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Abstract

Motivated by the models of epidemic control in large populations, we consider a Stack-
elberg mean field game model between a principal and a mean field of agents whose states
evolve in a finite state space. The agents play a non-cooperative game in which they con-
trol their rates of transition between states to minimize an individual cost. The principal
influences the nature of the resulting Nash equilibrium through incentives so as to optimize
its own objective. We analyze this game using a probabilistic approach. We then propose
an application to an epidemic model of SIR type in which the agents control the intensities
of their interactions, and the principal is a regulator acting with non pharmaceutical inter-
ventions. To compute the solutions, we propose an innovative numerical approach based on
Monte Carlo simulations and machine learning tools for stochastic optimization. We con-
clude with numerical experiments illustrating the impact of the agents’ and the regulator’s
optimal decisions in two specific models: a basic SIR model with semi-explicit solutions and
a more complex model with a larger state space.
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1 Introduction

Non pharmaceutical interventions such as the reduction of social interactions are powerful measures to
limit the spread of an ongoing epidemic. Containment and suppression of disease spread are crucial
factors in order to avoid overwhelming the health care system. However, even in the midst of pandemics,
some individuals still refuse to comply with guidelines such as social distancing or mask wearing. From a
global perspective, this could push the equilibrium behavior of the population to exceed the limits of the
health care system. For this reason, responsible authorities have a keen interest in the design of incentive
systems that are acceptable to individuals and sufficiently strong to induce them to successfully combat
the epidemic.
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Stackelberg MFG for Epidemic Control

In a mathematical model, we would like the decision maker to take both the global state of the society
and the individuals’ behaviors into account before deciding on an incentive policy. The intractability of
large interacting dynamical systems usually prevents that kind of analysis. In this work, we analyze a
Stackelberg game between a principal agent representing the regulatory authority, and a field of indi-
viduals providing the societal response to the principal’s policy. we use the probabilistic approach to
mean field games because it provides both a macroscopic description of the state of the population and
a microscopic analysis of the behavior of a representative single individual.

Mean Field Game (MFG) models study the equilibrium between a representative player and the
distribution of the other players’ states and actions. Mean field equilibria are simpler to identify and
compute than equilibria of large populations. Moreover, they provide approximate Nash equilibria for
certain games with a large but finite number of players. The framework has found numerous applications,
from the analysis of growth models in macro-economics, to crowd motion and energy production. Here,
we investigate an application to epidemic control.

Compartmental models in epidemic research are in many cases large population limits of interacting
Markov chains. Each Markov chain represents the individual’s state of health, the transitions between
states occurring with rates depending on the global state of the population, the proportions of individuals
in different states to be more specific. This form of interaction is clearly in the purview of mean field
models. Incorporating in the model the opportunity for individuals to choose their behaviors and control
their contributions to the spread of the disease, the interacting system can be analyzed as a MFG.
However, a natural choice of controls yields what is often called an extended MFG, where players interact
not only through the distribution of their states, but instead through the joint distribution of their states
and actions. Next, we give a hands-on example of the extended aspect of our model.

1.1 The SIR extended MFG with contact factor control

In order to provide a motivating example, we consider the simplest compartmental model in epidemics,
the classical SIR model. First, we outline how to construct it as a large population limit. Secondly,
we comment on why an extended MFG formulation is relevant for the large population limit problem if
players use what we will call a contact factor control to reduce the risk of disease spread.

Before moving to the example, we need to introduce some notation. Consider N individuals, each
of whom transitions between the states Susceptible (S), Infected (I), and Removed (R). An individual
in state R has either gained permanent immunity, or is deceased. Denote the state of individual j ∈
{1, . . . , N} at time t by Xj

t , and let pNt = (pNt (S), pNt (I), pNt (R)) := ( 1
N

∑N
j=1 1i(X

j
t ))i∈{S,I,R} be the

vector of proportions of individuals in each state, in other words, the empirical distribution of the state
at time t.

A susceptible individual might meet infected individuals, possibly resulting in disease transmission.
Encounters occur pairwise and randomly throughout the population. Their intensity is denoted by β > 0.
The number of encounters with infected individuals during a small time interval [t−∆t, t) is proportional
to the the proportion of the population in state I at t. Hence the transition from state S to I happens
with intensity βpNt (I). Upon infection an individual starts the path to recovery. The transition from
state I to R happens after an exponentially distribution time with rate γ. The state R is absorbing. To
summarize, the transition rate matrix, which is common to all agents of the population, is at time t,

Q(pNt ) =

−βpNt (I) βpNt (I) 0

0 −γ γ

0 0 0

 . (1.1)

As N →∞, (pNt )t converges in probability to the unique solution to

ṗt = ptQ(pt), p0 = p0, (1.2)
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if the initial configuration is sampled from a symmetric probability measure with marginals equal to
p0, a classical result found for example in [31]. Scaling pt by a population size N , i.e., letting Npt =:
(S(t), I(t), R(t)). we retrieve the standard formulation of the SIR model,

Ṡ(t) = − β
N
I(t)S(t), S(0) = Np0(S),

İ(t) =
β

N
I(t)S(t)− γI(t), I(0) = Np0(I),

Ṙ(t) = ργI(t), R(0) = Np0(R).

