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THE VLASOV-POISSON SYSTEM WITH A UNIFORM MAGNETIC

FIELD: PROPAGATION OF MOMENTS AND REGULARITY∗

ALEXANDRE REGE†

Abstract. We show propagation of moments in velocity for the 3-dimensional Vlasov-Poisson
system with a uniform magnetic field B = (0, 0, ω) by adapting the work of Lions, Perthame. The
added magnetic field also produces singularities at times which are the multiples of the cyclotron
period t = 2πk

ω
, k ∈ N. This result also allows to show propagation of regularity for the solution. For

uniqueness, we extend Loeper’s result by showing that the set of solutions with bounded macroscopic
density is a uniqueness class.
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1. Introduction. We consider the Cauchy problem for the Vlasov-Poisson sys-
tem with an external magnetic field, which is given by

(1.1)







∂tf + v · ∇xf + E · ∇vf + v ∧B · ∇vf = 0,

E(t, x) =
1

4π

∫

R3

x− y

|x− y|3
ρ(t, y)dy with ρ(t, x) :=

∫

R3

f(t, x)dv

f(0, x, v) = f in(x, v) ≥ 0.

This set of equations governs the evolution of a cloud of charged particles, where
f(t, x, v) is the distribution function at time t ≥ 0, position x ∈ R

3 and velocity
v ∈ R

3. E corresponds to the self-consistent electric field and B is an external,
constant and uniform magnetic field given by

(1.2) B =





0
0
ω





where ω > 0 is the cyclotron frequency.
The unmagnetized Vlasov-Poisson system has been extensively studied with the

works of Arsenev [1] for weak solutions, Okabe and Ukai in dimension 2 [19] and
Bardos and Degond for small initial data [2]. In the case of general initial data in
dimension 3, two main approaches have been developed. The first one is based on
the study of the charateristic curves with the papers from Pfaffelmoser and Schäffer
[22, 24]. The second approach, first introduced for Vlasov type equations by Lions and
Perthame [17], is based on the propagation of moments of the distribution function.
This has resulted in several works where similar propagation properties are shown in
the case of more general systems [12] and also in the case of more general assumptions
[4, 5, 20, 21].

As for the Vlasov-Poisson system with an external magnetic field, it is a system of
considerable importance for the modeling of tokamak plasmas. For this reason, there
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2 A. REGE

exists an abundant literature on the case with strong magnetic field, where the aim is
to derive asymptotic models [3, 7, 10, 11, 14, 15] and devise numerical methods that
capture this asymptotic behavior [6, 9]. The Vlasov-Poisson system with an external
and homogeneous magnetic field has also been studied in the half-space and in an
infinite cylinder in [25, 26].

With the external magnetic field, the first difficulty is finding an appropriate
representation formula for the macroscopic density, since the characteristics are a lot
more complex than in the case without magnetic field. The second and most arduous
difficulty is the existence of singularities at times t = 0, 2π

ω
, 4π
ω
, ..., which correspond

to the cyclotron periods, when we try to control the electric field. We manage to
avoid these singularities because our estimates are valid for t ∈ [0 , Tω] with Tω = π

ω

which is independent of f in. This allows us to reiterate our analysis on [Tω , 2Tω] and
so on.

Hence, in this paper, we succeed in extending the results of [17] to the case of
Vlasov-Poisson with an homogeneous external magnetic field. This is a first step to
proving propagation of moments in the case of a non-homogeneous magnetic field.

First, we detail our main result and several additional results in section 2. Then,
in section 3, we continue by presenting the basic definitions and lemmas that will
be necessary for the proof of our main result in section 4, which is the core of this
work. More precisely, we will give the new representation formula for the macroscopic
density in subsection 4.1 and show how we control the electric field with the ”mag-
netized” characteristics in subsection 4.2. To treat the singularities that appear, we
establish a Grönwall inequality on [0 , Tω] in subsection 4.3 and show how this leads to
propagation of moments for all time in subsection 4.4. In subsection 4.5, we explore
a method where we place the magnetic part of the Lorentz force in the source term,
which doesn’t work, but is so simple that it’s still interesting to mention. Finally,
we will give the proofs of our additional results in section 5. In particular, we will
explicit a new condition on the initial data so as to obtain the boundedness of the
macroscopic density.

2. Results. First we give some notations and definitions.
For k ≥ 0 we denote the k-th order moment density and the k-th order moment

in velocity of a non-negative, measurable function f : R6 → [0 ,∞[ by

mk(f)(x) :=

∫

|v|k fdv and Mk(f) :=

∫

mk(f)(x)dx =

∫∫

|v|k fdvdx.

We write E(t) for the energy of system (1.1), which is given by

(2.1) E(t) := 1

2

∫∫

R3×R3

|v|2 f(t, x, v)dxdv + 1

2

∫

R3

|E(t, x)|2 dx,

and we also write Ein := E(0).
Lastly we define the notion of solutions for the magnetized Vlasov-Poisson system

1.1, which is analogous the notion of weak solutions used in Arsenev [1].

Definition 2.1. Let f ∈ L∞(R+;L
1(R3×R

3)∩L2(R3×R
3)), f is a weak solution

of the magnetized Vlasov-Poisson system if f |v|2 ∈ L∞(R+;L
1(R3×R

3)) and we have

(2.2) ∂tf + divx(vf) + divv((E + v ∧B)f) = 0 in D′(R+ × R
3 × R

3).

2.1. Main result. First we present this paper’s main result: propagation of
velocity moments for the Vlasov-Poisson system with an external magnetic field.
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Theorem 2.2 (Propagation of moments). Let k0 > 3, T > 0, f in = f in(x, v) ≥ 0
a.e. with f in ∈ L1 ∩ L∞(R3 × R

3) and assume that

(2.3)

∫∫

R3×R3

|v|k0 f indxdv <∞.

Then for all k such that 0 ≤ k ≤ k0, there exists

C = C(T, k, ω,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein,Mk(f

in)) > 0 and a weak solution

(2.4) f ∈ C(R+;L
p(R3 × R

3)) ∩ L∞(R+;L
p(R3 × R

3))

(1 ≤ p < +∞) to the Cauchy problem for the Vlasov-Poisson system with magnetic

field (1.1) with B given by (1.2) in R
3 × R

3 such that

(2.5)

∫∫

R3×R3

|v|k f(t, x, v)dxdv ≤ C < +∞, 0 ≤ t ≤ T.

Remark 2.3. As said in [17], the assumptions in Theorem 2.2 guarantee that the
initial energy Ein is finite.

Remark 2.4. Like in the original paper, all the apriori estimates that will be
presented in the proof are true for smooth solutions (C∞ with compact support). Since
our estimates depend only on T, k, ω,

∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein,Mk(f

in), it is sufficient
to pass to the limit in the approximate magnetized Vlasov-Poisson system. This
approximate system is obtained by applying the regularization procedure introduced
by Arsenev [1] to prove the existence of weak solutions.

Let’s first mention that to prove the existence of weak solutions to (1.1) is relatively
straightforward by adapting Arsenev’s work [1], even when the external magnetic field
isn’t homogeneous. The only requirement is to have B ∈ L∞(R3).

As said above, Theorem 2.2 is an extension of the main result in [17]. To ob-
tain (2.5), we follow approximately the same strategy, which is to establish a linear
Grönwall inequality on the velocity moment. First, by writing a differential inequality
on the velocity moment, we realize that to obtain a Grönwall inequality on the mo-
ments, we need to control a certain norm of the electric field. To do this, we require
the information gained from the Vlasov equation. Hence, by using the characteristics,
we can express the macroscopic charge density with a representation formula, which
will in turn allow us to control the norm of the electric field. In our case, the added
magnetic field significantly complicates the characteristics and the initial proof by
extension.

