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Abstract

We introduce extension-based proofs, a class of impossibility proofs that includes valency
arguments. They are modelled as an interaction between a prover and a protocol. Using proofs
based on combinatorial topology, it has been shown that it is impossible to deterministically
solve k-set agreement among n > k ≥ 2 processes in a wait-free manner in certain asynchronous
models. However, it was unknown whether proofs based on simpler techniques were possible. We
show that this impossibility result cannot be obtained for one of these models by an extension-
based proof and, hence, extension-based proofs are limited in power.

1 Introduction

One of the most well-known results in the theory of distributed computing, due to Fischer, Lynch,
and Paterson [FLP85], is that there is no deterministic, wait-free protocol solving consensus among
n ≥ 2 processes in an asynchronous message passing system, even if at most one process may
crash. Their result has been extended to asynchronous shared memory systems where processes
communicate by reading from and writing to shared registers [Abr88, CIL87, Her91, LAA87].
Moses and Rajsbaum [MR02] gave a unified framework for proving the impossibility of consensus
in a number of different systems.

Chaudhuri [Cha93] conjectured that the impossibility of consensus could be generalized to the
k-set agreement problem. In this problem, there are n > k ≥ 1 processes, each starting with an
input in {0, 1, . . . , k}. Each process that does not crash must output a value that is the input of
some process (validity) and, collectively, at most k different values may be output (agreement). In
particular, consensus is just 1-set agreement.

Chaudhuri’s conjecture was eventually proved in three concurrent papers by Borowsky and
Gafni [BG93a], Herlihy and Shavit [HS99], and Saks and Zaharoglou [SZ00]. These proofs and a
later proof by Attiya and Rajsbaum [AR02] all relied on sophisticated machinery from combinatorial
topology, using a simplicial complex to model the set of all initial configurations of a wait-free
protocol and a subdivision of it to model the set of all its final configurations. Then they used
Sperner’s Lemma to show that there exists a final configuration in which k+1 different values have
been output. This proves that the protocol does not correctly solve k-set agreement.
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Later on, Attiya and Castañeda [AC11] and Attiya and Paz [AP12] showed how to obtain
the same results using purely combinatorial techniques, without explicitly using topology. Like the
topological proofs, these proofs also consider the set of final configurations of a supposedly wait-free
k-set agreement protocol. However, by relating different final configurations to one another using
indistinguishability and employing arguments similar to proofs of Sperner’s Lemma, they proved
the existence of a final configuration in which k + 1 different values have been output.

A common feature of these impossibility proofs is that they are non-constructive. They prove
that any deterministic protocol for k-set agreement among n > k processes in an asynchronous
system has an execution in which some process takes infinitely many steps without returning a
value, but do not construct such an execution.

In contrast, impossibility proofs for deterministic, wait-free consensus in asynchronous systems
explicitly construct an infinite execution by repeatedly extending a finite execution by the steps of
some processes. Specifically, they define a bivalent configuration to be a configuration from which
there is an execution in which some process outputs 0 and an execution in which some process
outputs 1. Then they show that, from any bivalent configuration, there is a step of some process
that results in another bivalent configuration. This allows them to explicitly construct an infinite
execution in which no process has output a value. A natural question arises: is there a proof of
the impossibility of k-set agreement that explicitly constructs an infinite execution by repeated
extensions? This question is related to results in proof complexity that show certain theorems
cannot be obtained in weak formal systems. For example, it is known that relativized bounded
arithmetic cannot prove the pigeonhole principle [PBI93].

Our contributions. In this paper, we formally define the class of extension-based proofs, which
model impossibility proofs that explicitly construct an infinite execution by repeated extensions.
We also prove that there is no extension-based proof of the impossibility of a deterministic, wait-
free protocol solving k-set agreement among n > k ≥ 2 processes in asynchronous systems where
processes communicate using an unbounded sequence of snapshot objects, to which each process
can update and scan only once.

A task is a problem in which each process starts with a private input value and must output one
value, such that the sequence of values produced by the processes satisfies certain specifications,
which may depend on the input values of the processes. We view a proof of the impossibility of
solving a task as an interaction between a prover and any protocol that claims to solve the task.
The prover has to refute this claim. To do so, it can repeatedly query the protocol about the states
of processes in configurations that can be reached in a small number of steps from configurations it
already knows about. It can also ask the protocol to exhibit an execution by a set of processes from
a configuration it knows about in which some process outputs a particular value, or to declare that
no such execution exists. The goal of the prover is to construct a bad execution, i.e. an execution
in which some processes take infinitely many steps without terminating or output values that do
not satisfy the specifications of the task. The definition of extension-based proofs is presented in
Section 3.

A key observation is that, from the results of its queries, many protocols are indistinguishable to
the prover. It must construct a single execution that is bad for all these protocols. To prove that no
prover can construct a bad execution, we show how an adversary can adaptively define a protocol
in response to any specific prover’s queries. In this adversarial protocol, all processes eventually
terminate and output correct values in executions consistent with the results of the prover’s queries.
In Section 5, we argue that no such proof can refute the possibility of a deterministic, wait-free
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protocol solving k-set agreement among n > k ≥ 2 processes in the non-uniform iterated snapshot
(NIS) model. In the conference version of this paper [AAE+19], we made a very similar argument
in the non-uniform iterated immediate snapshot (NIIS) model. The snapshot and NIS models are
defined in Section 2.

From a computability standpoint, the snapshot, NIS, and NIIS models are equivalent in power
to the basic asynchronous model in which processes communicate through shared registers: Any
protocol in the basic asynchronous model can be easily adapted to run in the snapshot model by
replacing each read by a scan and then throwing away the information it does not need. Afek,
Attiya, Dolev, Gafni, Merritt, and Shavit [AAD+93] gave a wait-free implementation of a snapshot
object using registers, so the converse is also true. Any execution of a protocol using an immediate
snapshot object is also an execution of the protocol using a snapshot object, so protocols designed for
the snapshot model also run in the immediate snapshot model. Borowsky and Gafni [BG93b] gave
a wait-free implementation of an immediate snapshot object from a snapshot object, so protocols
designed for the immediate snapshot model can be modified to run in the snapshot model. Likewise,
the non-uniform iterated snapshot (NIS) model and the non-uniform iterated immediate snapshot
(NIIS) model are computationally equivalent. The iterated immediate snapshot (IIS) model was
introduced by Borowsky and Gafni [BG97]. The NIIS model is a slight generalization, introduced
by Hoest and Shavit [HS06]. Any protocol in the NIS model can be easily adapted to run in the
single-writer snapshot model by appending values rather than overwriting them when performing
an update and throwing away the information in a scan about values that would have appeared
in other snapshot objects. Similarly, any protocol in the NIIS model can be adapted to run in the
immediate snapshot model. Borowsky and Gafni gave a nonblocking emulation in the NIIS model
of any protocol in the immediate snapshot model [BG97]. The same emulation can be applied to
a protocol in the snapshot model to obtain a protocol in the NIS model. Thus, to show there is
no bounded wait-free protocol to solve a certain task in all of these models, it suffices to show that
there is no bounded wait-free protocol to solve that task in any one of them.

The IIS and NIIS models are nice because the reachable configurations of a protocol have a
natural representation using combinatorial topology. For the NIS model, there is a similar repre-
sentation using graphs, which may be easier to understand. This representation is presented in
Section 4, together with some properties that are needed for our proof. In this view, when an
extension-based prover makes queries, it is essentially performing local search on the configuration
space of the protocol. Because the prover obtains incomplete information about the protocol, the
adversary has some flexibility when specifying the protocol’s behaviour in configurations not yet
queried by the prover.

There are a number of interesting directions for extending this work, which are discussed in Sec-
tion 6.

2 Models

An execution is a sequence of steps. In each step of a shared memory model, a process performs
an atomic operation on a shared object and then updates its local state. Communication among
processes occurs through the atomic operations on shared objects. We use n to denote the number
of processes, p1, . . . , pn to denote the processes, and xi to denote the input to process pi. When
solving a task, we let yi denote the output of process pi. A value is assigned to yi immediately
before pi terminates.
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In the single-writer register model, there is one shared register Ri for each process pi, to which
only it can write, but which can be read by every process. The initial value of each register is −.

In the single-writer snapshot model, there is one shared single-writer snapshot object S with
n components. The initial value of each component is −. The snapshot object supports two
operations, update(v) and scan(). An update(v) operation by process pi updates S[i], the i’th
component of S, to have value v, where v is an element of an arbitrarily large set that does not
contain −. A scan() operation returns the value of each component of S.

In the non-uniform iterated snapshot (NIS) model, there is an infinite sequence, S1, S2, . . . , of
shared single-writer snapshot objects, each with n components. The initial value of each component
is−. The initial state of process pi consists of its identifier, i, and its input, xi. Each process accesses
each snapshot object at most twice, starting with S1. The first time pi accesses a snapshot object
Sr, it performs update(si) to set Sr[i] to its current state, si. Its new state is the same as its
previous state, except for an extra bit indicating that it has performed the update. At its next
step, it performs a scan of Sr. Its new state, s′i, is a pair consisting of i and the result of the
scan. Process pi remembers its entire history, because si is the i’th component of the result of
the scan. Next, pi consults a function, δ, from the set of possible states of processes to the set of
possible output values and the special symbol ⊥. This indicates whether pi should output a value:
If δ(s′i) 6= ⊥, then pi outputs δ(s′i) and is terminated. If δ(s′i) = ⊥, then pi is poised to access the
next snapshot object. A protocol in the NIS model is completely specified by the function δ.

In the snapshot and NIS models, we assume that a process is only terminated after performing
a scan. This is without loss of generality, because a scan does not change the contents of shared
memory and, so, does not affect any other process.