(1.3)

Now, let us assume that each individual has the option to control the intensity they seek or try to
avoid interacts with others. Instances occur when individuals try to lower the risk of disease transmission
by , e.g., avoiding to ride public transportation at congested hours, shopping online, or wearing protective
equipment.

The probability of the spread of the disease is likely to be a non-linear function of the joint effort
of the individuals that interact. Say, for example, that two individuals meet and both have the option
to wear a protective face mask. The absolute decrease in risk of transmission is not necessarily equal
for each additional mask that is worn. Motivated by this observation, we assume that the individuals’
efforts to reduce spread affect the probability of transmission in a multiplicative way: in each encounter
the probability of disease spread is scaled by each of the agents effort. We view an individual’s effort to
meet someone as their control. We often call it their contact factor because this effort enters as a factor
in the contact rate between individuals of specific states.

Assuming that the meeting frequency is β, that the pairing is random, that the disease spreads from
infected agents to susceptible, and that the spread probability is scaled by the effort intensity of the
search for meetings, the transition rate for individual j, currently susceptible, to the state of infected is

βαjt
1

N

N∑
k=1

αkt 1I(X
k
t−), (1.4)

where αkt denotes the (contact factor) action of individual k ∈ {1, . . . , N} at time t, selected from set A of
admissible actions. Along the lines of the heuristics of MFG theory, we anticipate that in an appropriate
approximation of our interacting system in the limit N → ∞, the representative agent transitions from
susceptible to infected with rate

βαt

∫
A

aρt(da, I), (1.5)

where ρt is the joint distribution of action and state of the representative agent in a suitable probability
space (rigorously defined in the next section). The joint action-state distribution is often referred to
as the extended mean field in the MFG literature. To summarize, the representative agent transitions
between states S, I, and R according to the rate matrix Q(t, αt, ρt),

Q(t, α, ρ) =

· · · βαt
∫
A
aρt(da, I) 0

0 · · · γ

η 0 · · ·

 , (1.6)

where β, γ, η ∈ R+ are non-controlled constants, and as usual, the diagonal terms · · · should be replaced
by the negative of the sum of the entries in the same row. See Fig. 1 for a diagram of the dynamics.

The representative agent is incentivized by a regulator to choose their contact factor close to a level
determined by the regulator. The level and incentive can vary between the susceptible, infected, and
recovered parts of the population, as the state of an agent naturally influences their contribution to the
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S I R
βαt

∫
aρt(a, I) γ

η

Figure 1: SIR model with extended mean-field interactions corresponding to the Q-matrix (1.6).

overall societal risks in an epidemic (which the regulator aims to mitigate). Moreover, the representa-
tive agent faces a cost of inconvenience for being sick. In particular, let us consider a model where a
representative agent pays per unit of time a running cost given as

cλ
2

(
λ

(S)
t − αt

)2

1S(x) +

(
1

2

(
λ

(I)
t − αt

)2

+ cI

)
1I(x) +

1

2

(
λ

(R)
t − αt

)2

1R(x), (1.7)

where cλ, cI ∈ R+ are constants, λ(·) are the socialization levels recommended by the regulator, and αt
is the contact factor of the representative player at time t.1 In this model, which we will revisit in the
section on numerical experiments, a λ(S) valued close to 0 can be interpreted as a recommendation for low
levels of social interactions (or more generally a high level of cautiousness through non-pharmaceutical
interventions, such as hand cleaning, lockdown, mandatory mask wearing etc.) for all susceptible indi-

viduals. Conversely, λ(S) approximately equal to 1 amounts to recommending the regular level of social
interactions (i.e. no restriction). Finally, we assume that the agent also receives a terminal utility U(ξ)
depending on the agent’s behavior during the time interval [0, T ], payed by the regulator as an incentive
to follow the recommended socialization protocols.

The problem is then two-fold. First, the regulator announces a policy (λ, ξ) so as to minimize an
objective function which involves the state of the population (e.g., the proportion of infected people).
The minimization is constrained, not all policies will be accepted by the population and the regulator is
optimizing only over acceptable ones. Acceptable here does not mean a complete commitment to following
the recommendations, but rather accepting the penalty structure for deviations. The way the population
reacts to a given policy (λ, ξ) is through a Nash equilibrium in which each agent tries to optimize their
own individual cost induced by (1.7) and their terminal payment utility U(ξ). If the representative agent’s
expected cost at the Nash equilibrium is above some threshold, the policy is deemed unacceptable and
the population rejects the policy altogether (the policy is not feasible). The regulator, to find an optimal
feasible policy, needs to understand how the population reacts to each policy. The two nested problems
comprise a so-called Stackelberg game: the regulator’s problem is a constrained optimization problem
driven by the Nash equilibrium of the player population.

