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SUMS OF SQUARES AND SPARSE SEMIDEFINITE PROGRAMMING

GRIGORIY BLEKHERMAN AND KEVIN SHU

Abstract. We consider two seemingly unrelated questions: the relationship between nonnegative polynomials and
sums of squares on real varieties, and sparse semidefinite programming. This connection is natural when a real
variety X is defined by a quadratic square-free monomial ideal. In this case nonnegative polynomials and sums of
squares on X are also natural objects in positive semidefinite matrix completion. We show quantitative results on
approximation of nonnegative polynomials by sums of squares, which leads to applications in sparse semidefinite
programming.

1. Introduction

The relationship between nonnegative polynomials and sums of squares is a cornerstone problem in real algebraic
geometry. In a fundamental 1888 paper Hilbert showed that there exist globally nonnegative polynomials that are
not sums of squares of polynomials [17]. He then showed in 1893 that a bivariate globally nonnegative polynomial
is a sum of squares of rational functions. Hilbert’s 17th problem asked to show that this was true for any number of
variables. It was solved by Artin in 1920’s using the Artin-Schreier theory of real closed fields [9]. In the last twenty
years, questions about nonnegative polynomials and sums of squares (of polynomials) gained new prominence due
to the development of sums of squares relaxations in optimization [6]. Testing whether a nonnegative polynomial
is a sum of squares can be done with semidefinite programming, and sums of squares relaxations currently achieve
best-known results for a variety of optimization problems [2, 18].

Hilbert’s theorem on equality has been generalized to the setting of sums of squares on real projective varieties,
resulting in a clearer classification of cases [7, 8]. Another approach is to ask the more quantitative question of
whether the sums of squares polynomials are a ‘good approximation’ of nonnegative polynomials. It was shown
in [5] that the normalized volume of an appropriate slice of the cone of nonnegative polynomials is asymptotically
larger than that of the sums of squares polynomials if the degree is fixed and the number of variables tends to
infinity. In this paper we initiate a quantitative study of sums of squares approximation of nonnegative polynomials
on real projective varieties.

1.1. Sums of Squares and Matrix Completion. In our setting, the main algebraic objects are quadratic
square-free monomial ideals, and the corresponding varieties are unions of coordinate subspaces. We now describe
how these ideals and their associated varieties are related to the positive semidefinite matrix completion problem
(see [7] for more on monomial ideals, and [21] for a survey on some results in matrix completion).

Given a graph G, we consider a square-free monomial ideal IG whose monomials are non-edges of G: IG = 〈xixj :
{i, j} 6∈ E(G)〉. The variety XG defined by IG is the union of linear subspaces corresponding to maximal cliques
of G. Under the standard basis, quadratic forms on XG correspond to the partially specified symmetric matrices
where the diagonal entries and the off-diagonal entries corresponding to the edges of G are specified, and the rest
of the entries are unspecified.

Example 1. Consider the 5-vertex cycle graph C5. We think of the edges as indexing entries in a 5 × 5 matrix
(see Figure 1). We associate to C5 a class of ‘partially specified matrices’, where we think of entries indexed by
edges as being given, and the remainder as being unknown. Our goal will typically be to complete these matrices by
setting the unknown entries so that the resulting matrix is positive semidefinite (PSD).

Nonnegative quadratics on XG correspond to partially specified matrices where all fully specified submatrices are
positive semidefinite. Sum of squares quadratics on XG correspond to matrices that can be completed to a full
positive semidefinite matrix. By a result of Grone et al. in [16], all nonnegative quadratics on XG are sum of
squares if and only if G is a chordal graph.
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(a) The 5-cycle graph C5.
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(b) A partially specified matrix corresponding to C5. ? corre-

sponds to an unknown entry.

Figure 1. The partially specified matrix here represents the quadratic form
∑

i x
2
i +

2
∑

{i,j}∈E(Cn)
xixj on the variety XCn . There are many quadratic forms on R

n which restrict

to the same form on XCn , for instance (
∑

i xi)
2
, which is a sum-of-squares completion of this form.

We find a class of graphs G for which we can quantify the extent to which sums of squares provide a good
approximation of nonnegative quadratics. The class G contains chordal and series-parallel graphs and is closed under
the operations of taking clique sums and joining with complete graphs (see Section 1.3 for a precise description).
The quality of approximation of nonnegative polynomials by sums of squares for G ∈ G depends only on the size
of the smallest induced cycle of size at least 4 in G and the number of vertices of G. For n-cycles Cn we show that,
surprisingly, the quality of approximation improves sharply as n increases, verifying an experimental observation
of Drton and Yu [12].

A similar class of graphs was studied in [4] in relation with the positive semidefinite matrix completion problem.
A graph is called cycle completable if positive semidefiniteness of fully specified submatrices, and completability of
each induced cycle to a positive semidefinite submatrix is sufficient for the existence of a full positive semidefinite
completion. It was shown in [4] that cycle completable graphs are precisely the graphs which can be formed by
taking clique sums of complete graphs and series parallel graphs. This class of graphs can also be characterized by
forbidding the wheel graph and its splittings as subgraphs. Since the wheel graph is a join of a cycle graph and
the one vertex graph, the graph class G is strictly larger than cycle completable graphs. Some computational and
graph-theoretic properties of the class G are discussed in Section 5.1.

1.2. Semidefinite Programming. Our results have direct application to semidefinite programming. Consider a
general semidefinite program of the form

minimize 〈B0, X〉
such that tr(X) = 1,

〈B1, X〉 = b1,

〈B2, X〉 = b2,

. . .

〈Bk, X〉 = bk,

X � 0.

In some circumstances, not all of the entries of X are needed to define the constraints or the objective, which
corresponds to cases when some of the entries of the Bℓ are zero. Explicitly, let G be the graph where {i, j} ∈ E(G)
if some Bℓ

i,j 6= 0. If {i, j} 6∈ E(G), then the linear constraints do not depend on the value of Xi,j , and this sparsity
should be exploitable.

It is known that if the graph G is chordal, then it is possible to decompose the semidefinite program into smaller
semidefinite programs which can be solved faster, an observation which seems to originate from [14]. This idea is
extended greatly in [24]. Reducing a problem to one with a chordal sparsity pattern may be hard, as the problem
of finding the sparsest possible chordal graph containing a given one is NP-hard to approximate [11]. We extend
this idea to the case of possibly nonchordal graphs in our class G, by showing that it is possible to decompose a
semidefinite program with a sparsity pattern corresponding a graph G ∈ G, with an error depending only on the
smallest induced cycle of G and the number of vertices in G.

In quantitative terms, for any graph G ∈ G, we can bound the multiplicative error for this decomposition of the

semidefinite program by 1+O
(

n
g3

)

where g is the size of the smallest induced cycle in the graph of length at least
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4, assuming some technical conditions. In particular, these results apply to the MAX-CUT semidefinite program
of Goemans and Williamson for graphs in G. [15]
The value of this decomposition is that the smaller semidefinite programs produced are frequently easier to solve,
and require fewer variables in total than the original semidefinite program. The reduction in the number of variables
can mean the difference between the program being solvable and being unsolvable in practice, so our results may
make a larger class of semidefinite programs practically tractable.