A configuration of a protocol consists of the contents of each shared object and the state of
each process at some point during an execution of the protocol. An initial configuration is a
configuration in which every process is in an initial state and every object has its initial value. A
process is active in a configuration if it is not terminated. A configuration is final if it has no active
processes. If C is a configuration and pi is a process that is active in C, then Cpi denotes the
configuration that results when pi takes the step from configuration C specified by the protocol. A
schedule from C is a finite or infinite sequence of (not necessarily distinct) processes α = α1, α2, . . .
such that there is a sequence of configurations C = C0, C1, C2 . . . where process αi is active in Ci−1
and Ci = Ci−1αi for each process αi in α. If α is a finite schedule from C, then Cα denotes the
configuration of the protocol that is reached by performing steps, with one step by a process for
each occurrence of the process in α, in order, starting from configuration C. Each finite schedule
from an initial configuration results in a reachable configuration. A protocol is wait-free if it does
not have an infinite schedule.

Two configurations C and C ′ are indistinguishable to a set of processes P if every process in P
has the same state in C and C ′. Two finite schedules α and β from C are indistinguishable to the
set of processes P if the resulting configurations Cα and Cβ are indistinguishable to P . A P-only
schedule from C is a schedule in which only processes in P appear.

3 Extension-Based Proofs

An extension-based proof is an interaction between a prover and a (supposedly) wait-free protocol
for solving a task, which the prover is trying to prove is incorrect. The prover starts with no
knowledge about the protocol (except its initial configurations) and makes the protocol reveal
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information about various configurations by asking queries, which it chooses adaptively, based on
the responses to its queries. The interaction proceeds in phases, beginning with phase 1.

In each phase ϕ ≥ 1, the prover starts with a finite schedule, α(ϕ), from a set of initial
configurations, B(ϕ), which only differ from one another in the input values of processes that do
not occur in α(ϕ), and the set of resulting configurations A(ϕ) = {C0α(ϕ) | C0 ∈ B(ϕ)}. At the
start of phase 1, α(1) is the empty schedule and A(1) = B(1) is the set of all initial configurations
of the protocol. If every configuration in A(ϕ) is final and the values output by the processes before
terminating satisfy the specifications of the task, then the prover loses. The prover also maintains
a set, A′(ϕ), containing the configurations it reaches by taking non-empty sequences of steps from
configurations in A(ϕ) during phase ϕ. This set is empty at the start of phase ϕ and it will be
constructed so that, for every configuration C ′ ∈ A′(ϕ), there exists a configuration C ∈ A(ϕ) and
a schedule β from C such that C ′ = Cβ and Cβ′ ∈ A′(ϕ) for every nonempty prefix β′ of β.

A query (C, q) by the prover is specified by a configuration C ∈ A(ϕ) ∪ A′(ϕ) and a process q
that is active in C. The protocol replies to this query with the configuration C ′ resulting from q
taking the step from C specified by the protocol. Then the prover adds C ′ to A′(ϕ) and we say
that the prover has reached C ′. Since there exists a configuration C0 ∈ A(ϕ) and a schedule β from
C0 such that C = C0β and C0β

′ ∈ A′(ϕ) for every nonempty prefix β′ of β, the same is true for
C ′ with the schedule βq from C0. If the prover reaches a configuration C ′ in which the outputs of
the processes do not satisfy the specifications of the task, it has demonstrated that the protocol is
incorrect. In this case, the prover wins.

A chain of queries is a (finite or infinite) sequence of queries (C1, q1), (C2, q2), . . . such that,
for all consecutive queries (Ci, qi) and (Ci+1, qi+1) in the chain, Ci+1 is the configuration resulting
from qi taking the step from Ci specified by the protocol.

An output query (C,Q, y) in phase ϕ is specified by a configuration C ∈ A(ϕ) ∪A′(ϕ), a set of
processes Q that are all active in C, and a possible output value y. If there is a Q-only schedule
starting from C that results in a configuration in which some process in Q outputs y, then the
protocol returns some such schedule. Otherwise, the protocol returns none. Note that the prover
does not add the resulting configuration to A′(ϕ). However, it can do so by asking a chain of queries
starting from C following the schedule returned by the protocol. If Q is the set of all processes,
then the results of the output queries (C,Q, y), for every possible output value y, tells the prover
which values can be output by the protocol starting from configuration C. For example, if 0 and 1
are the only possible output values, this enables the prover to determine whether C is bivalent.

After constructing finitely many output queries and chains of queries in phase ϕ without win-
ning, the prover must end the phase by committing to a nonempty schedule α′ from some config-
uration C ∈ A(ϕ) such that Cα′ ∈ A′(ϕ). Since A(ϕ) = {C0α(ϕ) | C0 ∈ B(ϕ)}, there is an initial
configuration C ′0 ∈ B(ϕ) such that C = C ′0α(ϕ). Hence Cα′ = C ′0α(ϕ)α′. Then α(ϕ+ 1) = α(ϕ)α′,
B(ϕ + 1) is the set of all initial configurations that only differ from C ′0 by the states of processes
that do not appear in this schedule, and A(ϕ + 1) = {C0α(ϕ + 1) | C0 ∈ B(ϕ + 1)}. Then the
prover begins phase ϕ+ 1.

If the interaction between the prover and the protocol is infinite, either because the prover is
allowed to continue a chain of queries indefinitely or the number of phases is infinite, the prover
wins. In this case, the prover has demonstrated that the protocol is not wait-free. For example,
a valency proof for the impossibility of consensus shows how to construct an infinite schedule for
any protocol that satisfies agreement and validity. More generally, if the protocol satisfies the
specifications of the task in all of its final configurations, making the interaction go on forever is
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the only way that the prover can win. For the trivial protocol in which no process ever outputs a
value, the prover can win by asking any infinite chain of queries.

To prove that a task is impossible using an extension-based proof, one must show there exists
a prover that wins against every protocol.

If a deterministic protocol is wait-free and there are only a finite number of initial configurations,
then, by König’s lemma, there is a finite upper bound on the length of all schedules of the protocol.
If the prover is given (or is able to ask for) such an upper bound, it can perform a finite number
of chains of queries to examine all reachable configurations. In other words, this allows the prover
to perform exhaustive search in the first phase to learn everything about the protocol. Likewise,
if a prover does not have to eventually end phase 1, it can win against every wait-free protocol by
performing exhaustive search. Such proofs violate the spirit of extension-based proofs.

For any protocol in the IIS model, there is a bound T such that every process terminates after
taking exactly T steps. Although the prover is not given T , it is easy for a prover to determine
T by performing one output query or one chain of queries. Thus, extension-based proofs are too
powerful in the IIS model. If a task has a finite number of initial configurations and there is a
protocol to solve this task in the NIIS model, then there is a protocol to solve this task in the IIS
model. However, without knowledge of an upper bound on the length of all schedules, there is no
general way to construct an IIS protocol from an NIIS protocol.

4 Properties of the NIS Model

The proof of our main result relies on properties of the non-uniform iterated snapshot model,
including a simple graphical representation of protocols in this model. We begin with two simple
observations.

Observation 4.1. A reachable configuration in the NIS model is completely determined by the
states of all processes in the configuration (including the processes that have terminated).

This is true because only process pi can update the i’th component of each snapshot object and
each process remembers its entire history.

The second observation is a special case of a general, well-known result about indistinguisha-
bility. (For example, see Corollary 2.2. in [AE14].)

Observation 4.2. Suppose C and C ′ are two reachable configurations in the NIS model and each
snapshot object Sr has the same contents in C and C ′, for all r ≥ t. If C and C ′ are indistinguishable
to a set of processes P , each active process in P is poised in C to access a snapshot object Sr, for
some r ≥ t, and α is a finite, P -only schedule from C, then α is a schedule from C ′ and the
configurations Cα and C ′α are indistinguishable to P .

Suppose C is a reachable configuration in which all active processes are poised to update the
same snapshot object. A 1-round schedule from C is a schedule consisting of two occurrences of
each process that is active in C. Each active process in the resulting configuration is poised to
update the next snapshot object in the sequence. If none of the processes are active in C, then
the empty schedule is the only 1-round schedule from C. The following observation is a corollary
of Observation 4.2.
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Observation 4.3. Suppose β is a 1-round schedule from C, α is a prefix of β, and P is the set of
those processes that occur twice in α,. Then α and β are indistinguishable to P and the terminated
processes in configuration C.

For t > 1, a t-round schedule from C is a schedule β1β2 · · ·βt such that β1 is a 1-round schedule
from C and, for 1 < i ≤ t, βi is a 1-round schedule from Cβ1 · · ·βi−1. Notice that some processes
may have terminated during β1 · · ·βi−1. These processes are not included in βi.

Every schedule from an initial configuration C that reaches a final configuration C ′ is indistin-
guishable (to all processes) to an r-round schedule, for some value of r. This is a special case of
the following lemma, where t = 1 and P is the set of all processes.

Lemma 4.4. Let C be a configuration in which every active process is poised to perform an update

to St and let C ′ be a configuration reachable from C. Suppose that P is a set of processes that is
each poised to perform an update to St+r in C ′ or has terminated prior to performing an update

to St+r. Then there exists an r-round schedule β from C such that Cβ and C ′ are indistinguishable
to P , i.e. each process in P has the same state in Cβ and C ′.

Proof. Since C ′ is reachable from C, there is a finite schedule α from C such that C ′ = Cα. Note
that each process in P occurs at most 2r times in α. Let γ be the schedule from C obtained from
α by removing all but the first 2r occurrences of every process. The steps that are performed in
α, but not γ, are accesses to St+r or snapshot objects that follow St+r. Since no process in P
accesses these objects when the protocol is performed from C according to α or γ, Cα and Cγ are
indistinguishable to P . So, it suffices to show that Cγ and Cβ are indistinguishable to P for some
r-round schedule β.

