semidefinite matrices, and b = (b1, . . . , bn)

T ∈ R
m
+ is a nonnegative

vector. In the above, C • X := Tr(CX) =
∑n
i=1

∑n
j=1 cijxij , and ”�“ is the Löwner order on matrices: A � B if and

only if A −B is positive semidefinite. This type of SDPs arise in many applications, see, e.g. [20, 21] and the references

therein.

We will make the following assumption throughout the paper:

(A) bi > 0 and hence bi = 1 for all i ∈ [m].

It is known that, under assumption (A), strong duality holds for problems (PACKING-I)-(COVERING-I) (resp., (PACKING-II)-

(COVERING-II)) (see Appendix B for details).

Let ǫ ∈ (0, 1] be a given constant. We say that (X, y) is an ǫ-optimal primal-dual solution for (PACKING-I)-(COVERING-I)

if (X, y) is a primal-dual feasible pair such that

C •X ≥ (1− ǫ)bT y ≥ (1− ǫ)z∗I . (1)

Similarly, we say that (X, y) is an ǫ-optimal primal-dual solution for (PACKING-II)-(COVERING-II) if (X, y) is a primal-

dual feasible pair such that

C •X ≤ (1 + ǫ)bT y ≤ (1 + ǫ)z∗II . (2)

Since in this paper we allow the number of constraints m in (PACKING-I) (resp., (COVERING-II)) to be exponentially

(or even infinitely) large, we will assume the availability of the following oracle:
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Max(Y ) (resp., Min(Y )) : Given Y ∈ S
n
+, find i ∈ argmaxi∈[m]Ai • Y (resp., i ∈ argmini∈[m]Ai • Y ).

Note that an approximation oracle computing the maximum (resp., minimum) above within a factor of (1 − ǫ) (resp.,

(1 + ǫ)) is also sufficient for our purposes.

A primal-dual solution (X, y) to (COVERING-I) (resp., (PACKING-II)) is said to be η-sparse, if the size of supp(y) :=

{i ∈ [m] : yi > 0} is at most η. Our objective in this paper is to develop primal-dual algorithms that find sparse ǫ-optimal

solutions for (PACKING-I)-(COVERING-I) and (PACKING-II)-(COVERING-II).

1.2 Reduction to Normalized Form

When C = I = In, the identity matrix in R
n×n and b = 1, the vector of all ones in R

m, we say that the packing-covering

SDPs are in normalized form:

z∗I = max I •X (NORM-PACKING-I)

s.t. Ai •X ≤ 1, ∀i ∈ [m]

X ∈ R
n×n, X � 0

z∗I = min 1
T y (NORM-COVERING-I)

s.t.
m∑

i=1

yiAi � I

y ∈ R
m, y ≥ 0.

z∗II = min I •X (NORM-COVERING-II)

s.t. Ai •X ≥ 1, ∀i ∈ [m]

X ∈ R
n×n, X � 0

z∗II = max 1
T y (NORM-PACKING-II)

s.t.
m∑

i=1

yiAi � I

y ∈ R
m, y ≥ 0.

In the appendix, we show that, at the loss of a factor of (1 + ǫ) in the objective, any pair of packing-covering SDPs

of the form (PACKING-I)-(COVERING-I) can be brought in O(n3), increasing the oracle time only by O(nω), where ω

is the exponent of matrix multiplication, to the normalized form (NORM-PACKING-I)-(NORM-COVERING-I), under the

following assumption:

(B-I) There exist r matrices, say A1, . . . , Ar, such that Ā :=
∑r
i=1Ai ≻ 0. In particular, Tr(X) ≤ τ := r

λmin(Ā)
for any

optimal solution X for (PACKING-I).

Similarly, we show in the appendix (some of the results are reproduced with simplifications from [22]) that, at the

loss of a factor of (1 + ǫ) in the objective, any pair of packing-covering SDPs of the form (PACKING-II)-(COVERING-II)

can be brought in O(n3) time, increasing the oracle time only by O(nω), to the normalized form (NORM-PACKING-II)-

(NORM-COVERING-II). Moreover, we may assume in this normalized form that

(B-II) λmin(Ai) = Ω
(
ǫ
n
·mini′ λmax(Ai′)

)
for all i ∈ [m],

where, for a positive semidefinite matrix B ∈ S
n×n
+ , we denote by {λj(B) : j = 1, . . . , n} the eigenvalues of B, and by

λmin(B) and λmax(B) the minimum and maximum eigenvalues of B, respectively. With an additional O(mn2) time, we

may also assume that:

(B-II′) λmax(Ai)
λmin(Ai)

= O
(
n2

ǫ2

)
for all i ∈ [m].

Thus, from now on we focus on the normalized problems.

1.3 Main Result and Related Work

Problems (PACKING-I)-(COVERING-I) and (PACKING-II)-(COVERING-II) can be solved using general SDP solvers, such

as interior-point methods: for instance, the barrier method (see, e.g., [27]) can compute a solution, within an additive

error of ǫ from the optimal, in time O(
√
nm(n3 + mn2 + m2) log 1

ǫ
) (see also [1, 37]). However, due to the special

nature of (PACKING-I)-(COVERING-I) and (PACKING-II)-(COVERING-II), better algorithms can be obtained. Most of the

improvements are obtained by using first order methods [4, 5, 7, 2, 14, 20, 22, 23, 24, 30, 31, 32], or second order methods

[19, 21]. In general, we can classify these algorithms according to whether they are:

(I) width-independent: the running time of the algorithm depends polynomially on the bit length of the input; for

example, in the of case of (PACKING-I)-(COVERING-I), the running time is poly(n,m,L, log τ, 1
ǫ
), where L is

the maximum bit length needed to represent any number in the input; on the other hand, the running time of a

width-dependent algorithm will depend polynomially on a“width parameter” ρ, which is polynomial in L and τ ;

(II) parallel: the algorithm takes polylog(n,m,L, log τ ) ·poly( 1
ǫ
) time, on a poly(n,m,L, log τ, 1

ǫ
) number of processors;
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Table 1: Different Algorithms for Packing/covering SDPs

Paper Problem Technique Most Expensive # Iterations Width- Parallel Sparse Oracle-

Operation indep. based

[4, 24] (PACKING-I) MWU max /min eigenvalue O( ρ log m

ǫ2
) No No No∗ No

(COVERING-II) of a PSD matrix Õ(n2

ǫ
)

[7] (PACKING-I) Matrix MWU Matrix exponentiation O( ρ2τ2 log n

ǫ2(z∗
I
)2

) No No No∗ Yes

(COVERING-II) O(n3)

[19, 20] (PACKING-I) Nesterov’s smoothing Matrix exponentiation O( τ log m
ǫ

) No No No No

technique [28, 30] O(n3)

[21] (COVERING-II) Nesterov’s smoothing min eigenvalue of O( ρ2 log(nm)
ǫ

) No No No No

technique [28, 30] a non PSD matrix O(n3)

[22] (PACKING-I)& MWU eigenvalue O( log13 n log m

ǫ13
) Yes Yes No No

(COVERING-II) technique [28, 30] decomposition O(n3)

[31, 32] (PACKING-II)& Matrix MWU Matrix exponentiation O( log3 m

ǫ3
) Yes Yes No No

(COVERING-II) O(n3)

[2] (PACKING-I)& Gradient Descent + Matrix exponentiation O(
log2(mn) log 1

ǫ
ǫ2

) Yes Yes No No

(COVERING-II) Mirror Descent O(n3)

This paper (PACKING-II)& Matrix MWU Matrix exponentiation O(n log n

ǫ2
) Yes No Yes Yes

Appendix A (COVERING-II) O(n3)
This paper (PACKING-II) & Logarithmic Matrix inversion O(n log(nLτ) + n

ǫ2
) Yes No Yes Yes

(COVERING-II) potential [17] O(nω)
(PACKING-II) & O(n log(n/ǫ) + n

ǫ2
)

(COVERING-II)

∗ In fact, these algorithms find sparse solutions, in the sense that the dependence of the size of the support of the dual

solution on m is at most logarithmic; however, the dependence of the size of the support on the bit length L is not

polynomial.

(III) output sparse solutions: the algorithm outputs an η-sparse solution to (COVERING-I) (resp., (PACKING-II)), for

η = poly(n, logm,L, log τ, 1
ǫ
) (resp., η = poly(n, logm,L, 1

ǫ
)), where τ is a parameter that bounds the trace of any

optimal solution X (see Section 1.2 for details);

(IV) oracle-based: the only access of the algorithm to the matrices A1, . . . , Am is via the maximization/minimization

oracle, and hence the running time is independent of m.

Table 1.3 below gives a summary1 of the most relevant results together with their classifications, according to the four

criteria described above. We note that almost all these algorithms for packing/covering SDP’s are generalizations of

similar algorithms for packing/covering linear programs (LPs), and most of them are essentially based on an exponential

potential function in the form of scalar exponentiation, e.g., [4, 24], or matrix exponentiation [5, 7, 2, 23, 20]. For

instance, several of these results use the scalar or matrix versions of the multiplicative weights updates (MWU) method

(see, e.g., [6]), which are extensions of similar methods for packing/covering LPs [15, 16, 38, 33].

In [17], a different type of algorithm was given for covering LPs (indeed, more generally, for a class of concave

covering inequalities) based on a logarithmic potential function. In this paper, we show that this approach can be extended

to provide sparse solutions for both versions of packing and covering SDPs.

As we can see from the table, among all the algorithms, the logarithmic-potential algorithm, presented in this paper,

is the only one that produces sparse solutions, in the sense described above. We also show in Appendix A that a modified

version of the matrix exponential MWU algorithm [5] can yield sparse solutions for (PACKING-II)-(COVERING-II).

However, the overall running time of this matrix MWU algorithm is larger by a factor of (roughly) Ω(n3−ω) than that

of the logarithmic-potential algorithm, where ω is the exponent of matrix multiplication. Moreover, we were not able

to extend the matrix MWU algorithm to solve (PACKING-I)-(COVERING-I) (in particular, it seems tricky to bound the

number of iterations).

A work that is also related to ours is the sparsification of graph Laplacians [8] and positive semidefinite sums [35].

Given matrices A1, . . . , Am ∈ S
n
+ and ǫ > 0, it was shown in [35] that one can find, in O

(
n
ǫ2
(nω + T )

)
time, a vector

y ∈ R
m
+ with support size O(n

ǫ
2), such that B �∑i yiAi � (1+ǫ)B, whereB :=

∑
iAi and T is the time taken by a single

call to the minimization oracle Min(Y ) (for a not necessarily positive semidefinite matrix Y ). An immediate corollary

is that, given an ǫ-optimal solution y for (COVERING-I) (resp., (PACKING-I)), one can find in O
(
n
ǫ2
(nω + T )

)
time an

O(ǫ)-optimal solution y′ with support size O( n
ǫ2
). Interestingly, the algorithm in [35] (which is an extension for the rank-

one version in [8]) uses the barrier potential function Φ′(x, F ) := Tr
(
(H − xI)−1

)
(resp., Φ′(x,H) := Tr

(
(xI − H)−1

)
),

while in our algorithms (generalizing the potential function in [17]) we use the logarithmic potential function Φ(x,H) =

ln x + ǫ
n
ln det

(
H − xI

)
= ln x − ǫ

n

∫
x
Φ′(x,H)dx (resp., Φ(x,H) = lnx − ǫ

n
ln det

(
xI − H

)
= ln x − ǫ

n

∫
x
Φ′(x,H)dx).

Sparsification algorithms with better running times were recently obtained in [3, 25]. Since the sparse solutions produced

1We provide rough estimates of the bounds, as some of them are not stated explicitly in the corresponding paper in terms of the parameters we

consider here.
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by our algorithms may have support size slightly more (by polylogarithmic factors) than O( n
ǫ2
), we may use, in a post-

processing step, the sparsfication algorithms, mentioned above, to convert our solutions to ones with support size O(n
2

ǫ
),

without increasing the overall asymptotic running time.

To motivate our algorithms, in Section 3, we give two applications, mainly in robust optimization, that require finding

sparse solutions for a packing/covering SDP.

2 A Logarithmic Potential Algorithm

2.1 Algorithm for (PACKING-I)-(COVERING-I)

In this section we give an algorithm for finding a sparseO(ǫ)-optimal primal-dual solution for (PACKING-I)-(COVERING-I).

High-level Idea of the Algorithm. The idea of the algorithm is quite intuitive. It can be easily seen that prob-

lem (NORM-COVERING-I) is equivalent to finding a convex combination of the Ai’s that maximizes the minimum eigen-

value, that is, maxy∈Rm
+ :1T y=1 λmin(F (y)), where F (y) :=

∑m
i=1 yiAi, and 1 is the m-dimensional vector of all ones. Since

λmin(F (y)) is not a smooth function in y, it is more convenient to work with a smooth approximation of it, which is

obtained by maximizing (over x) a logarithmic potential function Φ(x, F (y)) that captures the constraints that each eigen-

value of F (y) is at least x. The unique maximizer x = θ∗ of Φ(x, F (y)) defines a set of “weights” (these are the eigenvalues

of the primal matrix X computed in line 6 of the algorithm) such that the weighted average of the λj(F (y))’s is a very

close approximation of λmin(F (y)). Thus, to maximize this average (which is exactly X • F (y)), we obtain a direction

(line 7) along which y is modified with an appropriate step size (line 10).

For numbers x ∈ R+ and δ ∈ (0, 1), a δ-(lower) approximation xδ of x is a number such that (1 − δ)x ≤ xδ < x. For

i ∈ [m], 1i denotes the ith unit vector of dimension m.

The algorithm is shown as Algorithm 1. The main while-loop (step 4) is embedded within a sequence of scaling

phases, in which each phase starts from the vector y(t) computed in the previous phase and uses double the accuracy. The

algorithm stops when the scaled accuracy εs drops below the desired accuracy ǫ ∈ (0, 1/2).