1.3. Results in Detail.

1.3.1. Definitions. Let G be a graph. We can associate to G a quadratic square-free monomial ideal IG where the
monomials in IG correspond to the non-edges of G. The ideal IG is a radical ideal and the variety XG defined by
IG is the union of coordinate subspaces which correspond to maximal cliques of G. More explicitly, if we let CG

be the set of all maximal cliques of G, then

XG =
⋃

K∈CG

span(ei : i ∈ K),

where the ei are coordinate vectors, and span denotes the linear span of a collection of vectors. We let RG =
R[x1, . . . , xn]/IG be the graded coordinate ring of XG.

We let P(G) be the cone of quadratic forms in R2, (the degree 2 part of RG), which are nonnegative on XG, and
we let Σ(G) be the cone of quadratic forms in R2 that are sums of squares of linear forms. Both Σ(G) and P(G)
are full-dimensional, convex, pointed cones in R2 [6, Chapter 4].

For a form q ∈ P(G) we define εG(q) ∈ R to be the smallest real number such that

q(x) + εG(q) tr(q)(x
2
1 + · · ·+ x2n) ∈ Σ(G),

where tr(q) =
∑n

i=1 q(ei). If εG(q) is small, then there is a sum of squares polynomial which closely approximates
q(x). We let ε(G) be the largest value of εG(q) over all q ∈ P(G). Observe that ε(G) ≥ 0 for any graph G and
ε(G) = 0 if and only if G is a chordal graph. We call ε(G) the (trace-normalized) conical distance between P(G)
and Σ(G). The quantity ε(G) appears naturally in several contexts. See Section 2.3 for a more detailed discussion
and motivation for this definition.

If the conical distance between P(G) and Σ(G) is small, then the above discussion shows that sums of squares
quadratics on XG provide a good approximation of nonnegative quadratics on XG. However, using conical distance
as a measure of approximation quality has its limitations. Lemma 6 shows that if G contains an induced four-cycle
C4, then the conical distance between P(G) and Σ(G) will be large (i.e. bounded from below by a constant). When
the conical distance is large, the results in this paper will not provide strong approximation results for semidefinite
programming, though other techniques may still result in useful bounds.

To state our results, we will also require some graph theoretic terminology. A minor of a graph G is any graph
which can be obtained from G by iteratively deleting edges, or combining the endpoints of an edge to form a single
vertex. A series parallel graph is any graph without the 4-vertex complete graph K4 as a minor. We say that a
graph S is the clique sum of graphs G and H if S is obtained from G and H by finding isomorphic cliques in G
and H and combining G and H by identifying corresponding vertices contained in the clique. We denote the clique
sum of G and H by G ⊕ H . See Section 3.1 for a precise definition. As a note, in much of the literature, when
taking a clique sum of two graphs, it may be allowed to delete some of the edges contained in the clique. In this
paper, we follow the convention in [20], which uses the term clique identification where we use clique sum.

The cone over a graph G is obtained by introducing a single new vertex to G, and then adding edges from that new
vertex to every vertex in G. We denote the cone over G by Ĝ. See section 3.2 for a more detailed definition.

1.3.2. Main Results. Our main result is a class of graphs for which we can compute the conical distance exactly.
Let G be the smallest collection of graphs satisfying the following three conditions: (1) Series-parallel and chordal
graphs are in G (2) Any clique sum of two graphs in G is in G and (3) The cone over any graph in G is in G.

Theorem 2 (Theorem 25). Let G ∈ G. Then

ε(G) =
1

g

(

1

cos(πg )
− 1

)

,

where g is the length of the smallest induced cycle of G of length at least 4.
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In particular, this gives an exact computation for the conical distance of the wheel graph Wn = Ĉn, so the set G is
strictly larger than the cycle-completable graphs.

We prove this result by computing the conical distance in three key cases.

We first show that ε(G) behaves well under the clique sum and cone operations. These are natural operations to
consider because they preserve the class of chordal graphs, which are the only cases where ε(G) = 0. This results
in the two theorems:

Theorem (Theorem 7). ε(G⊕H) = max{ε(G), ε(H)}.

Theorem (Theorem 12). ε(Ĝ) = ε(G).

Finally, we compute ε(G) when G is an n-cycle Cn.

Theorem (Theorem 18). For n > 3,

ε(Cn) =
1

n

(

1

cos(πn )
− 1

)

.

Theorem 18 implies that the ratio of the volumes between appropriately normalized slices of Σ(Cn) and P(Cn)
approaches 1 as n goes to infinity, verifying an experimental observation of Drton and Yu [12].

We now discuss applications of our results to semidefinite programming. Unlike the usual intuition for nonnegative
polynomials and sums of squares, the cone P(G) is simpler algorithmically in some cases, as it corresponds to
partially specified matrices all of whose fully specified principal submatrices are positive semidefinite. In semidefinite
programming problems we often encounter the cone Σ(G), and we would like to replace Σ(G) with the simpler
cone P(G). This leads to replacement of the global positive semidefiniteness constraint with a series of smaller
constraints, which is very advantageous in practice. Our bounds on the quality of approximation of P(G) by Σ(G)
allows us to show that for our class G this substitution has a controlled cost.

More specifically, consider the conical program

minimize 〈B0, X〉
such that tr(X) = 1,

〈B1, X〉 = b1,

. . .

〈Bk, X〉 = bk,

X ∈ K.

When K = Σ(G), we denote the value of this program as α, and when K = P(G), we denote the value by α′.

Under some mild technical conditions, we obtain the following bound:

Theorem (Theorem 26).

α′ ≤ α ≤ 1

1 + nε(G)
α′ +

ε(G)

1 + nε(G)
tr(B0).

This is especially effective for a rescaled version of the Goemans-Williamson MAX-CUT semidefinite program,
as several of these technical assumptions are satisfied automatically. Thus we can extend the ideas in [24] to
nonchordal graphs.

Finally, we give some graph theoretic results about our graph class G, in particular showing that it is recognizable
in polynomial time, and that the number of maximal cliques in a graph G ∈ G is polynomial in the size of G in
Section 5.1.
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2. Definitions and Problem Setup

2.1. Graphs and Partially Specified Matrices. Let G = (V,E) be an undirected graph on n vertices. We use
V (G) and E(G) to denote the set of vertices and edges of G respectively.

We associate to G a vector space, Sym(G), which we think of as assigning a real number to each edge and each
vertex of G

Sym(G) = R
E(G)+V (G).

Choosing an ordering of the vertices of G identifies V (G) with [n], so that we can regard each edge in G as an
unordered pair of integers. Under this identification, the edges of G index off-diagonal entries in a symmetric n×n
matrix, and the vertices index the diagonal entries.

Example 3. Let Kn be the n-vertex complete graph on the vertex set [n]. Sym(Kn) is isomorphic to the space of
symmetric n×n matrices over R. We will use Sym(Kn) to denote the space of symmetric matrices throughout the
paper.

For any G with n vertices, there is a linear projection

πG : Sym(Kn) → Sym(G),

given by sending a matrix M to the vector of entries corresponding to the edges of G:

πG(M) = (Mij){i,j}∈E(G)+V (G).

