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Abstract

Inverse optimization is the problem of determining the values of missing input parameters
for an associated forward problem that are closest to given estimates and that will make a given
target vector optimal. This study is concerned with the relationship of a particular inverse mixed
integer linear optimization problem (MILP) to both the forward problem and the separation
problem associated with its feasible region. We show that a decision version of the inverse MILP
in which a primal bound is verified is coNP–complete, whereas primal bound verification for the
associated forward problem is NP–complete, and that the optimal value verification problems for
both the inverse problem and the associated forward problem are complete for the complexity
class DP. We also describe a cutting-plane algorithm for solving inverse MILPs that illustrates
the close relationship between the separation problem for the convex hull of solutions to a given
MILP and the associated inverse problem. The inverse problem is shown to be equivalent to
the separation problem for the radial cone defined by all inequalities that are both valid for the
convex hull of solutions to the forward problem and binding at the target vector. Thus, the
inverse, forward, and separation problems can be said to be equivalent.

Keywords: Inverse optimization, mixed integer linear optimization, computational complexity,
polynomial hierarchy

1 Introduction

In this paper, we study the relationship of the inverse integer linear optimization problem to both
the optimization problem from which it arose, which we refer to as the forward problem, and the
associated separation problem. We show that these three problems have a strong relationship from
an algorithmic standpoint by describing a cutting-plane algorithm for the inverse problem that
uses the forward problem as an oracle and also solves the separation problem. From a complexity
standpoint, we show that certain decision versions of these three problems are all complete for the
complexity class DP, introduced originally by Papadimitriou and Yannakakis [1982]. Motivated
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by this analysis, we argue that the optimal value verification problem is a more natural decision
problem to associate with many optimization problems and that DP may provide a more appropriate
class in which to place difficult discrete optimization problems than the more commonly cited NP-
hard.

An optimization problem is that of determining a member of a feasible set (an optimal solution)
that minimizes the value of a given objective function. The feasible set is typically described as the
points in a vector space satisfying a given set of equations, inequalities, and disjunctions (usually
in the form of a requirement that the value of a certain element of the solution take on values in a
discrete set).

An inverse optimization problem, in contrast, is a related problem in which the description of the
original forward optimization problem is incomplete (some parameters are missing or cannot be
observed), but a full or partial solution can be observed. The goal is to determine values for the
missing parameters with respect to which the given solution would be optimal for the resulting
complete problem. Estimates for the missing parameters may be given, in which case the goal is
to produce a set of parameters that is as close to the given estimates as possible by some metric.

The forward optimization problem of interest in this paper is the mixed integer linear optimization
problem

max
x∈S

d>x, (MILP)

where d ∈ Qn and
S = {x ∈ Rn | Ax ≤ b} ∩ (Zr × Rn−r)

for A ∈ Qm×n, b ∈ Qm and for some nonnegative integer r. In the case when r = 0, (MILP) is
known simply as a linear optimization problem (LP).

One can associate a number of different inverse problems with (MILP), depending on what parts of
the description (A, b, d) are unknown and what form the objective function of the inverse problem
takes. Here, we study the case in which the objective function d of the forward problem is the
unknown element of the input, but in which A and b, along with a target vector x0 ∈ Qn, are given.
A feasible solution to the inverse problem (which we refer to as a feasible objective) is any d̂ ∈ Rn
for which d̂>x0 = maxx∈S d̂

>x.

It is important in the analysis that follows to be precise about the assumptions on the target vector
x0. Our initial informal statement of the problem implicitly assumed that x0 ∈ S, since otherwise,
x0 cannot technically be an optimal solution, regardless of the objective function chosen. On the
other hand, neither the more precise mathematical definition given in the preceding paragraph nor
the mathematical formulations we introduce shortly require x0 ∈ S and both can be interpreted
even when x0 6∈ S. As a practical matter when solving inverse problems in practice, this subtle
distinction is usually not very important, since membership in S can be verified in a preprocessing
step if necessary. However, in the context of complexity analysis and in considering the relationship
of the inverse problem to the related separation and optimization problems, this point is important
and we return to it. For example, if we do not make this assumption, the inverse optimization
problem can be seen to be equivalent to both the separation problem and the problem of verifying
a given dual bound on the optimal solution value of an MILP.

For these and other reasons that will become clear, we do not assume x0 ∈ S, but this may make
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some aspects of what follows a bit ambiguous. To resolve any ambiguity, we replace S with the
augmented set S+ = S ∪ {x0}, when appropriate, in the remainder of the paper.

1.1 Formulations

We now present several mathematical formulations of what we refer to from now on as the inverse
mixed integer linear optimization problem (IMILP). A straightforward formulation of this problem
that explains why we refer to the general class of problems as “inverse” problems is as that of
computing the mathematical inverse of a function that is parametric in some part of the input to
a given problem instance. In this case, the relevant function is

φ(d) = argmaxx∈S+ d
>x.

In terms of the function φ, a feasible objective is any element of the preimage φ−1(x0). To make
the IMILP an optimization problem in itself, we add an objective function f : Qn → Q, to obtain
the general formulation

min
d∈φ−1(x0)

f(d). (INV)

The traditional objective function used for inverse problems in the literature is f(d) := ‖c − d‖,
the minimum norm distance from d to a given estimated objective function c ∈ Qn (the specific
norm is not important for defining the problem, but we assume a p-norm when proving the formal
results). This choice of objective, although standard, has some nonintuitive properties. First, it
is not scale-invariant—scaling a given feasible objective d̂ changes the resulting objective function
value. In other words, f(d̂) 6= f(λd̂) for λ 6= 1, so d̂ and λd̂ do not have the same objective function
value, although it is clear that d̂ and λd̂ are equivalent solutions in most settings. Second, the
objective function value is always nonnegative. Both these properties have implications we discuss
further below.

The formulation (INV) does not suggest any direct connection to existing methodology for solv-
ing mathematical optimization problems, so we next discuss several alternative formulations of
the problem as a standard mathematical optimization problem. We first consider the following
formulation of the IMILP as the semi-infinite optimization problem

min
d

‖c− d‖,

s.t. d>x ≤ d>x0 ∀x ∈ S.
(IMILP)

As in the first formulation, d is a vector of variables, while c ∈ Qn is the given estimated objective
function. Note that in (IMILP), if we instead let x0 vary, replacing it with a variable x, and
interpret d as a fixed objective function, replacing ‖c − d‖ with the objective d>x of the forward
problem (MILP), we get a reformulation of the forward problem (MILP) itself. This formulation
can be made finite, in the case that S is bounded, by replacing the possibly infinite set of inequalities
with only those corresponding to the extreme points of conv(S). In the unbounded case, we also
need to include inequalities corresponding to the extreme rays.

Problem (IMILP) can also be formulated as a conic optimization problem. Although this is not
the traditional way of describing the problem mathematically, it is arguably the most intuitive
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representation and is the one that best highlights the underlying mathematical structure. The
following cones and related sets all play important roles in what follows:

K := {(y, d) ∈ Rn+1 | ‖c− d‖ ≤ y},
K(γ) := {d ∈ Rn | (γ, d) ∈ K},
K∗(γ) := {x ∈ Rn | d>(x0 − x) ≤ 0 ∀d ∈ K(γ)},
C(x0) := cone(S+ − {x0}) = cone({x− x0 | x ∈ S}), and

C◦(x0) := {d ∈ Rn | d>(x− x0) ≤ 0 ∀x ∈ S}.

Here, K is a norm cone, while K(γ) is a ball with center c and radius γ that is a level set of K
and contains vectors whose objective value in (IMILP) is at most γ. K∗(γ) is the set consisting of
points, not necessarily in S, that have an objective function value greater than or equal to that of
x0 for all the vectors in K(γ). K∗(γ) can also be seen as the radial cone obtained by translating
the dual of cone(K(γ)) from the origin to x0 (this is the reason for the slightly abused notation
that is typically used to denote the dual of a cone).

The set C◦(x0) is the set of feasible objectives of (IMILP) with target vector x0 and is precisely the
polar of C(x0). C(x0), on the other hand, is a translation to the origin of the radial cone that is the
intersection of the half-spaces associated with the facet-defining inequalities valid for conv(S+) that
are binding at x0. Equivalently, it is the radial cone with vertex at x0 generated by rays x− x0 for
all x ∈ S. The notational dependence on x0 in both sets is for convenience later when various target
vectors will be constructed in the reductions used in the complexity proofs. We should also point
out that C◦(x0) is referred to as the normal cone at x0 in convex analysis and would be denoted
as Nconv(S+)(x

0) in the standard notation [Rockafellar, 1970]. Due to the obvious connections with
the theory of polarity in discrete optimization, however, we maintain our alternative notation here.