1 s← 0; ε0 ← 1
2
; t← 0; ν(0)← 1; y(0)← 1

r

∑r
i=1 1i

2 while εs > ǫ do

3 δs ← ε3s
32n

4 while ν(t) > εs do

5 θ(t)← θ∗(t)δs , where θ∗(t) is the smallest positive number root of the equation
εsθ

n
Tr(F (y(t))− θI)−1 = 1

6 X(t)← εsθ(t)

n
(F (y(t))− θ(t)I)−1 /* Set the primal solution */

7 i(t)← argmaxiAi •X(t) /* Call the maximization oracle */

8 ν(t+ 1)← X(t) • Ai(t) −X(t) • F (y(t))

X(t) • Ai(t) +X(t) • F (y(t))
/* Compute the error */

9 τ (t+ 1)← εsθ(t)ν(t+ 1)

4n(X(t) •Ai(t) +X(t) • F (y(t)))
/* Compute the step size */

10 y(t+ 1)← (1− τ (t+ 1))y(t) + τ (t+ 1)1i(t) /* Update the dual solution */

11 t← t+ 1

12 end

13 εs+1 ← εs
2

14 s← s+ 1

15 end

16 X̂ ← (1−εs−1)X(t−1)

(1+εs−1)
2θ(t−1))

; ŷ ← y(t−1)
θ(t−1)

17 return (X̂, ŷ, t)

Algorithm 1: Logarithmic-potential Algorithm for (PACKING-I)-(COVERING-I)

2.2 Analysis

High-level Idea of the Analysis. The proof of ǫ-optimality follows easily from the stopping condition in line 4 of the

algorithm, the definition of the “approximation error” ν in line 8, and the fact that X • F (y) is a very close approximation

of λmin(F (y(t))). The main part of the proof is to bound the number of iterations in the inner while-loop (line 4). This

is done by using a potential function argument: we define the potential function Φ(t) := Φ(θ∗(t), F (y(t))) and show in

Claim 14 that, in each iteration, the choice of the step size in line 9 guarantees that Φ(t) is increased substantially; on the

other hand, by Claim 15, the potential difference cannot be very large, and the two claims together imply that we cannot

have many iterations.
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2.2.1 Some Preliminaries

Up to Claim 17, we fix a particular iteration s of the outer while-loop in the algorithm. For simplicity in the following,

we will sometimes write F := F (y(t)), θ := θ(t), θ∗ := θ∗(t), X := X(t), F̂ := Ai(t), τ := τ (t + 1), ν := ν(t + 1),

F ′ := F (y(t+ 1)), and θ′ := θ(t+1), when the meaning is clear from the context. For H ≻ 0 and x ∈ (0, λmin(H)), define

the logarithmic potential function [17, 27]:

Φ(x,H) = lnx+
εs
n

ln det
(
H − xI

)
. (3)

Note that the term ln det
(
H − xI

)
forces the value of x to stay away from the “boundary” λmin(H), while the term

ln x pushes x towards that boundary; hence, one would expect the maximizer of Φ(x,H) to be a good approximation of

λmin(H) (see Claim 3).

Claim 1. If F (y(t)) ≻ 0, then θ∗(t) = argmax0<x<λmin(F ) Φ(x, F (y(t))) and X(t) ≻ 0.

Proof. Note that

dΦ(x, F )

dx
=

1

x
− εs
n

Tr
(
(F − xI)−1) and

d2Φ(x, F )

dx2
= − 1

x2
− εs
n

Tr
(
(F − xI)−2).

Thus, if F ≻ 0, then d2Φ(x,F )

dx2
= − 1

x2
− εs

n

∑
j

1
(λj(F )−x)2 < 0 for all x ∈ (0, λmin(F )). Thus Φ(x, F ) is strictly concave in

x ∈ (0, λmin(F )) and hence has a unique maximizer defined by setting dΦ(x,F )
dx

= 0, giving the definition θ∗(t) in step 5.

Also, by definition of X in step 6, λmin(X) = εsθ
n

(λmin(F )− θ)−1 > 0 (as θ < θ∗ < λmin(F )), implying that X ≻ 0.

For x ∈ (0, λmin(F )), let g(x) :=
εsx

n
Tr(F − xI)−1. The following claim shows that our choice of δs guarantees that

g(θ) is a good approximation of g(θ∗) = 1.

Claim 2. g(θ(t)) ∈ (1− εs, 1).

Proof. For x ∈ (0, λmin(F )), we have

dg(x)

dx
=
εs
n

n∑

j=1

1

λj(F )− x +
εsx

n

n∑

j=1

1

(λj(F )− x)2 > 0, (4)

d2g(x)

dx2
=

2εs
n

n∑

j=1

1

(λj(F )− x)2 +
2εsx

n

n∑

j=1

1

(λj(F )− x)3 > 0. (5)

Thus, g(x) is monotone increasing and strictly convex in x. As θ < θ∗, we have g(θ) < g(θ∗) = 1. Moreover, by convexity,

g(θ) ≥ g(θ∗) + (θ − θ∗) dg(x)
dx

∣∣∣∣
x=θ∗

≥ 1− δs εsθ
∗

n

n∑

j=1

1

λj(F )− θ∗ − δs
εs
n

n∑

j=1

(
θ∗

λj(F )− θ∗
)2

(∵ (1− δs)θ∗ ≤ θ)

≥ 1− δs − δs εs
n

(
n∑

j=1

θ∗

λj(F )− θ∗

)2

(by defintition of θ∗ and
∑
j x

2
j ≤

(∑
j xj
)2

for nonnengative xj’s)

= 1− δs
(
1 +

n

εs

)
> 1− εs. (by defintition of θ∗ and δs)

The following two claim show that θ(t) ≈ X(t) • F (y(t)) provides a good approximation for λmin(F (y(t))).

Claim 3. (1− εs)λmin(F (y(t))) < θ(t) < λmin(F (y(t)))
1+εs/n

and λmin(F (y(t)))
1+εs

≤ θ∗(t) ≤ λmin(F (y(t)))
1+εs/n

.

Proof. By Claim 2, we have

1− εs < εsθ(t)

n

n∑

j=1

1

λj(F )− θ(t) < 1. (6)

The middle term in (6) is at least εsθ(t)
n

1
λmin(F )−θ(t) and at most εsθ(t)

n
n

λmin(F )−θ(t) , which implies the claim for θ(t). The

claim for θ∗(t) follows similarly.

Claim 4. θ(t) < X(t) • F (y(t)) < (1 + εs)θ(t).

5



Proof. By the definition of X, we have (F − θI)X = εsθ
n
I . It follows from Claim 2 that

X • F =
εsθ

n
Tr(I) + θTr(X) ∈

(
εs + (1− εs, 1)

)
θ =

(
θ, (1 + εs)θ

)
.

Claim 5. 1
T y(t) = 1.

Proof. This is immediate from the initialization of y(0) in step 1 and the update of y(t+1) in step 10 of the algorithm.

Claim 6. For all iterations t, except possibly the last, ν(t+ 1), τ (t+ 1) ∈ (0, 1).

Proof. ν(t+1) ≥ 0 as X •Ai(t) ≥ X •F by Claim 5, and except possibly for the last iteration, we have ν(t+1) > 0. Also,

ν(t + 1) ≤ 1 by the non-negativity of X • Ai(t) and X • F , while ν(t + 1) = 1 implies that X • F = 0, in contradiction to

Claim 4.

Note that the definition of ν(t+ 1) implies that

τ (t+ 1) =
εsθν(t+ 1)(1− ν(t+ 1))

8nX(t) • F (y(t))
,

and hence, τ (t+ 1) > 0. Moreover, by Claim 4, τ (t+ 1) < εs
8n
< 1.

Claim 7. F (y(t)) ≻ 0.

Proof. This follows by induction on t′ = 0, 1, . . . , t. For t′ = 0, the claim follows from assumption (B-I), which implies

that F (y(0)) = 1
r
Ā ≻ 0. Assume now that F = F (y(t)) ≻ 0. Then for F ′ = F (y(t + 1)), we have by step 10 of the

algorithm that F ′ = (1− τ )F + τAi(t) ≻ 0.

Claim 8. (F − θ∗I)−1 =
(
εsθ
n
I − (θ∗ − θ)X

)−1
X.

Proof. By definition of X, we have

(F − θ∗I)X = (F − θI)X − (θ∗ − θ)X =
εsθ

n
I − (θ∗ − θ)X

∴ X = (F − θ∗I)−1

(
εsθ

n
I − (θ∗ − θ)X

)
.

2.2.2 Number of Iterations

Define B = B(t) := n
εsθ

(
τX1/2(F̂ − F )X1/2 − (θ∗ − θ)X

)
.

Claim 9. F ′ − θ∗I = (F − θI)1/2(I +B)(F − θI)1/2.

Proof. By (the update) step 10, we have

F ′ − θ∗I = (1− τ )F + τ F̂ − θ∗I
= F − θI + τ (F̂ − F )− (θ∗ − θ)I

= (F − θI)1/2
(
I +

nτ

εsθ
X1/2(F̂ − F )X1/2 − n

εsθ
(θ∗ − θ)X

)
(F − θI)1/2. (∵ X = εsθ

n
(F − θI)−1)

Claim 10. maxj |λj(B)| ≤ 1
2
.

Proof. By the definition of B, we have

max
j
|λj(B)| = n

εsθ
max
j

∣∣∣λj
(
τX1/2(F̂ − F )X1/2 − (θ∗ − θ)X

)∣∣∣

=
n

εsθ
max

v:||v||=1

∣∣∣vT
(
τX1/2(F̂ − F )X1/2 − (θ∗ − θ)X

)
v
∣∣∣

≤ n

εsθ

(
max

v:||v||=1
τvTX1/2F̂X1/2v + max

v:||v||=1
τvTX1/2FX1/2v + (θ∗ − θ) max

v:||v||=1
vTXv

)

≤ nτ

εsθ

(
Tr(X1/2F̂X1/2) + Tr(X1/2FX1/2)

)
+

nδs
(1− δs)εs

(∵ F, F̂ � 0, |Tr(X) ≤ 1 and θ ≥ (1− δs)θ∗)
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=
nτ

εsθ

(
X • F̂ +X • F

)
+

nδs
(1− δs)εs

=
ν

4
+

εs
2

32(1− εs3/(32n))
(substituting τ and δs)

<
1

2
. (using ν, εs ≤ 1)

Claim 11. θ∗(t) < λmin(F (y(t+ 1))).

Proof. By Claim 10, I +B � I − 1
2
I = 1

2
I, and by thus, we get by Claim 9,

F ′ − θ∗I � 1

2
(F − θI) ≻ 0. (∵ BZB � 0 for B ∈ S

n and Z ∈ S
n
+)

Claim 12. if ν > εs, then Tr(B) ≥ ν2

8
.

Proof. By the definition of B,

Tr(B) =
n

εsθ

(
τTr(X1/2(F̂ − F )X1/2)− (θ∗ − θ)Tr(X)

)

≥ n

εsθ

(
τ (X • F̂ −X • F )− (θ∗ − θ)

)
(∵ Tr(X) ≤ 1 by Claim 2)

≥ n

εsθ

(
τ (X • F̂ −X • F )− δs

1− δs
θ

)
(∵ (1− δs)θ∗ ≤ θ)

=
ν2

4
− εs

2

32(1− εs3/32n))
(by definition of τ and δs)

>
ν2

4
− ν2

16
>
ν2

8
. (∵ εs < ν ≤ 1)

Claim 13. if ν > εs, then Tr(B2) < ν2

10
.

Proof. Write Ŷ = τX1/2F̂X1/2 and Y = X1/2
(
τF + (θ∗ − θ)I

)
X1/2 and note that both Ŷ and Y are in S

n
+. It follows by

the definition of B that

Tr(B2) =
n2

εs2θ2
Tr
(
(Ŷ − Y )2

)

=
n2

εs2θ2

(
Tr(Ŷ 2) + Tr(Y 2)− 2Tr(Ŷ Y )

)

≤ n2

εs2θ2

(
Tr(Ŷ 2) + Tr(Y 2) + 2Tr(Ŷ Y )

)
(∵ Ŷ , Y ∈ S

n
+)

≤ n2

εs2θ2

(
Tr(Ŷ 2) + Tr(Y 2) + 2

√
Tr(Ŷ 2)Tr(Y 2)

)
(by Cauchy-Schwarz Ineq.)

≤ n2

εs2θ2

(
Tr(Ŷ )2 + Tr(Y )2 + 2Tr(Ŷ )Tr(Y )

)
(∵ Ŷ , Y ∈ S

n
+)

=
n2

εs2θ2
(Tr(Ŷ ) + Tr(Y ))2

=
n2

εs2θ2
(τTr(XF̂ ) + τTr(XF ) + (θ∗ − θ)Tr(X))2

≤ n2

εs2θ2
(τX • F̂ + τX • F + (θ∗ − θ))2 (∵ Tr(X) ≤ 1 by Claim 2)

≤ n2

εs2θ2

(
τX • F̂ + τX • F +

δs
1− δs

θ

)2

(∵ (1− δs)θ∗ ≤ θ)

=

(
ν

4
+

εs
2

32(1− εs3/(32n))

)2

(by definition of τ and δs)

<

(
ν

4
+
ν2

16

)2

<
ν2

10
. (∵ εs < ν ≤ 1)
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Define Φ(t) := Φ(θ∗(t), F (y(t))).

Claim 14. Φ(t+ 1) −Φ(t) ≥ εsν(t+1)2

40n
.

Proof. Note that Claim 11 implies that θ∗ is feasible to the problem max{Φ(ξ, F ′) : 0 ≤ ξ ≤ λmin(F
′)}. Thus,

Φ(t+ 1) = Φ(θ∗(t+ 1), F ′) ≥ ln θ∗ +
εs
n

ln det(F ′ − θ∗I).