The proof proceeds by induction on r. First suppose that r = 1. Let β be any 1-round schedule
that has γ as a prefix. In other words, append sufficiently many occurrences of each process that
is active in C to the end of γ so that each occurs exactly 2 times in β. Note that each process in
P that is active in C occurs exactly 2 times in α, so all occurrences of processes in P that occur in
β occur in γ. By Observation 4.3, Cγ and Cβ are indistinguishable to P .

Now suppose that r > 1. Let α′ be the schedule from C obtained from γ by removing all but
the first 2r−2 occurrences of every process. This removes all accesses of St+r−1, but no other steps.
Let P ′ be the set of all processes that are poised to perform an update to St+r−1 in Cα′ or have
terminated prior to performing an update to St+r−1. Then P ⊆ P ′. By the induction hypothesis,
there exists an (r − 1)-round schedule β′ from C such that Cβ′ and Cα′ are indistinguishable to
P ′.

Let α′′ be the schedule from Cα′ obtained from γ by removing the first 2r − 2 occurrences of
every process. Each process that is terminated in Cα′ does not occur in α′′. Each process in P
that is active in Cα′ occurs exactly twice in α′′.

Let β′′ be a 1-round schedule from Cβ′ obtained from α′′ by appending sufficiently many
occurrences of every process that is active in Cβ′ so that each occurs exactly twice in β′′.

Note that if some process pi performs its update to St+r−1 in γ then pi ∈ P ′ and pi occurs at
least once in α′′, so it is active in Cα′ and performs the same update to St+r−1 in α′′. Since Cβ′

and Cα′ are indistinguishable to pi, it performs the same update to St+r−1 in β′′. By construction,
the accesses of St+r−1 in α′′ occur in the same order as in γ. Moreover, because each process in P
that is active in Cα′ occurs exactly twice in α′′, its scan of St+r−1 gets the same result in γ, α′′,
and β′′. Hence Cγ and Cβ are indistinguishable to P , where β = β′β′′ is an r-round schedule.
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In particular, the state of each process in each reachable configuration in which the process is
poised to perform an update to S1+r or has terminated prior to performing an update to S1+r

is the state of that process in a configuration reachable by an r-round schedule from an initial
configuration.

Consider a protocol in the NIS model (specified by a function δ from the set of possible states of
processes to the set of possible output values and the special symbol ⊥). We use an undirected graph
Gt = (Vt,Et) to represent the configurations of this protocol reachable from initial configurations
by t-round schedules. Each vertex v ∈ Vt represents the state of one process in some such reachable
configuration and id(v) is the identifier of this process, which is the first part of the state. There is
an edge in Et between two vertices if there is some such reachable configuration that contains the
states represented by both vertices. In each configuration, there are exactly n vertices, each with
a different identifier. Therefore each edge in Et belongs to an n-vertex clique in Gt consisting of
vertices with distinct identifiers.

An n-vertex clique represents a configuration if the vertices of the clique represent the states
of the processes in that configuration. In particular, the n-vertex cliques in G0 represent all initial
configurations. For the k-set agreement problem, V0 = {(i, a) | i ∈ {1, . . . , n} and a ∈ {0, . . . , k}}
and {(i, a), (j, b)} ∈ E0 if and only if i 6= j. A vertex v is active if the state it represents is active
and we use δ(v) = ⊥ to denote this. A vertex v is terminated if the state it represents is terminated
and we use δ(v) 6= ⊥ to denote the value the process outputs in this state. An n-vertex clique
represents a final configuration if and only if all its vertices are terminated.

We show how to construct Gt+1 from Gt, given δ(v) for all v ∈ Vt. We start with an n-vertex
clique σ in Gt, which represents some configuration C reachable from an initial configuration by a
t-round schedule, and construct the n-vertex cliques of Gt+1 representing configurations reachable
from C by 1-round schedules.

Consider any subset τ of the active vertices in σ. Let id(τ) = {id(v) | v ∈ τ} be the set of
identifiers of processes whose states are represented by vertices in τ . Each process pi, for i ∈ id(τ),
is poised to perform an update to St+1 in configuration C. Suppose process pi performs its update
to St+1, for each i ∈ id(τ), but no other process does so. Then, for each v ∈ τ , St+1[id(v)] is the
state represented by v and, for each j 6∈ id(τ), St+1[j] = −. If some process pi now performs a scan

of St+1, the result is an n-component vector containing these values. Since there is a one-to-one
correspondence between τ and this vector, we can represent the resulting state of process pi by the
pair (i, τ).

Given δ(v) for each v ∈ σ, we can define the graph χ(σ, δ), representing the configurations
reachable from C by 1-round schedules, as follows:

• v is a vertex in χ(σ, δ) if and only if

– v is a terminated vertex in σ or

– v = (i, τ), where τ is a subset of the active vertices in σ and i ∈ id(τ).

If v = (i, τ), then id(v) = i.

• {v, v′} is an edge in χ(σ, δ) if and only if id(v) 6= id(v′) and

– at least one of v and v′ is a terminated vertex in σ or

– v = (id(v), τ) and v′ = (id(v′), τ ′), where τ and τ ′ are subsets of the active vertices in σ
such that τ ⊆ τ ′ or τ ′ ⊆ τ .
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Figure 1: The subdivisions of two 3-vertex cliques.

A vertex is in both σ and χ(σ, δ) if and only if it is terminated. If vertex (i, τ) is in χ(σ, δ),
but not in σ, then it represents the state of process pi immediately after it has performed its scan
of St+1, τ represents the result of the scan, and id(τ) is the set of identifiers of the processes that
performed an update to St+1 prior to this scan. Note that i ∈ id(τ), since process pi performs its
update to St+1 before its scan.

Figure 1 illustrates the subdivisions of two different 3-vertex cliques. In σ, all three vertices are
active, the state of process p1 is represented by vertex x, the state of p2 is represented by vertex y,
and the state of p3 is represented by vertex z. In σ′, process p1 and p3 have the same states, but the
state of p2 is represented by vertex y′, which is terminated. For readability, process identifiers are
omitted from the representation of states in χ(σ, δ) and χ(σ′, δ). Instead, white vertices indicate
states of p1, red vertices indicate states of p2, and black vertices indicate states of p3.

The next two results show that there is a correspondence between the n-vertex cliques in χ(σ, δ)
and the configurations reachable from C by 1-round schedules.

Lemma 4.5. Let σ be an n-vertex clique that represents a configuration C in which all active
processes are poised to update the same snapshot object. If β is a 1-round schedule from C, then
the configuration Cβ is represented by an n-vertex clique in χ(σ, δ).

Proof. Let A be the set of active processes in configuration C and let St+1 be the snapshot object the
processes in A are poised to update. Then a 1-round schedule β from C is a sequence consisting
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of two copies of each process in A. Consider the second occurrence in β of a process pi. This
corresponds to the step in the schedule β at which pi performs its scan of St+1. Let α be the prefix
of β prior to this step. For each pj ∈ A, pj occurs in α if and only if St+1[j] in configuration Cα
contains the state of pj in configuration C. Let τ be the set of vertices in σ that represent the
states of processes appearing in St+1 in configuration Cα. Then τ represents the result of the scan

of St+1 by process pi. In particular, pi occurs in α, since it performs its update to St+1 before its
scan. Hence i ∈ id(τ) and (i, τ) ∈ χ(σ, δ).

Suppose j 6= i, pj ∈ A, and the second occurrence of pj in β occurs after pi. Let ρ be the subset
of σ representing the result of pj ’s scan, so (j, ρ) ∈ χ(σ, δ). Then the prefix of β prior to the second
occurrence of pj begins with α. Hence τ ⊆ ρ and {(i, τ), (j, ρ)} is an edge in χ(σ, δ).

For each process pi that is terminated in C, the vertex in σ with identifier i is also in χ(σ, δ)
and this vertex is connected to every other vertex in χ(σ, δ) with a different identifier. Thus the
configuration Cβ is represented by an n-vertex clique in χ(σ, δ).

Lemma 4.6. Let σ be an n-vertex clique that represents a configuration C in which all active
processes are poised to update the same snapshot object. Every n-vertex clique in χ(σ, δ) represents
a configuration reachable from C by a 1-round schedule.

Proof. Let St+1 be the snapshot object the active processes in C are poised to update. Let σ′ be
an n-vertex clique in χ(σ, δ). Since id(v) 6= id(v′) for all edges {v, v′} in χ(σ, δ), there is vertex
vi ∈ σ′ with id(vi) = i for each i ∈ {1, . . . , n}. Let I be the set of indices of active processes in
configuration C. The definition of χ(σ, δ) implies that vi ∈ σ, for each i 6∈ I, and vi = (i, τi), for
each i ∈ I, where τi is a subset of the active vertices in σ and i ∈ id(τi). Furthermore, if i, j ∈ I
and i 6= j, then either τi ⊆ τj or τj ⊆ τi, since {vi, vj} is an edge of χ(σ, δ). Since τi ⊆ τj implies
id(τi) ⊆ id(τj), the sets id(τi) for i ∈ I can be ordered by inclusion. Let ≺ be a total order on I
such that if i occurs in more of these sets than j does, then i ≺ j. In other words, for all i ∈ I, the
elements of id(τi) occur before the elements of I − id(τi).

Let α′ be a sequence containing one copy of each process whose identifier is in I such that pi
occurs before pj if and only if i ≺ j. If the schedule α′ is performed starting from C, then, for
each i ∈ I, τi represents the contents of St+1 at some point during the execution. Note that, since
i ∈ id(τ), this point occurs after pi performs its update. For each i ∈ I, insert a second copy of pi
after the process in α′ whose update causes the contents of St+1 to be represented by τi and before
the next process in α′. Let α be the resulting sequence. Then α is a 1-round schedule such that
vi = (i, τi) represents the state of pi in configuration Cα, for each i ∈ I. For each i 6∈ I, vi ∈ σ,
so it represents the state of the terminated process pi in C and, thus, the state of pi in Cα, too.
Hence σ′ represents the configuration Cα.