Finally, in terms of the cones and sets introduced, (IMILP) can be reformulated as

min
d∈K(y)∩C◦(x0)

y. (IMILP-C)

Figure 1 illustrates the geometry of the inverse MILP. Here, S is the discrete set indicated by the
black dots. The estimated objective function is c = (0, 2) and the target vector is x0 = (3, 1). The
convex hull of S and the cone C◦(x0) (translated to x0) are shaded. The ellipsoids show the sets
of points with a fixed distance to x0 + c for a given norm. The (unique) optimal solution for this
example is vector d∗, which is also the unique point of intersection of K(‖c− d∗‖) and C◦(x0). The
point x0 + d∗ is also illustrated.

Figure 2 presents a more detailed picture of how the various cones and sets introduced so far are
related by displaying sets conv(S), C◦(x0), cone(K(γ)), and K∗(γ) for four different two-dimensional
inverse problems with Euclidean norm. Notions of duality that underlie many of the concepts
discussed in the paper can be seen in the relationships between these sets. K∗(γ) and S can be
thought of as being in the “primal space” with respect to the original problem (the space of primal
solutions), whereas the cone C◦(x0) and the ball K(γ) can be thought of as being in the “dual
space,” the space of directions. In the context of the inverse problem, these roles are reversed, e.g.,
C◦(x0) is the set of primal solutions for the inverse problem.

The interpretation of the feasible region of (IMILP) as the polar of C(x0) leads to a third formulation
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Figure 1: Two-dimensional inverse MILP

in terms of the so-called 1-polar of conv(S), defined as

P1 = {d ∈ Rn | d>x ≤ 1 ∀x ∈ conv(S)}.

When conv(S) is full-dimensional and 0 ∈ int (conv(S)), the 1-polar is the set of all normalized in-
equalities valid for conv(S) (see [Schrijver, 1986] for definitions). Under these assumptions, (IMILP)
can also be reformulated as

min
d,ρ

‖c− ρd‖

s.t. d ∈ P1,

d>x0 ≥ 1, (IMILP-1P)

ρ ≥ 0.

In (IMILP-1P), ρ is a multiplier that allows for scaling of the members of the 1-polar (which are
normalized) in order to improve the objective function value, but otherwise plays no important
role. It would seem to be more natural to require ‖c‖ = 1 or normalize in some other way to avoid
this scaling, but the presence of this scaling variable highlights that the usual formulation does have
this rather unnatural feature. When d ∈ P1, the single constraint d>x0 ≥ 1 is, in effect, equivalent
to the exponential set of constraints in (IMILP), and ensures d is a feasible objective. Observe also
that relaxing the constraint d>x0 ≥ 1 yields a problem similar to the classical separation problem,
but with a different objective function. We revisit this idea in Section 2.

Note that when conv(S+) is not full-dimensional, any objective vector in the subspace orthogonal
to the affine space containing conv(S+) is a feasible objective for the inverse problem. If we let cS+
be the projection of c onto the smallest affine space that contains S+ and c⊥S+ be the projection of
c onto the orthogonal subspace, so that c = cS+ + c⊥S+ , then whenever x0 is in the relative interior
of conv(S), c⊥S will be an optimal solution. On the other hand, when conv(S) is full-dimensional,
the unique optimal solution is 0 whenever x0 is in the interior of conv(S).
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(a) Instance 1 (b) Instance 2

(c) Instance 3 (d) Instance 4

Figure 2: Pictorial illustration of sets conv(S), C◦(x0), K(γ), K∗(γ) for 4 IMILP instances

1.2 The Separation Problem

The close relationship between the inverse problem (IMILP) and the separation problem for conv(S)
should already be evident, but we now introduce this idea formally. Given an x̂ ∈ Qn, the separation
problem for conv(S) is to determine whether x̂ ∈ conv(S) and, if not, to generate a hyperplane
separating x̂ from conv(S). When x̂ 6∈ conv(S) and such a separating hyperplane exists, we can
associate with each such hyperplane a valid inequality, defined as follows.

Definition 1. A valid inequality for a set Q is a pair (a, b) ∈ Qn+1 such that Q ⊆ {x ∈ Rn |
a>x ≤ b}. The inequality is said to be violated by x̂ ∈ Qn if a>x̂ > b.

Generating a separating hyperplane is equivalent to determining the existence of d̂ ∈ Rn such that

d̂>x̂ > d̂>x ∀x ∈ S.

In such a case, (d̂>,maxx∈S d̂
>x) is an inequality valid for conv(S) that is violated by x̂ (therefore

proving that x̂ 6∈ conv(S)). On the other hand, d̂ is feasible for (IMILP) if and only if

d̂>x ≤ d̂>x0 ∀x ∈ S,
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which similarly means that (d̂>, d̂>x0) is an inequality valid for conv(S). Thus, feasible solutions
to (IMILP) can also be viewed as an inequality valid for conv(S) binding at x0. Moreover, when
x0 6∈ conv(S), (d̂>,maxx∈S d̂

>x) is an inequality valid for conv(S) that is violated by x0. This
provides an informal argument for the equivalence of (IMILP) and the separation problem. More
will be said about this in the following sections.

1.3 Previous Work

There are a range of different flavors of the inverse optimization problem. The inverse problem we
investigate is to determine objective function coefficients that make a given solution optimal, but
other flavors of inverse optimization include constructing a missing part of either the coefficient
matrix or the right-hand sides. Heuberger [2004] provides a detailed survey of different types of
inverse combinatorial optimization problems, including types for which the inverse problem seeks
parameters other than objective function coefficients. A survey of solution procedures for specific
combinatorial problems is provided, as well as a classification of the inverse problems that are
common in the literature. According to this classification, the inverse problem we study in this
paper is an unconstrained, single feasible objective, and unit weight norm inverse problem. Our
results can be straightforwardly extended to some related cases, such as multiple given solutions.

Cai et al. [1999] examine an inverse center location problem in which the aim is to construct
part of the coefficient matrix that minimizes the distances between nodes for a given solution.
It is shown that even though the center location problem is polynomially solvable, this particular
inverse problem is NP-hard. This is done by way of a polynomial transformation of the satisfiability
problem to the decision version of the inverse center location problem. This analysis indicates that
the problem of constructing part of the coefficient matrix is harder than the forward version of the
problem.

Huang [2005] examines the inverse knapsack problem and inverse integer optimization problems.
Pseudopolynomial algorithms for both the inverse knapsack problem and inverse problems for which
the forward problem has a fixed number of constraints are presented. The latter is achieved by
transforming the inverse problem to a shortest path problem on a directed graph.

Schaefer [2009] studies general inverse integer optimization problems. Using super-additive duality,
a polyhedral description of the set of all feasible objective functions is derived. This description has
only continuous variables but an exponential number of constraints. A solution method using this
polyhedral description is proposed. Finally, Wang [2009] suggests a cutting-plane algorithm similar
to the one suggested below and presents computational results on several test problems with an
implementation of this algorithm.

The case when the feasible set is an explicitly described polyhedron is well-studied by Ahuja and
Orlin [2001]. In their study, they analyze the shortest path, assignment, minimum cut, and mini-
mum cost flow problems under the `1 and `∞ norms in detail. They also conclude that the inverse
optimization problem is polynomially solvable when the forward problem is polynomially solvable.
The present study aims to generalize the result of Ahuja and Orlin to the case when the forward
problem is not necessarily polynomially solvable, as well as to make connections to other well-known
problems.
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In the remainder of the paper, we first introduce a cutting-plane algorithm for solving (IMILP) in
the case of the `∞ and `1 norms. In Section 2, we show that for these norms, the problem can be
expressed as an LP using standard techniques, albeit one with an exponential number of constraints.
The reformulation can then be readily solved using a standard cutting-plane approach, as observed
by Wang [2009]. On the other hand, in Section 4, we establish the computational complexity of
the problem and show that it is the same for any p-norm.

2 A Cutting-plane Algorithm

In this section, we describe a basic cutting-plane algorithm for solving (IMILP) under the `1 and `∞
norms. The algorithm is conceptual in nature and presented in order to illustrate the relationship
of the inverse problem to both the forward problem and the separation problem. A practical
implementation of this algorithm would require additional sophistication and the development of
such an implementation is not our goal in this paper.

The first step in the algorithm is to formulate (IMILP) explicitly as an LP using standard lineariza-
tion techniques. The objective function of the inverse MILP under the `1 norm can be linearized
by the introduction of variable vector y, and associated constraints as shown below.

z−1
1 = min

d,y,θ
θ

s.t. θ =
n∑
i=1

yi, (IMILP-L1a)

ci − di ≤ yi ∀i ∈ {1, 2, . . . , n}, (IMILP-L1b)

di − ci ≤ yi ∀i ∈ {1, 2, . . . , n}, (IMILP-L1c)

d>x ≤ d>x0 ∀x ∈ S. (IMILP-L1d)

For the case of the `∞ norm, the variable θ and two sets of constraints are introduced to linearize
the problem.

z−1
∞ = min

d,θ
θ

s.t. ci − di ≤ θ ∀i ∈ {1, 2, . . . , n}, (IMILP-INFa)

di − ci ≤ θ ∀i ∈ {1, 2, . . . , n}, (IMILP-INFb)

d>x ≤ d>x0 ∀x ∈ S. (IMILP-INFc)

Both (IMILP-L1) and (IMILP-INF) are continuous, semi-infinite optimization problems. To ob-
tain a finite problem, one can replace the inequalities (IMILP-L1d) and (IMILP-INFc) with con-
straints (1) and (2) involving the finite set E of extreme points and R of rays of the convex hull of
S.

d>x ≤ d>x0 ∀x ∈ E , (1)

d>r ≤ 0 ∀r ∈ R. (2)
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Although constraints (1) and (2) yield a finite formulation, the cardinality of E and R may still be
very large and generating them explicitly is likely to be very challenging. It is thus not practical
to construct this mathematical program explicitly via a priori enumeration. The cutting-plane
algorithm avoids explicitly enumerating the inequalities in the formulation by generating them
dynamically in the standard way. The algorithm described here is unsophisticated and although
versions of it have appeared in the literature, we describe it again to illustrate the basic principles at
work and to make the connection to a similar existing algorithm for solving the separation problem.