We can therefore think of Sym(G) as a collection of partially specified matrices, where we start with a matrix
M , and then ‘forget’ the entries of M that do not correspond to edges of G. Note that symmetric matrices in
Sym(Kn) correspond naturally to quadratic forms over the variety R

n = XKn , and similarly Sym(G) corresponds
naturally to the space of quadratic forms over the variety XG. The projection πG on the level of quadratic forms
is induced by the embedding of XG inside XKn .

If A is a partially specified matrix in Sym(G), then we say that a matrix M ∈ π−1
G (A) is a completion of A, since

it is a fully specified matrix which agrees with A on all entries in A which are specified.

More generally, if H is a subgraph of G, then we also have a projection

πH : Sym(G) → Sym(H),

which additionally forgets the entries of a partially specified matrix which correspond to edges not in H . Although
technically, this notation does not distinguish between the projection from Sym(Kn) to Sym(H) and the projection
from Sym(G) to Sym(H), this distinction will not be relevant in this paper, so we will abuse notation and write
πH without specifying the domain.

Suppose that K ⊆ G is a clique contained in G, then in this case, if A is a partially specified matrix in Sym(G),
then πK(A) will be a fully specified principle submatrix of A.

2.2. Partially Positive and Partially Sums of Squares Matrices. Inside the space of symmetric matrices,
Sym(Kn), we have the subset of positive semidefinite matrices. We will denote these by Σ(Kn) = P(Kn), as they
correspond naturally to sum of squares (equivalently nonnegative) quadratic forms over Rn. Now, we can define the
subset of Sym(G) which are the projections of positive semidefinite (PSD) matrices in Sym(Kn). Precisely,

Σ(G) = πG(Σ(Kn)).

Equivalently, we can think of Σ(G) as being those partially specified matrices that can be completed to a PSD
matrix. We call these partially sums of squares matrices. These also correspond to quadratic forms on XG

which are sums of squares.

Now, we note that if M is a PSD matrix which completes A, then any principal submatrix ofM is also PSD, so for
any subgraph H of G, πH(A) is PSD completable. In particular, if K is a clique contained in G, the fully specified
submatrix πK(M) = πK(A) is PSD. Therefore we see that if A ∈ Σ(G) is PSD completable, and K is a clique
contained in G, then πK(A) ∈ Σ(K). In particular πK(A) is a fully specified PSD matrix.

Consider the convex cone

P(G) = {A ∈ Sym(G) : πC(A) ∈ P(C) for all C ∈ CG}.
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These are the matrices in Sym(G) such that all of their fully specified principal submatrices are PSD, and these
correspond to nonnegative quadratic forms on XG. We will refer to a partially specified matrix in P(G) as a
partially positive matrix. It is clear that Σ(G) ⊆ P(G).

2.3. Conical Distance. Finding a way to quantify the difference between P(G) and Σ(G) requires careful consid-
eration. Part of the difficulty lies in the fact that these two convex sets are not compact, which is a requirement of
some typical notions of distance in convex geometry. In order to make these cones compact, we choose a hyperplane
so that the intersection of these cones with that hyperplane is compact, and then use one of these more common
notions of convex analysis. Fortunately, in this case, it is natural to consider the hyperplane of trace-1 matrices,
and identify a multiple of the identity matrix with the origin.

Let H be the hyperplane in Sym(G) given by H = {A ∈ Sym(G) : tr(A) = 1} (this is well defined, since the ideal
IG is square-free). Let Σ̄(G) and P̄(G) be the intersections of Σ(G) and P(G) with H respectively. We define the
conical distance between P(G) and Σ(G) to be

ε(G) = min
ε

{ε : for all M ∈ P̄(G) M + εIn ∈ Σ(G)}.

It is clear that if ε ≥ ε(G), then for any A ∈ P̄(G), A+ εIn ∈ Σ(G).

This definition of conical distance has connections to several familiar notions. We will make particular note of the
connection between conical distance and the notion of expansion ratio, and the connection between conical distance
and the eigenvalues of completions of partial positive matrices.

2.3.1. Expansion Ratio. We can consider the expansion ratio α(G) of Σ̄(G) and P̄(G) with respect to the scaled
identity matrix 1

nIn, which is a standard way of measuring distance between compact convex sets [1]. The expansion

ratio is defined to be the smallest k > 0 such that k(Σ̄(G)− 1
nIn) contains P̄(G)− 1

nIn.

Lemma 4. α(G) = 1 + nε(G).

Proof. Let k = 1 + nε(G) and consider any M ∈ P̄(G). We see that

1

k
(M − 1

n
In) +

1

n
In =

1

k
(M + (k − 1)

1

n
In)

=
1

k
(M + ε(G)In),

where M + ε(G)In ∈ Σ(G) by definition of ε(G). We also see that tr( 1k (M + ε(G)In)) = 1.

Therefore if M ∈ P̄(G), there is an element of Σ̄(G), namely X = 1
k (M + ε(G)In) so that k(X − 1

nIn) =M − 1
nIn,

i.e. k(Σ̄(G)− 1
nIn) ⊇ P̄(G). Thus, α(G) ≤ 1 + nε(G).

The other bound α(G) ≥ 1 + nε(G) is obtained in a similar way. �

2.3.2. Eigenvalues. We can also interpret ε(G) in terms of the eigenvalues of the partially positive matrices:

Lemma 5. If A ∈ P̄(G), then A can be completed to a matrix M whose minimal eigenvalue is at least −ε(G).

Proof. By definition, ε(G) is the smallest ε so that for every A ∈ P̄(G), A+εIn is PSD completable. IfM is a PSD
completion of A+ εIn, then M − εIn is a completion of A with minimal eigenvalue at least −ε. Similarly, if M is
a completion of A with a minimum eigenvalue λmin, then M − λminIn would be a PSD completion for A− λminIn.
Thus,

ε(G) = min
A∈P̄(G)

max
M∈π−1

G (A)
−λmin(M).

�

In other words, computing the conical distance between this pair of cones is equivalent to finding completions of
partially positive matrices with minimum eigenvalues which are as large as possible.
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2.4. Monotonicity. One simple observation to make about conical distance is that it is monotonic increasing in
the induced subgraph ordering, as indicated by the following lemma:

Lemma 6. If H is an induced subgraph of G, then ε(H) ≤ ε(G).

The remainder of this paper will be devoted to computing this distance for some classes of graphs.

3. Constructions on Graphs

We will show that the two operations of clique sums and joins of a graph with cliques act naturally on the conical
distance of a graph.

3.1. Clique Sums. Suppose that G and H are graphs, and that for some n, there is a complete graph Kn and
injective homomorphisms φ : Kn → G and ψ : Kn → H .

We define the clique sum of G and H (with respect to φ and ψ) to be the graph S obtained by taking the
disjoint union of the graphs G and H and then identifying φ(x) with ψ(x) for each x ∈ Kn. This is the categorical
pushforward of the two morphisms φ and ψ. For notational convenience, we will suppress the dependence of the
clique sum on φ and ψ, and denote the clique sum of two graphs as S = G⊕H .