∴ Φ(t+ 1) −Φ(t) ≥ εs
n

(
ln det(F ′ − θ∗I)− ln det(F − θ∗I)

)

≥ εs
n

(
ln det

(
F ′ − θ∗I

)
− ln det(F − θI)

)
(∵ θ ≤ θ∗)

=
εs
n

ln det (I +B) (by Claim 9)

=
εs
n

n∑

j=1

ln (1 + λj(B))

≥ εs
n

n∑

j=1

(
λj(B)− λj(B)2

)
(by Claim 10 and ln(1 + z) ≥ z − z2,∀z ≥ −0.5)

=
εs
n

(
Tr(B)− Tr(B2)

)

>
εs
8n
ν2 − εs

10n
ν2 (by Claims 12 and 13)

=
εs
40n

ν2.

Claim 15. For any t, t′,

Φ(t′)− Φ(t) ≤ (1 + εs) ln
X(t) • Ai(t)

(1− εs)X(t) • F (y(t))
.

Proof. Write F = F (y(t)), θ∗ := θ∗(t), θ := θ(t), X := X(t), F ′ = F (y(t′)), θ′∗ := θ∗(t′). Then

Φ(t′)− Φ(t) = ln
θ′∗

θ∗
+
εs
n

ln det
[
(F − θ∗I)−1(F ′ − θ′∗I)

]

= ln
θ′∗

θ∗
+
εs
n

ln det

[(
εsθ

n
I − (θ∗ − θ)X

)−1

X(F ′ − θ′∗I)
]

(by Claim 8)

= ln
θ′∗

θ∗
+
εs
n

[
ln det

(
εsθ

n
I − (θ∗ − θ)X

)−1

+ ln det
[
X(F ′ − θ′∗I)

]
]

≤ ln
θ′∗

θ∗
+
εs
n

[
ln

(
εsθ

n
− δsθ

1− δs

)−n
+ ln det

[
X(F ′ − θ′∗I)

]
]

(∵ Tr(X) ≤ 1 by Claim 2 and (1− δs)θ∗ ≤ θ)

≤ ln
θ′∗

θ∗
+
εs
n

[
ln

(
n

(1− εs)εsθ

)n
+ lndetX(F ′ − θ′∗I)

]
(by defintion of δs)

= ln
θ′∗

θ∗
+ εs ln

n

(1− εs)εsθ
+
εs
n

ln
[
detX(F ′ − θ′∗I)

]

= ln
θ′∗

θ∗
+ εs ln

n

(1− εs)εsθ
+
εs
n

n∑

j=1

lnλj
(
X(F ′ − θ′∗I)

)

≤ ln
θ′∗

θ∗
+ εs ln

n

(1− εs)εsθ
+ εs ln

(
1

n

n∑

j=1

λj
(
X(F ′ − θ′∗I)

)
)

(by the concavity of ln(·))

= ln
θ′∗

θ∗
+ εs ln

n

(1− εs)εsθ
+ εs ln

(
1

n
Tr(XF ′ − θ′∗X)

)

≤ ln
θ′∗

θ∗
+ εs ln

n

(1− εs)εsθ
+ εs ln

(
X • F ′ − θ′∗(1− εs)

n

)
(∵ Tr(X) ≥ 1− εs by Claim 2)

= ln
θ′∗

θ∗
+ εs ln

1

(1− εs)εsθ
+ εs ln

(
X • F ′ − θ′∗(1− εs)

)

≤ ln
θ′∗

θ∗
+ εs ln

1

(1− εs)εsθ
+ εs ln

(
max

y∈Rm
+

: 1T y=1
X • F (y)− θ′∗(1− εs)

)
(∵ 1

T y(t′) = 1 by Claim 5)

= ln
θ′∗

θ∗
+ εs ln

1

(1− εs)εsθ
+ εs ln

(
X •Ai(t) − θ′∗(1− εs)

)
(by defintion of i(t))
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≤ max
0≤ξ<X•Ai(t)

{
ln

ξ

(1− εs)θ∗
+ εs ln

1

(1− εs)εsθ
+ εs ln

(
X • Ai(t) − ξ

)}

= (1 + εs) ln
X • Ai(t)
(1− εs2)θ

+ ln
θ

θ∗
(max(·) is achieved at ξ =

X•Ai(t)

1+εs
)

≤ (1 + εs) ln
X • Ai(t)
(1− εs2)θ

(∵ θ ≤ θ∗)

≤ (1 + εs) ln
X •Ai(t)

(1− εs)X • F
. (by Claim 4)

Recall by assumption (B-I) that Ā :=
∑r
i=1Ai ≻ 0.

Claim 16.
X(0)•Ai(0)

X(0)•F (y(0))
≤ ψ :=

r·λmax(Ai(0))

λmin(Ā)
≤ r·maxi λmax(Ai)

λmin(Ā)
≤ nτ2L.

Proof. Let X(0) =
∑n
j=1 λjuju

T
j be the spectral decomposition of X(0). Then,

X(0) • Ai(0) =
n∑

j=1

λjAi(0) • ujuTj ≤
n∑

j=1

λjλmax(Ai(0)) = λmax(Ai(0)) · Tr(X(0))

X(0) • F (y(0)) =

n∑

j=1

λjF (y(0)) • ujuTj ≥
1

r

n∑

j=1

λjλmin(Ā) =
1

r
λmin(Ā) · Tr(X(0)).

The claim follows.

Claim 17. The algorithm terminates in at most O
(
n logψ + n

ǫ2

)
iterations.

Proof. Let t−1 = −1 and, for s = 0, 1, 2, . . ., let ts be the smallest t such that ν(t+1) ≤ 2−(s+1) (so ts+1 is the value of t at

which the iteration s+1 of the outer while-loop starts). Then for t = ts−1+1, . . . , ts− 1, we have ν(t+1) > 2−(s+1) = εs.

Hence, for s = 0,

ε30t0
40n

< Φ(t0)− Φ(0) (by Claim 14)

≤ (1 + ε0) ln
X(0) •Ai(0)

(1− ε0)X(0) • F (y(0))
(by Claim 15)

≤ (1 + ε0) ln
ψ

(1− ε0)
. (by Claim 16)

Setting ε0 = 1
2

in the last series of inequalities we get

t0 < 480n ln(2ψ) = O(n logψ). (7)

Now consider s ≥ 1:

ε3s(ts − ts−1)

40n
< Φ(ts)− Φ(ts−1) (by Claim 14)

≤ (1 + εs) ln
X(ts−1) •Ai(ts−1)

(1− εs)X(ts−1) • F (y(ts−1))
(by Claim 15)

= (1 + εs) ln
1 + ν(ts−1 + 1)

(1− εs)
(
1− ν(ts−1 + 1)

) (by definition of ν(ts−1 + 1))

≤ (1 + εs) ln
1 + 2εs

(1− εs)(1− 2εs)
(∵ ν(ts−1 + 1) ≤ 2−s = 2εs)

≤ (1 + εs) ln(1 + 12εs) ≤ 15εs. (∵ εs ≤ 1
4
)

Setting εs =
1

2s+1 in the last series of inequalities we get

ts − ts−1 <
600n

ε2s
= O(n/ε2s). (8)

Summing (7), and (8) over s = 1, 2, . . . , ⌈log 1
ǫ
⌉, we get the claim.

Remark 1. If we do not insist on a sparse dual solution, then we can use the initialization y(0) ← 1
m
1 in step 1 in

Algorithm 1, where 1 is the m-dimensional vector of all ones, and replace ψ in Claim 16, and hence in the running time

in Claim 17, by m.
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2.2.3 Primal Dual Feasibility and Approximate Optimality

Let tf + 1 be the value of t when the algorithm terminates and sf + 1 be the value of s at termination. For simplicity, we

write s = sf .

Claim 18. (Primal feasibility). X̂ ≻ 0 and maxiAi • X̂ ≤ 1.

Proof. The first claim is immediate from Claim 1. To see the second claim, we use the definition of ν(tf ) and the

termination condition in line 4 (which is also satisfied even if X(tf ) • Ai(tf ) −X(tf ) • F (y(tf)) = 0):

X(tf ) • Ai(tf ) −X(tf ) • F (y(tf))

X(t1) •Ai(tf ) +X(tf ) • F (y(tf ))
≤ εs.

∴ (1 + εs)X(tf ) • F (y(tf)) ≥ (1− εs)X(tf ) •Ai(tf )

= (1− εs)max
i
X(tf ) • Ai (by the defintition of i(tf ))

∴ (1 + εs)
2θ(tf ) ≥ (1− εs)max

i
X(tf ) • Ai. (∵ X(tf ) • F (y(tf)) ≤ (1 + εs)θ(tf ) by Claim 4)

The claim follows by the definition of X̂ in step 16 of the algorithm.

Claim 19. (Dual feasibility). ŷ ≥ 0 and F (ŷ) ≻ I .

Proof. The fact that ŷ ≥ 0 follows from the initialization of y(0) in step 1, Claim 6, and the update of y(t+ 1) in step 10.

For the other claim, we have

λmin

(
F (ŷ)

)
=

1

θ(tf )
λmin

(
F (y(tf ))

)
≥ 1 +

εs
n
. (by Claim 3)

Claim 20. (Approximate optimality). I • X̂ ≥
(

1−εs
1+εs

)2
1
T ŷ.

Proof. By Claim 2, we have Tr(X(tf )) ≥ 1−εs, and by Claim 5, we have 1
T y(tf ) = 1. The claim follows by the definition

of X̂ and ŷ in step 16.

Remark 2. Suppose that in step 7 of Algorithm 1, we instead define i(t) to be an index i ∈ [m] such thatAi •X(t) ≥ 1−εs,
and we are guaranteed that such index exists in each iteration of the algorithm. Then the dual solution ŷ satisfies:

1
T ŷ ≤ 1+O(ǫ). Indeed, the proof of Claim 18 can be easily modified to show that θ(tf ) ≥

(1−εsf )2

(1+εsf )2
, which combined with

the definition of ŷ in step 16 of the algorithm implies the claim.

2.2.4 Running Time per Iteration

Computing θ(t). Given F := F (y(t)) ≻ 0, we first compute an approximation λ̃ of λmin(F ) using Lanczos’ algorithm

with a random start [26].

Lemma 21 ([26]). Let M ∈ S
n
+ be a positive semidefinite matrix with N non-zeros and γ ∈ (0, 1) be a given constant.

Then there is a randomized algorithm that computes, with high (i.e., 1− o(1)) probability a unit vector v ∈ R
n such that

vTMv ≥ (1− γ)λmax(M). The algorithm takes O
(
log n√
γ

)
iterations, each requiring O(N) arithmetic operations.

By Claim 3, we need λ̃ to lie in the range [λmin(F )
1+εs/n

, λmin(F )]. To obtain λ̃, we may apply the above lemma with

M := F−1 and γ := εs
2n

. Then in O
(√

n
εs

log n
)

iterations we get λ̃ := 1−γ
vTF−1v

satisfying our requirement. However,

we can save (roughly) a factor of
√
n in the running time by using, instead, M := F−n and γ := εs

2
. Let v be the

vector obtained from Lemma 21, and set λ̃ :=
(

1−γ
vTF−nv

)1/n
. Then, as λmax(M) ≥ vTMv ≥ (1 − γ)λmax(M), and

λmin(F ) = λmax(F
−n)−1/n, we get

λmin(F )

1 + εs/n
≤ (1− γ)1/nλmin(F ) ≤ λ̃ ≤ λmin(F ). (9)

Note that we can compute F−n in O(nω log n), where w is the exponent of matrix multiplication. Thus, the overall running

time for computing λ̃ is O(nω log n+ n2 log n√
εs

).

Given λ̃, we know by Claim 3 and (9) that θ∗(t) ∈ [ λ̃
1+εs

, λ̃]. Then we can apply binary search to find θ(t) := θ∗(t)δs

as follows. Let θk = λ̃
1+εs

(1 + δs)
k, for k = 0, 1, . . . ,K := ⌈ 2 ln(1+εs)

δs
⌉, and note that θL ≥ λ̃. Then we do binary

search on the exponent k ∈ {0, 1 . . . ,K}; each step of the search evaluates g(θk) :=
εsθℓ
n

Tr(F − θkI)−1, and depending
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on whether this value is less than or at least 1, the value of k is increased or decreased, respectively. The search stops

when the search interval [ℓ, u] has u ≤ ℓ + 1, in which case we set θ(t) = θℓ; the number of steps until this happens is

O(logK) = O(log 1
δs
) = O(log n

εs
). By the monotonicity of g(x) (in the interval [0, λmin(F )]), and the property of binary

search, we know that θ∗ ∈ [θℓ, θu]. Thus, by the stopping criterion,

θ(t) = θℓ ≤ θ∗(t) ≤ θu ≤ θℓ+1 = (1 + δs)θℓ,

implying that (1 − δs)θ∗(t) ≤ θ(t) ≤ θ∗(t). Since evaluating g(θℓ) takes O(nω), the overall running time for the binary

search procedure is O(nω log n
εs
), and hence the total time needed for for computing θ(t) is O(nω log n

ǫ
+ n2 log n√

ǫ
).

All other steps of the algorithm inside the inner while-loop can be done in O(T + n2) time, where T is the time taken

by a single call to the oracle Max(X(t)) in step 7 of the algorithm. Thus, in view of Claim 17, we obtain the following

result.

Theorem 22. For any ǫ > 0, Algorithm 1 outputs an O(n logψ + n
ǫ2
)-sparse O(ǫ)-optimal primal-dual pair in time2

O
(
(n logψ + n

ǫ2
)(nω log n

ǫ
+ n2 log n√

ǫ
+ T )

)
= Õ

(
nω+1 logψ

ǫ2.5
+ nT logψ

ǫ2

)
.

2.3 Algorithm for (PACKING-II)-(COVERING-II)

In this section we give an algorithm for finding a sparseO(ǫ)-optimal primal-dual solution for (PACKING-II)-(COVERING-II).

For numbers x ∈ R+ and δ ∈ (0, 1), a δ-(upper) approximation xδ of x is a number such that x ≤ xδ < (1 + δ)x.