We describe the algorithm only for the case of (IMILP-INF), as the extension to (IMILP-L1) is
straightforward. We assume S is bounded, so that conv(S) has no extreme rays and R = ∅. As
previously observed, (IMILP-INF) is an LP with an exponential class (IMILP-INFc) of inequalities.
Nevertheless, the well-known result of Grötschel et al. [1993] tells us that (IMILP-INF) can be solved
efficiently using a cutting-plane algorithm, provided we can solve the problem of separating a given
point from the feasible region efficiently. The constraints (IMILP-INFa) and (IMILP-INFb) can be
explicitly enumerated, so we focus on generation of constraints (IMILP-INFc), which means we are
solving the separation problem for set C◦(x0). For an arbitrary d̂ ∈ Rn, this separation problem is
to either verify that d̂ ∈ C◦(x0) or determine a hyperplane separating d̂ from C◦(x0).

The question of whether d̂ ∈ C◦(x0) is equivalent to asking whether d̂>x ≤ d̂>x0 for all x ∈ S.
This can be answered by determining x∗ ∈ argmaxx∈S d̂

>x. When d̂>x∗ > d̂>x0, then x∗ yields a

new inequality valid for C◦(x0) that is violated by d̂. Otherwise, we have a proof that d̂ ∈ C◦(x0).
Hence, the separation problem for C◦(x0) is equivalent to the forward problem.

The algorithm alternates between solving a master problem and the separation problem just de-
scribed, as usual. The initial master problem is an LP obtained by relaxing the constraints (IMILP-INFc)
in (IMILP-INF). After solving the master problem, we attempt to separate its solution from the
set C◦(x0) and either add the violated inequality or terminate, as appropriate. More formally, the
master problem is to determine(

dk, θk
)
∈ argmin(d,θ) θ

s.t. ci − di ≤ θ ∀i ∈ {1, 2, . . . , n},
di − ci ≤ θ ∀i ∈ {1, 2, . . . , n},
d>x ≤ d>x0 ∀x ∈ Ek−1

(InvPk)

and the separation problem is to determine

xk ∈ argmaxx∈S d
k>x. (Pk)

Here, Ek = {x1, . . . , xk} are the points in S generated so far (which are generally assumed to be
extreme points of conv(S), but need not be in general). (InvPk) is a relaxation of (IMILP-INF)
consisting of only the valid inequalities corresponding to point in Ek. When (Pk) is unbounded,
then x0 is in the relative interior of conv(S) and d = c⊥S is an optimal solution, as mentioned earlier.
The overall procedure is given in Algorithm 1.

To understand the nature of the algorithm, observe that in iteration k, the master problem is
equivalent to an inverse problem in which S is replaced Ek. Equivalently, we are replacing C◦(x0)
with the restricted set C◦k(x0), taken to be the polar of Ck(x0) = cone(Ek − {x0}). Each member
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Algorithm 1 Cutting-plane algorithm for (IMILP-INF)

1: k ← 0, E1 ← ∅.
2: do
3: k ← k + 1.
4: Solve (InvPk) to determine dk, θk.
5: Solve (Pk) to determine xk or show that (Pk) is unbounded.
6: if (Pk) unbounded then
7: θ∗ ← ‖c‖∞, d∗ ← 0, STOP.
8: end if
9: Ek+1 ← Ek ∪ {xk}.

10: while dk>(xk − x0) > 0
11: θ∗ ←

∥∥c− dk∥∥∞, d∗ ← dk, STOP.

Figure 3: Feasible region and iterations of example problem

of S generated corresponds to a member of C(x0), so that the final product of the algorithm is a
(partial) description of C(x0) and hence a partial description of C◦(x0). This is analogous to the way
in which a traditional cutting-plane algorithm for solving the original forward problem generates a
partial description of conv(S) and highlights the underlying duality between the H-representation
and the V-representation of a polyhedron (see section 3.3).

We illustrate by considering a small example. Let c = (2,−1), x0 = (0, 3) and S be as in Figure 3,
where both x1 and x2 are integer and conv(S) is shown. The values of k, dk, and xk in iterations
1–3 are given in Table 1.

k Ek dk xk ‖c− dk‖∞
Initialization 1 ∅ (2,−1) (3, 0) 0
Iteration 1 2 {(3, 0)} (0.5, 0.5) (3, 1) 1.5
Iteration 2 3 {(3, 0), (3, 1)} (0.4, 0.6) (3, 1) 1.6

Table 1: k, dk, xk, and Ek values through iterations
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The (unique) optimal solution of this small example is d3 = (0.4, 0.6), and the optimal value is
θ∗ = ‖c− d3‖∞ = 1.6.

Figure 4 provides a geometric visualization of another small example, illustrating how the algorithm
would proceed when the set S is the collection of integer points inside the polyhedron marked in
blue. Here, the cone Ck(x0) is explicitly shown and its expansion can be seen as generators are
added.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 4: Pictorial illustration of Algorithm 1

Returning to the relationship of the inverse problem to the separation problem, observe that an
essentially unmodified version of Algorithm 1 also solves the generic separation problem for conv(S)
if we interpret x0 as the point to be separated rather than the target point. When solving the
separation problem, (InvPk) can be interpreted as the problem of separating x0 from conv(Ek). To
see this, note that the dual of (InvPk) is the problem of determining whether x0 can be expressed
as a convex combination of the members of Ek, i.e., the membership problem for conv(Ek). When
x0 6∈ conv(Ek), the Farkas proof of the infeasibility of this LP is an inequality valid for conv(Ek)
and violated by x0. (Pk) is then interpreted as the problem of determining whether that same
inequality is valid for the full feasible set conv(S), i.e., determining whether there is a member of
S that violates the inequality, exactly as in the inverse case.

Figure 5 illustrates the application of the algorithm for the instance from Figure 4. The only
modification is that we replace the objective function of the master problem (InvPk) with one
measuring the degree of violation of x0, which is a standard measure of effectiveness for generated
valid inequalities. Even without this modification, a violated valid inequality will be generated,
but the change is to show that the standard separation problem, in which there is no estimated
objective, can also be solved with this algorithm. Inequalities generated in this way are sometimes
called Fenchel cuts [Boyd, 1994].

3 Computational Complexity

In this section, we briefly review the major concepts in complexity theory and the classes into which
(the decision versions of) optimizations problems are generally placed, as well as provide archetypal
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5

Figure 5: Pictorial illustration of algorithm for generating Fenchel cut

examples of the kinds of problems that fall into these classes. We mainly follow the framework
of Garey and Johnson [1979], but since the material here will be familiar to most readers, we omit
many details and refer the reader to either Garey and Johnson [1979] or the sweeping introduction
to complexity given by Arora and Barak [2007] for a deeper introduction. We provide this brief,
self-contained overview here to emphasize some concepts that are important but lesser known in
the mathematical optimization literature. Among these are the definitions of the complexity classes
DP and ∆p

2, which play a role in our results below, as well as the distinction between the polynomial
Turing reductions introduced by Cook [1971] in his seminal work and the polynomial many-to-one
reductions introduced by Karp [1972].

The fundamentals of complexity theory and NP-completeness as laid out in the papers of Cook
[1971], Karp [1972], Edmonds [1971], and others provide a rigorous framework within which prob-
lems arising in discrete optimization can be analyzed. The origins of the theory can be traced back
to the earlier work on the Entscheidungsproblem by Turing [1937] and perhaps for that reason,
it was originally developed to analyze decision problems, e.g., problems where the output is YES
or NO. Although there exists a theory of complexity that applies directly to optimization prob-
lems [Krentel, 1987a, 1988, Vollmer and Wagner, 1995]), most analyses are done by converting the
optimization problem to an equivalent decision problem form.

The decision problem form typically used for most discrete optimization problems is that of deter-
mining whether a given primal bound is valid (upper bound in the case of minimization or lower
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bound in the case of maximization), though we argue later that verification of the optimal value
is more natural. For most problems of current practical interest, verification of the primal bound
is either in the class P or the class NP. Notable exceptions are the bilevel (and other multilevel)
optimization problems, whose decision versions are in higher levels of the so-called polynomial-time
hierarchy [Stockmeyer, 1976a].