2.2. Additional results. Now we state a result regarding propagation of regu-
larity for solutions to 1.1, where the initial condition is sufficiently regular. This is also
an extension of a result stated in [17] to the case with magnetic field. However here
we present this result and its proof with much more detail than in [17] by adapting
section 4.5 of [13].

Theorem 2.5 (Propagation of regularity). Let h ∈ C1(R) such that

h ≥ 0, h′ ≤ 0 and h(r) = O(r−α) with α > 3.

and let f in ∈ C1(R3) a probability density on R
3 ×R

3 such that f in(x, v) ≤ h(|v|) for
all x, v and which verifies

(2.6)

∫∫

R3×R3

(1 + |v|k0)f in(x, v)dxdv <∞
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with k0 > 6.
Then there exists a weak solution of the Cauchy problem for the Vlasov-Poisson system

with magnetic field (1.1) (f, E) ∈ C1(R+ × R
3 × R

3) × C1(R+ × R
3) satisfying the

decay estimate

(2.7) sup
(t,x)∈[0 ,T ]×R3

f(t, x, v) + |Dxf(t, x, v)|+ |Dvf(t, x, v)| = O(|v|−α)

for all T > 0.

Next, we state a result on the uniqueness of solutions to 1.1 which is a direct
adaptation of Loeper’s paper [18].

Theorem 2.6 (Uniqueness). Let f in ∈ L1∩L∞(R3×R
3) be a probability density

such that for all T > 0

(2.8) ‖ρ‖L∞([0 ,T ]×R3) < +∞

then there exists at most one solution to the Cauchy problem for the Vlasov-Poisson

system with magnetic field (1.1).

Finally, we give a proposition that allows to build solutions with bounded macroscopic
density, which is analogous to the condition given in Corollary 3 in [17].

Proposition 2.7. Let f in verify the assumptions of Theorem 2.2 with k0 > 6
and assume that f in also satisfies

(2.9)
ess sup{f in(y + vt, w), |y − x| ≤ (R + ω |v|)t2eωt, |w − v| ≤ (R+ ω |v|)teωt}

∈ L∞([0 , T [× R
3
x, L

1(R3
v))

for all R > 0 and T > 0.
Then, the solution of (1.1) verifies

(2.10) ρ ∈ L∞([0 , T ]× R
3
x)

for all T > 0.

3. Preliminaries. As said above, we now present some basic results necessary
for the proofs. First we recall the weak Young inequality. The proof of this basic
inequality can be found in [16].

Lemma 3.1 (Weak Young inequality). Let 1 < p, q, r < ∞ with 1
p
+ 1

q
= 1 + 1

r
,

then for all functions f ∈ Lp(Rn), g ∈ Lq,w(Rn) the convolution product f ⋆ g =
∫

Rn f(y)g(· − y)dy ∈ Lr(Rn) and satisfies

(3.1) ‖f ⋆ g‖r ≤ c ‖f‖p ‖g‖q,w
with c = c(p, q, n) and by definition g ∈ Lq,w(Rn) iff h is measurable and

(3.2) sup
τ>0

(

τ (vol {x ∈ R
n | |g(x)| > τ})

1
q

)

<∞.

Furthermore, we can define a norm on Lq,w(Rn) given by

(3.3) ‖f‖q,w = sup
|A|<∞

|A|−
1
q′

∫

A

|f(x)| dx.
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The next three lemmas and their proofs can be found in [23]. It is easy to show that the
estimates given in Lemma 3.2 are also true in our case. Lemma 3.3 is a fundamental
velocity moment inequality and Lemma 3.4 is a basic functional inequality.

Lemma 3.2. The estimate

(3.4) ‖E(t)‖p ≤ C, t ∈ [0 , T [

holds for p ∈ ] 32 ,
15
4 ] with the constant C = C(

∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein) independent of

p, so that we also have the estimate

(3.5) ‖E(t)‖ 3
2 ,w

≤ C, t ∈ [0 , T [.

Lemma 3.3. Let 1 ≤ p, q ≤ ∞ with 1
p
+ 1

q
= 1, 0 ≤ k′ ≤ k < ∞ and r =

k+ 3
q

k′+ 3
q
+ k−k′

p

. If f ∈ L
p
+(R

6) with Mk(f) <∞ then mk′(f) ∈ Lr(R3) and

(3.6) ‖mk′(f)‖r ≤ c ‖f‖
k−k′

k+3
q

p Mk(f)

k′+3
q

k+3
q

where c = c(k, k′, p) > 0.

Lemma 3.4. For all functions g ∈ L1 ∩ L∞(R3) and h ∈ L
3
2 ,w(R3),

(3.7)

∫

R3

|gh| dx ≤ 3

(
3

2

) 2
3

‖g‖
1
3
1 ‖g‖

2
3
∞ ‖h‖ 3

2 ,w

Lastly we give a Calderón-Zygmund inequality, whose proof one can find in [8].

Lemma 3.5 (Calderón-Zygmund).
If Ω ∈ Lq(Sd−1), q > 1 so that

∫

Sd−1 Ω(ω)dS(ω) = 0, we consider the tempered

distribution T = vp
Ω( x

|x| )
|x|d

∈ S ′(Rd). The operator φ ∈ D(Rd) 7→ T ⋆φ can be uniquely

extended into a bounded operator on Lp(Rd) for p ∈ ]1 ,∞[.

4. Proof of propagation of moments. As said above, we extend the main
result of [17] to the case of Vlasov-Poisson with a homogeneous magnetic field. How-
ever, here, we use the same steps for the proof as in [23], where the ideas of [17] are
presented.

We begin by considering k0, T and f in that follow the assumptions of Theorem 2.2.
Then, as in [23], we can write a differential inequality on Mk, with 0 ≤ k ≤ k0.

We differentiate Mk, and by integration by parts, a Hölder inequality and lemma
(3.3) with p = ∞, q = 1, k′ = k − 1, we obtain,

∣
∣
∣
∣

d

dt
Mk(t)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫∫

|v|k (−v · ∇xf − (E + v ∧B) · ∇vf)dvdx

∣
∣
∣
∣

=

∣
∣
∣
∣

∫∫

|v|k divv ((E + v ∧B)f) dvdx

∣
∣
∣
∣

=

∣
∣
∣
∣

∫∫

k |v|k−2
v · Efdvdx

∣
∣
∣
∣

≤
∫∫

k |v|k−1
fdv |E| dx

≤ k ‖E(t)‖k+3 ‖mk−1(f)‖ k+3
k+2
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and finally

(4.1)

∣
∣
∣
∣

d

dt
Mk(t)

∣
∣
∣
∣
≤ C ‖E(t)‖k+3Mk(t)

k+2
k+3

with C = c(k) ‖f(t)‖
1

k+3
∞ = C(k,

∥
∥f in

∥
∥
∞
). The computations above are almost the

same as in the original case because the magnetic part vanishes. This means that,
like in the unmagnetized case, we need to control ‖E(t)‖k+3 to obtain a Grönwall
inequality on Mk.

4.1. A representation formula for ρ. Now we turn to the next step of the
proof. Following [23], we write a representation formula for the macroscopic density
using the characteristics associated to the Vlasov equation. With the added magnetic
field, the characteristics are much more complicated than in the unmagnetized case.
This translates to a generalized representation formula for the macroscopic density.