The algorithm is shown as Algorithm 2.

1 s← 0; ε0 ← 1
4
; t← 0; ν(0)← 1; y(0)← 1i (for an arbitrary i ∈ [m])

2 while εs > ǫ do

3 δs ← ε3s
32n

4 while ν(t) > εs do

5 θ(t)← θ∗(t)δs , where θ∗(t) is the smallest positive number root of the equation
εsθ

n
Tr(θI − F (y(t)))−1 = 1

6 X(t)← εsθ(t)

n
(θ(t)I − F (y(t)))−1 /* Set the primal solution */

7 i(t)← argminiAi •X(t) /* Call the minimization oracle */

8 ν(t+ 1)← X(t) • F (y(t))−X(t) •Ai(t)
X(t) • Ai(t) +X(t) • F (y(t))

/* Compute the error */

9 τ (t+ 1)← εsθ(t)ν(t+ 1)

4n(X(t) •Ai(t) +X(t) • F (y(t)))
/* Compute the step size */

10 y(t+ 1)← (1− τ (t+ 1))y(t) + τ (t+ 1)1i(t) /* Update the dual solution */

11 t← t+ 1

12 end

13 εs+1 ← εs
2

14 s← s+ 1

15 end

16 X̂ ← (1+εs−1)X(t−1)

(1−2εs−1)
2θ(t−1))

; ŷ ← y(t−1)
θ(t−1)

17 return (X̂, ŷ, t)

Algorithm 2: Logarithmic-potential Algorithm for (PACKING-II)-(COVERING-II)

2.4 Analysis

2.4.1 Some Preliminaries

Up to Claim 39, we fix a particular iteration s of the outer while-loop in the algorithm. For simplicity in the following,

we will sometimes write F := F (y(t)), θ := θ(t), θ∗ := θ∗(t), X := X(t), F̂ := Ai(t), τ := τ (t + 1), ν := ν(t + 1),

F ′ := F (y(t+ 1)), and θ′ := θ(t+1), when the meaning is clear from the context. For H ≻ 0 and x ∈ (0, λmin(H)), define

the following logarithmic potential function:

Φ(x,H) = lnx− εs
n

ln det
(
xI −H

)
. (10)

Claim 23. If λmax(F ) > 0, then θ∗(t) = argminx>λmax(F ) Φ(x, F (y(t))) and X(t) ≻ 0.

Proof. Note that

dΦ(x, F )

dx
=

1

x
− εs
n

Tr
(
(xI − F )−1) and

d2Φ(x, F )

dx2
= − 1

x2
+
εs
n

Tr
(
(xI − F )−2).

2Õ(·) hides polylogarithmic factors in n and 1
ǫ

.
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Note that Φ(x,F ) is not convex in x ∈ (λmax(F ),+∞), but has a unique minimizer in this interval, defined by setting
dΦ(x,F )
dx

= 0, giving the definition θ∗(t) in step 5 of Algorithm 2. (Indeed, dΦ(x,F )
dx

< 0 for λmax(F ) < x < θ∗(t), while
dΦ(x,F )
dx

> 0 for x > θ∗(t).) Also, by definition of X in step 6, λmin(X) = εsθ
n

(θ−λmin(F ))−1 > 0 (as θ ≥ θ∗ > λmax(F ) ≥
λmin(F )), implying that X ≻ 0.

For x ∈ (λmax(H),+∞), let g(x) :=
εsx

n
Tr(xI − H)−1. The following claim shows that our choice of δs guarantees

that g(θ) is a good approximation of g(θ∗) = 1.

Claim 24. g(θ(t)) ∈ (1− εs, 1].

Proof. For x ∈ (λmax(H),+∞), we have

dg(x)

dx
=
εs
n

n∑

j=1

1

x− λj(F )
− εsx

n

n∑

j=1

1

(x− λj(F ))2
= −εs

n

n∑

j=1

λj(F )

(x− λj(F ))2
< 0, (11)

d2g(x)

dx2
= −2εs

n

n∑

j=1

1

(λj(F )− x)2 +
2εsx

n

n∑

j=1

1

(λj(F )− x)3 =
2εs
n

n∑

j=1

λj(F )

(x− λj(F ))3
> 0. (12)

Thus, g(x) is monotone decreasing and strictly convex in x. As θ ≥ θ∗, we have g(θ) ≤ g(θ∗) = 1. Moreover, by convexity,

g(θ) ≥ g(θ∗) + (θ − θ∗) dg(x)
dx

∣∣∣∣
x=θ∗

≥ 1 + δs
εsθ

∗

n

n∑

j=1

1

θ∗ − λj(F )
− δs εs

n

n∑

j=1

(
θ∗

θ∗ − λj(F )

)2

(∵ θ < (1 + δs)θ
∗ and dg(x)

dx

∣∣∣
x=θ∗

< 0)

≥ 1 + δs − δs εs
n

(
n∑

j=1

θ∗

θ∗ − λj(F )

)2

(by defintition of θ∗ and
∑
j x

2
j ≤

(∑
j xj
)2

for nonnengative xj’s)

= 1 + δs − δs n
εs
> 1− εs. (by defintition of θ∗ and δs)

The following claim shows that θ(t) provides a good approximation for λmax(F (y(t))).

Claim 25. λmax(F (y(t)))
1−εs/n < θ(t) ≤ (1−εs)λmax(F (y(t)))

1−2εs
and λmax(F (y(t)))

1−εs/n ≤ θ∗(t) ≤ λmax(F (y(t)))
1−εs .

Proof. By Claim 24, we have

1− εs <
εsθ(t)

n

n∑

j=1

1

θ(t)− λj(F )
≤ 1. (13)

The middle term in (13) is at least εsθ(t)
n

1
θ(t)−λmax(F )

and at most εsθ(t)
n

n
θ(t)−λmax(F )

, which implies the claim for θ(t). The

claim for θ∗(t) follows similarly.

Claim 26. (1− 2εs)θ(t) < X(t) • F (y(t)) ≤ (1− εs)θ(t).

Proof. By the definition of X, we have (θI − F )X = εsθ
n
I . It follows from Claim 24 that

X • F = θTr(X)− εsθ

n
Tr(I) ∈

(
(1− εs, 1]− εs

)
θ =

(
(1− 2εs)θ, (1− εs)θ

]
.

Claim 27. 1
T y(t) = 1.

Proof. This is immediate from the initialization of y(0) in step 1 and the update of y(t+1) in step 10 of the algorithm.

Claim 28. For all iterations t in the while-loop, except possibly the last, ν(t+ 1), τ (t+ 1) ∈ (0, 1).

Proof. ν(t+1) ≥ 0 asX •Ai(t) ≤ X •F by Claim 27, and except possibly for the last iteration, we have ν(t+1) > 0. Also,

ν(t+ 1) ≤ 1 by the non-negativity of X • Ai(t) and X • F , while ν(t+ 1) = 1 implies that X • Ai(t) = 0, in contradiction

to the assumption that Ai(t) 6= 0 (as X ≻ 0 by Claim 23).

Note that the definition of ν(t+ 1) implies that

τ (t+ 1) =
εsθν(t+ 1)(1 + ν(t+ 1))

8nX(t) • F (y(t))
,

and hence, τ (t+ 1) > 0. Moreover, by Claim 26, τ (t+ 1) < εs
2n
< 1.
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Claim 29. λmax(F (y(t))) > 0.

Proof. This follows by induction on t′ = 0, 1, . . . , t. For t′ = 0, the claim follows from the assumption that Ai 6= 0

for all i. Assume now that F = F (y(t)) 6= 0. Then for F ′ = F (y(t + 1)), we have by step 10 of the algorithm that

F ′ = (1− τ )F + τAi(t) 6= 0. As F ′ � 0, we get λmax(F
′) > 0.

Claim 30. (θ∗I − F )−1 =
(
εsθ
n
I − (θ − θ∗)X

)−1
X.

Proof. By definition of X, we have

(θ∗I − F )X = (θI − F )X − (θ − θ∗)X =
εsθ

n
I − (θ − θ∗)X

∴ X = (θ∗I − F )−1

(
εsθ

n
I − (θ − θ∗)X

)
.

2.4.2 Number of Iterations

Define B = B(t) := n
εsθ

(
τX1/2(F − F̂ )X1/2 − (θ − θ∗)X

)
.

Claim 31. θ∗I − F ′ = (θI − F )1/2(I +B)(θI − F )1/2.

Proof. By (the update) step 10, we have

θ∗I − F ′ = θ∗I − (1− τ )F − τ F̂
= θI − F + τ (F − F̂ )− (θ − θ∗)I

= (θI − F )1/2
(
I +

nτ

εsθ
X1/2(F − F̂ )X1/2 − n

εsθ
(θ − θ∗)X

)
(θI − F )1/2. (∵ X = εsθ

n
(θI − F )−1)

Claim 32. maxj |λj(B)| ≤ 1
2
.

Proof. By the definition of B, we have

max
j
|λj(B)| = n

εsθ
max
j

∣∣∣λj
(
τX1/2(F − F̂ )X1/2 − (θ − θ∗)X

)∣∣∣

=
n

εsθ
max

v:||v||=1

∣∣∣vT
(
τX1/2(F − F̂ )X1/2 − (θ − θ∗)X

)
v
∣∣∣

≤ n

εsθ

(
max

v:||v||=1
τvTX1/2FX1/2v + max

v:||v||=1
τvTX1/2F̂X1/2v + (θ − θ∗) max

v:||v||=1
vTXv

)

<
nτ

εsθ

(
Tr(X1/2FX1/2) + Tr(X1/2F̂X1/2)

)
+
nδs
εs

(∵ F, F̂ � 0, |Tr(X) ≤ 1 and θ∗ ≤ θ < (1 + δs)θ
∗)

=
nτ

εsθ

(
X • F̂ +X • F

)
+
nδs
εs

=
ν

4
+
εs

2

32
(substituting τ and δs)

<
1

2
. (using ν, εs ≤ 1)

Claim 33. θ∗(t) > λmax(F (y(t+ 1))).

Proof. By Claim 32, I +B � I − 1
2
I = 1

2
I, and by thus, we get by Claim 31,

θ∗I − F ′ � 1

2
(θI − F ) ≻ 0. (∵ BZB � 0 for B ∈ S

n and Z ∈ S
n
+)

(14)

The claim follows.

Claim 34. if ν > εs, then Tr(B) ≥ ν2

8
.

13



Proof. By the definition of B,

Tr(B) =
n

εsθ

(
τTr(X1/2(F − F̂ )X1/2)− (θ − θ∗)Tr(X)

)

≥ n

εsθ

(
τ (X • F −X • F̂ )− (θ − θ∗)

)
(∵ Tr(X) ≤ 1 by Claim 24)

>
n

εsθ

(
τ (X • F −X • F̂ )− δsθ

)
(∵ θ∗ ≤ θ < (1 + δs)θ

∗)

=
ν2

4
− εs

2

32
(by definition of τ and δs)

>
ν2

4
− ν2

32
>
ν2

8
. (∵ εs < ν ≤ 1)

Claim 35. if ν > εs, then Tr(B2) < ν2

10
.

Proof. Write Y = τX1/2FX1/2 and Ŷ = X1/2
(
τ F̂ + (θ − θ∗)I

)
X1/2 and note that both Ŷ and Y are in S

n
+. It follows by

the definition of B that

Tr(B2) =
n2

εs2θ2
Tr
(
(Y − Ŷ )2

)

=
n2

εs2θ2

(
Tr(Y 2) + Tr(Ŷ 2)− 2Tr(Y Ŷ )

)

≤ n2

εs2θ2

(
Tr(Y 2) + Tr(Ŷ 2) + 2Tr(Y Ŷ )

)
(∵ Ŷ , Y ∈ S

n
+)

≤ n2

εs2θ2

(
Tr(Y 2) + Tr(Ŷ 2) + 2

√
Tr(Y 2)Tr(Ŷ 2)

)
(by Cauchy-Schwarz Ineq.)

≤ n2

εs2θ2

(
Tr(Y )2 + Tr(Ŷ )2 + 2Tr(Ŷ )Tr(Y )

)
(∵ Ŷ , Y ∈ S

n
+)

=
n2

εs2θ2
(Tr(Y ) + Tr(Ŷ ))2

=
n2

εs2θ2
(τTr(XF ) + τTr(XF̂ ) + (θ − θ∗)Tr(X))2

≤ n2

εs2θ2
(τX • F + τX • F̂ + (θ − θ∗))2 (∵ Tr(X) ≤ 1 by Claim 24)

<
n2

εs2θ2

(
τX • F + τX • F̂ + δsθ

)2
(∵ θ∗ ≤ θ < (1 + δs)θ

∗)

=

(
ν

4
+
εs

2

32

)2

(by definition of τ and δs)

<

(
ν

4
+
ν2

32

)2

<
ν2

10
. (∵ εs < ν ≤ 1)

Define Φ(t) := Φ(θ∗(t), F (y(t))).

Claim 36. Φ(t+ 1) −Φ(t) ≤ − εsν(t+1)2

40n
.

Proof. Note that Claim 33 implies that θ∗ is feasible to the problem min{Φ(ξ, F ′) : ξ ≥ λmax(F
′)}. Thus,

Φ(t+ 1) = Φ(θ∗(t+ 1), F ′) ≤ ln θ∗ − εs
n

ln det(θ∗I − F ′).

∴ Φ(t + 1) −Φ(t) ≤ −εs
n

(
ln det(θ∗I − F ′)− ln det(θ∗I − F )

)

≤ −εs
n

(
ln det

(
θ∗I − F ′)− ln det(θI − F )

)
(∵ θ∗ ≤ θ)

= −εs
n

ln det (I +B) (by Claim 31)

= −εs
n

n∑

j=1

ln (1 + λj(B))

≤ −εs
n

n∑

j=1

(
λj(B)− λj(B)2

)
(by Claim 10 and ln(1 + z) ≥ z − z2,∀z ≥ −0.5)

= −εs
n

(
Tr(B)− Tr(B2)

)

14



< − εs
8n
ν2 +

εs
10n

ν2 (by Claims 34 and 35)

= − εs
40n

ν2.