For any two graphs G = (V,E) and G′ = (V ′, E′), the union of G and G′ is the graph G∪G′ =
(V ∪ V ′, E ∪ E′). Then Gt is a union of n-vertex cliques. Consider any subgraph A of Gt that
is the union of n-vertex cliques. We define χ(A, δ) to be the union of the graphs χ(σ, δ) for all
n-vertex cliques σ in A. In particular, χ(Gt, δ) is the union of χ(σ, δ) for all n-vertex cliques σ in
Gt. By Lemma 4.5 and Lemma 4.6, it follows that Gt+1 = χ(Gt, δ). This method for obtaining
Gt+1 from Gt is closely related to the non-uniform chromatic subdivision of a simplicial complex
representing a protocol in the NIIS model, introduced by Hoest and Shavit [HS06]. Consequently,
we will call the graph χ(σ, δ) the subdivision of the clique σ and the graph Gt+1 the subdivision of
the graph Gt. However, Herlihy and Shavit [HS99, page 884] mention that χ(σ, δ) is not necessarily
a topological subdivision of σ.
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By definition, a clique is connected. We show that subdivision of a clique in Gt is still connected.

Lemma 4.7. The subdivision χ(σ, δ) of every n-vertex clique σ in Gt is connected.

Proof. First suppose that σ contains some terminated vertex u. By definition, u ∈ χ(σ, δ) and
no other vertex of χ(σ, δ) has the same id. Consider any other vertex v ∈ χ(σ, δ). By definition,
{u, v} is an edge in χ(σ, δ). Thus every vertex in χ(σ, δ) is connected to u, so the graph χ(σ, δ) is
connected.

Now suppose that σ contains only active vertices. Then, for each i ∈ {1, . . . , n} = id(σ),
(i, σ) ∈ χ(σ, δ). Furthermore, if i, j ∈ {1, . . . , n} and i 6= j, then {(i, σ), (j, σ)} is an edge in
χ(σ, δ), so the vertices (i, σ) for i ∈ {1, . . . , n} form an n-vertex clique. Now consider any vertex
(i, τ) ∈ χ(σ, δ), where τ ( σ. Then, by definition, {(i, τ), (j, σ)} is an edge in χ(σ, δ) for any
j ∈ {1, . . . , n} − {i}. Since n ≥ 2, such a j exists. Thus every vertex in χ(σ, δ) is connected to this
clique, so the graph χ(σ, δ) is connected.

More generally, connectivity is preserved by subdivision.

Lemma 4.8. Let A be a connected subgraph of Gt that is the union of n-vertex cliques. Then
χ(A, δ) is a connected subgraph of Gt+1.

Proof. Consider any two vertices u′, v′ ∈ χ(A, δ). Then u′ ∈ χ(σ, δ) and v′ ∈ χ(τ, δ) for some
n-vertex cliques σ, τ ⊆ A. Since A ⊆ Gt is connected, there is a path w0, . . . , w` in A of length
` ≥ 0 in A such that w0 ∈ σ and w` ∈ τ . For 0 ≤ i ≤ `, let w′i = wi if δ(wi) 6= ⊥, and let
w′i = (id(wi), {wi}) if δ(wi) = ⊥.

Consider any i such that 1 ≤ i ≤ `. Since {wi−1, wi} is an edge of A, there exists an n-
vertex clique σi ⊆ A that contains this edge. Since wi−1, wi ∈ σi, it follows by construction that
w′i−1, w

′
i ∈ χ(σi, δ). By Lemma 4.7, the subdivision χ(σi, δ) of σi is connected. Thus, there exists a

path between w′i−1 and w′i in χ(σi, δ) ⊆ χ(A, δ). By Lemma 4.7, χ(σ, δ) and χ(τ, δ) are connected,
so there exist a path between u′ and w′0 in χ(σ, δ) ⊆ χ(A, δ) and a path between w′` and v′ in
χ(τ, δ) ⊆ χ(A, δ). Hence, there is a path between u′ and v′ in χ(A, δ).

Since u′ and v′ are arbitrary, χ(A, δ) is connected.

The next result follows by induction, because Gt+1 = χ(Gt, δ).

Corollary 4.9. If G0 is connected, then, for all t ≥ 1, Gt is connected.

If T ⊆ Vt is a set of terminated vertices in Gt, we define χ(T, δ) = T ⊆ Vt+1. Let A and B each
be either a nonempty set of terminated vertices in Gt or the nonempty union of n-vertex cliques in
Gt. Then the distance between A and B (in Gt) is the minimum of the length of the paths between
u ∈ A and v ∈ B. If G0, is connected, then Corollary 4.9 implies that at least one such path exists.
Now we show that if the distance between A and B is 0 (i.e. they intersect), then the same is
true for χ(A, δ) and χ(B, δ) and, if the distance between A and B is greater than 0 (i.e., they are
disjoint), then so are χ(A, δ) and χ(B, δ).

Lemma 4.10. Suppose A and B are each either a set of terminated vertices in Gt or the union of
n-vertex cliques in Gt. Then A and B are disjoint if and only if χ(A, δ) and χ(B, δ) are disjoint.

Proof. When A or B is a set of terminated vertices in Gt, any vertex u ∈ A ∩ B is terminated, so
u ∈ A ∩ B if and only if u ∈ χ(A, δ) ∩ χ(B, δ). So, assume that A and B are the unions of n-vertex
cliques.
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Suppose that A and B share a common vertex u. Let σ be an n-vertex clique in A that contains
u and let ρ be an n-vertex clique in B that contains u. If u is a terminated vertex in Gt, then, by
definition, u is a vertex in both χ(σ, δ) and χ(ρ, δ). Otherwise, u is active in Gt. In this case, let
τ = {u} and i = id(u). Then i ∈ id(τ), τ ⊆ σ, and τ ⊆ ρ. By definition (i, τ) is a vertex in both
χ(σ, δ) and χ(ρ, δ). Since χ(σ, δ) is a subgraph of χ(A, δ) and χ(ρ, δ) is a subgraph of χ(B, δ), in
both cases it follows that χ(A, δ) and χ(B, δ) are not disjoint.

Conversely, suppose that χ(A, δ) and χ(B, δ) share a common vertex v. By definition, there
exists an n-vertex clique σ ⊆ A, such that v ∈ χ(σ, δ). Similarly, there exists an n-vertex clique
ρ ⊆ B such that v ∈ χ(ρ, δ). If v is a terminated vertex in Gt, then v is a vertex in both σ and ρ.
Otherwise, v = (i, τ) where i ∈ id(τ), τ ⊆ σ, and τ ⊆ ρ. Hence, in both cases, A and B are not
disjoint.

Lemma 4.10 can be generalized to show that subdividing does not decrease distances.

Lemma 4.11. Suppose A,B ⊆ Gt are nonempty and each is either a set of terminated vertices or
the union of n-vertex cliques. Then the distance between χ(A, δ) and χ(B, δ) in Gt+1 is at least as
large as the distance between A and B in Gt.

Proof. Let d be the distance between A and B in Gt. The proof is by induction on d. If d = 0, then
the claim is true, since distances are always non-negative. If d = 1, then A and B are disjoint. By
Lemma 4.10, χ(A, δ) and χ(B, δ) are also disjoint, so the distance between them is at least 1.

Now suppose that d ≥ 2 and the claim is true for all nonempty A∗,B∗ ⊆ Gt such that the
distance between A∗ and B∗ is d − 1 and each is either a set of terminated vertices or the union
of n-vertex cliques. Consider any vertex v ∈ Vt at distance 1 from A. Then there exists a vertex
u ∈ A such that {u, v} ∈ Et. Since Gt is a union of n-vertex cliques, there exist n− 2 other vertices
that form a clique with {u, v}. Since these vertices are adjacent to u, they are all at distance at
most 1 from A. Let A′ denote the union of all n-vertex cliques in Gt that contain at least one vertex
in A.

Consider any path u0, u1, . . . , ud of length d between A and B in Gt. Note that u1 6∈ A, since
the distance between A and B in Gt is d. Thus u1 is a vertex at distance 1 from A and, hence,
is in A′. Therefore the distance between A′ and B in Gt is at most d − 1. In fact, the distance
between A′ and B is exactly d− 1. Suppose not. Then there exists a path v0, . . . , v` in Gt between
A′ and B where ` < d − 1. If v0 ∈ A, then this path is between A and B. If v0 ∈ A′ − A, then,
by definition of A′, there exists a vertex u ∈ A such that {u, v0} ∈ Et. But then u, v0, . . . , ` is a
path between A and B. In both cases, this shows that the distance between A and B is less than
d, which contradicts the definition of d.

Consider any shortest path w0, w1, . . . , w` between χ(A, δ) and χ(B, δ) in Gt+1. Note that
w1 6∈ χ(A, δ), since this is a shortest path. By definition of Gt+1, {w0, w1} is an edge of χ(σ, δ) for
some n-vertex clique σ ⊆ Gt. If w0 is terminated in Gt, then w0 ∈ A and w0 ∈ σ, so, by definition,
σ is in A′. Otherwise, since w0 ∈ χ(σ, δ), there is a process identifier i and a set of vertices τi ⊆ σ
such that w0 = (i, τi) and i ∈ id(τi). Moreover, since w0 ∈ χ(A, δ), there exists an n-vertex clique
ρ ⊆ A such that w0 ∈ χ(ρ, δ), so τi ⊆ ρ. In this case, let vi ∈ τi be such that id(vi) = i. Since
τi ⊆ ρ ⊆ A, we have vi ∈ A and, since τi ⊆ σ, we have σ ∈ A′. Hence, in both cases, w1 ∈ χ(A′, δ).
By the induction hypothesis, the distance between χ(A′, δ) and χ(B, δ) in Gt+1 is at least d − 1.
Thus, ` ≥ d.
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If A and B are disjoint unions of n-vertex cliques and C is a union of n-vertex cliques all of whose
vertices are active, then there is no edge in the subdivision of C that connects the subdivisions of
A and B.