Lemma 4.1. We have the following representation formula for ρ,

(4.2)

ρ(t, x) =

∫

v

f in(X0(t), V 0(t))dv

︸ ︷︷ ︸

=:ρ0(t,x)

+ divx

∫ t

0

∫

v

(fHt) (s,X(s; t, x, v), V (s; t, x, v)) dvds

with (X(s; t, x, v), V (s; t, x, v)) the characteristics associated to the Vlasov equation of

system (1.1), given by

(4.3)







V (s; t, x, v) =





v1 cos(ω(s− t)) + v2 sin(ω(s− t))
−v1 sin(ω(s− t)) + v2 cos(ω(s− t))

v3





X(s; t, x, v) =





x1 +
v1
ω
sin(ω(s− t)) + v2

ω
(1− cos(ω(s− t)))

x2 +
v1
ω
(cos(ω(s− t))− 1) + v2

ω
sin(ω(s− t))

x3 + v3(s− t))





with (X0(t), V 0(t)) = (X(0; t, x, v), V (0; t, x, v)) and

(4.4) Ht (s, x) =





sin(ω(s−t))
ω

E1(s, x) +
cos(ω(s−t))−1

ω
E2(s, x)

1−cos(ω(s−t))
ω

E1(s, x) +
sin(ω(s−t))

ω
E2(s, x)

(s− t)E3(s, x)





with Ei the coordinates of the electric field E.

Proof. Firstly, thanks to the Vlasov equation, which we see as a transport equa-
tion in x and v with source term −E · ∂vf , we can express f by solving the charac-
teristics and by applying the Duhamel formula

f(t, x, v) = f in(X0(t), V 0(t)) −
∫ t

0

divv(fE)(s,X(s; t, x, v), V (s; t, x, v))ds

where (X(·, t, x, v), V (·, t, x, v)) is the solution to







d

ds
(X(s; t, x, v), V (s; t, x, v)) = (V (s; t, x, v), ωV2(s; t, x, v),−ωV1(s; t, x, v), 0)

(X(t; t, x, v), V (t; t, x, v)) = (x, v),
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hence the expressions in (4.3). Now if we consider

Gt(s, x) =





cos(ω(s− t))E1(s, x)− sin(ω(s− t))E2(s, x)
sin(ω(s− t))E1(s, x) + cos(ω(s− t))E2(s, x)

E3(s, x)





then

divv

∫ t

0

fGt(s,X(s; t, x, v), V (s; t, x, v))ds

=

∫ t

0

cos(ω(s− t))∂v1 (fE1 (s,X(s; t, x, v), V (s; t, x, v)))

−
∫ t

0

sin(ω(s− t))∂v1 (fE2 (s,X(s; t, x, v), V (s; t, x, v)))

+

∫ t

0

sin(ω(s− t))∂v2 (fE1 (s,X(s; t, x, v), V (s; t, x, v)))

+

∫ t

0

cos(ω(s− t))∂v2 (fE2 (s,X(s; t, x, v), V (s; t, x, v)))

+

∫ t

0

∂v3 (fE3 (s,X(s; t, x, v), V (s; t, x, v)))

=

∫ t

0

cos sin

ω
∂x1(fE1) +

cos(cos−1)

ω
∂x2(fE1) + cos2 ∂v1(fE1)− cos sin∂v2(fE1)

+

∫ t

0

− sin2

ω
∂x1(fE2) +

sin(1− cos)

ω
∂x2(fE2)− cos sin ∂v1(fE2) + sin2 ∂v2(fE2)

+

∫ t

0

(1− cos) sin

ω
∂x1(fE1) +

sin2

ω
∂x2(fE1) + sin2 ∂v1(fE1) + cos sin ∂v2(fE1)

+

∫ t

0

cos(1− cos)

ω
∂x1(fE2) +

cos sin

ω
∂x2(fE2) + cos sin ∂v1(fE2) + cos2 ∂v2(fE2)

+

∫ t

0

(s− t)∂x3(fE3) + ∂v3(fE3)

=

∫ t

0

divv(fE)(s,X(s; t, x, v), V (s; t, x, v))ds

+ divx

∫ t

0

(fHt)(s,X(s; t, x, v), V (s; t, x, v))ds

Where in the second to last equality, cos = cos(ω(s− t)) (same for sin) and ∂xi
(fEi)

is always evaluated at (s,X(s; t, x, v), V (s; t, x, v)) (same for ∂vi(fEi)). Then we in-
tegrate with respect to v which gives us (4.2).

Remark 4.2. The expression of Ht and the characteristics are coherent because
Ht −→

ω→0
−tE and (X0, V 0) −→

ω→0
(x − tv, v). These expressions obtained when ω → 0

correspond to the representation formula for ρ in the unmagnetized case.

4.2. Control of the electric field with the characteristics. Thanks to
Lemma 4.1 which gives us a new representation formula for ρ, we can start to write
the estimates to control the electric field, still following the steps from [23]. A first dif-
ficulty here is adapting the estimates to this new context. We also see the appearance
of the singularities mentioned above at (4.16), which will be a major difficulty.
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4.2.1. First estimates. Thanks to the representation formula (4.2) for ρ, E(t, ·)
is given by

(4.5) E(t, x) = − (∇K3 ⋆ ρ) (t, x) = E0(t, x) + Ẽ(t, x)

where K3 is Green’s function for the Laplacian in dimension 3 given by

(4.6) K3(x) =
1

4π

1

|x|

and

(4.7)







E0(t, x) = − (∇K3 ⋆ ρ0) (t, x)

Ẽ(t, x) = −∇K3 ⋆

(

divx

∫ t

0

∫

v

(fHt) (s,X(s; t, x, v), V (s; t, x, v)) dvds

)

The first term E0 is easier to control.

Lemma 4.3. We have the following estimate for E0.

(4.8)
∥
∥E0(t, ·)

∥
∥
k+3

≤ C(k,
∥
∥f in

∥
∥
1
,Mk(f

in))

Proof. Thanks to the weak Young inequality, we can write

(4.9)
∥
∥E0(t, ·)

∥
∥
k+3

≤ ‖∇K3‖ 3
2 ,w

‖ρ0(t, ·)‖p

with p = 3k+9
k+6 . And the 3k+9

k+6 norm of ρ0(t, ·) can in turn be controlled using lemma

3.3, where k′ = 0, r = 3k+9
k+6 , p = ∞, q = 1 and with simple change of variables

‖ρ0(t, ·)‖ 3k+9
k+6

≤ c ‖f‖
l

l+3
∞

(∫∫

|v|l f in(X0(t), V 0(t))dxdv

) 3
l+3

= CMl(0)
3

l+3

with l+3
3 = 3k+9

k+6 .

Since k > 3, l
3 = 2k+3

k+6 ≤ 2k+k
6 = k

3 . Hence l ≤ k, and thanks to lemma 3.3 with

p = ∞, q = 1, k′ = l we obtain Ml(0) ≤ c
∥
∥f in

∥
∥

k−l
k

1
Mk(0)

l
k .

This gives us a bound on ρ0(t, ·),

(4.10) ‖ρ0(t, ·)‖ 3k+9
k+6

≤
(

c
∥
∥f in

∥
∥

k−l
k

1
Mk(0)

l
k

) 3
l+3

= C(k,
∥
∥f in

∥
∥
1
,Mk(f

in)).

with l+3
3 = 3k+9

k+6 .