3.1 Definitions

In the framework of Garey and Johnson [1979], an algorithm is a procedure implemented using the
well-known logic of a deterministic Turing machine (DTM), a simple model of a computer capable
of sequentially executing a single program (we introduce a “nondeterministic” variant below). The
input to the algorithm is a string in a given alphabet, which we assume is simply {0, 1}, since
this is the alphabet on all modern computing devices. As such, the set of all possible input
strings is denoted {0, 1}∗. A problem (or problem class) is defined by describing what set of input
strings (called instances) should produce the answer YES. In other words, each subset L of {0, 1}∗,
formally called a language in complexity theory, defines a different problem for which algorithms
can be developed and analyzed. An algorithm is specified by describing its implementation as a
DTM and is said to solve such a problem if the DTM correctly outputs YES if and only if the input
string is in L. In this case, we say the DTM recognizes the language L and that members of L are
the instances accepted by the DTM.

Running Time and Complexity. The running time of an algorithm for a given problem is the
worst-case number of steps/operations required by the associated DTM taken over all instances of
that problem. This worst case is usually expressed as a function of the “size” of the input, since the
worst case would otherwise be unbounded for any class with arbitrarily large instances. The size of
the input is formally defined to be its encoding length, which is the length of the string representing
the input in the given alphabet. Since we take the alphabet to be {0, 1}, the encoding length of an
integer n is

〈n〉 = 1 + dlog2(|n|+ 1)e.

Further, the encoding length of a rational number r = p/q is 〈r〉 = 〈p〉 + 〈q〉. Encoding lengths
play an important role in the complexity proofs of Section 4 below. We discuss these concepts in
more detail in Section 3.3, but refer the reader to the book of Grötschel et al. [1993] for detailed
coverage of definitions and concepts.

The computational complexity of a given problem is the running time (function) of the “best” algo-
rithm, where best is defined by ordering the running time functions according to their asymptotic
growth rate (roughly speaking, two functions are compared asymptotically by taking the limit of
their ratio as the instance size approaches infinity). For most problems of practical interest, the
exact complexity is not known, so another way of comparing problems is by placing them into
equivalence classes according to the notion of equivalence yielded by the operation of reduction.

Reduction. A reduction is the means by which an algorithm for one class of problems (specified
by, say, language L1) can be used as a subroutine within an algorithm for another class of problems
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(specified by, say, language L2). It is also the means by which problem equivalence and complexity
classes are defined.

In what follows, we refer to two notions of reduction, and the difference between them is important.
The notion that is most relevant in the theory of NP-completeness is the polynomial many-to-one
reduction of Karp [1972], commonly referred to as Karp reduction. There is a Karp reduction
from a problem specified by language L2 to a problem specified by a language L1 if there exists a
mapping f : {0, 1}∗ → {0, 1}∗ such that

• f(x) is computable in time polynomial in 〈x〉 and

• x ∈ L2 if and only if f(x) ∈ L1.

Thus, if we have an algorithm (DTM) for recognizing the language L1 and such a mapping f , we
implicitly have an algorithm for recognizing L2. In this case, we say there is a Karp reduction from
L2 to L1.

A second notion of reduction is the polynomial Turing reduction, commonly referred to as Cook
reduction, introduced by Cook [1971] in his seminal work. This type of reduction is defined in terms
of oracles. An oracle is a conceptual subroutine that can solve a given problem or class of problems
in constant time. Roughly speaking, the oracle complexity of a problem is its complexity given
the theoretical existence of a certain oracle. There is a Cook reduction from a problem specified
by language L2 to a problem specified by language L1 if there is a polynomial-time algorithm for
solving L2 that utilizes an oracle for L1. Hence, the only requirement is that the number of calls
to the oracle must be bounded by a polynomial. The difference between Karp reduction and Cook
reduction is that Karp reduction can be thought of as allowing only a single call to the oracle as
the last step of the algorithm, whereas Cook reduction allows a polynomial number of calls to the
oracle. There are a range of other notions of reduction that utilize other different bounds on the
number of oracle calls [Krentel, 1987b].

Decision problems specified by languages L1 and L2 are said to be equivalent if there is a reduction
in both directions—L1 reduces to L2 and L2 reduces to L1. Equivalence can be defined using
either the Karp or Cook notions of reduction. It is conjectured (though not known; see Beigel and
Fortnow [2003]) that these notions of equivalence are distinct and yield different equivalence classes
of problems. In fact, assuming that NP 6= coNP (which is thought to be highly likely), they must be
distinct notions, since a problem specified by any language is trivially seen to be Cook-equivalent
to the problem specified by its complement. To Cook-reduce one problem to the other, simply
solve the complement and negate the answer. Hence, Cook reduction cannot be used to separate
NP from coNP. This ability to separate NP from coNP makes Karp reduction a stronger notion
and is part of the rationale for its use as the basis for the theory of NP-completeness in Garey and
Johnson [1979].

A problem in a complexity class is said to be complete for the class if every other problem in the
class can be reduced to it. Informally, this means that the complete problems are at least as difficult
to solve as any other problem in the class (in a worst-case sense). Completeness of a given problem
in a given complexity class can be shown by providing a reduction from a problem already known
to be a complete problem for the given class. Equivalence, as described above, is an equivalence
relation in the mathematical sense and can thus be used to define equivalence classes for problems.
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The complete problems for a class are exactly those in the largest such equivalence class that is
contained in the class. For the reasons described above, the set of complete problems is different
under Karp and Cook, assuming NP 6= coNP (see Lutz and Mayordomo [1995]).

Certificates. Finally, we have the concept of a certificate. A certificate is a string that, when
concatenated with the original input string, forms a (longer) input string to an associated decision
problem, which we informally call the verification problem, that yields the same output as the
original one (but can presumably be solved more efficiently). A certificate can be viewed as a proof
of the result of a computation. When produced by an algorithm for solving the original problem,
the certificate serves to certify the result of that computation after the fact. The efficiency with
which such proofs can be checked is another property of classes of problems (like the running time)
that can be used to partition problems into classes according to difficulty. We discuss more about
the use of certificates and their formal definition in particular contexts below.

3.2 Complexity Classes

Class P. The most well-known class is P, the class of decision problems that can be solved in
polynomial time on a DTM [Stockmeyer, 1976a]. Alternatively, the class P can be defined as the
smallest equivalence class of problems according to the polynomial equivalence relation described
earlier. Note that for problems in P, there is no distinction between equivalence according to Karp
and Cook. The decision versions of linear optimization problems (equivalent to the problem of
checking whether a system of inequalities has a solution), the decision versions of minimum cost
network flow problems, and other related problems are all in this class. The well-known problem
of checking whether a system of linear inequalities has a feasible solution is a prototypical problem
in P.

Class NP. NP is the class of problems that can be solved in polynomial time by a nondetermin-
istic Turing machine (NDTM). Informally, an NDTM is a Turing machine with an infinite number
of parallel processors. With such a machine, if there is a branch in the algorithm representing
two possible execution paths, we can conceptually follow both branches simultaneously (in paral-
lel), whereas we would need to explore the branches sequentially in a DTM. A search algorithm,
for example, may be efficiently implemented on an NDTM by following all possible search paths
simultaneously, even if there are exponentially many of them.

The running time of an algorithm on an NDTM is the number of steps it takes for some execution
path to reach an accepting state (a state that proves the correct output is YES). As a concrete
example, consider the problem of determining whether there exists a binary vector satisfying a
system of linear inequalities. A search algorithm that enumerates the exponentially many solutions
through a simple depth-first recursion would have exponential running time if implemented using a
DTM, while the running time on an NDTM would be the time to construct and check the feasibility
of one solution.

This last observation leads to an alternative definition of NP as the class of decision problems for
which there exists a certificate for which there is a DTM that solves the verification problem in
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time polynomial in the length of the input when the output is YES. In fact, these two informal
definitions can be formalized and shown to be equivalent.

Intuitively, the idea is that the certificate can be taken to be an encoding of an execution path that
leads to a program state that proves the output is YES. Thus, the (deterministic) algorithm for
verification is similar to the original nondeterministic algorithm except that it is able to avoid the
“dead ends” which are explored in parallel in a nondeterministic algorithm. Formally, if L ∈ NP,
then there exists LC ∈ P such that

x ∈ L⇔ ∃y ∈ {0, 1}∗ such that (x, y) ∈ LC and

〈y〉 is bounded by some polynomial function of 〈x〉.

In this case, y is the certificate. Because such a certificate has an encoding length polynomial in
the encoding length of x and can be verified in time polynomial in the encoding length of x, such
certificates are sometimes said to be short and NP is said to be the class of decision problems having
a “short certificate.”

In general, problems in NP concern existential questions, such as whether there exists an element
of a set with a given property (alternatively, whether the set of all elements with a given property
is nonempty). Even when no algorithm for finding such an element is known, we may still be able
to efficiently verify that an element given to us has the desired property. For example, the primal
bound verification1 problem for (MILP) (usually referred to in the literature as the decision version
of MILP) is a prototypical problem in this class and is defined as follows.