Lemma 4.12. Suppose A, B, and C are nonempty unions of n-vertex cliques in Gt, A ∩ C is
nonempty, B ∩ C is nonempty, A and B are disjoint, and all vertices in C are active. Then the
distance between χ(A, δ) ∩ χ(C, δ) and χ(B, δ) ∩ χ(C, δ) in Gt+1 is at least 2.

Proof. Since A∩C and B∩C are nonempty, Lemma 4.10 says that χ(A, δ)∩ χ(C, δ) and χ(B, δ)∩
χ(C, δ) are nonempty. Since A and B are disjoint, it also says that the distance between χ(A, δ)
and χ(B, δ) in Gt+1 is at least 1. Hence, the distance between χ(A, δ)∩χ(C, δ) and χ(B, δ)∩χ(C, δ)
in Gt+1 is at least 1.

To obtain a contradiction, suppose that the distance between χ(A, δ) ∩ χ(C, δ) and χ(B, δ) ∩
χ(C, δ) in Gt+1 is 1. Then there exist vertices u ∈ χ(A, δ) ∩ χ(C, δ) and v ∈ χ(B, δ) ∩ χ(C, δ) such
that {u, v} ∈ Et+1. Since u, v ∈ χ(C, δ) and all vertices in C are active, u = (i, τi) and v = (j, τj),
where i ∈ id(τi), j ∈ id(τj), τi ⊆ σi, and τj ⊆ σj for some n-vertex cliques σi, σj ⊆ C. Since
u ∈ χ(A, δ), it follows that τi ⊆ ρi for some n-vertex clique ρi ⊆ A. Similarly, τj ⊆ ρj for some
n-vertex clique ρj ⊆ B. Since {u, v} ∈ Et+1, i 6= j and either τi ⊆ τj ⊆ B or τj ⊆ τi ⊆ A. In both
cases, A and B are not disjoint, contrary to assumption.

We now prove one of the main technical tools used in this paper. It shows that the distance
between A and B in Gt is less than the distance between their subdivisions in Gt+1, provided that
there is no path between A and B in which every edge contains at least one terminated vertex.

Figure 2 illustrates Lemma 4.13. In the top diagram, which is part of Gt, the grey triangle
represents A, which consists of one 3-vertex clique and B = {v4} is a set containing one terminated
vertex. The blue path, which has length 4, is a shortest path between A and B in Gt. Note that
v2 and v3 are both active vertices. In the bottom diagram, which is part of Gt+1, the grey triangle
represents χ(A, δ) and χ(B, δ) = B. The blue path, which now has length 5, is a shortest path
between χ(A, δ) and χ(B, δ) in Gt+1.

Lemma 4.13. Suppose A,B ⊆ Gt are nonempty and each is either a set of terminated vertices
or the union of n-vertex cliques. If every path between A and B in Gt contains at least one edge
between active vertices, then the distance between χ(A, δ) and χ(B, δ) in Gt+1 is larger than the
distance between A and B in Gt.

Proof. Assume that every path between A and B in Gt contains at least one edge between active
vertices. Consider any such path v0, . . . , v` between A and B. Suppose that, for all 1 ≤ i ≤ `, the
edge {vi−1, vi} is contained in an n-vertex clique that contains a terminated vertex ui. Replace
each edge {vi−1, vi} that is between active vertices by the subpath vi−1, ui, vi. The result is a path
between A and B in Gt that contains no edges between active vertices, contrary to our assumption.
Therefore, every path between A and B in Gt contains at least one edge such that every n-vertex
clique which contains this edge is comprised of active vertices.

Let C be the union of a minimal set of n-vertex cliques in Gt comprised of active vertices such
that every path between A and B in Gt contains at least one edge in C. Let F be the union of all
other cliques in Gt. Then there are no paths between A and B in F. Let A′ be the union of all
cliques in F that are connected to A and let B′ be the union of all cliques in F that are connected
to B. If A is the union of n-vertex cliques, then A′ is nonempty, since A ⊆ A′. If A is a set of
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δ(v1) 6= ⊥

δ(v4) 6= ⊥

δ(v0) = ⊥

δ(v3) = ⊥δ(v2) = ⊥

Figure 2: An illustration of Lemma 4.13.

terminated vertices, consider the first vertex of some path from A to B in Gt. By definition, it is
contained in some n-vertex clique σ ⊆ Gt. Since the first vertex of this path is in A and all vertices
in C are active, σ 6⊆ C. Hence σ ⊆ A′, so A′ is nonempty. Similarly, B′ is nonempty.

Every path between A′ and B′ in Gt contains at least one edge in C. Consider any path v0, . . . , v`
between A′ and B′. Suppose {vi, vi+1} is the first edge on this path that is contained in C. Then
vi ∈ A′. Hence every path between A′ and B′ in Gt and, hence, every path between A and B in Gt

contains an edge in C with one endpoint in A′. By the minimality of C, every clique in C intersects
A′. Similarly, every clique in C intersects B′. Therefore, every shortest path between A ⊆ A′ and
B ⊆ B′ in Gt consists of a path between A and A′ ∩ C, followed by an edge between A′ ∩ C and
B′ ∩ C, followed by a path between B′ ∩ C and B.

Since Gt+1 = χ(Gt, δ) is the union of χ(σ, δ) for all n-vertex cliques σ in Gt, it follows that
Gt+1 is the union of the n-vertex cliques in χ(A′, δ), χ(B′, δ), and χ(C, δ). Furthermore, since A′
and B′ are disjoint, Lemma 4.10 implies that χ(A′, δ) and χ(B′, δ) are disjoint. Thus, every path
between χ(A, δ) ⊆ χ(A′, δ) and χ(B, δ) ⊆ χ(B′, δ) in Gt+1 consists of a path between χ(A, δ) and
χ(A′, δ) ∩ χ(C, δ), followed by a path between χ(A′, δ) ∩ χ(C, δ) and χ(B′, δ) ∩ χ(C, δ), followed by
a path between χ(B′, δ) ∩ χ(C, δ) and χ(B, δ).

Since χ(A′, δ)∩χ(C, δ) ⊆ χ(C, δ), the distance between χ(A, δ) and χ(A′, δ)∩χ(C, δ) in Gt+1 is
at least as large as the distance between χ(A, δ) and χ(C, δ) in Gt+1. By Lemma 4.11, the distance
between χ(A, δ) and χ(C, δ) in Gt+1 is at least as large as the distance between A and C in Gt.
The distance between A and C in Gt is equal to the distance between A and A′ ∩C in Gt, because
A′ is the union of all cliques in F that are connected to A. Hence, the distance between χ(A, δ)
and χ(A′, δ) ∩ χ(C, δ) in Gt+1 is at least as large as the distance between A and A′ ∩ C in Gt.
Similarly, the distance between χ(B′, δ) ∩ χ(C, δ) and χ(B, δ) in Gt+1 is at least as large as the
distance between B′ ∩C and B in Gt. By Lemma 4.12, the distance between χ(A′, δ)∩ χ(C, δ) and
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χ(B′, δ) ∩ χ(C, δ) in Gt+1 is at least 2. Therefore,
the distance between χ(A, δ) and χ(B, δ) in Gt+1

≥ the distance between χ(A, δ) and χ(A′, δ) ∩ χ(C, δ) in Gt+1

+ the distance between χ(A′, δ) ∩ χ(C, δ) and χ(B′, δ) ∩ χ(C, δ) in Gt+1

+ the distance between χ(B′, δ) ∩ χ(C, δ) and χ(B, δ) in Gt+1

≥ the distance between A and A′ ∩ C in Gt

+ 2
+ the distance between B′ ∩ C and B in Gt

> the distance between A and B in Gt.

5 Why Extension-Based Proofs Fail

In this section, we prove that no extension-based proof can show the impossibility of determinis-
tically solving k-set agreement in a wait-free manner in the NIS model, for n > k ≥ 2 processes.
Specifically, we define an adversary that is able to win against every extension-based prover. The
adversary maintains a partial specification of δ (the protocol it is adaptively constructing) and
an integer t ≥ 0. The integer t represents the number of times it has subdivided the input com-
plex, G0. Once the adversary has defined δ for each vertex in Gt, it may subdivide Gt, construct
Gt+1 = χ(Gt, δ), and increment t.

For each 0 ≤ r ≤ t and each input value a, let Tr(a) be the subset of terminated vertices in Vr

that have output a. The following simple property is true because every terminated vertex remains
unchanged when a subdivision is performed.

Proposition 5.1. For all input values a and all 0 ≤ r < t, Tr(a) = χ(Tr(a), δ) ⊆ Tr+1(a). If the
adversary defines δ(v) = ⊥ for each vertex v ∈ Gt where δ(v) is undefined, and subdivides Gt to
construct Gt+1, but does not terminate any additional vertices in Vt+1, then Tt(a) = Tt+1(a).

We say that a vertex v ∈ V0 has seen input value a if it denotes the state of a process whose
input has value a. Inductively, we say that v ∈ Vr+1 has seen input value a if v ∈ Vr and v has seen
a or v = (i, τ) for some subset τ of active vertices of an n-vertex clique in Gr such that i ∈ id(τ)
and some vertex in τ has seen a. In other words, if v represents the state of a process pi in some
configuration reachable by an r-round schedule, then v has seen a if and only if pi had input xi = a
or, in some round r′ ≤ r of this schedule, there was a process pj that performed its update before
pi performed its scan and the vertex representing pj has seen a in round r′−1. For each r ≥ 0 and
each input value a, let Nr(a) be the the union of the n-vertex cliques in Gr none of whose vertices
have seen a. To avoid violating validity, the adversary should not let any vertex in Nt(a) output
the value a.