To estimate the second term Ẽ, we first notice that it can be written as

3∑

j,l=1

∂j∂lG3 ⋆

∫ t

0

fHtdvds

so that we can apply the Calderón-Zygmund inequality (lemma 3.5)

(4.11)
∥
∥
∥Ẽ(t, ·)

∥
∥
∥
k+3

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥

∫ t

0

∫

v

(fHt) (s,X(s; t, x, v), V (s; t, x, v)) dvds

︸ ︷︷ ︸

Σ(t,x)

∥
∥
∥
∥
∥
∥
∥
∥
∥
k+3
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To simplify the expression of Σ, we consider the classical change of variables

φ(v1, v2, v3) =





v1 cos(ω(s− t)) + v2 sin(ω(s− t))
−v1 sin(ω(s− t)) + v2 cos(ω(s− t))

v3





= V (s; t, x, v)

as well as the change of variable in time α(s) = t− s, so that Σ can now be written

(4.12) Σ(t, x) =

∫ t

0

∫

v

f(t− s,X∗(s, x, v), v)D(t − s, s,X∗(s, x, v))dvds

with

(4.13) D (t, s, x) =





− sin(ωs)
ω

E1(t, x) +
cos(ωs)−1

ω
E2(t, x)

1−cos(ωs)
ω

E1(t, x)− sin(ωs)
ω

E2(t, x)
−sE3(t, x)





and

(4.14) X∗(s, x, v) =





x1 − v1
ω
sin(ωs) + v2

ω
(cos(ωs)− 1))

x2 +
v1
ω
(1− cos(ωs))− v2

ω
sin(ωs)

x3 − v3s





We first study σ(s, t, x) defined by

(4.15) σ(s, t, x) =

∫

v

f(t− s,X∗(s, x, v), v)D(t − s, s,X∗(s, x, v))dvds.

Lemma 4.4. We have the following estimate for σ.

(4.16) ‖σ(s, t, ·)‖k+3 ≤ C

√
2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

Mk(t− s)
1

k+3

Proof. Thanks to Lemma 3.4 we obtain

(4.17) |σ(s, t, x)| ≤ c ‖D(t− s, s,X∗(s, x, ·))‖ 3
2 ,w

‖f‖
2
3
∞ ‖f(t− s,X∗(s, x, ·), ·)‖

1
3
1

Let’s first look at the weak 3
2 -norm of D(t−s, s,X∗(s, x, ·)) in (4.17). In the following

computations D (respectively E) and its coordinates Di (respectively Ei) are always
evaluated at (t − s, s,X∗(s, x, ·)) (respectively (t − s,X∗(s, x, ·))) and cos = cos(ωs)
(respectively sin = sin(ωs)).

By definition,

‖D‖23
2 ,w

=
3∑

i=1

‖Di‖23
2 ,w

so first we estimate ‖D1‖23
2 ,w

‖D1‖23
2 ,w

≤ sin2

ω2
‖E1‖23

2 ,w
+

(1 − cos)2

ω2
‖E2‖23

2 ,w
+ 2

|sin| |(1 − cos)|
ω2

‖E1‖ 3
2 ,w

‖E2‖ 3
2 ,w

≤ sin2

ω2
‖E1‖23

2 ,w
+

(1 − cos)2

ω2
‖E2‖23

2 ,w
+

(1− cos)2

ω2
‖E1‖23

2 ,w
+

sin2

ω2
‖E2‖23

2 ,w

=
2(1− cos)

ω2

(

‖E1‖23
2 ,w

+ ‖E2‖23
2 ,w

)
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The computations are the same for ‖D2‖23
2 ,w

so that we can write

(4.18) ‖D‖23
2 ,w

≤ 4(1− cos(ωs))

ω2

(

‖E1‖23
2 ,w

+ ‖E2‖23
2 ,w

)

+ s2 ‖E3‖23
2 ,w

and since for all x ∈ R, 2(1− cos(x)) ≤ x2

(4.19) ‖D‖23
2 ,w

≤ 2s2
(

‖E1‖23
2 ,w

+ ‖E2‖23
2 ,w

)

+ s2 ‖E3‖23
2 ,w

≤ 2s2 ‖E‖23
2 ,w

Now let’s try to express ‖E1(t− s,X∗(s, x, ·))‖ 3
2 ,w

, by definition

(4.20) ‖E1(t− s,X∗(s, x, ·))‖ 3
2
,w = sup

|A|<∞

|A|−
1
3

∫

A

|E1(t− s,X∗(s, x, v))| dv

and if we consider the change of variables ψ(v) = X∗(s, x, v), for s > 0, whose
Jacobian matrix is given by

(4.21) Jac(ψ) =





− sin(ωs) cos(ωs)− 1 0
1− cos(ωs) − sin(ωs) 0

0 0 −s





we can write

∫

A

|E1(t− s,X∗(s, x, v))| dv =

∫

ψ(A)

|E1(t− s, u))| |Jac(ψ)|−1
du

So finally

‖E1(t− s,X∗(s, x, ·))‖ 3
2 ,w

= sup
|A|<∞

|A|−
1
3

∫

ψ(A)

|E1(t− s, u))| |Jac(ψ)|−1
du

= sup
|A|<∞

|ψ(A)|−
1
3




|A|

|ψ(A)|
︸ ︷︷ ︸





=|Jac(ψ)|−1

− 1
3

|Jac(ψ)|−1
∫

ψ(A)

|E1(t− s, u))| du

= sup
|A|<∞

|ψ(A)|−
1
3 |Jac(ψ)|−

2
3

∫

ψ(A)

|E1(t− s, u))| du

= |Jac(ψ)|−
2
3 ‖E1(t− s, ·)‖ 3

2 ,w

The computations are the same for ‖E2(t− s,X∗(s, x, ·))‖ 3
2 ,w

and

‖E3(t− s,X∗(s, x, ·))‖ 3
2 ,w

so that

(4.22)

‖E(t− s,X∗(s, x, ·))‖ 3
2 ,w

= |Jac(ψ)|−
2
3 ‖E(t− s, ·)‖ 3

2 ,w

=

(
1

2s(1− cos(ωs))

) 2
3

‖E(t− s, ·)‖ 3
2 ,w

Combining (4.19) and (4.22) we obtain the following estimate

(4.23) ‖D(t− s, s,X∗(s, x, ·))‖ 3
2 ,w

≤
√
2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

‖E(t− s, ·)‖ 3
2 ,w

︸ ︷︷ ︸

≤C

.
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and since ‖f‖∞ ≤ C we have

(4.24) |σ(s, t, x)| ≤ C

√
2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

‖f(t− s,X∗(s, x, ·), ·)‖
1
3
1 ds.

So that
(4.25)

‖σ(s, t, ·)‖k+3 ≤ C

√
2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

∥
∥
∥
∥
∥

(∫

f(t− s,X∗(s, ·, v), v)dv
) 1

3

∥
∥
∥
∥
∥
k+3

Furthermore, for any function ψ we have

(4.26) ‖ψα‖p = ‖ψ‖ααp

so that

(4.27)

∥
∥
∥
∥
∥

(∫

f(t− s,X∗(s, ·, v), v)dv
) 1

3

∥
∥
∥
∥
∥
k+3

≤
∥
∥
∥
∥

∫

f(t− s,X∗(s, ·, v), v)dv
∥
∥
∥
∥

1
3

k+3
3

,

and thanks to Lemma 3.3 with p = ∞, q = 1, k′ = 0, r = k+3
3 we obtain the desired

estimate

‖σ(s, t, ·)‖k+3 ≤ C

√
2

s

(
ω2s2

2(1− cos(ωs))

) 2
3

Mk(t− s)
1

k+3

with C = C(k,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein).

Like in the unmagnetized case, we exactly obtain the desired exponent 1
k+3 on

Mk in our estimate. However, as mentioned above, we also see the singularities at
times 2πk

ω
, k ∈ N.