Definition 2. MILP Primal Bound Verification Problem (MPVP)

• INPUT: α ∈ Q, d ∈ Qn, A ∈ Qm×n, b ∈ Qm, and r ∈ N, where (A, b, r) is an encoding of the
set S in (MILP) and (d,S) is the input to (MILP).

• OUTPUT: YES, if there exists x ∈ S such that d>x ≥ α, NO otherwise.

The MPVP is in NP since, when the answer is YES, there always exists x ∈ S that is itself such a
certificate, i.e., has encoding length polynomially bounded by the encoding length of the problem
input and can be verified in polynomial time to be in S [Papadimitriou, 1981].

The set of problems complete for NP (as defined earlier) is known simply as NP-complete. The first
problem shown to be complete for class NP was the satisfiability (SAT) problem [Cook, 1971]. It
was proved to be complete by providing a Karp reduction of any problem that can be solved by an
NDTM to the SAT problem. The MPVP is complete for NP because SAT can be Karp-reduced
to it. It is well-known that the question of whether P = NP is currently unresolved, though it is
widely believed that they are distinct classes [Aaronson, 2017].

Class coNP. The class coNP consists of languages whose complement is in NP. Just as problems
in NP typically concern existential questions, problems in coNP usually concern the question of
whether all elements of a set have a given property (alternatively, whether the set of all elements

1The term “verification” is used here in a slightly different way than it is used in the context of certificates,
although the uses are related and the meaning can be generalized to include both uses.
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with a given property is empty). As such, these problems are not expected to have certificates
(for the YES answer) that can be efficiently verified in the sense defined earlier. Rather, problems
in this class are those for which there exists a string that can be used to certify the output (in
time polynomial in the encoding length of the input) when the answer is NO. For example, we
may produce an element of the set that doesn’t have the desired property. The MILP Dual Bound
Verification Problem is an example of a prototypical problem in coNP.

Definition 3. MILP Dual Bound Verification Problem (MDVP)

• INPUT: α ∈ Q, d ∈ Qn, A ∈ Qm×n, b ∈ Qm, and r ∈ N, where (A, b, r) is an encoding of the
set S in (MILP) and (d,S) is the input to (MILP).

• OUTPUT: YES, if d>x ≤ α for all x ∈ S, NO otherwise.

The input to the MDVP is (α, d, A, b, r), as in the case of the MPVP. The MDVP is in coNP
because when the output is NO, there must be a member of S with an objective value strictly
greater than α, which serves as the certificate.

Class DP. While NP and coNP are both well-known classes, the class DP introduced by Pa-
padimitriou and Yannakakis [1982] is not as well-known. It is the class of problems associated with
languages that are intersections of a language from NP and a language from coNP. A prototypical
problem complete for DP is the MILP Optimal Value Verification Problem (MOVP), defined as
follows.

Definition 4. MILP Optimal Value Verification Problem (MOVP)

• INPUT: α ∈ Q, d ∈ Qn, A ∈ Qm×n, b ∈ Qm, and r ∈ N, where (A, b, r) is an encoding of the
set S in (MILP) and (d,S) is the input to (MILP).

• OUTPUT: YES, if maxx∈S d
>x := α, NO otherwise.

It is easy to see that the language associated with MOVP is the intersection of the languages of
the MPVP and the MDVP, since the output of MOVP is YES if and only if the outputs of both
the MPVP and the MDVP are YES, i.e., α is both a primal and a dual bound for (MILP).

In view of our later results, one outcome of this work is the suggestion that the MOVP is a more
natural decision problem to associate with discrete optimization problems than the more traditional
MPVP and should be more widely adopted in proving complexity results. Most algorithms for
discrete optimization are based on iterative construction of separate certificates for the validity
of the primal and dual bound, which must be equal to certify optimality. Given certificates for
the primal and dual bound verification problems, a certificate for the optimal value verification
problem can thus be constructed directly. The class DP thus contains the optimal value verification
problem associated with (MILP), whereas it is the associated MPVP that is contained in the class
NP-complete. We find this is somewhat unsatisfying, since the original problem (MILP) is only
Cook-reducible to the MPVP.
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Figure 6: Complexity classes ∆p
2, DP, NP, coNP, and P, assuming P 6= NP

The Polynomial Hierarchy. Further classes in the so-called polynomial-time hierarchy (PH),
described in the seminal work of Stockmeyer [1976a], can be defined recursively using oracle com-
putation. The notation AB is used to denote the class of problems that are in A, assuming the
existence of an oracle for problems in class B.

Using this concept, ∆p
2 is the class of decision problems that can be solved in polynomial time given

an NP oracle, i.e., the class PNP. This class is a member of the second level of PH. Further levels
are defined according to the following recursion.

∆p
0 := Σp

0 := Πp
0 := P,

∆p
k+1 := PΣpk ,

Σp
k+1 := NPΣpk , and

Πp
k+1 := coNPΣpk .

PH is the union of all levels of the hierarchy. There is also an equivalent definition that uses
the notion of certificates. Roughly speaking, each level of the hierarchy consists of problems with
certificates of polynomial size, but whose verification problem is in the class one level lower in the
hierarchy. In other words, the problem of verifying a certificate for a problem in Σp

i is a problem
in the class Σp

i−1 [Stockmeyer, 1976b].

Figure 6 illustrates class ∆p
2 relative to DP, NP, coNP, and P, assuming P 6= NP. If P = NP,

we conclude that all classes are equivalent, i.e., ∆p
2 = DP = NP = coNP = P. This theoretical

possibility is known as the collapse of PH to its first level [Papadimitriou, 2003] and is thought to
be highly unlikely. A prototypical problem complete for ∆p

2 is the problem of deciding whether a
given MILP has a unique solution[Papadimitriou, 2003].

3.3 Optimization and Separation

The concepts of reduction and polynomial equivalence can be extended to problems other than
decision problems, but this requires some additional care and machinery. Decision problems can be
(and often are) reduced to optimization problems, in a fashion similar to that described earlier, in
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an attempt to classify them. When a problem that is complete for a given class in the polynomial
hierarchy can be Karp-reduced to an optimization problem, we refer to the optimization problem
as hard for the class. When a decision problem that is complete for NP can be Karp-reduced to an
optimization problem, for example, the optimization problem is classified as NP-hard. This does
not, however, require that the decision version of this optimization problem is a member of the
class itself. In reality, it may be on some higher level of the polynomial hierarchy. Hardness results
can therefore be somewhat misleading in some cases.

In their foundational work, Grötschel et al. [1993] develop a detailed theoretical basis for the claim
that the separation problem for an implicitly defined polyhedron is polynomially equivalent to the
optimization problem over that same polyhedron. This is done very carefully, beginning from certain
decision problems and proceeding to show their equivalence to related optimization problems. The
notion of reduction used, however, is Cook reduction, which means that the results do not directly
tell us whether there are decision versions of the problems discussed that are complete for the same
class within PH. The results discussed below, in contrast, use Karp reduction to show that there
are decision versions of the inverse and forward optimization problems that are complete for the
same complexity class within PH.

Using an optimization oracle to solve the separation problem (and vice versa) involves convert-
ing between different representations of a given polyhedron. In particular, we consider (implicit)
descriptions in terms of the half-spaces associated with facet-defining valid inequalities, so-called H-
representations, and in terms of generators (vertices and extreme rays), so-called V-representations.
There is a formal mathematical duality relating these two forms of polyhedral representation, which
underlies the notion of polarity mentioned earlier and is at the heart of the equivalence between
optimization and separation. It is this very same duality that is also at the heart of the equivalence
between optimization problems and their inverse versions. This can be most clearly seen by the
fact that the feasible region C◦(x0) of the inverse problem is the polar of C(x0), a conic set that
contains conv(S), as we have already described.

The framework laid out by Grötschel et al. [1993] emphasizes that the efficiency with which the
various representations can be manipulated algorithmically depends inherently and crucially on,
among other things, the encoding length of the elements of these representations. For the purposes
of their analysis, Grötschel et al. [1993] defined the notions of the vertex complexity and facet
complexity of a polyhedron, which we repeat here, due to their relevance in the remainder of the
paper.

Definition 5. (Grötschel et al. [1993])

(i) A polyhedron P ⊆ Rn has facet complexity of at most ϕ if there exists a rational system of
inequalities (known as an H-representation) describing the polyhedron in which the encoding
length of each inequality is at most ϕ.

(ii) Similarly, the vertex complexity of P is at most ν if there exist finite sets V,E such that
P = conv(V ) + cone(E) (known as a V-representation) and such that each of the vectors in
V and E has encoding length at most ν.

It is important to point out that these definitions are not given in terms of the encoding length
of a full description of P because P may be an implicitly defined polyhedron whose description
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is never fully constructed. What is explicitly constructed are the components of the description
(extreme points and facet-defining inequalities). The importance of the facet complexity and vertex
complexity in the analysis is primarily that they provide bounds on the norms of these vectors.
The ability to derive such bounds is a crucial element in the overall framework they present. The
following are relevant results from Grötschel et al. [1993].