Claim 37. For any t, t′,

Φ(t′)− Φ(t) ≥ (1− εs) ln
(1− 2εs)X •Ai(t)
(1− εs)2X • F

+ ln(1− εs).

Proof. Write F = F (y(t)), θ∗ := θ∗(t), θ := θ(t), X := X(t), F ′ = F (y(t′)), θ′∗ := θ∗(t′). Then

Φ(t′)− Φ(t) = ln
θ′∗

θ∗
− εs
n

ln det
[
(θ∗I − F )−1(θ′∗I − F ′)

]

= ln
θ′∗

θ∗
− εs
n

ln det

[(
εsθ

n
I − (θ − θ∗)X

)−1

X(θ′∗I − F ′)

]
(by Claim 30)

= ln
θ′∗

θ∗
− εs
n

[
ln det

(
εsθ

n
I − (θ − θ∗)X

)−1

+ lndet
[
X(θ′∗I − F ′)

]
]

≥ ln
θ′∗

θ∗
− εs
n

[
ln

(
εsθ

n
− δsθ

)−n
+ ln det

[
X(θ′∗I − F ′)

]
]

(∵ Tr(X) ≤ 1 by Claim 24 and θ∗ ≤ θ ≤ (1 + δs)θ
∗)

≥ ln
θ′∗

θ∗
− εs
n

[
ln

(
n

(1− εs)εsθ

)n
+ ln detX(θ′∗I − F ′)

]
(by defintion of δs)

= ln
θ′∗

θ∗
− εs ln

n

(1− εs)εsθ
− εs
n

ln
[
detX(θ′∗I − F ′)

]

= ln
θ′∗

θ∗
− εs ln n

(1− εs)εsθ
− εs
n

n∑

j=1

lnλj
(
X(θ′∗I − F ′)

)

≥ ln
θ′∗

θ∗
− εs ln

n

(1− εs)εsθ
− εs ln

(
1

n

n∑

j=1

λj
(
X(θ′∗I − F ′)

)
)

(by the concavity of ln(·))

= ln
θ′∗

θ∗
− εs ln n

(1− εs)εsθ
− εs ln

(
1

n
Tr(θ′∗X −XF ′)

)

≥ ln
θ′∗

θ∗
− εs ln n

(1− εs)εsθ
− εs ln

(
θ′∗ −X • F ′

n

)
(∵ Tr(X) ≤ 1 by Claim 24)

= ln
θ′∗

θ∗
− εs ln 1

(1− εs)εsθ
− εs ln

(
θ′∗ −X • F ′)

≥ ln
θ′∗

θ∗
− εs ln

1

(1− εs)εsθ
− εs ln

(
θ′∗ − min

y∈Rm
+ : 1T y=1

X • F (y)

)
(∵ 1

T y(t′) = 1 by Claim 27)

= ln
θ′∗

θ∗
− εs ln 1

(1− εs)εsθ
− εs ln

(
θ′∗ −X •Ai(t)

)
(by defintion of i(t))

≥ min
ξ>X•Ai(t)

{
ln

ξ

θ∗
− εs ln 1

(1− εs)εsθ
− εs ln

(
ξ −X • Ai(t)

)}

= (1− εs) ln
X • Ai(t)
(1− εs)2θ

+ ln
(1− εs)θ

θ∗
(min(·) is achieved at ξ =

X•Ai(t)

1−εs )

≥ (1− εs) ln
X • Ai(t)
(1− εs)2θ

+ ln(1− εs) (∵ θ ≥ θ∗)

≥ (1− εs) ln
(1− 2εs)X • Ai(t)
(1− εs)2X • F

+ ln(1− εs). (by Claim 26)

Claim 38.
X(0)•Ai(0)

X(0)•F (y(0))
≥ 1

ψ
:=

λmin(Ai(0))

λmax(Ai′ )
≥ mini λmin(Ai)

maxi λmax(Ai)
≥ ǫ

n222L
, where i′ is the index such that y(0) = 1i′ .

Proof. Let X(0) =
∑n
j=1 λjuju

T
j be the spectral decomposition of X(0). Then,

X(0) •Ai(0) =
n∑

j=1

λjAi(0) • ujuTj ≥
n∑

j=1

λjλmin(Ai(0)) = λmin(Ai(0)) · Tr(X(0))
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X(0) • F (y(0)) =

n∑

j=1

λjAi′ • ujuTj ≤
n∑

j=1

λjλmax(Ai′) = λmax(Ai′) · Tr(X(0)).

Note that ψ ≤ n222L

ǫ
by Assumption (B-II). The claim follows.

Claim 39. The algorithm terminates in at most O(n logψ + n
ǫ2
) iterations.

Proof. Let t−1 = −1 and, for s = 0, 1, 2, . . ., let ts be the smallest t such that ν(t+1) ≤ 2−(s+1) (so ts+1 is the value of t at

which the iteration s+1 of the outer while-loop starts). Then for t = ts−1+1, . . . , ts−1, we have ν(t+1) > 2−(s+1) = 2εs.

Hence, for s = 0,

−ε
3
0t0
40n

> Φ(t0)− Φ(0) (by Claim 36)

≥ (1− ε0) ln
(1− 2ε0)X(0) • Ai(0)

(1− ε0)2X(0) • F (y(0))
+ ln(1− ε0) (by Claim 37)

≥ (1− ε0) ln
ψ(1− 2ε0)

(1− ε0)2
+ ln(1− ε0). (by Claim 38)

Setting ε0 = 1
4

in the last series of inequalities we get

t0 < 1920n ln
(9ψ
8

)
+ ln

4

3
= O(n logψ). (15)

Now consider s ≥ 1:

−ε
3
s(ts − ts−1)

40n
> Φ(ts)−Φ(ts−1) (by Claim 36)

≥ (1− εs) ln
(1− 2εs)X(ts−1) •Ai(ts−1)

(1− εs)2X(ts−1) • F (y(ts−1))
+ ln(1− εs) (by Claim 37)

= (1− εs) ln
(1− 2εs)

(
1− ν(ts−1 + 1)

)

(1− εs)2
(
1 + ν(ts−1 + 1)

) + ln(1− εs) (by definition of ν(ts−1 + 1))

≥ (1− εs) ln
(1− 2εs)(1− 4εs)

(1− εs)2(1 + 4εs)
+ ln(1− εs) (∵ ν(ts−1 + 1) ≤ 2−s = 4εs)

≥ −(1− εs) ln(1 + 32εs)− ln(1 + 3εs) > −35εs. (∵ εs ≤ 1
8
)

Setting εs =
1

2s+2 in the last series of inequalities we get

ts − ts−1 <
1400n

ε2s
= O(n/ε2s). (16)

Summing (15), and (16) over s = 1, 2, . . . , ⌈log 1
ǫ
⌉, we get the claim.

2.4.3 Primal Dual Feasibility and Approximate Optimality

Let tf + 1 be the value of t when the algorithm terminates and sf + 1 be the value of s at termination. For simplicity, we

write s = sf .

Claim 40. (Primal feasibility). X̂ ≻ 0 and miniAi • X̂ ≥ 1.

Proof. The first claim is immediate from Claim 23. To see the second claim, we use the definition of ν(tf ) and the

termination condition in line 4 (which is also satisfied even if X(tf ) • F (y(tf))−X(tf ) • Ai(tf ) = 0):

X(tf ) • F (y(tf ))−X(tf ) •Ai(tf )

X(t1) • Ai(tf ) +X(tf ) • F (y(tf))
≤ εs.

∴ (1− εs)X(tf ) • F (y(tf )) ≤ (1 + εs)X(tf ) • Ai(tf )

= (1− εs)min
i
X(tf ) •Ai (by the defintition of i(tf ))

∴ (1− εs)(1− 2εs)θ(tf ) < (1 + εs)min
i
X(tf ) •Ai. (∵ X(tf ) • F (y(tf )) > (1− 2εs)θ(tf ) by Claim 26)

The claim follows by the definition of X̂ in step 16 of the algorithm.

Claim 41. (Dual feasibility). ŷ ≥ 0 and F (ŷ) ≺ I .
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Proof. The fact that ŷ ≥ 0 follows from the initialization of y(0) in step 1, Claim 6, and the update of y(t+ 1) in step 10.

For the other claim, we have

λmax

(
F (ŷ)

)
=

1

θ(tf )
λmax

(
F (y(tf))

)
≤ 1− εs

n
. (by Claim 25)

Claim 42. (Approximate optimality). I • X̂ ≤ 1+εs
(1−2εs)2

1
T ŷ.

Proof. By Claim 24, we have Tr(X(tf ) ≤ 1, and by Claim 27, we have 1
T y(tf ) = 1. The claim follows by the definition

of X̂ and ŷ in step 16.

Remark 3. Similar to the packing case, suppose that in step 7 of Algorithm 2, we instead define i(t) to be an index i ∈ [m]

such thatAi •X(t) ≤ 1+εs, and we are guaranteed that such index exists in each iteration of the algorithm. Then the dual

solution ŷ satisfies: 1
T ŷ ≥ 1−O(ǫ). Indeed, the proof of Claim 40 can be easily modified to show that θ(tf ) ≤

(1+εsf )2

(1−2εsf )2
,

which combined with the definition of ŷ in step 16 of the algorithm implies the claim.

2.4.4 Running Time per Iteration

Computing θ(t). Given F := F (y(t)) � 0, we first compute an approximation λ̃ of λmax(F ) using Lanczos’ algorithm

with a random start. By Claim 25, we need λ̃ to lie in the range [λmax(F ), λmax(F )
1−εs/n ]. To obtain λ̃, we apply Lemma 21

with M := Fn and γ := εs
2

. Then in O
(
log n√
εs

)
iterations we get λ̃ :=

(
vTFnv
1−γ

)1/n
(where v be the vector obtained from

Lemma 21) satisfying

λmax(F ) ≤ λ̃ ≤ λmax(F )

(1− γ)1/n ≤ (1 + εs)
1/nλmax(F ) ≤ λmax(F )

1− εs/n
. (17)

Thus, the overall running time for computing λ̃ is O(nω log n + n2 log n√
εs

). Given λ̃, we know by Claim 25 and (17)

that θ∗(t) ∈ [λ̃, λ̃
1−εs ]. Then we can apply binary search to find θ(t) := θ∗(t)δs as follows. Let θk = λ̃(1 + δs)

k, for

k = 0, 1, . . . ,K := ⌈−2 ln(1−εs)
δs

⌉, and note that θK ≥ λ̃. Then we do binary search on the exponent k ∈ {0, 1 . . . ,K}; each

step of the search evaluates g(θk) :=
εsθk
n

Tr(θkI−F )−1, and depending on whether this value is less than or at least 1, the

value of k is decreased or increased, respectively. The search stops when the search interval [ℓ, u] has u ≤ ℓ+ 1, in which

case we set θ(t) = θu; the number of steps until this happens is O(logK) = O(log 1
δs
) = O(log n

εs
). By the monotonicity of

g(x) (in the interval [λmax(F ),+∞)), and the property of binary search, we know that θ∗ ∈ [θℓ, θu]. Thus, by the stopping

criterion,

θℓ ≤ θ∗(t) ≤ θ(t) = θu ≤ θℓ+1 = (1 + δs)θℓ,

implying that θ∗(t) ≤ θ(t) ≤ (1 + δs)θ
∗(t). Since evaluating g(θk) takes O(nω), the overall running time for the binary

search procedure is O(nω log n
εs
), and hence the total time needed for for computing θ(t) is O(nω log n

ǫ
+ n2 log n√

ǫ
).

As all other steps of the algorithm inside the inner while-loop can be done in O(T + n2) time, where T is the time

taken by a single call to the minimization oracle in step 7, in view of Claim 17, we obtain the following result.

Theorem 43. For any ǫ > 0, Algorithm 2 outputs an O(n logψ + n
ǫ2
)-sparse O(ǫ)-optimal primal-dual pair in time

O((n logψ + n
ǫ2
)(nω log n

ǫ
+ n2 log n√

ǫ
+ T )) = Õ(n

ω+1 logψ
ǫ2.5

+ nT log n
ǫ2

).

3 Applications

3.1 Robust Packing and Covering SDPs

Consider a packing-covering pair of the form (PACKING-I)-(COVERING-I) or (PACKING-II)-(COVERING-II). In the

framework of robust optimization (see, e.g. [9, 10]), we assume that each constraint matrix Ai is not known exactly;

instead, it is given by a convex uncertainty set Ai ⊆ S
n
+. It is required to find a (near)-optimal solution for the packing-

covering pair under the worst-case choice Ai ∈ Ai of the constraints in each uncertainty set. A typical example of a

convex uncertainty set is given by an affine perturbation around a nominal matrix A0
i ∈ S

n
+:

Ai =
{
Ai := A0

i +

k∑

r=1

δrA
r
i : δ = (δ1, . . . , δk) ∈ D

}
, (18)

where A1
i , . . . , A

k
i ∈ S

n
+, and D ⊆ R

k
+ can take, for example, one of the following forms:
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• Ellipsoidal uncertainty: D = E(δ0, D) := {δ ∈ R
k
+ : (δ − δ0)TD−1(δ − δ0) ≤ 1}, for given positive definite matrix

D ∈ S
k
+ and vector δ0 ∈ R

k
+ such that E(δ0, D) ⊆ R

k
+;

• Box uncertainty: D = B(δ0, ρ) := {δ ∈ R
k
+ : ‖δ − δ0‖1 ≤ ρ}, for given positive number ρ ∈ R+ and vector δ0 ∈ R

k
+

such that B(δ0, ρ) ⊆ R
k
+;

• Polyhedral uncertainty: D := {δ ∈ R
k
+ : Dδ ≤ w}, for given matrix D ∈ R

h×k and vector w ∈ R
h.