To deal with the singularities that stem from the added magnetic field, we notice
that all our estimates depend only on k, ω and f in, which means that if we can show
propagation of moments on an interval [0 , Tω], then we can reiterate our analysis with
the new initial condition f in1 = f(Tω) and so on.

Since the singularities depend on ω, it is logical to take Tω that also depends on
ω (this also justifies the notation). As said above, we choose to take Tω = π

ω
(in fact,

we could have taken any t ∈ ]0 , 2π
ω
[).

Now to control ‖Σ(t, ·)‖k+3 with Mk(t)
1

k+3 we write

(4.28) Σ(t, x) :=

∫ t0

0

...+

∫ t

t0

...

where t0 ∈ ]0 , Tω[. This is an idea from the original paper [17]. The interval [0 , t0]

is considered small and thus we control the large t contribution (
∫ t

t0
) precisely (with

Mk(t)
β , β ≤ 1

k+3 ) and the small t contribution (
∫ t0
0 ) less precisely (with Mk(t)

γ ,
γ > 0). This last imprecise estimate is compensated by the fact that we integrate on
a short length segment. However, the main difference with the unmagnetized case is
that now we need t0 to be small compared to Tω = π

ω
to deal with the singularities.
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4.2.2. Small time estimates. First we estimate the small contribution in time,
as in [23], but with the added difficulty of the singularities.

Proposition 4.5. We have the following estimate for the small contribution in

time

(4.29)

∥
∥
∥
∥

∫ t0

0

σ(s, t, ·)ds
∥
∥
∥
∥
k+3

≤ C(ωt0)
2− 3

d (1 + t)
l+3
k+3

(

1 + sup
0≤s≤t

Mk(s)

) 3(l+3)

(k+3)2

with C = C(k,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein) and l is an exponent defined in the proof.

Proof. Thanks to the Hölder inequality with 1
d
+ 1

d′
= 1, we can write

|σ(s, t, x)|

≤
(∫

R3

|D (t− s, s,X∗(s, x, v))|d dv
) 1

d
(∫

R3

f (t− s,X∗(s, x, v), v)
d′
dv

) 1
d′

≤
√
2s

(
1

2s(1− cos(ωs))

) 1
d

‖E(t− s, ·)‖d ‖f‖
1
d

∞

(∫

R3

f (t− s,X∗(s, x, v), v) dv

) 1
d′

.

Using (4.26) with α = 1
d′
, p = k+3 and Lemma 3.3 with p = ∞, q = 1, k′ = 0, r = k+3

d′
,

this implies

∥
∥
∥
∥

∫ t0

0

σ(s, t, ·)ds
∥
∥
∥
∥
k+3

≤ C sup
0≤s≤t

‖E(t− s, ·)‖d

× sup
0≤s≤t

∥
∥
∥
∥

(∫

R3

f (t− s,X∗(s, x, v), v) dv

)∥
∥
∥
∥

1
d′

k+3
d′

∫ t0

0

s

(
1

s(1− cos(ωs))

) 1
d

ds

≤ C sup
0≤s≤t

‖E(t− s, ·)‖d sup
0≤s≤t

Ml(t− s)
1

k+3

∫ t0

0

s

(
1

s(1− cos(ωs))

) 1
d

ds

where thanks to Lemma 3.3, the new exponent l verifies k+3
d′

= l+3
3 . Furthermore, we

saw in Lemma 3.2 that the electric field is uniformly bounded in Ld(R3) for 3
2 < d ≤ 15

4

(so 15
11 ≤ d′ < 3). This implies the following estimate, with k+3

d′
= l+3

3 and 15
11 ≤ d′ < 3,

(4.30)

∥
∥
∥
∥

∫ t0

0

σ(s, t, ·)ds
∥
∥
∥
∥
k+3

≤ C

(
∫ t0

0

s

(
1

s(1− cos(ωs))

) 1
d

ds

)

sup
0≤s≤t

Ml(s)
1

k+3 .

Thanks to Lemma 6.1 we have that

sup
0≤s≤t

Ml(s) ≤ C(1 + t)l+3

(

1 + sup
0≤s≤t

Mk(s)

) 3(l+3)
k+3
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so that finally we obtain

(4.31)

∥
∥
∥
∥

∫ t0

0

σ(s, t, ·)ds
∥
∥
∥
∥
k+3

≤ C








∫ t0

0

s

(
1

s(1− cos(ωs))

) 1
d

︸ ︷︷ ︸

ζ(s)

ds








(1 + t)
l+3
k+3

(

1 + sup
0≤s≤t

Mk(s)

) 3(l+3)

(k+3)2

.

with C = C(k,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein).

Now we must study
∫ t0
0
ζ(s)ds (in the case without magnetic field I = [0 , t0] and

ζ(s) = s1−
3
d ).

We have

∫ t0

0

ζ(s)ds = ω
1
d
−2

∫ ωt0

0

s

(
1

s(1 − cos(s))

) 1
d

ds

= ω
1
d
−2

∫ ωt0

0

s1−
3
d

(
s2

(1− cos(s))

) 1
d

ds

Since ωt0 ≤ ωt ≤ π, the function s 7→
(

s2

(1−cos(s))

) 1
d

is bounded on [0 , ωt0] (indepen-

dently of t0) so that finally

(4.32)

∫ t0

0

ζ(s)ds ≤ C

∫ ωt0

0

s1−
3
d ds ≤ C(ωt0)

2− 3
d

4.2.3. Large time estimates. Now we look at the large t contribution, where
our hope is to get a logarithmic dependence in t0 just like in [17, 23].

Proposition 4.6. We have the following estimate for the large contribution in

time

(4.33)

∥
∥
∥
∥

∫ t

t0

σ(s, t, ·)ds
∥
∥
∥
∥
k+3

≤ C ln

(
t

t0

)

sup
0≤s≤t

Mk(s)
1

k+3

with C = C(k,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein).

Proof. Using (4.16), we can write

∥
∥
∥
∥

∫ t

t0

σ(s, t, ·)ds
∥
∥
∥
∥
k+3

≤ C sup
0≤s≤t

Mk(s)
1

k+3

∫ ωt

ωt0

1

s

(
s2

(1− cos(s))

) 2
3

ds

≤ C sup
0≤s≤t

Mk(s)
1

k+3

∫ ωt

ωt0

1

s
ds

because in the same way as above the function s 7→
(

s2

(1−cos(s))

) 1
d

is bounded on

[ωt0 , ωt] (independently of t0, t or ω) so that finally

∥
∥
∥
∥

∫ t

t0

σ(s, t, ·)ds
∥
∥
∥
∥
k+3

≤ C ln

(
t

t0

)

sup
0≤s≤t

Mk(s)
1

k+3
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with C = C(k,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein).

4.3. A Grönwall inequality for t ∈ [0 , Tω]. Now we try to show propagation
of moments on [0 , Tω] by establishing a Grönwall inequality like in [17, 23] while

Proposition 4.7. Theorem 2.2 is true for T = Tω.