We can consider G and H to be induced subgraphs of G⊕H , so that the subgraph induced by V (G) ∩ V (H) is a
clique. From Lemma 6, it is clear that ε(G⊕H) ≥ max{ε(G), ε(H)}. In fact, this inequality is an equality.

Theorem 7. ε(G⊕H) = max{ε(G), ε(H)}.

For the proof, first recall that an n × n matrix M is positive semidefinite if and only if there exist vectors
v1, v2, . . . , vn ∈ R

n such that M is the Gram matrix of v1, v2, . . . , vn, i.e. Mij = 〈vi, vj〉 for all i, j ≤ n. From this
fact, it is clear that the following lemma holds:

Lemma 8. If A ∈ Sym(G), then A ∈ Σ(G) if and only if there are vectors v1, . . . , vn ∈ R
n so that for any

{i, j} ∈ V (G) + E(G), 〈vi, vj〉 = Aij .

We call such a collection of vectors a vector arrangement inducing A.

Lemma 9. A ∈ Σ(G⊕H) if and only if πG(A) ∈ Σ(G) and πH(A) ∈ Σ(H).

Proof. If A ∈ Σ(G⊕H), then it follows immediately that πG(A) ∈ Σ(G) and πH(A) ∈ Σ(H).

Now, suppose that πG(A) ∈ Σ(G) and πH(A) ∈ Σ(H). We wish to show that A ∈ Σ(G ⊕ H). The idea will be
to ‘glue’ together a vector arrangement inducing πG(A) with one inducing πH(A) using an appropriate orthogonal
transformation.

For the sake of concreteness, assume that the vertices of G⊕H are V (G⊕H) = [n], and that the vertices of G are
V (G) = [k], and finally that V (H) = {ℓ, ℓ+ 1, . . . , n}, where ℓ ≤ k. This implies that the vertices in V (G) ∩ V (H)
are {ℓ, . . . , k}.
Let v1, . . . , vk ∈ R

k be a vector arrangement inducing πG(A) and wℓ, . . . , wn ∈ R
n−ℓ+1 be a vector arrangement

inducing πH(A). By considering R
k and R

n−ℓ+1 subspaces of Rn, we can also take v1, . . . , vk and wℓ, . . . , wn to all
lie in R

n. We wish to produce a vector arrangement inducing A. If i, j ∈ V (G) ∩ V (H), then {i, j} ∈ E(G ⊕H),
because we assumed that V (G) ∩ V (H) induced a clique in our definition of the clique sum. Therefore, from the
definition of these vector arrangements, for each i, j ∈ V (G) ∩ V (H),

〈vi, vj〉 = Ai,j = 〈wi, wj〉.

Consider the subsets of the vectors, S1 = {vi : i ∈ V (G) ∩ V (H)} and S2 = {wi : V (G) ∩ V (H)}. Our previous
observation is equivalent to the fact that πG∩H(A) is the Gram matrix of both S1 and S2. In particular, the Gram
matrices of S1 and S2 are equal.

This implies that there exists an orthogonal transformation T ∈ O(n) so that Twi = vi for each i ∈ V (G) ∩ V (H).
This is shown, for example in [19, Chapter 7, Theorem 7.3.11].
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Consider the collection of vectors ui where ui = vi if i ≤ k and ui = Twi if i ≥ ℓ (which is well defined, as Twi = vi
when ℓ ≤ i ≤ k). We claim that the ui induce A. This follows from the fact that each edge e ∈ E(G⊕H) is either
an edge of G or an edge of H . If e = {i, j} is an edge of G, then

〈ui, uj〉 = 〈vi, vj〉 = Ai,j .

If e is an edge of H , then by orthogonality of T ,

〈ui, uj〉 = 〈Twi, Twj〉 = 〈wi, wj〉 = Ai,j .

In either case, we see that 〈ui, uj〉 = Ai,j , as desired. �

Proof of Theorem 7. Let A be in P̄(G⊕H) and consider the matrix A+max{ε(G), ε(H)}In. Consider the projection
πG(A+max{ε(G), ε(H)}In) = πG(A) + max{ε(G), ε(H)}I|V (G)|.

Note that πG(A) is in P(G), so from the definition of ε(G),

πG(A) + ε(G) tr(πG(A))I|V (G)| ∈ Σ(G).

Further note that tr(πG(A)) ≤ 1, since tr(A) = 1, and the diagonal entries of A are nonnegative. Combining these
two facts, we can see that

πG(A) + ε(G)I|V (G)| ∈ Σ(G),

and therefore that πG(A) + max{ε(G), ε(H)}I|V (G)| ∈ Σ(G).

A similar argument shows that πH(A + max{ε(G), ε(H)}In) lies in Σ(H). Thus, by our previous lemma, A +
max{ε(G), ε(H)}In is in Σ(G⊕H). �

Remark 10. A graph G is chordal if and only if G is the result of taking repeated clique sums of complete graphs
(see, say, [13]), and for a complete graph K, it is clear that the conical distance, ε(K), is 0, since Σ(Kn) = P(Kn).

Thus, this immediately implies the known result that for any chordal graph G, ε(G) = 0. This, combined with the
observation that any cycle Cn of size at least 4 has ε(Cn) > 0, implies that chordal graphs are the only graphs for
which P(G) = Σ(G). Thus, we obtain another proof of the fact that

Corollary 11. ε(G) = 0 if and only if G is chordal.

3.2. Joins of Graphs with Cliques. Another common construction in graph theory is the join of two graphs,
G and H . We define G ∧H by taking its vertex and edge sets to be

V (G ∧H) = V (G) ⊔ V (H),

E(G ∧H) = E(G) ∪ E(H) ∪ {{i, j} : i ∈ V (G), j ∈ V (H)}.

If H is a one vertex graph, and G is arbitrary, then define the cone over G to be Ĝ = G ∧ H . That is, Ĝ is the
graph consisting of G, together with a new vertex, which we will denote by v∗, which is connected to all of the
vertices in G. If G is chordal, then Ĝ will also be chordal.

For an arbitrary graph G, we see that Ĝ will have the same conical distance as G.

Theorem 12. ε(Ĝ) = ε(G).

Proof. The inequality that ε(Ĝ) ≥ ε(G) follows from Lemma 6, since G is an induced subgraph of Ĝ.

A partial matrix in Sym(Ĝ) can be regarded as a matrix in Sym(G), together with an appended row and column

corresponding to the new vertex that is added. That is, a partial matrix in Sym(Ĝ) can be written as

A =

(

Q c
c⊺ b

)

,

where Q ∈ Sym(G), c ∈ R
n and b ∈ R.

Now, suppose that we have A which is in P(Ĝ). We consider two cases: either b = 0 or b > 0.
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If b = 0, then consider a 2× 2 minor corresponding to an edge of the form {v∗, v}, for some v ∈ V (G). We see that
we will obtain a submatrix of the form

(

Qvv cv
cv 0

)

.

Since A ∈ P(G), all of the minors corresponding to edges must be positive semidefinite, and so we see that cv = 0
for all v ∈ V (G). This implies that c = 0, and in fact,

A =

(

Q 0
0 0

)

.

Thus, we see that

A+ ε(G)In =

(

Q+ ε(G)In−1 0
0 ε(G)

)

.