Without loss of generality, we consider the robust version of (NORM-PACKING-I)-(NORM-COVERING-I), where Ai, for

i ∈ [m], belongs to a convex uncertainty set Ai. Then the robust optimization problem and its dual can be written as

follows:

z∗P = max I •X (RBST-PACKING-I)

s.t. Ai •X ≤ 1, ∀Ai ∈ Ai ∀i ∈ [m]

X ∈ R
n×n, X � 0

z∗D = inf
m∑

i=1

∫

Ai

yiAi
dAi (RBST-COVERING-I)

s.t.
m∑

i=1

∫

Ai

yiAi
AidAi � I

yi is a discrete measure on Ai, ∀i ∈ [m].

As before, we assume (B-I), whereA1, . . . , Ar ∈
⋃
i∈[m]Ai. We call a pair of solutions (X, y) to be ǫ-optimal for (RBST-PACKING-I)-

(RBST-COVERING-I), if

z∗P ≥ I •X ≥ (1− ǫ)
m∑

i=1

∫

Ai

yiAi
dAi ≥ (1− ǫ)z∗D.

As a corollary of Theorem 22, we obtain the following result.

Theorem 44. For any ǫ > 0, Algorithm 1 outputs anO(ǫ)-optimal primal-dual pair for (RBST-PACKING-I)-(RBST-COVERING-I)

in time Õ
(
nω+1 logψ

ǫ2.5
+ nT logψ

ǫ2

)
, where ψ :=

r·maxi∈[m],Ai∈Ai
λmax(Ai)

λmin(Ā)
and T is the time to compute, for a given Y ∈ S

n
+, a

pair (i, Ai) such that

(i, Ai) ∈ argmaxi∈[m], Ai∈Ai
Ai • Y. (19)

Note that (19) amounts to solving a linear optimization problem over a convex set. Moreover, for simple uncertainty

sets, such as balls or ellipsoids, such computation can be done very efficiently.

3.2 Carr-Vempala Type Decomposition

Consider a maximization (resp., minimization) problem over a discrete set S ⊆ Z
n and a corresponding SDP-relaxation

over Q ⊆ S
n
+:

z∗CO =

{
max

min

}
C • qqT (COP)

s.t. q ∈ S

z∗SDP =

{
max

min

}
C •Q (SDP-RLX)

s.t. Q ∈ Q,

where C ∈ S
n
+.

Definition 1. For α ∈ (0, 1] (resp., α ≥ 1), an α-integrality gap verifier A for (SDP-RLX) is a polytime algorithm that,

given any C ∈ S
n
+ and any Q ∈ Q returns a q ∈ S such that B • qqT ≥ αB •Q (resp., C • qqT ≤ αC •Q).

For instance, if S = {−1, 1}n and Q = {X ∈ S
n
+ : Xii = 1 ∀i ∈ [n]}, then a 2

π
-integrality gap verifier for the

maximization version of (SDP-RLX) is known [29].

Carr and Vempala [12] gave a decomposition theorem that allows one to use an α-integrality gap verifier for a given

LP-relaxation of a combinatorial maximization (resp., minimization) problem, to decompose a given fractional solution

to the LP into a convex combination of integer solutions that is dominated by (resp., dominates) α times the fractional

solution. In [13], we prove a similar result for SDP relaxations:

Theorem 45. Consider a combinatorial maximization (resp., minimization) problem (COP) and its SDP relaxation (SDP-RLX),

admitting an α-integrality gap verifierA. Assume the set S is full-dimensional. Then there is a polytime algorithm that, for

any given Q ∈ Q, finds a set X ⊆ S , of polynomial size, and a set of convex multipliers {λq ∈ R+ : q ∈ X},∑q∈X λq = 1,

such that

αQ �
∑

q∈X
λqqq

T (resp., αQ �
∑

q∈X
λqqq

T ).
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The proof of Theorem 45 is obtained by considering the following pairs of packing and covering SDPs (of types I and

II, respectively):

z∗I = min
∑

q∈S
λq (CVX-I)

s.t.
∑

q∈S
λqqq

T � αQ (20)

∑

q∈S
λq ≥ 1 (21)

λ ∈ R
S , λ ≥ 0

z∗I = max αQ • Y + u (CVX-dual-I)

s.t. qqT • Y + u ≤ 1,∀q ∈ S (22)

Y ∈ S
n
+, u ≥ 0.

z∗II = max
∑

q∈S
λq (CVX-II)

s.t.
∑

q∈S
λqqq

T � αQ (23)

∑

x∈S
λq ≤ 1 (24)

λ ∈ R
S , λ ≥ 0

z∗II = min αQ • Y + u (CVX-dual-II)

s.t. qqT • Y + u ≥ 1,∀q ∈ S (25)

Y ∈ S
n
+, u ≥ 0.

It can be shown, using the fact that the SDP relaxation admits an α-integrality gap verifier, that z∗I = z∗II = 1, and that the

two primal-dual pairs can be solved in polynomial time using the Ellipsoid method. Here, we derive a more efficient but

approximate version of Theorem 45.

Theorem 46. Consider a combinatorial maximization (resp., minimization) problem (COP) and its SDP relaxation (SDP-RLX),

admitting an α-integrality gap verifier A. Assume the set S is full-dimensional and let ǫ > 0 be a given constant. Then

there is a polytime algorithm that, for any given Q ∈ Q, finds a set X ⊆ S of size |X | = O(n
3

ǫ2
log(nW )) (resp., of size

|X | = O(n log n
ǫ
+ n

ǫ2
)), where W := maxq∈S, i∈[n] |qi|, and a set of convex multipliers {λq ∈ R+ : q ∈ X}, ∑q∈X λq = 1,

such that

(1−O(ǫ))αQ �
∑

q∈X
λqqq

T (resp., (1 +O(ǫ))αQ �
∑

q∈X
λqqq

T ). (26)

Proof. Let us first consider the maximization problem and the corresponding covering SDP (CVX-I). We can write

(CVX-I)-(CVX-dual-I) in the form of (COVERING-I)-(PACKING-I), where the set of constraints [m] corresponds to S ,

by setting

Aq :=

[
qqT 0

0 1

]
, C :=

[
αQ 0

0 1

]
, X :=

[
Y 0

0 u

]
. (27)

Let us fix any linearly independent subset S ′ ⊆ S of S of size n. Write Ā :=
∑
q∈S′ qq

T . Then for any Y � 0, feasible for

(CVX-dual-I), we have I •Y ≤ Ā•Y
λmin(B)

≤ n
λmin(Ā)

. To arrive at a bound τ as in Assumption (B-I), we need to lower-bound

λmin(Ā). Let L′ be the total bit length needed to describe S ′. Then we have the following bound.

Claim 47. λmin(Ā) ≥ γ := 2−2L′−1.

Proof. Equivalently, we need to show that
∑

q∈S′(q
T v)2 + v20 ≥ γ, for any unit vector (v, v0) ∈ R

n+1. Suppose for the

sake of contradiction that |v0| < √γ and |qT v| < √γ for all q ∈ S . Let H ∈ R
n×n be the matrix whose columns are

the vectors q ∈ S ′ and h ∈ R
n be a vector with component qT v in the position corresponding to q ∈ S ′. Then the linear

system Hx = h has a unique solution x = v = H−1h such that each component is bounded in absolute value from above

by 2L
′√
γ (see. e.g., [18, chapter 1]). Since (v, v0) is a unit vector, it follows that

1 = ‖v‖2 + v20 < 22L
′

γ + γ < 1,

a contradiction.

From Claim 47, we know that assumption (B-I) is satisfied with τ := 22L
′+1n + 1, where L′ ≤ n2 log(W + 1). Let

αQ = LTDL be the LDL-decomposition of αQ and write U := L−1. By the reduction in Appendix B.1, we can use

αQ(δ) = LTD(δ)L = αQ + δLT ĪL, where D(δ) = D + δLT ĪL and δ ≤ ǫ
τI•LTL

(as z∗I = 1), instead of αQ without

changing the objective value by a factor more than (1 + ǫ) (if Q is nonsingular, then we set δ = 0). (Recall that Ī is the

0/1-diagonal matrix with ones only in the entries corresponding to the zero diagonal entries of the diagonal matrix D, and

note that the matrix L is independent of δ.) For q ∈ S , let p(q) := D(δ)−1/2UT q. Using the transformation of variables
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Y ′ := D(δ)1/2LY LTD(δ)1/2, we get αQ(δ)•Y = I •Y ′ and qqT •Y = p(q)p(q)T •Y ′. Hence, we obtain a normalized form

of (an approximate version of) (CVX-I)-(CVX-dual-I), where q ∈ S is replaced by p(q). In view of Remark 2, it is enough

to show that in each iteration t of Algorithm 1, we can find efficiently a q ∈ S such that p(q)p(q)T • Y ′ + u ≥ 1−O(εs) for

given Y ′ = Y ′(t) � 0 and u = u(t) ≥ 0 such that Tr(Y ′) + u ∈ (1− εs, 1) (by Claim 2, where X(t) :=

(
Y ′ 0

0 u

)
in step 6

of the algorithm). To do this, let Y := UD(δ)−1/2Y ′D(δ)−1/2UT and call the integrality gap verifier A on (Y,Q) to get a

vector q ∈ S such that qqT • Y ≥ αQ • Y . Then

p(q)p(q)T • Y ′ + u = qqT • Y + u ≥ αQ • Y + u = αQ(δ) • Y + u− δLT ĪL • Y = I • Y ′ + u− δLT ĪL • Y. (28)

We bound the “error term” δLT ĪL • Y using the definition of Y ′ = Y ′(t) := εsθ(t)
n+1

(∑
q∈S λq(t)p(q)p(q)

T − θ(t)I
)−1

in

step 6 of the algorithm as follows:

δLT ĪL • Y = δLT ĪL • UD(δ)−1/2Y ′D(δ)−1/2UT = δĪ •D(δ)−1/2Y ′D(δ)−1/2 = δD(δ)−1/2ĪD(δ)−1/2 • Y ′ = Ī • Y ′

=
εsθ(t)

n+ 1
Ī •
(∑

q∈S
λq(t)p(q)p(q)

T − θ(t)I
)−1

=
εsθ(t)

n+ 1
Ī •
(
D(δ)−1/2H(t)D(δ)−1/2 − θ(t)I

)−1
, (29)

where, for brevity, we write H = H(t) :=
∑
q∈S λq(t)U

T qqTU . To bound (29), we need to compute the submatrix of(
D(δ)−1/2H(t)D(δ)−1/2 − θ(t)I

)−1
corresponding to the non-zeros of Ī . Let the corresponding decompositions of the

matrices D(δ) and G(t) := D(δ)−1/2H(t)D(δ)−1/2 − θ(t)I be as follows:

D(δ) =

(
D′ 0

0 δĪ

)
, H(t) =

(
H1 H2

HT
2 H3

)
, G(t) =

(
G1 G2

GT2 G3

)
=

(
(D′)−1/2H1(D

′)−1/2 − θ(t)I 1√
δ
(D′)−1/2H2

1√
δ
HT

2 (D′)−1/2 1
δ
H3 − θ(t)I

)
,

(30)

where, for simplicity, we use I to denote the identity matrix of the proper dimension, according to the context. As

G(t) ≻ 0, we have

θ(t) ≤ λmin

(
(D′)−1/2H1(D

′)−1/2
)
, and M := H3 −HT

2 (D′)−1H1(D
′)−1H2 ≻ 0. (31)

Using the block inversion formula:

Ī •G(t)−1 = I •
(
G3 −GT2 G1G2

)−1
= I •

(1
δ
H3 − θ(t)I −

1

δ
HT

2 (D′)−1/2
(
(D′)−1/2H1(D

′)−1/2 − θ(t)I
)
(D′)−1/2H2

)−1

= δI •
(
H3 − δθ(t)I −HT

2 (D′)−1/2((D′)−1/2H1(D
′)−1/2 − θ(t)I

)
(D′)−1/2H2

)−1

, (32)

and writing M̄ := H3 −HT
2 (D′)−1/2

(
(D′)−1/2H1(D

′)−1/2 − θ(t)I
)
(D′)−1/2H2, we get by (32),

Ī •G(t)−1 =
n∑

j=1

δ

λj(M̄)− δθ(t) ≤
δn

λmin(M̄)− δθ(t) . (33)

Note that M̄ =M + θ(t)HT
2 (D′)−1H1(D

′)−1H2 �M ≻ 0 by (31), and that M , D′ and H1 are independent of δ. It follows

that, if we set

δ := min

{
ǫ

τI • LTL,
λmin(M)

2λmin((D′)−1/2H1(D′)−1/2)

}
, (34)

then by (29), (31) and (33),

δLT ĪL • Y ≤ εsθ(t)

n+ 1
Ī •G(t)−1 ≤ εsθ(t)

n+ 1
· δn

λmin(M)− δθ(t) ≤
εsn

n+ 1
< εs. (35)

Using (29), (35) and I • Y ′ + u ≥ 1 − εs, we get the desired inequality. Let X ⊆ S be the set of vectors q ∈ S ′ such

that λq > 0 when the algorithm terminates. Since each iteration of the algorithm adds at most one element to X , we

have by Claim 39 that |X | = O
(
n logψ + n

ǫ2

)
, where we set r = n, Ā :=

∑r
i=1Ai ≻ 0, and use the set of matrices

{p(q)p(q)T : q ∈ S ′} for A1, . . . , Ar in assumption (B-I), where S ′ ⊆ S is a linearly independent subset of S . We bound ψ

in the same way as in the proof of Claim 17:

ψ ≤ maxq∈S Y
′(0) • p(q)p(q)T + u(0)

Y ′(0) • 1
n

∑
q∈S′ p(q)p(q)T + u(0)

=
maxq∈S Y (0) • qqT + u(0)

Y (0) • 1
n

∑
q∈S′ qqT + u(0)

≤ n ·maxq∈S ‖q‖2
λmin(

∑
q∈S′ qqT )

≤ n2W 2(22L′+1n+ 1
)
= n3WO(n2).