Proof. First, we define

(4.34) µk(t) := sup
0≤s≤t

Mk(s)

Next combining (4.10), (4.31), (4.32), and (4.33), we obtain the following estimate for
all t ∈ [0 , T ]

(4.35)

‖E(t, ·)‖k+3 ≤ ‖ρ0(t, ·)‖ 3k+9
k+6

+ C(ωt0)
2− 3

d (1 + t)
l+3
k+3 (1 + µk(t))

3(l+3)

(k+3)2

+ C ln

(
t

t0

)

µk(t)
1

k+3

Now, as was previously announced, we can absorb the term (1 + µk(t))
3(l+3)

(k+3)2 by choos-
ing a small t0 such that t0 < t ≤ Tω. We choose t0 in a different way than what was
done in [17] and [23] by using the natural variable t

t0
. Hence t0 is defined by the

following relation

(4.36) (
t0

t
)2−

3
d (1 + µk(t))

3(l+3)

(k+3)2 = 1

(the exponent 2 − 3
d
is non-negative). Thus, we automatically have the inequality

t0 < t ≤ Tω.
Then we can bound the three terms in (4.35) so as to obtain

(4.37)

‖E(t, ·)‖k+3 ≤ C1 + C2t
2− 3

d (1 + t)
l+3
k+3 + C3

3(l+ 3)

(2− 3
d
)(k + 3)2

µk(t)
1

k+3 ln (1 + µk(t))

≤ C (1 + µk(t))
1

k+3 (1 + ln (1 + µk(t)))

with C = C(T, k, ω,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein,Mk(f

in)).
So now thanks to the inequality (4.1) we can write

(4.38)
d

dt
Mk(t) ≤ C (1 + µk(t)) (1 + ln (1 + µk(t)))

and integrating the inequality on [0 , t] we conclude that

Mk(t) ≤Mk(0) + C

∫ t

0

(1 + µk(s)) (1 + ln (1 + µk(s))) ds

for all t ∈ [0 , T ].
Setting y(t) = 1 + µk(t), we have

(4.39) 0 < y(t) ≤ y(0) + C

∫ t

0

y(s)(1 + ln y(s))ds

thus

(4.40)
Cy(t)(1 + ln y(t))

y(0) + C
∫ t

0 y(s)(1 + ln y(s))ds
≤ C(1 + ln y(t))ds
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and integrating in time gives

(4.41) ln

(
y(t)

y(0)

)

≤ ln

(

y(0) + C
∫ t

0
y(s)(1 + ln y(s))ds

y(0)

)

≤ C

∫ t

0

(1 + ln y(s))ds.

Hence t 7→ ln y(t) verifies a classical Grönwall inequality

(4.42) ln y(t) ≤ ln y(0) + Ct+ C

∫ t

0

ln y(s)ds ≤ ln y(0) + CT + C

∫ t

0

ln y(s)ds

which implies

(4.43) ln y(t) ≤ (ln y(0) + CT ) exp (Ct) ⇔ y(t) ≤ exp (CT exp (Ct)) y(0)exp(Ct)

for all t ∈ [0 , T ] with C = C(T, k, ω,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein,Mk(f

in)).

4.4. Propagation of moments for all time. We conclude the proof of The-
orem 2.2 by showing propagation of moments for all time. Since the constant C
in our estimate in Proposition 4.7 depends only on T, k, ω,

∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein and

Mk(f
in), we can reiterate the procedure on any time interval Ip = [pTω , (p + 1)Tω].

Indeed, T, k and ω are constant ‖f(t)‖1 and ‖f(t)‖∞ are conserved in time, the energy
is bounded and Mk(f) is exactly the quantity we are studying.

Proposition 4.8. Theorem 2.2 is true for all T > Tω.

Proof. First, we show by induction on n that for all n ∈ N
∗

(4.44) y(nTω) ≤ βn−1β
αn−1

n−2 β
αn−1αn−2

n−3 ...β
αn−1αn−2...α1

0 y(0)αn−1...α0

with βp = exp (CpT exp (CpTω)) and αp = exp (CpTω) with

Cp = Cp(T, k, ω,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein,Mk(f(pTω)))

= Cp(T, k, ω,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein,Mk(f

in)).

The initial case is simply a consequence of Proposition 4.7. Proving the induction
step is also easy because thanks to the induction hypothesis, f(nTω) verifies the
assumptions of Theorem 2.2. This means we can apply the same analysis as in the
previous subsections while initializing system (1.1) with f(nTω).

Hence we obtain:

(4.45) y((n+ 1)Tω) ≤ exp (CnT exp (Cnt)) y(nTω)
exp(Cnt)

with Cn = Cn(T, k, ω,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein,Mk(f(nTω))). The induction step is com-

pleted by writing βn = exp (CnT exp (Cnt)) and αn = exp (Cnt) and by applying the
induction hypothesis 4.44.

To conclude we consider t ∈ [0 , T ] with T > Tω and we write t = (n+ r)Tω with
n ∈ N and 0 ≤ r < 1. Like in the induction proof above, we can apply the same
analysis as in the previous section while initializing with f(nTω) to obtain:

(4.46) y(t) ≤ exp
(

CnT exp
(

Cn

(

t− nπ

ω

)))

y(
nπ

ω
)exp(Cn(t−nπ

ω )).

The proof is complete since we showed just before that we can bound y(nπ
ω
).
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4.5. Difficulty of controlling the electric field with the magnetic field in

the source term. In this section, we present a strategy for the proof of Theorem 2.2
that does not permit us to conclude, but which is still interesting to detail because of
its simplicity.

The idea is to consider the magnetic term v ∧ B · ∇v not as an added transport
term in the Vlasov equation but as a source term. This allows us to write a new
representation formula for the macroscopic density using the characteristics of the
unmagnetized Vlasov-Poisson system.

Lemma 4.9. We have a representation formula for ρ,

(4.47) ρ(t, x) = ρ0(t, x) − divx

∫ t

0

s

∫

v

(f (E + v ∧B)) (t− s, x− sv, v) dvds

Proof. We use the methods of characteristics and the Duhamel formula but this
time with the magnetic term in the source term, which allows us to write

f(t, x, v) = f in(x− tv, v)

−
∫ t

0

(E + v ∧B) (s, x+ (s− t)v) · ∇vf(s, x+ (s− t)v, v)ds

= f in(x− tv, v)−
∫ t

0

divv ((E + v ∧B) f) (t− s, x− sv, v)ds

where we used the change of variable s = t− s and because divv (E + v ∧B) = 0.
Now we notice that

divv ((E + v ∧B) f(t− s, x− sv, v)) = −sdivx ((E + v ∧B) f(t− s, x− sv, v))

+ divv ((E + v ∧B) f) (t− s, x− sv, v)

Using this equality and integrating in v we obtain (4.47).

Now we define

(4.48)







ΣE(t, x) =

∫ t

0

s

∫

v

E(t− s, x− sv)f (t− s, x− sv, v) dvds

ΣB(t, x) =

∫ t

0

s

∫

v

v ∧B(t− s, x− sv)f (t− s, x− sv, v) dvds

Σ(t, x) = ΣE(t, x) + ΣB(t, x)

Thanks to the Calderón-Zygmund inequality, to estimate the k + 3-norm of E(t, ·),
we only need to estimate the k + 3-norms of ΣE(t, ·) and ΣB(t, ·).

Using the exact same analysis as in [17, 23], we obtain the following estimate for
ΣE(t, ·) with µ(t) defined as in (4.34)

(4.49) ‖ΣE(t, ·)‖k+3 ≤ Ct
2− 3

d

0 (1 + t)
l+3
k+3 (1 + µk(t))

3(l+3)

(k+3)2 + C ln

(
t

t0

)

µk(t)
1

k+3 ,

and then we choose t0 like at (4.36) to obtain

(4.50) ‖ΣE(t, ·)‖k+3 ≤ C (1 + µk(t))
1

k+3 (1 + ln (1 + µk(t)))

which is a good estimate, analogous to (4.37).
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Next we try to estimate ‖ΣB(t, ·)‖k+3

|ΣB(t, x)| = ω

∣
∣
∣
∣
∣
∣

∫ t

0

s

∫

v





v2
−v1
0



 f (t− s, x− sv, v) dvds

∣
∣
∣
∣
∣
∣

≤ ω

∫ t

0

s

∫

v

|v| f (t− s, x− sv, v) dvds = ω

∫ t

0

sm1(f (t− s, x− s·, ·))ds

So that

‖ΣB(t, ·)‖k+3 ≤ ω

∫ t

0

sds sup
0≤s≤t

‖m1(f (t− s, x− s·, ·))‖k+3

= ωt2 sup
0≤s≤t

‖m1(f (t− s, x− s·, ·))‖k+3

Unfortunately, ‖m1(t)‖k+3 can’t be controlled by Mk(t)
α because when we apply

lemma 3.3 with p = ∞, q = 1, k′ = 1 (which is the optimal case) we obtain

(4.51) ‖m1(t)‖k+3 ≤ c ‖f‖
l−1
l+3
∞ Ml(t)

4
l+3

with k + 3 = l+3
4 which implies l > k.