Proposition 5.2. For 0 ≤ r < t and for any input value a, Nr+1(a) = χ(Nr(a), δ).

Proof. Consider any n-vertex clique σ ⊆ Nr(a). Since no vertex in σ has seen a, it follows, by
definition, that no vertex in χ(σ, δ) has seen a. Thus χ(σ, δ) ⊆ Nr+1(a) and, hence, χ(Nr(a), δ) ⊆
Nr+1(a).

Conversely, consider any n-vertex clique σ′ ⊆ Nr+1(a). By definition of Gr+1, σ
′ = χ(σ, δ) for

some n-vertex clique σ in Gr. If some vertex in σ has seen a, then the process in σ′ with the same
id has seen a. But none of the vertices in σ′ have seen a, so none of the vertices in σ have seen a.
Hence σ ⊆ Nr(a) and σ′ ⊆ χ(Nr(a), δ). Therefore Nr+1(a) ⊆ χ(Nr(a), δ).
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In fact, every vertex in Gr that has not seen a is in Nr(a). This is the special case of the
following lemma when τ contains only one vertex.

Lemma 5.3. If τ is a subset of an n-vertex clique in Gr and no vertex in τ has seen the input
value a, then τ is a subset of an n-vertex clique in Nr(a).

Proof. The proof is by induction on r. Every two vertices in G0 that have not seen a are adjacent
provided they represent the states of different processes, i.e. they have different ids. Thus, if τ is
a subset of an n-vertex clique in G0, no vertex in τ has seen the input value a, and b 6= a, then
τ ∪ {(j, b) | j 6∈ id(τ)} are the vertices of an n-vertex clique in N0(a).

Let r ≥ 0 and assume the claim is true for r. Consider any n-vertex clique σ′ in Gr+1. Let
τ ′ be the subset of all vertices of σ′ that have not seen a. Since Gr+1 = χ(Gr, δ), there exists an
n-vertex clique σ in Gr such that σ′ is in χ(σ, δ). Let τ = {v ∈ σ | id(v) ∈ id(τ ′)}. Note that, by
definition, if u ∈ σ has seen a, then every vertex u′ ∈ χ(σ, δ) with id(u′) = id(u) has seen a. Hence,
no vertex in τ has seen a. By the induction hypothesis, there exists an n-vertex clique ρ in Nr(a)
that contains τ .

By definition of χ(ρ, δ), it contains each vertex of τ ′. Since τ ′ ⊆ σ′, the vertices in τ ′ are adjacent
to one another. Let active(ρ) denote the set of active vertices in ρ and let ρ′ = {(j, active(ρ)) | j ∈
id(active(ρ))− id(τ ′)} ⊆ χ(ρ, δ). The vertices in ρ′ are adjacent to one another and to each vertex
in τ ′. Furthermore each terminated vertex in ρ is adjacent to all the vertices in τ ′ and ρ′. Hence,
these vertices form an n-vertex clique in χ(ρ, δ) ⊆ Nr+1(a). Thus the claim is true for r + 1.

For each 0 ≤ r ≤ t and each input value a, let Xt(a) be the subset of vertices in Vr that represent
the states of processes in P in configurations reachable reachable from C by P -only schedules, for
all output queries (C,P, a) to which the adversary answered none. To avoid contradicting its
responses, the adversary should not let any vertex in Xt(a) output the value a.

Throughout the first phase, the adversary ensures that the following invariants hold after its
response to each query:

1. For each 0 ≤ r < t and each vertex v ∈ Vr, δ(v) is defined.

2. If v ∈ Vt, then δ(v) 6= ⊥.

3. Suppose s is the state of a process in configuration C ∈ A(1) ∪ A′(1) and C = C0β for some
initial configuration C0 ∈ A(1). The process occurs at most 2t+ 1 times in β. If the process
occurs 2r times in β, then s ∈ Vr and δ(s) is defined.

4. For any input value a, if Tt(a) is nonempty, then the distance between Tt(a) and Nt(a) in Gt

is at least 2.

5. For any two input values a 6= b, if Tt(a) and Tt(b) are nonempty, then the distance between
them in Gt is at least 3.

6. For every input a and every vertex v ∈ Xt(a), either v ∈ Nt(a) or there exists an input b 6= a
such that v is distance at most 1 from Tt(b).

There is nothing special about the values 2 and 3. They are simply the smallest values such that
the invariants can be maintained and every chain of queries is finite. The following lemma is a
consequence of the invariants.
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Lemma 5.4. For any two input values a 6= b, every path between Tt(a) and Nt(a) ∪ Tt(b) in Gt

contains at least one edge between active vertices.

Proof. Consider any path v0, v1, . . . , v` between Tt(a) and Nt(a) ∪ Tt(b) in Gt. Let vj be the last
vertex in Tt(a). Since the invariants hold after each query and v` ∈ Tt(b) ∪Nt(a), invariants 4 and
5 imply that the distance between vj and v` is at least 2. Hence, ` ≥ j + 2. Since vj is the last
vertex in Tt(a), vj+1, vj+2 6∈ Tt(a). Moreover, by invariant 5, vj+1, vj+2 6∈ Tt(c) for any input value
c 6= a. Hence, {vj+1, vj+2} is an edge between active vertices.

Essentially, a subdivision maintains the invariants, but increases the distance increases between
vertices that output different values and between vertices that output a and vertices that have not
seen a.

Lemma 5.5. Suppose all the invariants hold, the adversary defines δ(v) = ⊥ for each vertex v ∈ Vt

such that δ(v) is undefined, and subdivides Gt to construct Gt+1. If Tt(a) is nonempty, then the
distance between Tt+1(a) and Nt+1(a) in Gt+1 is greater than the distance between Tt(a) and Nt(a)
in Gt. If b 6= a and Tt(b) is also nonempty, then the distance between Tt+1(a) and Tt+1(b) in
Gt+1 is greater than the distance between Tt(a) and Tt(b) in Gt. Furthermore, if the adversary
increments t, then all the invariants hold.

Proof. By Proposition 5.1, Tt+1(a) = Tt(a) = χ(Tt(a), δ), for each input a. In addition, Nt+1(a) =
χ(Nt(a),∆) by Proposition 5.2. Lemma 5.4 says that every path between Tt(a) and Nt(a)∪Tt(b) in
Gt contains at least one edge between active vertices. Therefore, if Tt(a) is nonempty, Lemma 4.13
implies that the distance between χ(Tt(a), δ) = Tt+1(a) and χ(Nt(a), δ) = Nt+1(a) in Gt+1 is greater
than the distance between Tt(a) and Nt(a) in Gt. Similarly, if both Tt(a) and Tt(b) are nonempty,
Lemma 4.13 implies that the distance between χ(Tt(t), δ) = Tt+1(a) and χ(Tt(b), δ) = Tt+1(b) in
Gt+1 is greater than the distance between Tt(a) and Tt(b) in Gt. Hence invariants 4 and 5 remain
true after t is incremented.

Before incrementing t, the adversary defines δ(v) = ⊥ for each vertex v ∈ Gt where δ(v) was
undefined. Since invariant 1 was true, it remains true. Invariant 2 remains true by construction
and the definition of χ. Invariant 3 is not affected. Invariant 6 remains true by the definition of
χ.

The adversarial strategy for phase 1. Initially, the adversary sets δ(v) = ⊥ for each vertex
v ∈ G0, it subdivides G0 to construct G1, and it sets t = 1. By construction, invariants 1 and 2 are
true. Before the first query, A′(1) is empty. Since A(1) is the set of all initial configurations and
G0 represents all initial configurations, invariant 3 is true.

No vertices in G1 have terminated, so T1(a) is empty for all inputs a. Since there have been no
output queries, X1(a) is empty for all inputs a. Therefore invariants 4, 5, and 6 are vacuously true.

Now suppose that the invariants are true immediately prior to some query (C, q) in phase 1,
where C ∈ A(1)∪A′(1) and q is a process that is active in C. Note that the prover already knows
the state of every process in configuration C, including which of them have terminated. Let β be
a schedule from an initial configuration C0 ∈ A(1) such that C = C0β and C0β

′ ∈ A′(1) for every
nonempty prefix β′ of β.

If q occurs 2r times in β, then, by invariant 3, 0 ≤ r ≤ t and the state s of q in configuration C
is a vertex in Gr. Since q is active in C, δ(s) = ⊥. Hence, by invariant 2, r < t. In this case, the
adversary returns the configuration Cq, which is the same as C except that Sr+1[id(q)] = (id(q), s)
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and the state of q has an extra bit indicating that it last performed an update. Note that q is
active in this state. Invariant 3 is true for configuration Cq = C0βq since pi occurs 2r+ 1 times in
βq and every other process is in the same state in configurations C and Cq. Since δ has not been
changed by the adversary, Tt(a) is unchanged for all inputs a and invariants 1, 2 4, and 5 remain
true. Since no vertices are added to Xt(a) for any input a, invariant 6 remains true.

So, suppose that q occurs 2r+ 1 times in β. Let β′ be the longest prefix of β in which q occurs
2r times. Then 0 ≤ r ≤ t and the state s of q in configuration C0β

′ is a vertex in Gr, by invariant
3. Since q in active in C, it is active in configuration C0β

′, so δ(s) = ⊥. Hence, by invariant 2,
r < t.