It follows that |X | = O(n
3

ǫ2
log(nW )) (which is also a bound on the number of iterations of the algorithm). Moreover,

by Remark 2, we have
∑
q∈X λq ≤ 1 + O(ǫ). Thus scaling each λq by

∑
q′∈X λq′ yields the sought convex combination

satisfying the first inequality in (26).
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Now consider the minimization problem. (In in this part of the proof, we do not require S to be full-dimensional.)

We can write (CVX-II)-(CVX-dual-II) in the form of (PACKING-II)-(COVERING-II), where the set of constraints [m]

corresponds to S , and where Aq, C and X are given by (27). By the reduction in Appendix B.2, we can reduce (CVX-II)-

(CVX-dual-II) to normalized form without changing the value of the objective, but we need to show that each step of

this reduction can be implemented in polynomial time. Consider assumption (C-II). Suppose that this assumption does

not hold. Then there is an x ∈ R
n such that Qx = 0 and qTx 6= 0 for some q ∈ S , implying that q 6∈ image(Q) :=

{Qv : v ∈ R
n}. Conversely, if q 6∈ image(Q), then (by Farkas’ Lemma) there exists an x ∈ R

n such that Qx = 0 and

qTx 6= 0. We conclude (by the same argument following assumption (C-II) in Appendix B.2) that for q ∈ S \ image(Q),

the primal variable λq = 0, and hence, we may replace S by S ′ := S ∩ image(Q) in (CVX-dual-II). Let αQ = LTDL

be the LDL-decomposition of αQ, and write U = [U ′ | U ′′] := L−1, where U ′ is the submatrix of U whose columns

correspond to the columns of the submatrix D′ containing the positive diagonal entries of the diagonal matrix D. Let

p(q) := (D′)−1/2(U ′)T q, for q ∈ S ′. Then (23) becomes equivalent to
∑
q∈S′ λqp(q)p(q)

T � I . Next, we need to show

that Assumption (B-II) can be made to hold in polynomial time. For our purposes, it is enough to show a weaker version

of this assumption, as we shall see below. We begin by (implicitly) perturbing p(q)p(q)T into Ãq := p(q)p(q)T + ǫ
n
I , for

q ∈ S ′. By the argument following Assumption (B-II) in Appendix B.2, 1
β
≤ z∗II = 1 ≤ n

β
, where β := minq∈S′ ‖p(q)‖2,

from which we obtain that 1 ≤ β ≤ n. Furthermore, by the same argument, the optimal value z̃II of the perturbed problem

satisfies 1 − 2ǫ ≤ z̃II ≤ 1. Then, in view of Remark 3, it is enough to show that in each iteration t of Algorithm 2,

we can find efficiently a q ∈ S ′ such that Ãq • Y ′ + u ≤ 1 + O(εs) for given Y ′ = Y ′(t) � 0 and u = u(t) ≥ 0

such that Tr(Y ′) + u ∈ (1 − εs, 1) (by Claim 24, where X(t) :=

(
Y ′ 0

0 u

)
in step 6 of the algorithm). To do this, let

L′ be the total bit length needed to describe Q and {v1, . . . , vk} be a basis of null(Q) := {x ∈ R
n : Qx = 0}. Note

that, for each i ∈ [k], each nonzero component of vi is bounded in absolute value from below by 2−L′

(see. e.g., [18,

chapter 1]). Given Y ′ � 0 and u ≥ 0, we apply A to (Y,Q), where Y := U ′(D′)−
1
2 Y ′(D′)−

1
2 (U ′)T + γ

∑k
i=1 viv

T
i and

γ := 22L
′

αQ • Y + 1 = 22L
′

αQ • U ′(D′)−
1
2 Y ′(D′)−

1
2 (U ′)T + 1, to get a q ∈ S such that qqT • Y ≤ αQ • Y . We claim that

q ∈ S ′. For this, it is enough to show that qT vi = 0, for all i ∈ [k]. Suppose vTi q 6= 0 for some i ∈ [k]. Then |vTi q| ≥ 2−L,

implying that

qqT • Y = qqT • U ′(D′)−
1
2 Y ′(D′)−

1
2 (U ′)T + γ

k∑

i=1

(qT vi)
2 ≥ (22L

′

αQ • Y + 1)2−2L′

> αQ • Y,

a contradiction. We conclude that q ∈ S ′, and moreover that p(q)p(q)T • Y ′ = qqT • Y ≤ αQ • Y = (L′)TD′L′ • Y =

I •Y ′ ≤ 1−u. Then, Ãq •Y ′+u ≤ 1+ ǫ
n
I •Y ′ < 1+εs, as required. To bound the number of iterations of the algorithm, we

need to specify which q′ is used initially. This is done as follows. We start the algorithm by setting Y ′ = I and applying

the integrality gap verifier A to (Y,Q), as above, to obtain a q′ ∈ S ′ such that

‖p(q′)‖2 = p(q′)p(q′)T • Y ′ = q′q′T • Y ≤ αQ • Y = αQ • U ′(D′)−1(U ′)T

= LT
[
D′ 0

0 0

]
L • U

[
(D′)−1 0

0 0

]
UT =

[
D′ 0

0 0

]
•
[
(D′)−1 0

0 0

]
≤ n. (36)

Let X ⊆ S be the set of vectors q ∈ S such that λq > 0 when the algorithm terminates. Since each iteration of the

algorithm adds at most one element to X , we have by Claim 17 that |X | = O
(
n log 1

ψ
+ n

ǫ2

)
, where

ψ =
λmin(Ãq(0))

λmax(Ãq′)
≥ ǫ/n

n+ ǫ/n
≥ ǫ

2n2
.

It follows that |X | = O(n log n
ǫ
+ n

ǫ2
). Moreover, by Remark 3, we have

∑
q∈X λq ≥ 1 − O(ǫ). Thus scaling each λq by∑

q′∈X λq′ yields the sought convex combination satisfying the second inequality in (26).

Note that, once we have a set X as in Theorem 46, its support can be reduced to O(n
2

ǫ
) using the sparsification

techniques of [8, 35]. Applications of the Carr-Vempala type decomposition for SDPs in robust discrete optimization can

be found in [13].
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A A Matrix MWU Algorithm for (PACKING-II)-(COVERING-II)

Given positive semidefinite matricesA1, . . . , Am ∈ S
n
+, we consider the dual packing-covering pair (NORM-PACKING-II)-

(NORM-COVERING-II). Here is a matrix MWU algorithm.

1 t← 0; y(0)← 0; X(0)← 0; M(0)← 0; T ← ǫ−2 lnn

2 while M(t) < T do

3 P (t) = (1 + ǫ)
∑m

i=1 yi(t)Ai /* Update the weight matrix by exponentiation */

4 i(t)← argminiAi •X(t)

5 δ(t)← 1/λmax(Ai(t)) /* Define the update step size */

6 X(t+ 1)← X(t) + δ(t)P (t)
I•X(t)

; y(t+ 1)← y(t) + δ(t)1i(t) /* Update the primal-dual solution */

7 M(t+ 1)← λmax(
∑
i yi(t)Ai) /* Compute the largest eigenvalue of LHS of dual */

8 t← t+ 1

9 end

10 L(t)← miniAi •X(t)

11 Output (X̂, ŷ) =
(
X(t)
L(t)

, y(t)
M(t)

)

Algorithm 3: Matrix MWU Algorithm for (PACKING-II)-(COVERING-II)

A.1 Analysis

Let F (t) :=
∑m
i=1 yi(t)Ai.

A.1.1 Number of Iterations

Claim 48. The algorithm terminates in at most nT iterations. Note that by Claim 56 below, L(tf ) > 0.

Proof. Note that
∑n
j=1 λj(F (t)) = I • F (t). Then

n∑

j=1

λj(F (t+ 1))−
n∑

j=1

λj(F (t)) = I • F (t+ 1)− I • F (t) = δ(t)I •Ai(t)

= I • Ai(t)
λmax(Ai(t))

=
Tr(Ai(t))

λmax(Ai(t))
=

∑
j λj(Ai(t))

λmax(Ai(t))
≥ 1.

It follows that
∑n
j=1 λj(F (nT )) ≥ nT and thus

λmax(F (nT )) ≥
∑n
j=1 λj(F (nT ))

n
≥ T.

The claim follows by the termination condition in step 2.

Let tf be the value of t when the algorithm terminates.

A.1.2 Primal Dual Feasibility and Approximate Optimality

Claim 49. (Primal and dual feasibility:) Ai • X̂ ≥ 1 ∀i ∈ [m], X̂ � 0, and
∑m
i=1 ŷiAi � I .

Proof. For any i ∈ [m], we have

Ai • X̂ =
Ai •X(tf )

L(tf )
=

Ai •X(tf )

miniAi •X(tf )
≥ 1.

Also, X̂(t) = 1
L(tf )

∑tf−1

t=0
δ(t)X(t)
I•X(t)

� 0, since X(t) � 0. Thus the primal is feasible. To see dual-feasibility, note that

m∑

i=1

ŷiAi =
F (tf )

M(tf )
=

F (tf )

λmax(F (tf ))
.

Thus, λmax(F (tf )) = 1, implying that
∑m
i=1 ŷiAi � I .

Claim 50. L(t) ≥∑t−1
t′=0

δ(t′)P (t′)•Ai(t′)

I•P (t′)
.
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Proof. For any i ∈ [m], we have for all t′

Ai •X(t′) = Ai • δ(t
′)P (t′)

I • P (t′)
=
δ(t′)Ai • P (t′)

I • P (t′)
≥ δ(t′)Ai(t′) • P (t′)

I • P (t′)
(by the definition of i(t) in step 4.)

Summing the above inequality over all t′ < t, we get the claim.

Claim 51.

I • P (t+ 1) ≤ I • (1 + ǫ)F (t)(1 + ǫ)δ(t)Ai(t) .

Proof. We will use the Golden-Thompson inequality (see, e.g., [36]): for any two symmetric matrices B and C:

Tr(eB+C) ≤ Tr(eBeC).

Now,

I • P (t+ 1) = Tr
(
eln(1+ǫ)(F (t)+δ(t)Ai(t))

)
≤ Tr

(
(1 + ǫ)F (t)(1 + ǫ)δ(t)Ai(t)

)
(by the Golden-Thompson inequality)

= I • (1 + ǫ)F (t)(1 + ǫ)δ(t)Ai(t) .

Fact 1. For 0 � B � I and ǫ > 0,

(1 + ǫ)B � I + ǫB.

Proof. Let B = UTΛU be the eigen decomposition of B, where Λ = diag(λ1, . . . , λn). Then

(1 + ǫ)B − (I + ǫB) = UT diag
(
(1 + ǫ)λ1 , . . . , (1 + ǫ)λn

)
U − UT diag (1 + ǫλ1, . . . , 1 + ǫλn)U

= UT diag
(
(1 + ǫ)λ1 − (1 + ǫλ1), . . . , (1 + ǫ)λn − (1 + ǫλn)

)
U. (37)

Using the inequality: (1 + ǫ)x ≤ 1 + ǫx, valid for for x ∈ [0, 1] and ǫ > 0, we obtain that (1 + ǫ)λj − (1 + ǫλj) ≤ 0 and the

claim follows from (37).

Claim 52.

(1 + ǫ)δ(t)Ai(t) � I + ǫδ(t)Ai(t).

Proof. The claim follows from Fact 1, applied with B := δ(t)Ai(t), which satisfies 0 � B � I by the definition of δ(t) in

step 5 of the algorithm.

Fact 2. For three symmetric matrices B,C,D ∈ R
n×n if B � 0 and C � D then

B • C ≤ B •D.

Proof. Immediate from B • (D − C) ≥ 0 which holds by the positive semidefiniteness of B and D − C.

Claim 53.

I • P (t+ 1) ≤ I • P (t)

(
1 +

ǫδ(t)P (t) • Ai(t)
I • P (t)

)
.

Proof. We conclude from Claims 51 and 52, and Fact 2 applied with B := (1 + ǫ)F (t), C := (1 + ǫ)δ(t)Ai(t) and D :=

I + ǫδ(t)Ai(t), that

I • P (t+ 1) ≤ (1 + ǫ)F (t) • (1 + ǫ)δ(t)Ai(t) ≤ (1 + ǫ)F (t) •
(
I + ǫδ(t)Ai(t)

)

= I • P (t)

(
1 +

ǫδ(t)P (t) •Ai(t)
I • P (t)

)
.

Claim 54. I •X(t) ≤ I • P (0)e
ǫ
∑t−1

t′=0

δ(t′)P (t′)•A
i(t′)

I•P(t′) .

Proof. Using the inequality 1 + x ≤ ex, valid for all x ∈ R, we get from Claim 54,

I • P (t′ + 1) ≤ e
ǫδ(t′)P (t′)•A

i(t′)

I•P (t′) . (38)

Iterating (38) for t′ = 0, 1, . . . , t− 1, we arrive at the claim.
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Claim 55. M(t) ln(1 + ǫ) ≤ lnn+ ǫ
∑t−1
t′=0

δ(t′)P (t′)•Ai(t′)

I•P (t′)
.

Proof. Taking logs in Claim 54, and using that I • P (0) = n and

I •X(t) =

n∑

j=1

λj((1 + ǫ)F (t)) =

n∑

j=1

(1 + ǫ)λj(F (t)) ≥ (1 + ǫ)λmax(F (t)),

we get

M(t) ln(1 + ǫ) = λmax(F (t)) ln(1 + ǫ) ≤ lnn+ ǫ

t−1∑

t′=0

δ(t′)P (t′) • Ai(t′)
I • P (t′)

.

Claim 56.
L(tf )

M(tf )
≥ ln(1+ǫ)

ǫ
− ǫ ≥ 1− 1.5ǫ for ǫ ∈ (0, 0.5].