Indeed, its seems logical that with the added v in the magnetic part of the Lorentz
force, controlling ΣB requires a velocity moment of higher order than with ΣE . Thus
‖ΣB(t, ·)‖k+3 can’t be controlled withMk(t), which means we can’t deduce a Grönwall
inequality on Mk(t) with this method.

5. Proof of additional results.

5.1. Proof of propagation of regularity. First we begin by presenting the
proof of the propagation of regularity. Here we directly adapt subsection 4.5 of [13].
We only present in detail the parts of the proof that involve the added magnetic field.

Remark 5.1. The mass conservation and the energy bound can be directly de-
duced from the assumptions of 2.5

(5.1)

∫∫

R3×R3

f(t, x, v)dxdv = Min =

∫∫

R3×R3

f indxdv <∞

(5.2)
1

2

∫∫

R3×R3

|v|2 f(t, x, v)dxdv + 1

2

∫

R3

|E(t, x)|2 dx ≤ Ein <∞

for a.e. t ≥ 0.

Proof. - First step: L∞ bound for E

This step is the same in both magnetized and unmagnetized cases. We have the
following bound on E

(5.3) ‖E(t)‖∞ ≤ C1CT + C2Min.

- Second step: L∞ bound for ρ

We seek to show an inequality of the type

(5.4) f(t, x, v) ≤ h(|v| −AT t)
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for all t ∈ [0 , T ].
And so we compute

(5.5)
d

dt

∫∫

R3×R3

(f(t, x, v) − h(|v| −AT t))+dxdv.

First we can write

∂t(f(t, x, v)− h(|v| −AT t))+

= (∂tf + w′(|v| −AT t)AT )1f(t,x,v)≥h(|v|−AT t)

= (−v · ∇xf − (E + v ∧B) · ∇vf + w′(|v| −AT t)AT )1f(t,x,v)≥h(|v|−AT t)

= −v · ∇x(f(t, x, v)− h(|v| −AT t))+

− (E + v ∧B) · ∇v(f(t, x, v) − h(|v| −AT t))+

+ w′(|v| −AT t)









AT − (E + v ∧B) · v|v|
︸ ︷︷ ︸

=E· v
|v|









1f(t,x,v)≥h(|v|−AT t)

so finally we obtain

(5.6)

d

dt

∫∫

R3×R3

(f(t, x, v)− h(|v| −AT t))+dxdv

=

∫∫

R3×R3

w′(|v| −AT t)

(

AT − E · v|v|

)

1f(t,x,v)≥h(|v|−AT t)dxdv.

We now choose AT = ‖E‖∞ ⇒ AT − E(t, x) · v
|v| ≤ 0 a.e., and since w′ ≤ 0 then we

have

(5.7)
d

dt

∫∫

R3×R3

(f(t, x, v)− h(|v| −AT t))+dxdv ≤ 0.

So the condition

(5.8) f in(x, v) ≤ h(|v|)

implies that

(5.9) f(t, x, v) ≤ h(|v| −AT t).

Since w in non-increasing, this gives us the L∞ bound on ρ

(5.10) ‖ρ‖L∞([0 ,T ]×R3) ≤ RT

- Third step: Bound for Dx,vf

We set

(5.11) L(t) := ‖Dxf(t)‖∞ + ‖Dvf(t)‖∞ ,

and differentiate the Vlasov equation in x and v to obtain

(∂t + v · ∇x + (E + v ∧B) · ∇v)

(
Dxf

Dvf

)

=

(
0 DxE(t, x)T

I Dv(v ∧B(t, x))

)(
Dxf

Dvf

)
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with

(5.12) Dv(v ∧B(t, x)) =





0 −B3(t, x) B2(t, x)
B3(t, x) 0 −B1(t, x)
−B2(t, x) B1(t, x) 0



 =: A(t, x)

so that
(5.13)
(∂t+v·∇x+(E+v∧B)·∇v)(|Dxf |+|Dvf |) ≤ (1+|DxE(t, x)|+|A(t, x)|)(|Dxf |+|Dvf |).

Then setting

(5.14) J(t) :=

∫ t

0

(1 + ‖DxE(s)‖∞ + ‖A(s)‖∞)ds

we have

(∂t + v · ∇x + (E + v ∧B) · ∇v)
(

(|Dxf |+ |Dvf |)e−J(t)
)

≤ (|Dxf |+ |Dvf |)e−J(t)(|DxE(t, x)| + |A(t, x)| − ‖DxE(t)‖∞ − ‖A(t)‖∞) ≤ 0

By the maximum principle we thus have

(5.15) (|Dxf |+ |Dvf |)e−J(t) ≤ (‖Dxf(0)‖∞ + |Dvf(0)|)e−J(0) = L(0)

and finally

(5.16) L(t) ≤ L(0)eJ(t).

- Fourth step: Bound for DxE

Like in the unmagnetized case, thanks to an extension of the Calderón-Zygmund
inequality, we can bound DxE(t)

(5.17) ‖DxE(t)‖∞ ≤ C (1 + ln (1 + ‖Dxρ(t)‖∞)) .

- Fifth step: Bound for Dxρ

Like in the unmagnetized case, we can show the following bound

(5.18) |Dxρ(t, x)| ≤ RT e
J(t)

for all t ∈ [0 , T ] and a.e. x ∈ R
3.

- Sixth step: Last estimate

Firstly, let’s mention that A ∈ L∞([0 , T ]× R
3) because B ∈ L∞([0 , T ]× R

3).

J(t) =

∫ t

0

(1 + ‖DxE(s)‖∞ + ‖A(s)‖∞)ds

≤ T +

∫ t

0

C (1 + ln (1 + ‖Dxρ(s)‖∞)) + ‖A(s)‖∞ ds

≤ T (1 + C + ‖A‖∞) +

∫ t

0

Cln
(

1 +RT e
J(s)
)

︸ ︷︷ ︸

≤ln((1+RT )eJ(s))

ds

≤ T (1 + C + ‖A‖∞) + CTT ln(1 +RT ) + CT

∫ t

0

J(s)ds.
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Thanks to the Grönwall inequality

(5.19) J(t) ≤ T (1 + C + ‖A‖∞ + CT ln(1 +RT ))e
TCT .

Thus we obtain the three following estimates

(5.20) ‖Dxρ(t)‖∞ ≤ RT exp(T (1 + C + ‖A‖∞ + CT ln(1 +RT ))e
TCT ) = R′

T ,

(5.21) ‖DxE(t)‖∞ ≤ CT (1 + ln(1 +R′
T )).

and

(5.22) L(t) ≤ L(0) exp(T (1 + C + ‖A‖∞ + CT ln(1 +RT ))e
TCT ).

5.2. Proofs regarding uniqueness. Now we turn to the proof of Theorem 2.6,
which is a direct adaptation of Loeper’s paper [18].