The state s′ of q in configuration Cq is (id(q), σ), where σ is the result of its scan of Sr+1. It
is a vertex in Gr+1. Note that, by Observation 4.1, the contents of Sr+1 are determined by the
states of all processes in C. If r < t−1, then δ(s′) is defined, by invariant 1. It is also possible that
r = t − 1 and δ(s′) is defined. In both these cases, the adversary returns configuration Cq, which
is the same as C, except for the state of q and, if δ(s′) 6= ⊥, the value it outputs. As above, all the
invariants continue to hold.

Now, suppose that r = t − 1 and δ(s′) is not defined. If there exists an input a such that
setting δ(s′) = a maintains all the invariants, then the adversary defines δ(s′) = a and returns
configuration Cq, which is the same as C except for the state of q and the fact that q outputs a. In
this case, the distance between s′ and Nt(a) is at least 2 and, for all inputs b 6= a such that Tt(b)
is nonempty, the distance between s′ and Tt(b) in Gt is at least 3. The vertex s′ is added to Tt(a).
The sets Tt(b), for all inputs b 6= a, and the sets Nt(b) and Xt(b), for all inputs b, are unchanged.
Hence, invariants 1, 2, 4, 5, and 6 continue to hold. By construction, s′ ∈ Gt and δ(s′) is defined.
For every other process, its state in Cq is the same as its state in C. Thus, invariant 3 continues to
hold. By invariant 6, each vertex u ∈ Xt(a) is either in Nt(a) or is at distance at most 1 from Tt(b)
for some b 6= a. Since the distance between s′ and Nt(a) is at least 2 and the distance between s′

and Tt(b) is at least 3, the distance between s′ and u is at least 2. Thus s′ 6∈ Xt(a), so defining
δ(s′) = a does not contradict the result of any previous output query.

Otherwise, the adversary defines δ(v) = ⊥ for each vertex v ∈ Vt where δ(v) is undefined,
including s′, subdivides Gt to construct Gt+1, and increments t. By Lemma 5.5, all the invariants
continue to hold. The adversary returns configuration Cq, which is the same as C except for the
state of q.

Finally, suppose that the invariants are true immediately prior to some output query (C,Q, y)
in phase 1, where C ∈ A(1) ∪ A′(1), each process q ∈ Q is active in C, and y is a possible output
value. Let Q be the set of vertices in Gt that represent the states of processes in Q in configurations
reachable from C via Q-only schedules.

If some vertex v ∈ Q has terminated with output y, then the adversary returns a Q-only schedule
from C that leads to a configuration C ′ in which v represents the state of a process in C ′. None of
the invariants are affected.

If every vertex in Q is in Nt(y), Xt(y), or Tt(a), for some a 6= y, then it would be impossible
for the adversary to return a Q-only schedule from C in which some vertex has terminated with
output y without violating validity or contradicting one of its previous answers. In this case, the
adversary adds Q to Xt(y) and returns none. Note that adding vertices in Nt(y) or Tt(a) for a 6= y
does not make invariant 6 false. The other invariants are not affected.

Otherwise, let U 6= ∅ be the subset of vertices in Q that are not in Nt(y), Xt(y), or Tt(a), for
some a 6= y. For each vertex u ∈ U, let Au be the union of all n-vertex cliques in Gt containing u.
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We consider three cases.
Case 1: There is a vertex u ∈ U such that Au ∩ Tt(y) is nonempty. The adversary defines

δ(v) = ⊥ for each vertex v ∈ Vt where δ(v) is undefined and subdivides Gt to construct Gt+1. By
invariant 4 and Lemma 5.5, the distance between Tt+1(y) and Nt+1(y) in Gt+1 is at least 3. If a 6= y
and Tt(a) is nonempty, then Proposition 5.1 says that Tt+1(a) is nonempty and, by invariant 5 and
Lemma 5.5, the distance between Tt+1(y) and Tt+1(a) is at least 4.

Let i = id(u) and v = (i, {u}). Since u ∈ U ⊆ Q, process pi ∈ Q. Let w ∈ Au ∩ Tt(y), let σ be
an n-vertex clique in Au that contains w, and let C ′ be the configuration represented by σ. Then
v is the state of process pi in configuration C ′pipi.

Next, the adversary increments t, so all the invariants continue to hold by Lemma 5.5. Finally,
the adversary defines δ(v) = y, returns a Q-only schedule from C that results in process pi being
in state v. This adds vertex v to Tt(y). Invariants 1, 2, 3, and 6 continue to hold.

Since w is terminated, it is adjacent to every other vertex in χ(σ, δ) ⊆ Gt, including v. It follows
that the distance between v and Nt(y) is at least 2 and, if a 6= y and Tt(a) is nonempty, then the
distance between v and Tt(a) is at least 3. Thus, invariants 4 and 5 hold.

By invariant 6, each vertex in Xt(y) is adjacent to a vertex in Tt(b) for some b 6= y. Since the
distance between v and Tt(b) is at least 3, the distance between v and Xt(y) is at least 2. Thus
v 6∈ Xt(y). Hence, defining δ(v) = y does not contradict the result of any previous output query.

Case 2: There is a vertex u ∈ U such that every vertex in Au is active. The adversary defines
δ(v) = ⊥ for each vertex v ∈ Gt where δ(v) is undefined and subdivides Gt to construct Gt+1.

Since no vertex in Au has terminated and Au contains all vertices at distance at most 1 from u
in Gt, it follows that the distance from u to Tt(a) in Gt is at least 2, for all inputs a. Moreover,
since u 6∈ Nt(y), the distance from u to Nt(y) in Gt is at least 1.

Let i = id(u) and let v = (i, {u}) ∈ Gt+1. Since u ∈ U ⊆ Q, process pi ∈ Q. Consider any vertex
v′ adjacent to v in Gt+1. Then there exists an n-vertex clique σ ⊆ Gt such that v, v′ ∈ χ(σ, δ). Since
v is not a terminated vertex in σ, {u} ⊆ σ, so σ ⊆ Au. All vertices in Au are active, so v′ = (j, ρ)
where j 6= i, j ∈ id(ρ), ρ ⊆ σ, and {u} ⊆ ρ. Note that u 6∈ Nt(y) implies that v, v′ 6∈ Nt+1(y).
Therefore, the distance from v to Nt+1(y) in Gt+1 is at least 2.

Next, we show that, for all inputs a, the distance from v to Tt+1(a) in Gt+1 is at least 3.
By Proposition 5.1, Tt+1(a) = Tt(a) = χ(Tt(a), δ), so no vertex v′ adjacent to v in Gt+1 is in
Tt+1(a). To obtain a contradiction, suppose there is a path v, v′, w of length 2 in Gt+1 from v to
Tt+1(a). Then v′ = (j, ρ), where {u} ⊆ ρ and there exists an n-vertex clique σ′ ⊆ Gt such that
{v′, w} is an edge in χ(σ′, δ). Because w ∈ Tt+1(a) = Tt(a), w ∈ σ′. By definition, ρ ⊆ σ′. This
implies that u ∈ σ′ and, hence, σ′ ⊆ Au. However, this contradicts the assumption that all vertices
in Au are active. Therefore, the distance from v to Tt+1(a) in Gt+1 is at least 3 for all inputs a.

Now the adversary increments t, so all the invariants continue to hold, by Lemma 5.5. Finally,
the adversary defines δ(v) = y and returns a Q-only schedule from C that results in process pi
being in state v. This adds vertex v to Tt(y). Invariants 1, 2, 3, and 6 continue to hold. Since
the distance from v to Nt(y) in Gt is at least 2 and the distance from v to Tt+1(a) in Gt+1 is at
least 3 for all inputs a, invariants 4 and 5 hold. As in the previous case, defining δ(v) = y does not
contradict the result of any previous output query.

Case 3. For every vertex u ∈ U, Au∩Tt(y) is empty, but some vertex in Au has terminated. In
this case, the adversary returns none and adds U to Xt(y). Since each vertex u ∈ U is adjacent to
some vertex in Au that has terminated with an output other than y, invariant 6 holds. Invariants
1, 2, and 3 still hold, since t and δ are not changed, and invariants 4 and 5 still hold, since Tt(a)
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and Nt(a) are not changed for any input a.

The prover does not win in phase 1. Suppose that the invariants all hold before and after
each query made by the prover in phase 1. By invariant 5, at most one value is output in any
configuration reached by the prover. Moreover, by invariant 4, if a process outputs value a, then
it has seen a. Hence, the prover cannot win in phase 1 by showing that the protocol violates
agreement or validity. It remains to show that the prover cannot win by constructing an infinite
chain of queries in phase 1.

Lemma 5.6. Every chain of queries in phase 1 is finite.

Proof. Assume, for a contradiction, that there is an infinite chain of queries, (C1, q1), (C2, q2), . . .
Let β be a schedule from an initial configuration C0 to C1 followed by the steps of the schedule
q1, q2, . . . and, for each j ≥ 1, let βj be the prefix of β such that Cj = C0βj . Let P be the set of
processes that occur infinitely often in β. Let j′ ≥ 1 be the first index such that qj ∈ P for all
j ≥ j′, so, from j′ onwards, only processes in P appear in queries. Let t′ ≥ 1 be the value of t held
by the adversary immediately prior to query (Cj′ , qj′). By invariant 3, each process occurs at most
2t+ 1 times in βj′ . Hence, during the schedule βj′ from C0, no process performed an update to Sr
for r > t′ or a scan of Sr for r ≥ t′. Since each process in P eventually accesses every snapshot
object, the adversary eventually defines δ(v) = ⊥ for each vertex v ∈ Gr where δ(v) is undefined
and subdivides Gr to construct Gr+1, for all r ≥ t′. Since no process is terminated, Tr(a) = Tt′(a),
for all inputs a and all r > t′. By Lemma 5.4 and Lemma 5.5, if Tt′(a) is nonempty, the distance
between Tt′+2(a) and Nt′+2(a) is at least 4 and, if b 6= a and Tt′(b) is nonempty, the distance
between Tt′+2(a) and Tt′+2(b) is at least 5.