Proof. Using Claims 50 and 55, we obtain after rearranging terms

L(tf )

M(tf )
≥ ln(1 + ǫ)

ǫ
− lnn

ǫM(tf )

≥ ln(1 + ǫ)

ǫ
− lnn

ǫT
(by the termination condition)

=
ln(1 + ǫ)

ǫ
− ǫ (by the definition of T )

≥ 1− 1.5ǫ (∵ ln(1+ǫ)
ǫ
− ǫ ≥ 1− 1.5ǫ for ǫ ∈ (0, 0.5].)

Claim 57. I •X(t) = 1
T y(t) =

∑t−1
t′=0 δ(t

′). Thus, the following (approximate strong duality) holds

(1− 1.5ǫ)I • X̂ ≤ 1
T ŷ.

Proof. The first claim follows by

I •∆X(t) =
I • δ(t)P (t)

I • P (t)
= δ(t) = 1

T y(t).

From this we get from Claim 56

1
T ŷ

I • X̂
=

1
T y(tf )

M(tf )

/
I •X(tf )

L(tf )
=

L(tf )

M(tf )
≥ 1− 1.5ǫ,

from which the second claim follows.

A.1.3 Running Time per Iteration

The most expensive step is the matrix exponentiation. It can be done (approximately) in time O(n3), by computing the

eigenvalue decomposition of F (t) (more efficient algorithms are available if F (t) is sparse, see, e.g. [20]).

Theorem 58. For any ǫ > 0, Algorithm 3 outputs an O(n log n
ǫ2

)-sparse O(ǫ)-optimal primal-dual pair in time O(n
4 log n
ǫ2

+
nT log n

ǫ2
), where T is the time taken by a single call to the minimization oracle in step 4.

B Reduction to Normalized Form

When C = I = In, the identity matrix in R
n×n and b = 1, the vector of all ones in R

m, we say that the packing-covering

SDPs (PACKING-I)-(COVERING-I) and (PACKING-II)-(COVERING-II) are in normalized form. We recall below how a

general packing covering pair of SDPs can be reduced to normalized form (see e.g., [22]). We denote by I the identity

matrix of appropriate dimension.

We first note that under assumption (A), strong duality holds for both pairs (PACKING-I)-(COVERING-I) and (PACKING-II)-

(COVERING-II). Indeed, it is enough for this (see, e.g.,[27]) to show the strict feasibility of the primal (the so-called the

Slater’s condition). For (PACKING-I) (resp., (COVERING-II)), a strict primal feasible solution is given by X := δI , where

δ := 1
2maxi I•Ai

(resp., δ := 2
mini I•Ai

).
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B.1 Reduction to Normalized Form for (PACKING-I)-(COVERING-I)

Under assumption (B-I), we may further assume that

(C-I) C ≻ 0 and hence C = I .

If this is not the case, we slightly perturb the matrix C to make it positive definite without changing the objective value

by much3. Let C = LTDL be the LDL-decomposition of C and Ī be the 0/1-diagonal matrix with ones only in the

entries corresponding to the zero diagonal entries of the diagonal matrix D. For δ > 0, define D(δ) := D + δĪ ≻ 0,

C(δ) := LTD(δ)L = C + δLT ĪL, and let z∗I (δ) be the common optimum value of (PACKING-I)-(COVERING-I) when C is

replaced by C(δ), and X∗(δ) and y∗(δ) be corresponding optimal primal and dual solutions, respectively.

By assumption (B-I), for any feasible solution X to (PACKING-I), we have I •X ≤ τ . Also, since X = 1
maxi Ai•I I is

feasible for (PACKING-I), z∗I ≥ ζ := C•I
maxi Ai•I . Thus, for any desired accuracy ǫ > 0, selecting δ = ǫζ

τL•LT gives

z∗I ≤ z∗I (δ) = C •X∗(δ) + δLT ĪL •X∗(δ) = C •X∗(δ) + δĪ • LX∗(δ)LT ≤ C •X∗(δ) + δI • LX∗(δ)LT

= C •X∗(δ) + δLTL •X∗(δ) ≤ C •X∗(δ) + δλmax(L
TL)I •X∗(δ) ≤ C •X∗(δ) + δI • LTL · I •X∗(δ)

≤ C •X∗(δ) + δτL • LT = C •X∗(δ) + ǫζ ≤ C •X∗(δ) + ǫz∗I ≤ (1 + ǫ)z∗I .

It follows that X∗(δ) is feasible solution to (PACKING-I) with objective value C •X∗(δ) ≥ (1 − ǫ)z∗I . It follows also that

y∗(δ) is feasible for (COVERING-I) (as
∑
i y

∗(δ)Ai � C(δ) ≻ C) with objective value z∗I (δ) ≤ (1 + ǫ)z∗I .

Finally, writing U := L−1, and replacing X by X ′ := D(δ)
1
2LXLTD(δ)

1
2 , Ai by A′

i := D(δ)−
1
2UTAiUD(δ)−

1
2

and C(δ) by C′ = I , we obtain an equivalent version of the perturbed (PACKING-I)-(COVERING-I) in normalized form.

Given an optimal primal solution X ′ for the normalized problem we get a feasible solution X = UD(δ)−
1
2X ′D(δ)−

1
2UT

to the perturbed (PACKING-I) with the same objective value. Similarly an optimal dual solution for the normalized

problem is an optimal solution for the perturbed (COVERING-I) as
∑

i yiA
′
i � I ⇔ ∑

i yiAi � C(δ). Note that this

reduction can be implemented in O(n3 + nωm) time. Moreover, given a maximization oracle Max(·) for (PACKING-I)-

(COVERING-I), we obtain a maximization oracle for the normalized problem as follows: given Y ∈ S
n
+, we return Max(Y ′)

with Y ′ := UD(δ)−
1
2 Y D(δ)−

1
2UT . (For simplicity we ignore roundoff errors resulting from computing square roots,

which can be dealt with using standard techniques)

B.2 Reduction to Normalized Form for (PACKING-II)-(COVERING-II)

For a matrix B ∈ R
n×n, define supp(B) := {x ∈ R

n : Bx 6= 0}.
We may assume that

(C-II) supp(C) ⊇ ⋃i supp(Ai).

If this is not the case, that is, there is an i ∈ [m] such that supp(Ai) 6⊆ supp(C) then yi = 0 for any feasible solution y

to (PACKING-II). Indeed, the existence of an x ∈ R
n such that Aix 6= 0 and Cx = 0 implies that yix

TAix ≤ yix
TAix +∑

j 6=i yjx
TAjx ≤ xTCx = 0, giving that yi = 0. Furthermore, the existence of such x allows us to remove the ith inequality

from (COVERING-II); given an optimal solution X to the reduced covering system, we obtain a feasible solution with the

same objective value (and hence optimal) to the original system by settingX = X ′+ xxT

Ai•xxT
. Note that (by Farkas’ Lemma

[34, Chapter 7]) we can check if (C-II) holds by solvingm linear systems of equationsCΓ = Ai, for i = 1, . . . ,m. This can

be done in O(n3 + nωm) time, where ω is the exponent of matrix multiplication, by computing the LDL-decomposition

of C.

We may assume next that

(D-II) supp(C) = R
n \ {0} and hence C = I .

Suppose that (D-II) does not hold. Let C = LTDL be the LDL-decomposition of C and write U = [U ′ | U ′′] := L−1,

where U ′ is the submatrix of U whose columns correspond to the columns of the submatrix D′ containing the positive

diagonal entries of the diagonal matrix D. Then UTCU = D implies that (U ′′)TCU ′′ = 0, which in turn implies that

CU ′′ = 0 (since C � 0). The latter condition gives by (C-II) that AiU
′′ = 0 for all i, and consequently,

UTAiU =

[
(U ′)T

(U ′′)T

]
Ai
[
U ′ U ′′

]
=

[
(U ′)TAiU

′ (U ′)TAiU
′′

(U ′′)TAiU
′ (U ′′)TAiU

′′

]
=

[
(U ′)TAiU

′ 0

0 0

]
. (39)

3such a reduction has been used, e.g., in [11]
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It follows that

∑

i

yiAi � C ⇐⇒
∑

i

yiU
TAiU � UTCU = D =

[
D′ 0

0 0

]

⇐⇒
∑

i

yi(U
′)TAiU

′ � D′

⇐⇒
∑

i

yi(D
′)−

1
2 (U ′)TAiU

′(D′)−
1
2 � I. (40)

Thus, replacing Ai by A′
i := (D′)−

1
2 (U ′)TAiU

′(D′)−
1
2 and C by I , we obtain an equivalent dual problem in normalized

form whose optimal solution y is optimal for (PACKING-II). Also, a feasible primal solution X ′ to the corresponding

normalized primal problem can be transformed to a feasible solution X = U ′(D′)−
1
2X ′(D′)−

1
2 (U ′)T to (COVERING-II)

with the same objective value, as C •X = C • U ′(D′)−
1
2X ′(D′)−

1
2 (U ′)T = (D′)−

1
2 (U ′)TCU ′(D′)−

1
2 •X ′ = I •X ′, and

Ai•X = Ai•U ′(D′)−
1
2X ′(D′)−

1
2 (U ′)T = (D′)−

1
2 (U ′)TAiU

′(D′)−
1
2 •X ′ = A′

i•X ′. Conversely, write LT = [(L′)T |(L′′)T ],

where L′ is the submatrix of L whose rows correspond to the rows of the submatrix D′, and note by definition that

U ′L′ + U ′′L′′ = I . Then, given any feasible solution X to (COVERING-II), a feasible solution to the normalized primal

problem with the same objective value is given by X ′ := (D′)
1
2L′X(L′)T (D′)

1
2 since

A′
i •X ′ = (L′)T (U ′)TAiU

′L′ •X = (I − U ′′L′′)TAi(I − U ′′L′′) •X = Ai •X,

and similarly I •X ′ = I • (D′)
1
2L′X(L′)T (D′)

1
2 = (L′)TD′L′ •X = C •X. This step takes O(n3 +nωm) time. Moreover,

given a minimization oracle Min(·) for (PACKING-II)-(COVERING-II), we obtain a minimization oracle for the normalized

problem as follows: given Y ∈ S
n
+, we return Max(Y ′) with Y ′ := U ′(D′)−

1
2 Y (D′)−

1
2 (U ′)T .

We may next make the following further assumption on (NORM-PACKING-II)-(NORM-COVERING-II):

(B-II′) ǫβ
2n
≤ λmin(Ai) ≤ λmax(Ai) ≤ 3nβ

ǫ
, for all i ∈ [m], where β := mini λmax(Ai).

(The same argument shows (B-II).) Indeed, let J := {i ∈ [m] : λ′
max(Ai) ≤ nβ′

ǫ
}, and for i ∈ J , let Ãi := Ai +

ǫβ′

n
I ,

where λ′
max(Ai) is a 1

2
-approximation λ′

max(Ai) of λmax(Ai) and β′ := mini λ
′
max(Ai). Consider the following pair of

packing-covering SDP’s:

z̃II = min I •X (NORM-COVERING-ĨI)

s.t. Ãi •X ≥ 1, ∀i ∈ J
X ∈ R

n×n, X � 0

z̃II = max
∑

i∈J
yi (NORM-PACKING-ĨI)

s.t.
∑

i∈J
yiÃi � I

y ∈ R
m, y ≥ 0.

Note that λmin(Ãi) ≥ ǫβ′

n
≥ ǫβ

2n
, while for i ∈ J , λmax(Ãi) = λmax(Ai) +

ǫβ′

n
≤ 2nβ

ǫ
+ ǫβ

n
≤ 3nβ

ǫ
.

Let us also note that 1
β
≤ z∗II ≤ n

β
(see.e.g., [22]), as 1

β
I is feasible for (NORM-COVERING-II), and if X∗ is optimal

for (NORM-COVERING-II), then for i ∈ argmini′ λmax(Ai′), we have I •X∗ ≥ Ai•X∗

λmax(Ai)
= Ai•X∗

β
≥ 1

β
.

Let us note next that if X is feasible for (NORM-COVERING-II), then it is also feasible for (NORM-COVERING-ĨI).

Hence, z̃II ≤ z∗II . On the other hand, suppose X̃ is optimal for (NORM-COVERING-ĨI). Then, X := 1
1−ǫ

(
X̃ + ǫ

β′n
I
)

is

feasible for (NORM-COVERING-II), since for i ∈ J ,

Ai •X =
1

1− ǫ

(
Ãi − ǫβ′

n
I

)
•
(
X̃ +

ǫ

β′n
I

)

=
1

1− ǫ

(
Ãi • X̃ −

ǫβ′

n
I • X̃ +

ǫ

β′n
I • Ãi −

ǫ2

n2
I • I

)

≥ 1

1− ǫ

(
1− ǫ+ ǫ

n
− ǫ2

n

)
> 1, (∵ I • X̃ = z̃II ≤ z∗II ≤ n

β
≤ n

β′ and I • Ãi ≥ I •Ai ≥ β ≥ β′)

while for i 6∈ J , we have Ai •X ≥ Ai • ǫ
β′n

I ≥ ǫ
β′n

λmax(Ai) ≥ ǫ
β′n

λ′
max(Ai) > 1. Moreover, I •X = 1

1−ǫ

(
I • X̃ + ǫ

β′

)
≤

1
1−ǫ

(
I • X̃ + 2ǫ

β

)
≤ 1

1−ǫ (z̃II + 2ǫz∗II) ≤ 1+2ǫ
1−ǫ z

∗
II . Obviously, given a feasible solution ỹ to (NORM-PACKING-ĨI), it can

be extended to a feasible solution y to (NORM-PACKING-II), with the same objective value, by setting yi = ỹi for i ∈ J
and yi = 0 for i 6∈ J . To implement this step of the reduction, we can use Lanczos’ algorithm to compute λ′

max(Ai), for

i ∈ [m]. The running time is O(mn2).
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