Proof. To prove our theorem, we only need to adapt subsection 3.2 from [18].
Thus we consider two solutions of 1.1 f1, f2 with initial datum f0. We write the
corresponding densities, electric fields and characteristics ρ1, ρ2, E1, E2 and Y1, Y2.
We define the following quantity Q

(5.23) Q(t) =
1

2

∫∫

R3×R3

f0(x, ξ) |Y1(t, x, ξ)− Y2(t, x, ξ)|2 dxdξ

Now we only need to differentiate Q

Q̇(t) =

∫∫

R3×R3

f0(x, ξ)(Y1(t, x, ξ)− Y2(t, x, ξ)) · ∂t(Y1(t, x, ξ)− Y2(t, x, ξ))dxdξ

=

∫∫

R3×R3

f0(x, ξ)(X1(t, x, ξ) −X2(t, x, ξ)) · (Ξ1(t, x, ξ)− Ξ2(t, x, ξ))dxdξ

+

∫∫

R3×R3

f0(x, ξ)(Ξ1(t, x, ξ)− Ξ2(t, x, ξ)) · (E1(t,X1)− E2(t,X2))dxdξ

+

∫∫

R3×R3

f0(x, ξ)(Ξ1(t, x, ξ)− Ξ2(t, x, ξ)) · ((Ξ1(t, x, ξ)− Ξ2(t, x, ξ)) ∧B)dxdξ

We notice that the last term (4th line) is bounded by Q(t) (using the Cauchy-Schwartz
inequality). Using the analysis from [18], we conclude that

(5.24)
d

dt
Q(t) ≤ CQ(t)

(

1 + ln
1

Q(t)

)

and thus Q(0) = 0 ⇒ Q(t) = 0 for all t ≥ 0.

Lastly, we detail the proof of Proposition 2.7.

Proof. Like in Corollary 3 of [17], with k0 > 6, we have sufficient regularity on E
to consider the weak characteristics associated to system (1.1). Hence the solution to
(1.1) is given by

f(t, x, v) = f in(X0(t), V 0(t))
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where X0(t), V 0(t) = (X(0; t, x, v), V (0; t, x, v)) and we have

Ẋ(s; t, x, v) = V (s; t, x, v) V̇ (s; t, x, v) = E(s,X(s; t, x, v)) + V (s; t, x, v) ∧B

with X(t; t, x, v) = x and V (t; t, x, v) = v. To simplify things, we write X(s) and V (s)
for the characteristics. Since k0 > 6, we can show that E is bounded on [0 , T ]× R

3

so that we can write for s ∈ [0 , t] (using the same notations as in [17])

|v − V (s)| ≤ R(t− s) + ω

∫ t

s

|V (u)| du

≤ R(t− s) + ω

∫ t

s

|V (u)− v| du+ ω

∫ t

s

|v| du

≤ (R+ ω |v|)(t− s) exp((t− s)ω)

≤ (R+ ω |v|)t exp(tω)

where the inequality between lines 2 and 3 is obtained thanks to the basic Grönwall
inequality. Hence we can now write

|x+ vt−X(0)| ≤ (R+ ω |v|)t2 exp(tω)

so that we obtain
(5.25)
f(t, x, v) ≤ sup{f in(y + vt, w), |y − x| ≤ (R+ ω |v|)t2eωt, |w − v| ≤ (R + ω |v|)teωt}

The condition (2.9) is deduced from this inequality in the same way as in [17] and
implies that ρ is bounded.

6. Appendix. We present a technical estimate on the moments that we separate
from the main proof to lighten the presentation, but also because the proofs are
identical in both magnetized and unmagnetized cases. One can find the proof of this
lemma in [23] (pages 43-44). To clarify our work, we present a more detailed version
of the proof below.

Lemma 6.1. Let k > 3 and d′ ∈ ] 32 ,
15
4 ], then for l such that k+3

d′
= l+3

3 we have

the following estimate on Ml(t)

(6.1) sup
0≤s≤t

Ml(s) ≤ C(1 + t)l+3

(

1 + sup
0≤s≤t

Mk(s)

) 3(l+3)
k+3

with C = C(k,
∥
∥f in

∥
∥
1
,
∥
∥f in

∥
∥
∞
, Ein).

Proof. We first use the differential inequality (4.1)

d

dt
Ml(t) ≤ C ‖E(t)‖l+3Ml(t)

k+2
k+3

so

(l + 3)
d

dt
Ml(t)

1
l+3 ≤ C ‖E(t)‖l+3
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which implies

Ml(t) ≤
(

Ml(0)
1

k+3 +
C

m+ 3

∫ t

0

‖E(s, ·)‖l+3 ds

)m+3

≤
(

Ml(0)
1

k+3 +
Ct

m+ 3
sup

0≤s≤t
‖E(s, ·)‖l+3

)m+3

This last inequality indicates that we need to control the q-norm of E(t, ·) for any
q ≥ l+3 with Mk(t), and this can be done by simply using the weak Young inequality
and lemma 3.3 with p = ∞, q = 1, k′ = 0, r = k+3

3

(6.2) ‖E(s, ·)‖q = ‖∇K3 ⋆ ρ(t, ·)‖q ≤ C ‖ρ(t, ·)‖ k+3
3

≤ CMk(t)
3

k+3

with 1 + 1
q
= 2

3 + 3
k+3 ⇒ q = 3k+9

6−k which implies that k < 6. Furthermore, we want

q ≥ l + 3 ⇔ 6− k ≤ d′ ∈ [ 1511 , 3[ so this implies k > 3.

Finally, with 3 < k < 6, we can choose d′ ∈ [ 1511 , 3[ so that l defined by k+3
d′

= l+3
3

verifies q ≥ l+3 (q = 3k+9
6−k ). With all this, the interpolation inequalities on Lp spaces

allow us to write

(6.3) ‖E(s, ·)‖l+3 ≤ ‖E(s, ·)‖θ2 ‖E(s, ·)‖θq
θ ∈ [0 , 1].
Using this estimate and Young’s classical inequality implies (6.1).
If k ≥ 6 then for all q ∈ ]6 ,+∞[ there exists 3 < k̄ < 6 such that

(6.4) q =
3k̄ + 9

6− k̄
and ‖E(s, ·)‖q ≤ C ‖ρ(t, ·)‖ k̄+3

3

≤ CMk̄(t)
3

k̄+3 .

Mk̄(t) <∞ because thanks to lemma 3.3 with p = 1, q = ∞, k′ = k̄, r =
k+ 3

q

k′+ 3
q
+ k−k′

p

=

1 we have

‖mk̄(t)‖r =Mk̄(t) ≤ c ‖f‖
k−k̄
k

1 Mk(t)
k̄
k ≤ CMk(t)

k̄
k <∞

for all 3 < k̄ < 6.
Thus we choose 3 < k̄ < 6 such that q ≥ l + 3 with k+3

d′
= l+3

3 same as before, and
now we try to estimate ‖E(s, ·)‖q with Mk(t)

‖E(s, ·)‖q ≤ C ‖ρ(s, ·)‖ k̄+3
3

≤ C ‖ρ(s, ·)‖1−α1 ‖ρ(s, ·)‖αk+3
3

≤ C
(

1 + ‖ρ(s, ·)‖ k+3
3

)

≤ C(1 +Mk(t))
3

k+3

This last estimate combined with the interpolation inequality (6.3) results in (6.1).
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[5] Z. Chen and X. Zhang, Global existence to the Vlasov-Poisson system and propagation of

moments without assumption of finite kinetic energy, Commun. Math. Phys., 343 (2016),
pp. 851–879.
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