Clearly, because there is a PSD completion of Q+ ε(G)In, we can obtain a PSD completion of A+ ε(G)In ∈ Σ(Ĝ).

Now, we consider the case b > 0, where we will need an additional lemma. In this case, we will denote by A/v∗ the
partially specified matrix defined by Q− b−1πG(cc

⊺) ∈ Sym(G). We call this the Schur complement of the partially
specified matrix A with respect to the 1× 1 submatrix corresponding to v∗.

Lemma 13. If A is in P(Ĝ) and b 6= 0, then A/v∗ ∈ P(G).

This lemma states that every point in P(Ĝ) decomposes into the sum of a rank 1 PSD-completable partial matrix
and a partial matrix in P(G).

Proof of Lemma 13. This follows from the fact that Schur complements preserve the class of positive semidefinite
matrices (see [10, A.5.5]).

To show that A/v∗ is in P(G), we need to show that for each clique K ⊆ G, πK(A/v∗) is PSD.

Given a clique K in G, we can consider the subgraph of Ĝ induced by V (K) ∪ {v∗}, which will be a clique in Ĝ,

since v∗ is connected to all vertices of G. Because A ∈ P(Ĝ), we have that πK∪{v∗}(A) is PSD.

Now, we see that

πK∪{v∗}(A) =

(

πK(Q) πK(c)
πK(c) b

)

,

where πK(c) is the projection of c onto the subspace of Rn corresponding to the vertices inK. The Schur complement
of this fully specified matrix is then

πK∪{v∗}(A)/v
∗ = πK(Q)− b−1πK(c)πK(c)⊺.

Because πK∪{v∗}(A) is positive semidefinite, its Schur complement is positive semidefinite.

Compare this to πK(A/v∗), which is

πK(A/v∗) = πK(Q− b−1cc⊺) = πK(Q)− b−1πK(cc⊺).

Note that the entries of πK(cc⊺) satisfy

πK(cc⊺)ij = cicj = (πK(c)i)(πK(c)j),

so that πK(cc⊺) = πK(c)πK(c)⊺.

We then see that

πK(Q− b−1cc⊺) = πK(Q)− b−1πK(c)πK(c)⊺

is the Schur complement of the fully specified matrix πK∪{v∗}(A). Because the Schur complement of a fully specified
PSD matrix is PSD, πK(A/v∗) is therefore PSD for every clique K of G, as desired. �

Proof of Theorem 12 continued. Now, we see that if A ∈ P(Ĝ), then A is of the form

A =

(

A/v∗ 0
0 0

)

+ πĜ

(

b−1cc⊺ c
c⊺ b

)

=

(

A/v∗ 0
0 0

)

+ πĜ

((

c√
b√
b

)

(

c⊺√
b

√
b
)

)

.
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Since A/v∗ ∈ P(G), and tr(A/v∗) ≤ 1, we obtain that A/v∗ + ε(G)In−1 ∈ Σ(G):

A+ ε(G)In =

(

A/v∗ + ε(G)In−1 0
0 0

)

+ πĜ

((

c√
b√
b

)

(

c⊺√
b

√
b
)

)

+

(

0 0
0 ε(G)

)

.

This is the sum of three matrices which are each in Σ(Ĝ), and so the sum is in Σ(Ĝ), as desired. �

Remark 14. This proof shows something a little stronger than the statement about conical distance: it in fact
shows that every element A ∈ P(Ĝ) can be decomposed as A = B +C, where B,C ∈ P(Ĝ), B can be completed to
a rank 1 PSD matrix, and C satisfies Cv∗v∗ = 0.

Iterating the previous lemma k times gives us the following:

Theorem 15. Let Kk be a complete graph of size k. Then ε(G ∧Kk) = ε(G).

4. Rank and an Exact Conical Distance for Cycle Graphs

4.1. Rank of an Optimal Completion. Define the conical distance at a positive partially specified matrix

A ∈ P(G) as

εG(A) = min{ε : A+ εI ∈ Σ(G)}.

First notice that for fixed A, this can be computed in terms of the following semidefinite program:

εG(A) = min ε

such that ∀{i, j} ∈ E(G) : (M − εIn)i,j = Ai,j

M � 0.

We see that the feasible set is defined only by equations and the positive semidefiniteness constraints, and moreover
that by choosing ε large enough, there will be positive definite feasible points. By Slater’s condition ([6, theorem
2.15]), we obtain strong duality:

εG(A) = max
∑

{i,j}∈E(G)

Ai,jYi,j

such that ∀{i, j} 6∈ E(G) : Yi,j = 0

tr(Y ) = 1

Y � 0.

The convex cone associated with the feasible set of this program,

Σ∗(G) = {Y : Y � 0, ∀i, j 6∈ E(G) : Yi,j = 0}
is the dual cone to Σ(G).

Now, if M∗ is the positive semidefinite completion of A+ εG(A)In obtaining the optimum in the primal SDP, and
if Y ∗ optimizes the dual SDP, and then by complementary slackness,

Y ∗M∗ = 0.

Since M∗ is positive semidefinite, all nonzero eigenvectors of M∗ must lie in the kernel of Y ∗, and in particular,
rank(Y ∗) + rank(M∗) ≤ n.

We note that [7] gives a bound on the rank of any extreme point in the dual cone Σ∗(G). We restate this theorem
here. Define the chordal girth of G to be the number of vertices in the smallest induced cycle in G with at least
4 vertices, or ∞ if G is chordal.

Theorem 16. If G is a graph whose chordal girth is g, and Y is an extreme point of the dual cone Σ∗(G), so that
Y is not in P∗(G), then the rank of Y is at least g − 2.

Applying this theorem directly to M∗ and Y ∗ in the previous example gives:
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Theorem 17. Let g be the chordal girth of G, suppose that εG(A) > 0, and let M∗ be a PSD completion of
A+ εG(A)In. Then the rank of M∗ is at most n− g + 2.

In particular, if G is a cycle, we see that this rank is at most 2, which will be useful in one of our next results.

4.2. Exact Conical Distance for the Cycle. The simplest kind of graphs for which we can consider the conical
distance question, besides the chordal graphs, is the family of cycle graphs. In fact, we can compute the conical
distance for these graphs exactly.

Theorem 18. For n > 3, ε(Cn) =
1
n

(

1
cos(π

n ) − 1
)

.

Before we prove the main theorem in this section, we will need some lemmas.

First, we show that matrices in P(Cn) which maximize conical distance to Σ(Cn) can be reduced to a certain
normal form.

Lemma 19. The function εCn(A) is maximized in P̄(Cn) by a partially positive matrix A such that every fully
specified 2× 2 minor of A is singular, and A has exactly one negative entry.

Proof. First, we note that εCn(A) is concave as a function of A, since if A and Q are in P̄(Cn), and α, β ≥ 0 are
such that α+ β = 1, then

αA+ βQ+ (αεCn(A) + βεCn(Q))In = α(A+ εCn(A)In) + β(Q + εCn(Q)In).

is the sum of two PSD completable matrices, so that it is PSD completable. Thus this function is maximized at
an extreme point.

Note that for n > 3, the only cliques in Cn are the edges, so we only need to check that all of the 2 × 2 fully
specified submatrices are PSD.