Proposition 1. (Grötschel et al. [1993])

(i) (1.3.3) For any r ∈ Q, 2−〈r〉+2 ≤ |r| ≤ 2〈r〉−1 − 1.

(ii) (1.3.3) For any x ∈ Qn, ‖x‖p < 2〈x〉−n for p ≥ 1.

(iii) (6.2.9) If P is a polyhedron with vertex complexity at most ν and (a, b) ∈ Zn+1 is such that

a>x ≤ b+ 2−ν−1

holds for all x ∈ P, then (a, b) is valid for P.

In other words, the facet complexity and the encoding lengths of the vectors involved specify a
“granularity” that can allow us to, for example, replace a “<” with a “≤” if we can bound the
encoding length of the numbers involved.

Utilizing the above definitions, the result showing the equivalence of optimization and separation
can be formally stated as follows.

Theorem 1. (Grötschel et al. [1993]) Let P ⊆ Rn be a polyhedron with facet complexity ϕ. Given
an oracle for any one of

• the dual bound verification problem over P with linear objective coefficient d ∈ Qn,

• the separation problem for P with respect to x̂ ∈ Qn, or

• the primal bound verification problem for P with linear objective coefficient d ∈ Qn,

there exists an oracle polynomial-time algorithm for solving either of the other two problems. Fur-
ther, all three problems are solvable in time polynomial in n, ϕ, and either 〈d〉 (in the case of primal
or dual bound verification) or 〈x̂〉 (in the case of separation).

The problem of verifying a given dual bound was called the violation problem by Grötschel et al.
[1993]. The above result refers only to the facet complexity ϕ, but we could also replace it with
the vertex complexity ν, since it is easy to show that ν ≤ 4n2ϕ. In the remainder of the paper, we
refer to the “polyhedral complexity” whenever the facet complexity and vertex complexity can be
used interchangeably.

4 Complexity of Inverse MILP

In this section, we apply the framework discussed in Section 3 to analyze the complexity of the
inverse MILP. We follow the traditional approach and describe the complexity of the decision
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versions. In addition to the standard primal bound verification problem, we also consider the dual
bound and optimal value verification problems. We show that the primal bound, dual bound,
and optimal value verification problems for the inverse MILP are in the complexity classes coNP-
complete, NP-complete, and DP-complete, respectively. Hence, the classes associated with primal
and dual bounding problems are reversed when going from MILP to inverse MILP, while the optimal
value verification problems are both contained in the same class.

4.1 Polynomially Solvable Cases

The result of Ahuja and Orlin [2001] can be applied directly to observe that there are cases of the
inverse MILP that are polynomially solvable. In particular, they showed that the inverse problem
can be solved in polynomial time whenever the forward problem is polynomially solvable.

Theorem 2. (Ahuja and Orlin [2001]) If an optimization problem is polynomially solvable for
each linear cost function, then the corresponding inverse problems under the `1 and `∞ norms are
polynomially solvable.

Ahuja and Orlin [2001] use Theorem 1 from Grötschel et al. [1993] to conclude that inverse LP, in
particular, is polynomially solvable. The separation problem in this case is an LP of polynomial
input size and is hence polynomially solvable. The theorem of Grötschel et al. [1993] shows that
both problems are in the class P, since Karp and Cook reductions are equivalent for problems in P.
Theorem 2 also indicates that if a given MILP is polynomially solvable, then the associated inverse
problem is also polynomially solvable.

4.2 General Case

In the general case, the MILP constituting the forward problem is not known to be polynomially
solvable and so we now consider MILPs whose decision versions are complete for NP. Applying the
results of Grötschel et al. [1993] straightforwardly, as Ahuja and Orlin [2001] did, we can easily
show that (IMILP-L1) and (IMILP-INF) can be solved in polynomial time, given an oracle for the
MPVP, as stated in the following theorem.

Theorem 3. Given an oracle for the MPVP, (IMILP-L1) and (IMILP-INF) are solvable in time
polynomial in n, the vertex complexity of conv(S+), and 〈c〉.

The above result directly implies that IMILP under `1 and `∞ norms is in fact in the complexity
∆P

2 , but stronger results are possible, as we show. In the remainder of this section, we assume the
norm used is a p-norm, as this is needed for some results (in particular, Proposition 1 is crucially
used).

Definitions. We next define decision versions of the inverse MILP analogous to those we defined
in the case of MILP. These similarly attempt to verify that a given bound on the objective value is
a primal bound, a dual bound, or an exact optimal value. The primal bound verification problem
for inverse MILP is as follows.

21



Definition 6. Inverse MILP Primal Bound Verification Problem (IMPVP):

• INPUT: γ ∈ Q, x0 ∈ Qn, A ∈ Qm×n, c ∈ Qn, b ∈ Qm, and r ∈ N, where (A, b, r) is an
encoding of the set S in (MILP) and (c,S, x0) are input data for problem (IMILP).

• OUTPUT: YES, if ∃d ∈ C◦(x0) such that ‖c−d‖ ≤ γ, i.e., K(γ)∩C◦(x0) 6= ∅, NO otherwise.

Similarly, we have the dual bound verification problem for inverse MILP.

Definition 7. Inverse MILP Dual Bound Verification Problem (IMDVP):

• INPUT: γ ∈ Q, x0 ∈ Qn, A ∈ Qm×n, c ∈ Qn, b ∈ Qm, and r ∈ N, where (A, b, r) is an
encoding of the set S in (MILP) and (c,S, x0) are input data for problem (IMILP).

• OUTPUT: YES, if ‖c− d‖ ≥ γ for all d ∈ C◦(x0). Equivalently, int (K(γ))∩ C◦(x0) = ∅, NO
otherwise.

Finally, we have the optimal value verification problem.

Definition 8. Inverse MILP Optimal Value Verification Problem (IMOVP):

• INPUT: γ ∈ Q, x0 ∈ Qn, A ∈ Qm×n, c ∈ Qn, b ∈ Qm, and r ∈ N, where (A, b, r) is an
encoding of the set S in (MILP) and (c,S, x0) are input data for problem (IMILP).

• OUTPUT: YES, if mind∈K(y)∩C◦(x0) y = γ, NO otherwise.

In the rest of the section, we formally establish the complexity class membership of each of the
above problems and in so doing, illustrate the relationships of the above problem to each other and
to their MILP counterparts. We assume from here on that conv(S+) full-dimensional (and that
hence, C◦(x0) is also full-dimensional) to simplify the exposition.

Informal Discussion. Before presenting the formal proofs, which are somewhat technical, we
informally describe the relationship of the inverse optimization problem to the MILP analogues of
the above decision problems, which are described in Section 3.2. Suppose we are given a value α
and we wish to determine whether it is a primal bound, a dual bound, or the exact optimal value
of (MILP) with objective function vector c ∈ Qn. Roughly speaking, we can utilize an algorithm
for solving (IMILP) to make the determination, as follows. We first construct the target vector

xα := α
c

‖c‖22
,

which has an objective function value (in the forward problem) of c>xα = α by construction. Now
suppose we solve (IMILP) with xα as the target vector and c as the estimated objective function
coefficient. Note that xα is not necessarily in S. Solving this inverse problem will yield one of two
results.
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1. The optimal value of the inverse problem is 0. This means that xα ∈ argmaxx∈S+ c
>x,

which immediately implies that α ≥ maxx∈S c
>x and we have that α is a valid dual bound

for (MILP).

2. The optimal value of the inverse problem is strictly positive. Then there must be a point
x ∈ S for which c>x > c>xα = α, which means that α < maxx∈S c

>x and α is a (strict)
primal bound for (MILP).

There are a number of challenges to be overcome in moving from this informal argument to the
formal reductions in the completeness proofs. One obstacle is that the above argument does not
precisely establish the status of α as a bound because we cannot distinguish between when α is a
strict dual bound (and hence not a primal bound) and when α is the exact optimal value. This
can be overcome essentially by appealing to Proposition 1 to reformulate certain strict inequalities
as standard inequalities (see Lemma 3). A second challenge is that we have only described a
reduction of a decision version of MILP to an optimization version of the inverse problem and
have failed to describe any sort of certificate. The formal proofs provide reductions to decision
versions of the inverse problem along with the required short certificates. Despite the additional
required machinery, however, the principle at the core of these proofs is the simple one we have
just described.

Formal Proofs. We now present the main results of the paper and their formal proofs. Two
lemmas that characterize precisely when a given value γ is either a dual bound or a strict dual
bound, respectively, for (IMILP) are presented first. These lemmas are the key element underlying
the proofs that follow so we first explain the intuition. Recall the instances of (IMILP) illustrated
earlier in Figure 2. The output to the IMPVP for these four instances would be NO, NO, YES,
and NO, respectively. Note that for the YES instance in Figure 2c, K(γ) ∩ C◦(x0) is nonempty, as
one would expect, while for the NO instance, this intersection is empty. It would appear that we
are thus facing an existential question, so that the YES output would be the easier of the two to
verify by simply producing an element of K(γ) ∩ C◦(x0).