Consider the first index j′′ > j′ such that process qj′′ is poised to scan the snapshot object
St′+2 in Cj′′ . By invariant 3, the state of process in qj′′ in configuration Cj′′+1 = Cj′′qj′′ is a vertex
v ∈ Vt′+2. If there is some input a such that the distance from v to Tt′+2(a) in Gt′+2 is at most 2,
then the distance from v to Nt′+2(a) in Gt′+2 is at least 2 and the distance from v to Tt′+2(b) in
Gt′+2 is at least 3. According to its strategy for phase 1, the adversary defines δ(v) = a after query
(Cj′′ , qj′′). This contradicts the definition of P . Thus, the distance from v to Tt+2(a) in Gt′+2 is at
least 3, for all inputs a such that Tt′+2

a is nonempty.
Let a be the input of process qj′′ in configuration C0. Consider any (t′ + 2)-round schedule

β′′ obtained from β by removing all but the first 2(t′ + 2) occurrences of processes in P and
then appending sufficiently many occurrences of the processes not in P . Note that configurations
C0β

′′ and C0βj′′+1 are indistinguishable to process qj′′ , so v is in the n-vertex clique σ in Gt′+2

representing the configuration C0β
′′. Thus the distance in Gt′+2 between σ and any terminated

vertex is at least 2. During schedule β′′ from C0, qj′′ performs its update to St′+2 before any process
performs its scan of St′+2, so all vertices in σ have seen a. Thus the distance in Gt′+2 between σ
and Nt′+2(a) is at least 1. The first edge on every path from σ to Nt′+2(a) or to Tt′+2(b), for any
input b, is between active vertices. Therefore, by Proposition 5.2, Proposition 5.1, and Lemma 4.13,
the distance in Gt′+3 between χ(σ, δ) and χ(Nt′+2(a), δ) = Nt′+3(a) is at least 2 and the distance
in Gt′+3 between χ(σ, δ) and χ(Tt′+2(b), δ) = Tt′+3(b) is at least 3, for any input b.

Consider the first index j′′′ > j′′ such that process qj′′′ is poised to scan the snapshot object
St′+3 in Cq′′′ . The state of process qj′′′ in configuration Cj′′′qj′′′ is a vertex in χ(σ, δ). According
to its strategy for phase 1, the adversary terminates this vertex after query (Cj′′′ , qj′′′). This
contradicts the definition of P .
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Since the prover does not win in phase 1, it must eventually commit to a nonempty schedule
α(2) from an initial configuration C ∈ A(1) such that Cα(2) ∈ A′(1), set B(2) to consist of all
initial configurations that only differ from C by the states of processes that do not occur in α(2),
set A(2) = {C0α(2) | C0 ∈ B(2)}, and then start phase 2.

The adversarial strategy for later phases. At the beginning of phase 2, the adversary updates
δ. Afterwards, it can answer all future queries by the prover without making any further changes
to δ. Eventually, at the end of some future phase ϕ, the prover will commit to a schedule α(ϕ+ 1)
such that all configurations in A(ϕ+1) are final. Consequently, the prover will lose at the beginning
of phase ϕ+ 1.

Let p be the first process in α(2) and let a be the input of p in the initial configuration C. Note
that p has the same state in every configuration in B(2), so it has input a in all of them. Let F
denote the union of all n-vertex cliques in G1 that represent a configuration reachable by a 1-round
schedule beginning with p from a configuration in B(2). Since p performs its update to S1 before
any process performs its scan of S1 in all such schedules, every vertex in F has seen a. Thus the
distance between F and N1(a) in G1 is at least 1.

The adversary defines δ(v) = ⊥ for each vertex v ∈ Vt where δ(v) is undefined, subdivides Gt

to construct Gt+1, and increments t. Since all the invariants hold at the end of phase 1, Lemma 5.5
says that they still hold and, for any two inputs b 6= b′ such that Tt(b) and Tt(b

′) are non-empty,
the distance between Tt(b) and Tt(b

′) in Gt is at least 4. In particular, a vertex v ∈ Gt is adjacent
to a vertex w ∈ Tt(b) for at most one input b. Let F′ = χt−1(F, δ) ⊆ Gt. Applying Lemma 5.5 t− 1
times, it follows that the distance between F′ and Nt(a) in Gt is at least 1.

Invariant 2 says that no vertex in Gt has δ(v) = ⊥. The adversary has not yet terminated any
additional vertices in Gt, so, by Proposition 5.1, Tt(b) = Tt−1(b) for all input values b. For every
vertex v ∈ F′ for which δ(v) is undefined, the adversary defines δ(v) as follows. First, for each
input value b and each vertex v ∈ F′ that is distance 1 from Tt−1(b) in Gt and such that δ(v) is
undefined, the adversary sets δ(v) = b. This does not violate validity, since the distance between
Tt−1(b) and Nt(b) in Gt is at least 2. Since each vertex in Xt(b) is adjacent to a vertex in Tt−1(b

′)
for some b′ 6= b, this assignment defines δ(v) for each vertex in Xt(b) for which it was undefined.
Since each vertex in Xt(b) is at least distance 3 from any vertex in Tt−1(b), this assignment does not
contradict any output query that returned none. Moreover, the distance between any two vertices
in F′ that have output different values is still at least 2. Thus, in each n-vertex simplex in Gt, all
the terminated vertices have output the same value.

Finally, for each vertex v ∈ F′ where δ(v) is still undefined, the adversary sets δ(v) = a.
Validity is not violated, since no vertex in F′ is in Nt(a). Agreement is not violated, since at most
two different values are output by the vertices in each n-vertex simplex in Gt.

In phases ϕ ≥ 2, the prover can only query configurations reachable from some configuration
in A(2). By definition, A(2) is the set of all configurations that are reached by performing α(2)
from initial configurations in B(2). It follows that, for any process q and any extension α′ of α(2)
from C ′ ∈ A(2), q appears at most 2t times in α(2)α′ before its state is represented by a vertex
in F′. By construction, every vertex in F′ has terminated. Thus, eventually, the prover chooses a
configuration at the end of some phase in which every process has terminated. The prover loses in
the next phase.

Thus, we have proved the following result:

Theorem 5.7. No extension-based proof can show the impossibility of deterministically solving
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k-set agreement in a wait-free manner in the NIS model, for n > k ≥ 2 processes.

6 Conclusions

We have shown the limitation of extension-based proofs, including valency arguments, for prov-
ing the impossibility of deterministic, wait-free solutions to set-agreement in the NIS model. In
the conference version of this paper [AAE+19], we obtained the same result in the NIIS model.
Although we have restricted attention to the proof of impossibility of one problem in two closely
related models, our approach should be applicable to other problems and other models. For exam-
ple, we believe that there is no extension-based proof of the lower bound on the number of rounds
to solve set agreement in synchronous message passing systems.

Recently, Alistarh, Ellen, and Rybicki [AER20] proved that there is no extension-based proof
of the impossibility of deterministic, wait-free solutions to 4-cycle agreement for n ≥ 3 processes in
the NIIS model. This result helped lead to their impossibility proof for this problem, which turned
out to be similar to the impossibility proof for set agreement.

There are two other results in distributed computing that have a similar flavour. Rincon
Galeana, Winkler, Schmid and Rajsbaum [GWSR19] showed that partitioning arguments are in-
sufficient to prove the impossibility of (n − 1)-set agreement in the iterated immediate snapshot
(IIS) model. For the CONGEST model, Bachrach, Censor-Hillel, Dory, Efron, Leitersdorf and
Paz [BCD+19] showed that reductions from two party communication complexity with a static
cut cannot be used to prove non-constant lower bounds on the number of rounds needed to solve
maximum matching or maximum flow.

Combinatorial topology has been used to prove the impossibility of wait-free solutions to prob-
lems other than set agreement, such as weak symmetry breaking and renaming [CR10]. There
are no extension-based proofs of these results and we conjecture that they cannot be proved using
extension-based proofs.

The definition of an extension-based proof can be modified to handle other termination condi-
tions, such as obstruction-freedom [HLM03]. It suffices for the prover to construct a schedule that
violates this condition.

The NIS and NIIS models are computationally equivalent to an asynchronous shared memory
model in which processes communicate by reading from and writing to shared registers. However,
these models are not equivalent in terms of space and step complexities. A covering argument [BL93]
is a standard approach for proving a lower bound on the number of registers needed to solve a
problem in an asynchronous system. We have a definition for extension-based proofs that includes
covering arguments.

Ellen, Gelashvili and Zhu [EGZ18] proved that any obstruction-free protocol for k-set agreement
among n > k ≥ 2 processes requires dn/ke registers, but their proof is not extension-based. In
fact, some of the early work about extension-based proofs motivated the approach in [EGZ18]. We
conjecture that it is impossible to prove a non-constant lower bound on the number of registers
needed by any obstruction-free protocol for k-set agreement using an extension-based proof.

We have considered allowing the prover to perform a number of other types of queries and can
extend our adversarial protocol so that it can answer them. For example, if a prover asks the same
output query (C,P, y) multiple times, the protocol could be required to return different schedules
each time, until it has returned all possible P -only schedules from C that output y.
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We cannot allow certain queries, such as asking for an upper bound on the length of any
schedule. If the prover is given such an upper bound, then it can perform a finite number of chains
of queries to examine all reachable configurations, thereby fixing the protocol. However, we can
allow the prover to use this information in a restricted way and still construct an adversarial set
agreement protocol. For example, we might require that the prover does not use this information
to decide which queries to perform or what extensions to construct, but can use this information
to win when it has constructed a schedule that is longer than this upper bound.
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