Consider any extreme ray A in P(Cn). For each edge e = {i, j} ∈ E(G), consider det(πe(A)). If det(πe(A)) > 0,
then we see that if we replace Ai,j by Ai,j ± δ for δ small enough, then the determinant of this block will still be
positive, and the 2× 2 block of A would be PSD, and because no other clique in G contains the edge {i, j}, we see
that A will also remain inside P . This contradicts the fact that A is an extreme ray. Thus, for each edge e = {i, j},
det(πe(A)) = 0.

That is, for each i, j so that {i, j} ∈ E(Cn), AiiAjj −A2
ij = 0. Rewriting, this implies that Aij = ±

√

AiiAjj . That
is, the diagonal entries of an extreme point will determine the off-diagonal entries up to a choice of signs.

Next, we note that if D is a diagonal matrix where all of the diagonal entries are either 1 or −1, then D is
unitary, and hence, conjugating a matrix by D preserves its eigenvalues. Given A, an extreme ray in P(Cn), we
can conjugate it by an appropriate diagonal matrix D so that A has a minimal number of negative entries. There
are two cases: either A can be conjugated so that all of its entries are nonnegative, or so that exactly one pair of
entries is negative. If A can be conjugated so that all of its entries are nonnegative, then in fact, it is the projection
of a rank 1 PSD matrix, and so, it is PSD completable. The only important case then is the case when A has
exactly one pair of negative entries, and we will call this the normal form of an extreme ray A. �

Example 20. Consider the case of extreme points in P(C4). We note that since each fully specified submatrix is
rank 1, the form of such a partially matrix is:









m11 ±√
m11m22 ? ±√

m11m44

±√
m11m22 m22 ±√

m22m44 ?
? ±√

m22m33 m33 ±√
m33m44

±√
m11m44 ? ±√

m33m44 m44









.
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If we conjugate by an appropriate ±1 diagonal matrix, we can bring this into the form

D









m11 ±√
m11m22 ? ±√

m11m44

±√
m11m22 m22 ±√

m22m44 ?
? ±√

m22m33 m33 ±√
m33m44

±√
m11m44 ? ±√

m33m44 m44









D =









m11
√
m11m22 ? ±√

m11m44√
m11m22 m22

√
m22m44 ?

?
√
m22m33 m33

√
m33m44

±√
m11m44 ?

√
m33m44 m44









.

Here, D is the diagonal matrix,

D =









±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1









.

If the (1, 4) entry is positive, then it is clear that the resulting partial matrix is completable to a rank 1 PSD matrix.

We will identify n+1 with 1, so that we can write expressions such as
∑n

i=1 Aii+1, and this will mean that we sum
up all of the off-diagonal entries in A.

Also, let arccos(x) : [−1, 1] → [0, π] be the inverse of the cos(θ) function defined on this interval.

We can now show a necessary and sufficient condition for A ∈ Sym(Cn) to be completable to a rank 2 PSD
matrix.

Lemma 21. If A ∈ P(Cn), then A has a rank 2 PSD completion if and only if there are some ai ∈ {1,−1} so that

n
∑

i=1

ai arccos

(

Aii+1√
Aii

√

Ai+1i+1

)

= 2kπ,(*)

for some integer k.

Proof. We make a sequence of reductions to prove the result.

In terms of vector arrangements, A is completable to a PSD rank 2 matrix if and only if there are vectors v1, . . . , vn ∈
R

2 so that for each i

‖vi‖2 = Aii,

〈vi, vi+1〉 = Aii+1.

For the sake of notation, let Āi =
Aii+1√

Aii

√
Ai+1i+1

. If we renormalize these equations to make the vi lie on the unit

circle, we can equivalently ask for vi ∈ R
2 so that

‖vi‖2 = 1,

〈vi, vi+1〉 = Āi.

In this case, we will think of ai arccos(Āi) as the angle between vi and vi+1; the equation is equivalent to the
condition that the sum of the angles between the vectors on the circle is a multiple of 2π.

Formally, for each vi ∈ R
2 so that 〈vi, vi〉 = 1, we can express vi in polar coordinates. This implies that there are

some θi so that

vi = (cos(θi), sin(θi)).

In this case, these equations reduce to the equations

cos(θi+1 − θi) = Āi.
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To see the necessity of the equation (∗), note that if there exist θi satisfying the previous equation, then using some
basic facts about the cos function, there exist some ai ∈ {−1, 1} and ℓi ∈ Z so that

θi+1 − θi = ai arccos(Āi) + 2πℓi.

Letting k = −∑n
i=1 ℓi, this implies that

n
∑

i=1

(θi+1 − θi) =

n
∑

i=1

(ai arccos(Āi) + 2πℓi)

=

n
∑

i=1

ai arccos

(

Aii+1√
Aii

√

Ai+1i+1

)

− 2kπ

= 0.

which clearly implies equation (∗).
To see the sufficiency of equation (∗), suppose that there exist ai and some k so that equation (∗) holds. Then, set
θ1 = 0, and for each 1 ≤ i < n, set

θi+1 = θi + ai arccos(Āi).

Then, clearly, for i < n, we have the desired result that

cos(θi+1 − θi) = cos(ai arccos(Āi)) = Āi,

and for i = n, we see that

θn =

n−1
∑

i=1

ai arccos(Āi)

=

n−1
∑

i=1

ai arccos

(

Aii+1√
Aii

√

Ai+1i+1

)

= 2kπ − an arccos

(

A1n√
A11

√
Ann

)

.

Therefore,

cos(θ1 − θn) = cos

(

2kπ − an arccos

(

A1n√
A11

√
Ann

))

= Ān,

as we desired.

�

The previous lemma has particular application to a partial matrix in normal form.

Lemma 22. If A ∈ P(Cn), and A is in normal form, then A+ εIn has a rank 2 PSD completion if

n
∑

i=1

arccos

(

√

AiiAi+1i+1√
Aii + ε

√

Ai+1i+1 + ε

)

= π.

Proof. This follows from lemma 21: after considering the sum

n−1
∑

i=1

arccos

(

Aii+1√
Aii + ε

√

Ai+1i+1 + ε

)

− arccos

(

A1n√
A11 + ε

√
Ann + ε

)

=
n−1
∑

i=1

arccos

(

√

AiiAi+1i+1√
Aii + ε

√

Ai+1i+1 + ε

)

− arccos

(

−
√
A11Ann√

A11 + ε
√
Ann + ε

)

=

n
∑

i=1

arccos

(

√

AiiAi+1i+1√
Aii + ε

√

Ai+1i+1 + ε

)

− π

= 0.
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where we have used the equation arccos(−x) = π − arccos(x), and the hypothesis of the lemma.

�

The last, somewhat mysterious fact we will need is the following:

Lemma 23. For any ε ≥ 0, the function fε : R
2
+ → R given by

fε(x, y) = arccos(

√
xy√

x+ ε
√
y + ε

)

is convex.

Proof. We prove this by computing the Hessian matrix of fε.

H(fε) =

(

∂2

∂x2 fε
∂2

∂x∂y fε
∂2

∂x∂yfε
∂2

∂y2 fε

)

.