As it turns out, the above reasoning, though intuitive, is incorrect. The key observation we exploit
is that whenever K(γ) ∩ C◦(x0) is empty, conv(S) ∩ int (K∗(γ)) is nonempty and vice versa. Fur-
thermore, there is a short certificate for membership in conv(S)∩ int (K∗(γ)). The characterization
in terms of K(γ) ∩ C◦(x0) can be seen as being in the dual space, whereas the characterization in
terms of conv(S) ∩ int (K∗(γ)) is in the primal space. It is highly unlikely that a short certificate
for membership in C◦(x0) exists and the reason can be understood upon closer examination. It is
that we lack an explicit description of C◦(x0) in terms of generators (a V-representation). We only
have access to a partial description of it in terms of valid inequalities (a partial H-representation).
Whereas any convex combination of a subset of generators of a polyhedral set must be in the set,
a point satisfying a subset of the valid inequalities may not be in the set. Therefore, a partial H-
representation is not sufficient for constructing a certificate. Even if we were able to obtain a set of
generators algorithmically, we have no short certificate of the fact that they are in fact generators.
On the other hand, it is easy to check membership for the points in S that generate conv(S). This
is fundamentally why verifying a primal bound for (MILP) is in NP, whereas verifying a primal
bound for (IMILP) is in coNP.
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The equivalence of the two characterizations described above is formalized below and this is what
eventually allows us to prove the existence of a short certificate for γ being a dual bound or strict
dual bound for (IMILP), respectively.

Lemma 1. For γ ∈ Q such that 0 ≤ γ < ‖c‖, we have

K(γ) ∩ C◦(x0) = ∅ ⇔ conv(S+) ∩ int (K∗(γ)) 6= ∅
⇔ ‖c− d‖ > γ ∀d ∈ C◦(x0)

⇔ γ is a strict dual bound for (IMILP)

⇔ γ is not a primal bound for (IMILP).

Proof. We prove that K(γ) ∩ C◦(x0) = ∅ if and only if conv(S+) ∩ int (K∗(γ)) 6= ∅. The remaining
implications follow by definition.

(⇒) For the sake of contradiction, let us assume that both K(γ) ∩ C◦(x0) = ∅ and conv(S+) ∩
int (K∗(γ)) = ∅. Under the assumptions that conv(S+) is full-dimensional and 0 ≤ γ <
‖c‖, conv(S+) and int (K∗(γ)) are both nonempty convex sets, so there exists a hyperplane
separating them. In particular, there exists a ∈ Rn such that

max
x∈conv(S+)

a>x ≤ min
x∈K∗(γ)

a>x = inf
x∈int(K∗(γ))

a>x. (SEPi)

The problem on the right-hand side is unbounded when a 6∈ K(γ), since then there must exist
x ∈ int (K∗(γ)) with a>x < a>x0, which means that x − x0 is a ray with negative objective
value (recall K∗(γ) is a cone). Therefore, we must have a ∈ K(γ) and it follows that x0 is an
optimal solution for the problem on the right-hand side. Therefore, we have

max
x∈conv(S+)

a>x ≤ a>x0.

Since a ∈ K(γ), then by assumption, a 6∈ C◦(x0), so there exists an x̂ ∈ S+ such that
a>(x0 − x̂) < 0. So finally, we have

a>x0 < a>x̂ ≤ max
x∈conv(S+)

a>x ≤ a>x0,

which is a contradiction. This completes the proof of the forward direction.

(⇐) For the reverse direction, we assume there exists x ∈ conv(S+) ∩ int (K∗(γ)). Since x ∈
conv(S+), there exists {x1, x2, . . . , xk} ⊆ S+ and λ ∈ Qk

+ such that x =
∑k

i=1 λix
i,
∑k

i=1 λi =
1, and k ≤ n + 1. Now, let an arbitrary d ∈ K(γ) be given. Since γ < ‖c‖, we have d 6= 0.
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Then, since x ∈ int (K∗(γ)), we have that

d>
(
x0 − x

)
< 0⇔ d>x0 −

(
k∑
i=1

λix
i

)
< 0

⇔ d>

(
k∑
i=1

λix
0 −

k∑
i=1

λix
i

)
< 0

⇔
k∑
i=1

λid
> (x0 − xi

)
< 0

⇒ ∃j ∈ {1, . . . , k} such that d>(x0 − xj) < 0

⇒ d /∈ C◦(x0).

Since d was chosen arbitrarily, we have that K(γ) ∩ C◦(x0) = ∅. This completes the proof of
the reverse direction.

When γ = 0, we have that K∗(γ) is the half-space {x ∈ Rn | c>x ≥ c>x0}, which further hints at
the relationship between the inverse dual bounding problem and both the MILP primal bounding
problem and the separation problem. A slightly modified version of Lemma 1 characterizes when
γ is a dual bound, but not necessarily strict. Note that unlike the characterization in Lemma 1,
this characterization doesn’t hold when γ = 0, which is perhaps not surprising, since the specific
form of objective function we have chosen ensures that zero is always a valid lower bound. As such,
this information cannot be helpful in distinguishing outcomes for the purpose of the reductions
described shortly.

Lemma 2. For γ ∈ Q such that 0 < γ < ‖c‖, we have

int (K(γ)) ∩ C◦(x0) = ∅ ⇔ conv(S+) ∩
(
K∗(γ) \ {x0}

)
6= ∅

⇔ ‖c− d‖ ≥ γ ∀d ∈ C◦(x0)

⇔ γ is a dual bound for (IMILP)

⇔ γ is not a strict primal bound for (IMILP)

We now present the main theorems.

Theorem 4. The IMPVP is in coNP.

Proof. We prove the theorem by showing the existence of a short certificate when the output
to the problem is NO. Therefore, let an instance (γ, x0, c, A, b, r) of the IMPVP for which the
output is NO be given along with relevant input data. Since the output is NO, we must have
that γ < ‖c‖, since d = 0 is a valid solution otherwise. By the characterization of Lemma 1,
the NO answer is equivalent to the condition K(γ) ∩ C◦(x0) = ∅, as well as to the existence of
x ∈ conv(S+) ∩ int (K∗(γ)). We derive our certificate from the latter, since this is an existence
criterion. We have noted earlier that simply providing such x is not itself a short certificate, since we
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NO YES YES

Figure 7: Reduction Example

cannot verify membership in conv(S+) in polynomial time. Fortunately, Carathéodory’s Theorem
provides that when x ∈ conv(S+), there exists a set of at most n + 1 extreme points of conv(S+)
whose convex combination yields x. Membership in int (K∗(γ)) is easily verified directly, so the set
of points serves as the certificate and is short, since only n+ 1 extreme points are needed.

We next show that not only is IMPVP in coNP, but it is also complete for it.

Theorem 5. The IMPVP is complete for coNP.

Proof. We show that the MDVP can be Karp-reduced to the IMPVP. Let an instance (α, c, A, b, r)
of the MDVP be given. Then we claim this MDVP can be decided by deciding an instance of the
IMPVP with inputs (0, xα, c, A, b, r), where xα = α c

‖c‖22
. By the characterization of Lemma 1, the

IMPVP with this input asks whether K(0) ∩ C◦(xα) is nonempty. The first set contains a single
point, d = c. The intersection is nonempty if and only if c is in C◦(xα). c is in this cone if and only
if

c> (x− xα) ≤ 0 ∀x ∈ S ⇔ c>x− α ≤ 0 ∀x ∈ S,
⇔ c>x ≤ α ∀x ∈ S.

The last line above means the output of the MDVP is YES. This indicates that the output of the
original instance of the MDVP is YES if and only if the output of the constructed instance of the
IMPVP is YES.

Figure 7 illustrates the reduction from the MDVP to the IMPVP for three different α values. In
the proof, the point αc is constructed to have objective function value α. The inverse problem is
then just to determine whether the inequality c>x ≤ α is valid for conv(S), so the equivalence to
the MDVP follows straightforwardly. The output to both the MDVP and the IMPVP is NO for
α1 and YES for both α2 and α3. Note that this proof crucially depends on the fact that we do
not assume x0 ∈ S for the IMPVP. Now, we consider IMDVP, for which the proofs take a similar
approach.

Theorem 6. The IMDVP is in NP.
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Proof. The proof is almost identical to the proof that IMPVP is in coNP. We show that there
exists a short certificate that can validate the output YES. Let an instance (γ, x0, c, A, b, r) of
the IMDVP be given such that the output is YES. As in the proof of Theorem 4, it is enough
to consider the case where γ < ‖c‖ and we can assume without loss of generality that γ > 0
(otherwise, the output is trivially YES). When the output is YES, by the characterization of
Lemma 2, int (K(γ))∩ C◦(x0) = ∅ holds and there exists x ∈ conv(S+)∩K∗(γ) with x 6= x0. As in
the proof of Theorem 4, Carathéodory’s Theorem ensures there is a set of at most n+ 1 members
of S+ whose convex combination yields x and this set of points is the short certificate.