This evaluates to









ε2y2(ε2+ε(5x+y)+x(4x+3y))
4(ε+x)7/2(ε+y)3/2(xy)3/2( ε(ε+x+y)

(ε+x)(ε+y) )
3/2 − ε2

4(ε+x)3/2(ε+y)3/2
√
xy( ε(ε+x+y)

(ε+x)(ε+y) )
3/2

− ε2

4(ε+x)3/2(ε+y)3/2
√
xy( ε(ε+x+y)

(ε+x)(ε+y) )
3/2

ε2x2(ε2+ε(x+5y)+y(3x+4y))
4(ε+x)3/2(ε+y)7/2(xy)3/2( ε(ε+x+y)

(ε+x)(ε+y) )
3/2









.

Note that if ε, x, y ≥ 0, then the diagonal entries of this matrix are nonnegative.

Consider the Hessian determinant of this function if x, y > 0:

det(H(fε)) =
ε(ε(x+ y) + 3xy)

4xy(ε+ x)2(ε+ y)2(ε+ x+ y)
.

This is also nonnegative on this domain.

These two facts about H(fε) are enough to determine that it is positive semidefinite, and so f is convex. �

Proof of Theorem 18. Fix some A in normal form. We wish to show that there is some ε ≤ 1
n (

1
cos( π

n ) − 1) so that

A+ εIn is completable to a PSD matrix with rank 2. We want to apply the condition in lemma 22. Consider the
function

g(ε) =

n
∑

i=1

arccos

(

√

AiiAi+1i+1√
Aii + ε

√

Ai+1i+1 + ε

)

.

Lemma 22 implies if ε is such that g(ε) = π, then in fact there is a rank 2 PSD completion of A + εIn. We
will show that g(0) = 0 and g( 1n (

1
cos(π

n ) − 1)) ≥ π, so that by the intermediate value theorem, there must be

ε ∈ [0, 1
n (

1
cos(π

n ) − 1)] so that g(ε) = π, yielding the result.

First note that if ε = 0, then

n
∑

i=1

arccos

(

√

AiiAi+1i+1√
Aii + ε

√

Ai+1i+1 + ε

)

=

n
∑

i=1

arccos(1) = 0 < π.
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Now, we want to show that if ε = 1
n (

1
cos(π

n ) − 1), then g(ε) ≥ π. We use lemma 23 and the fact that tr(A) = 1 to

see that

g(ε) = n

n
∑

i=1

1

n
fε (Aii, Ai+1i+1)

≥ nfε

(

1

n

n
∑

i=1

Aii,
1

n

n
∑

i=1

Aii

)

= nfε

(

1

n
,
1

n

)

= n arccos(
1

1 + nε
)

= n arccos(cos(
π

n
))

= π,

as desired.

Thus, there is some ε ≤ 1
n (

1
cos(π

n ) − 1) satisfying the condition of lemma 22.

To see that this value of ε is in fact attained for someA, we can use the matrixA where Aii =
1
n for each i, A12 = − 1

n ,

and each other specified off-diagonal entry is 1
n . This matrix can be verified to have εG(A) =

1
n (

1
cos(π

n ) − 1) using

the cycle conditions found in [3]. �

We note that asymptotically 1
n

(

1
cos(π

n ) − 1
)

is O( 1
n3 ).

4.3. Relative volumes of Nonnegative and Sums of Squares Cones for Cycles. It is worth noting that
this bound on the conical distance is strong enough to give us a bound on the relative volumes of slices P̄(Cn) and
Σ̄(Cn). By using the connection of conical distance with expansion ratio we see that:

(

Σ̄(Cn)−
1

n
In

)

⊆
(

P̄(Cn)−
1

n
In

)

⊆ (1 + nε(Cn))

(

Σ̄(Cn)−
1

n
In

)

.

Since the dimension of Sym(Cn) is 2n,

Vol(Σ̄(Cn)) ≤ Vol(P̄(Cn)) ≤ (1 + nε(Cn))
2n Vol(Σ̄(Cn)).

Now, note that ε(Cn) = O( 1
n3 ), so we have that

(1 + nε(Cn))
2n ≤ eO(1/n),

which approaches 1 as n goes to infinity.

4.4. Cycle Completable Graphs. The following characterization of cycle-completable graphs proved in [4] allows
us to find exact conical distance for a larger class of graphs.

Theorem 24. Let G be a graph, let Γ(G) be the set of matrices A so that for each induced cycle C ⊆ G, πC(A) ∈
Σ(C). Then Σ(G) = P(G) ∩ Γ(G) iff G is the clique sum of series parallel and chordal graphs.

We are now ready to extend the result on exact conical distance between P(G) and Σ(G) from cycles to a larger
class of graphs using our previous results and the above theorem.

Theorem 25. Let G be the smallest class of graphs which is closed under the clique sum operation and the cone
operation, and which contains all complete graphs and series parallel graphs. Then for any G ∈ G, ε(G) = ε(Cg),
where g is the chordal girth of G.

Proof. It suffices to show that ε(G) = ε(Cg) for any series parallel graph G. The theorem then follows from applying
Theorems 7 and 12.

If g is the chordal girth of G, then there is no cycle in G with length greater than 3 and less than g. Moreover,
note that the conical distance for Cg is monotonic decreasing in g.
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If C is any cycle contained inG, then ε(C) ≤ ε(Cg). Thus, if A ∈ P(G), then for any cycle C inG, πC(A+ε(Cg)In) =
πC(A)+ ε(Cg)In ∈ Σ(C).Thus, A+ ε(Cg)In ∈ P(G), and moreover, for all cycles C in G, πC(A+ ε(Cg)In) ∈ Σ(C),
so by Theorem 24, we have that A+ ε(Cg)In ∈ Σ(G), as desired. �

It is noteworthy that the class of graphs described in [4] has the wheels, Wn = Ĉn, as its forbidden minors, yet the
conical distance for the wheel graphs goes to 0 at the rate O( 1

n3 ) as n grows, which implies small expansion ratio

and good volume approximation for Σ̄(G) and P̄(G).

5. Applications to Semidefinite Programming

Conical distance can be used to bound approximation errors in some semidefinite programs. Consider a semidefinite
program of the form

(SDP)

minimize 〈B0, X〉
such that tr(X) = 1,

〈B1, X〉 = b1,

. . .

〈Bk, X〉 = bk,

X � 0.

We will say that this program is G-sparse, for some graph G if for each ℓ, Bℓ
ij = 0 for all {i, j} 6∈ E(G).

If this semidefinite program is G-sparse, then the semidefinite program is equivalent to one where the condition
X � 0 is replaced by X ∈ Σ(G) without losing information.

Consider replacing the condition that X ∈ Σ(G) with the condition that X ∈ P(G).

(SDP’)

minimize 〈B0, X〉
such that tr(X) = 1,

〈B1, X〉 = b1,

. . .

〈Bk, X〉 = bk,

X ∈ P(G).

The condition X ∈ P(G) can be defined while only considering the entries of X which correspond to edges in G. If
G is a graph in our class G, which has o(n2) edges, and has no small cycles of size greater than 3, then the resulting
savings in terms of the number of variables needed to define the program can be large while not costing too much
in terms of the approximation factor.