To show that IMDVP is complete for NP, we need one more technical lemma, which exploits
Proposition 1 to enable us to Karp-reduce MPVP to IMDVP. The basic idea is to exploit the
property that the norm of the difference between two numbers can be bounded by a function of
their encoding lengths. This allows us to cleanly distinguish the cases in which a given value is a
primal bound for (MILP) from that in which the given value is a strict dual bound by solving an
IMDVP that we can can easily construct.

Lemma 3. Let α ∈ Q and let ε := 2−max{〈c〉+ν,〈α〉}−1 and δ := 2−〈x
0〉−ν−1.

(i) If α ≤ maxx∈S c
>x+ ε, then α ≤ maxx∈S c

>x.

(ii) If α ≤ maxx∈S c
>x, then ‖c− d‖ > εδ > 0 for all d ∈ C◦(xα−ε), where xα−ε = (α− ε) c

‖c‖22
.

Proof. (i) First, we have that the encoding length of maxx∈S c
>x is bounded by 〈c〉+ ν. Then if

α > maxx∈S c
>x, α > maxx∈S c

>x+ ε by Proposition 1. Therefore, α ≤ maxx∈S c
>x.

(ii) Let α ≤ maxx∈S c
>x and x ∈ argmaxx∈S c

>x be given such that x is an extreme point of
conv(S) and let xα−ε := (α− ε) c

‖c‖22
. Since c>x ≥ α and c>xα−ε = α− ε < α, it follows that

x 6= xα−ε. For an arbitrary d ∈ C◦(xα−ε), we have that

d>(xα−ε − x) ≥ 0⇔ d>(xα−ε − x)− c>(xα−ε − x) + c>(xα−ε − x) ≥ 0

⇔ (d− c)>(xα−ε − x) ≥ c>x− c>xα−ε

⇔ (d− c)>(xα−ε − x) ≥ c>x− α+ ε (3)

⇔ (d− c)>(xα−ε − x) ≥ ε (4)

⇔ ‖c− d‖‖xα−ε − x‖ ≥ ε (5)

⇔ ‖c− d‖ ≥ ε

‖xα−ε − x‖
(6)

⇔ ‖c− d‖ > εδ (7)

Equation (3) follows by substituting (α−ε) c
‖c‖22

for xα−ε; (4) follows from the nonnegativity of

c>x− α; and (5) follows from the Cauchy–Schwarz inequality. Equation (6) follows from (5)
because ‖x − xα−ε‖ > 0. Equation (7) follows from the fact that ‖xα−ε − x‖ < 2〈x

α−ε〉+ν+1,
again by Proposition 1, since the encoding length of xα−ε − x is bounded by the vertex
complexity ν of conv(S) and 〈xα−ε〉.
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Theorem 7. The IMDVP is complete for NP.

Proof. We show that the MPVP can be Karp-reduced to the IMDVP. Therefore, let an instance
(α, c, A, b, r) of the MPVP be given and let ε and δ be given as in Lemma 3. Then we claim
that the MPVP can be resolved by deciding the IMDVP with inputs (εδ, xα−ε, A, b, r), where
xα−ε = (α − ε) c

‖c‖22
. The IMDVP asks whether the set int (K(εδ)) ∩ C◦(xα−ε) is empty. Note that

c ∈ int (K(εδ)). If the output to the IMDVP is YES, then int (K(εδ)) ∩ C◦(xα−ε) is empty. This
means c 6∈ C◦(xα−ε), i.e.,

c /∈
{
d ∈ Rn | d>

(
x− xα−ε

)
≤ 0 ∀x ∈ S

}
.

This in turn means that there exists an x ∈ S such that

c>
(
x− xα−ε

)
> 0⇔ c>x− α+ ε > 0

⇔ c>x+ ε > α

⇒ c>x ≥ α.

The last implication is by Lemma 3, part (i). Hence, the output to the MPVP is YES.

When the output to the IMDVP is NO, there exists d̂ ∈ int (K(εδ))∩C◦(xα−ε). Then d̂ ∈ C◦(xα−ε)
and ‖c − d̂‖ ≤ εδ, so by the contraposition of Lemma 3, part (ii), there is no x ∈ S such that
c>x ≥ α, i.e., c>x < α for all x ∈ S. This means the output to the MPVP is NO.

Figure 8a illustrates the case in which c>x < α3 holds for all x ∈ S, so that the output of MPVP is
NO. In this case, there exists d̂ ∈ int (K(εδ))∩C◦(xα−ε). In fact, c is itself in int (K(εδ))∩C◦(xα−ε),
which means the optimal value of the associated IMILP is 0. The instance of IMDVP specified in
the reduction also has output NO, since we are checking the validity of a nonzero dual bound.

Figure 8b illustrates the case in which the optimal value to the MILP is exactly α2, so that the
output of the MPVP is YES. In this case, Lemma 3 tells us that the optimal value for the associated
IMILP must be greater than εδ and that the instance of IMDVP that we solve in the reduction
must have output YES as well. Note the essential role of εδ as a number strictly between zero and
the smallest possible positive optimal value that the associated instance of IMILP can have. This
is necessary precisely because Lemma 2 does not hold for γ = 0.

Theorem 8. The IMOVP is complete for DP.

Proof. As noted before, the reduction presented in Theorem 7 can be used to reduce both the
MDVP and the MPVP to the IMPVP and the IMDVP, respectively. Using this reduction, the
language of the IMOVP can then be expressed as the intersection of the languages of the IMPVP
and the IMDVP that are in coNP and NP, respectively. This proves that the IMOVP is in class
DP. The IMOVP is complete for DP, since the MOVP can be reduced to the IMOVP using the
same reduction.

Note that the optimal value verification problems associated with both the inverse and forward
problems are complete for DP, placing this decision version of both the forward and inverse problems
in the same complexity class.
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(a) (b)

Figure 8: Lemma 3 on two simple examples

5 Conclusion and Future Directions

In this paper, we discussed the relationship of the inverse mixed integer linear optimization problem
to both the associated forward and separation problems. We showed that the inverse problem can be
seen as an optimization problem over the cone described by all inequalities valid for S and satisfied
at equality by x0 (the normal cone at x0). Alternatively, it can also be seen as an optimization
problem over the 1-polar under some additional assumptions. Both these characterizations make
the connection with the separation problem associated with S evident.

By observing that the separation problem for the feasible region of the inverse problem under the
`1 and `∞ norms is an instance of the forward problem, it can be shown via a straightforward
cutting-plane algorithm that the inverse problem can be solved by solving polynomially many
instances of the forward problem with different objective functions. This is done by invoking the
result of Grötschel et al. [1993], which shows that optimization and separation are polynomially
equivalent, i.e., each can be Cook-reduced to the other. This in turn places the decision version of
inverse MILP in the complexity class ∆p

2.

The main result of the paper is that a stronger analysis is possible. We first show that verification of
a primal and dual bound for the inverse problem is in coNP and NP by providing short certificates
for the NO and YES outputs, respectively. We show that verification of a dual bound for the
forward problem can be Karp-reduced to verification of a primal bound for the associated inverse
problem. Thus, both problems are complete for the class coNP and are on the same level of the
polynomial-time hierarchy. Similarly, verification of a primal bound for the forward problem can
be Karp-reduced to verification of a dual bound for the associated inverse problem. Thus, both
of those problems are complete for the class NP and are also on the same level of the polynomial-
time hierarchy. Finally, we use these two results to show that the verification problem for the
optimal value of IMILP is complete for the class DP, which is the same class that Papadimitriou
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and Yannakakis [1982] showed contains the MILP optimal value verification problem.

Although we have not done so formally, we believe the results in this paper lay the groundwork for
stating some version of Theorem 1 that incorporates the equivalence of the inverse problem and
is stated in terms of Karp reduction. The form such a result would take is not entirely obvious.
Whereas the essence of the separation problem is to determine whether or not a given point is a
member of a given convex set, the inverse problem implicitly demands that we determine which of
three sets contains a given point: the relative interior of a given convex set, the boundary of that
convex set, or the complement of the set. Whereas it is known that the problem of determining
whether or not a given point is contained in the convex hull of solutions is complete for NP, our
results indicate that the related problem of determining if a given point is on the boundary of the
feasible set of an MILP is a complete problem for DP, while the problems of determining whether
a given point is contained in the convex hull of solutions or determining whether a given point is
contained in the complement of the relative interior are in NP and coNP, respectively. Given all of
this, it seems clear that a unified result integrating all of the various problems we have introduced
and stating their equivalence in terms of Karp reduction should be possible.

Finally, while we have implemented the cutting-plane algorithm in this paper, it is clear that more
work must be done to develop computationally efficient algorithms for solving the inverse versions
of difficult combinatorial optimization problems. Development of customized algorithms for which
the number of oracle calls required in practice can be reduced is a next natural step. Given our
results, the existence of a direct algorithm for solving inverse problems can also not be ruled out.
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