Let α be the value of (SDP), and α′ be the value of (SDP’)

Theorem 26. If 1
nIn is a feasible point of (SDP), and (SDP) is G-sparse, then

α′ ≤ α ≤ 1

1 + nε(G)
α′ +

ε(G)

1 + nε(G)
tr(B0).

Proof. Since Σ(G) ⊆ P(G), we have that α ≥ α′.

Let X ′ be an optimum point for (SDP’). By the definition of the conical distance,

X ′ + ε(G)In ∈ Σ(G).

Then because Σ(G) is a cone, we have the rescaled equation,

1

1 + nε(G)
X ′ +

nε(G)

1 + nε(G)

(

1

n
In

)

∈ Σ(G).
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Note that this is a convex combination of X ′ and 1
nIn, and thus, it satisfies all of the linear equations for the

feasible set for (SDP). The optimal value therefore satisfies

α ≤
〈

B0,

(

1

1 + ε(G)
X ′ +

ε(G)

n(1 + ε(G))
In

)〉

=
1

1 + nε(G)
α′ +

ε(G)

1 + nε(G)
tr(B0).

�

A key example of this type of semidefinite program is the rescaled Goemans and Williamson SDP (see [15]) for
approximating MAX-CUT for a graph G. For consistency with the rest of the paper, we have written this as a
minimization problem and reversed the sign of the objective function, so that the result is a negative number. In
that case, the definition of the semidefinite program is

minimize n
∑

i,j∈E(G),i6=j

Xij

such that ∀i,Xii =
1

n
X � 0.

This semidefinite program satisfies the conditions for the theorem, and moreover, we see that tr(B0) = 0, so the
result is the cleaner

α′ ≤ α ≤ 1

1 + nε(G)
α′.

In applications, the input graph G is not necessarily chordal. Rather, given an input graph, one attempts to find
a chordal cover of G, i.e. a chordal graph C so that G is contained in C. Any G-sparse semidefinite program
then is also C-sparse, and the results of [24] apply. However, finding a chordal graph C which minimizes the
number of edges added to E(C) \ E(G) is known to be NP-complete, even to approximate [11]. Thus, it may
be valuable in practice to relax the chordal condition to a somewhat more general condition, and settle for an
approximation.

5.1. Properties of the class G. Graph theoretic questions about the graph class G are of practical interest,
and we will briefly give some results here. One important property is that G is closed under taking induced
subgraphs.

A clique separator of a graph G is a clique K ⊆ G with the property that removing K from G increases the
number of connected components of the graph G. If K is such a clique separator of G, we can write G = H1 ⊕H2,
where H1 and H2 are induced subgraphs of G, and K = H1 ∩H2.

A graph H with no clique separators will be referred to as an atom. By repeatedly finding clique separators of the
graph G, we can decompose G into the clique sum of atoms: G = H1 ⊕ H2 ⊕ . . . Hk, where each Hi is an atom.
We will refer to the Hi’s as the atoms of the decomposition, and when the decomposition is left implicit, we
will refer to the Hi as atoms of G. It is clear then that any graph G is the clique sum of its atoms. Note that the
atoms of a graph depend on a particular decomposition of the graph G, and cannot be uniquely determined from
the graph G.

We can characterize the possible atoms of a graph G ∈ G.

Theorem 27. If G is a graph, then G ∈ G if and only if for any decomposition of G into atoms, all atoms are of
the form H ∧Kn, where H is series parallel and H ∧Kn is the n-fold repeated coning over the graph H.

Proof. Suppose that G is a graph with a decomposition into atoms, each of which is of the form H ∧Kn where H
is a series parallel graph. Since H is series parallel, it is contained in G, and thus the repeated coning over H is
contained in G. So, the atoms of G are contained in G. Because G is the clique sum of its atoms, and G is closed
under clique sums, we see that G is contained in G.

On the other hand, suppose that G∈ G. Let G1⊕G2⊕· · ·⊕Gk be a decomposition of G into a clique sum of atoms.
Note that the partial sum G1 ⊕G2 ⊕ · · · ⊕Gk−1 is an induced subgraph of G, and therefore, is also an element of
G, and thus, inductively, it suffices to show that Gk is of the form H ∧Kn.
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By definition, Gk is an atom, and is an induced subgraph of G. In particular, Gk is an element of G, and Gk is
either series parallel, chordal, the cone over a graph in G, or a clique sum of two graphs in G. Clearly, if Gk is the
clique sum of two graphs, then it is not an atom, and thus, we can exclude this case.

If Gk = Ĵ for some J ∈ G, then we can also assume that J does not have a clique separator, since if J = J1 ⊕ J2,
then Gk would be Ĵ1 ⊕ Ĵ2. Thus, we can iteratively remove cone vertices until we are left with a graph with no
cone vertices. In that case, Gk = H ∧Kn, where H ∈ G has no clique separators or cone vertices. Thus, H must
be either chordal or series parallel. If H were chordal, then H would be the clique sum of cliques. Clearly, if H is
the clique sum of cliques, and also an atom, then H must be a clique. Moreover, if H is a clique that contains no
cone vertices, then H must be a single vertex, and thus also series parallel. This shows the desired result. �

A result of Tarjan in [22] shows that it is possible to find a decomposition of a graph G into at most n− 1 atoms in
O(nm) time, where n = |V (G)| and m = |E(G)| (assuming m > 0). A result of Valdes, Tarjan and Lawler in [23]
also shows that it is possible to recognize series parallel graphs in linear time. It is thus clear that given a graph
G, we can recognize if it is in G by first decomposing G into atoms, then checking that each atom is the cone over
a series parallel graph, which in total gives a O(n2+nm) time algorithm for detecting graphs in G.
It is then also easy to see that a graph in G does not have too many maximal cliques.

Theorem 28. If G ∈ G, then the number of maximal cliques in G is O(n(n +m)).

Proof. It is clear that if G = H1 ⊕H2, then the number of maximal cliques in G is at most the sum of the number
of maximal cliques in H1 and H2 separately. From above, we have that if G ∈ G, then G decomposes into the
clique sum of at most n graphs of the form H ∧Kk, with H series parallel. The coning operation does not change
the number of maximal cliques, so it suffices to argue that a series parallel graph with at most n vertices and m
edges, has at most O(n+m) maximal cliques. This is clear from the characterization that a series parallel graph is
a subgraph of a partial-3-tree, i.e. a chordal graph with clique number at most 3, and it is clear that any chordal
graph has at most n maximal cliques. Thus, there are at most O(n) cliques of size 3 in a series parallel graph, at
most m cliques of size 2 (edges), and at most O(n) cliques of size 1 (vertices). This implies the result. �

Remark 29. It is likely possible, with a slightly more sophisticated accounting, that the number of maximal cliques
for a graph in G is in fact O(n).

As in the chordal case, it is of interest to find the smallest number of edges that can be added to a given graph, so
that the resulting graph is in the class G. The authors are not aware of any results which indicate that this problem
is asymptotically more tractable than completing to a chordal graph, though clearly fewer edges are required. It is
likely that algorithms for finding small chordal completions can be modified to find small completions for graphs
in our class.
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