The two components λ and ξ of the regulator’s policy play different roles. The process λ is used to
incentivize the agents to adopt a certain cautiousness level over time. Practically, deviations from λ are
penalized. The terminal payment ξ is used to reward participation in the incentive structure. Later, we
will see how the regulator decides on a terminal reward or payment such that the representative agent
does not reject the proposed incentive scheme altogether. That is, the terminal payment’s role is to make
the policy feasible in the sense that it is a reasonable compensation to the agent for complying with the
cautiousness level recommendations.

1The running cost (1.7) is far from the only possible model choice within the framework presented in this
paper, but one that facilitates evaluation of the performance of the proposed numerical method. In a more
general setting, the running cost could be a function depending also on the extended mean field interactions.
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1.2 Related literature

1.2.1 Discrete state space MFG

The behavior of the population of agents, amongst whom disease spread takes place, is in this paper
modeled by a discrete space MFG. MFGs were first developed for continuous state space [33, 34, 26].
Soon after works on discrete state spaces followed [22, 30, 23]. Amongst the many contributions to the
field of discrete state MFGs we note the minor-major player model [6], the probabilistic approach [9],
the master equation approach [2], and the extended game [8]. Mean-field optimal control, risk-sensitive
control, and zero-sum games are treated in [15, 13, 14] which cover cases of unbounded jump intensities.

1.2.2 Compartmental models and MFG in epidemics

Games and optimal control in compartmental models have been studied intensively for a long time. This
literature review focuses on other work within the mean-field approach, which has gained attention is the
last decade. Efforts to model the control of disease spread range from strategies for social contacts to
vaccination.

Our work falls within a category of models where agents attempt to suppress the risk of disease
spread. In [19] a deterministic mean-field game is studied where the agents control the contact rate,
which is proportional to the risk of disease spread. The agents are penalized if they get infected prior to
some terminal time horizon, which introduces a stopping time component to the game similar to that in
evacuation problems. A contact rate common to all agents and all states is found such that the agents
are in an MFG equilibrium with the crowd. In [27] a Stackelberg game where the epidemic evolves in
the population of agents, modeled as a MFG, according to a compartmental model is considered. The
agents collaborate to find the best contact rate to suppress the epidemic. The compartmental models
considered in the paper are stochastic and the uncertainty in the model is controlled by the principal
through testing policies. Their goal is to mitigate the saturation of intensive care units. This problem
was studied from the point of view of optimal control in [11], where numerical results show that it is
optimal to isolate infected individuals so as to maintain a basic reproduction rate close to 1. In [12], SIR
and SEIR2 models where agents control the contact rate are studied and the author compares the MFG
equilibrium, the socially optimal strategy, and unconstrained disease spread.

Vaccination is a powerful tool when available. However, it is not considered in this paper. With a
MFG formulation of the SIR model, In vaccination strategies in a society of non-cooperative individuals
are studied. The authors extend the model to include limited vaccination capacity [32], limited persistence
[39], and vital dynamics [28].3 Vaccination has also been studied with MFG-based SIR models in [18, 21],
their focus being the loss of efficiency in the mean-field game compared to optimal vaccination policies.

Spatial distance naturally mitigates the risks of the pandemic and [42] uses a mean-field type game to
take the spatial features of disease spread into account (and many more features, e.g., physical and social
status of the agent). In [37], the authors consider three crowds, each corresponding to a state in the SIR
model, which evolve spatially. The pandemic risks are mitigated by a central planner who controls of
spatial velocity of the agents. The multi-population mean-field optimal control problem is studied.

1.2.3 Contract theory and Stackelberg MFG

Contract theory studies the interaction of a principal and an agent, where the former proposes a contract
to the latter, who decides whether or not they should work for the principal and receive a reward. The

2The SEIR model includes the additional “Exposed” state, modeling the incubation period before the agent
transitions to the “Infected” state.

3Persistence here refers to immunity to reinfection and when this is limited the agents will eventually become
vulnerable again. The SIR model with vital dynamics includes births and deaths.
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principal tries to anticipate the decision of the agent and to design an attractive contract while still trying
to maximize their profit. Solutions to this type of problems are typically studied using the concept of
Stackelberg equilibrium. In [25], continuous time method is used to study this type of problems, and
in [40, 41] dynamic programming and martingale optimality principles are used to characterize the solution
in the framework of optimal control theory. These ideas are generalized in [16]. In [17] the solution in a
general class of principal-agent problem is characterized by the stochastic maximum principle.

In the context of MFGs, problems with a principal and a mean-field of agents have been studied in [20]
in the continuous state space setting and in [7] for finite state spaces. The theory has been extended
in several directions, including problems with delayed information [3]. This type Stackelberg mean field
models have found applications for instance to advertising [38], where the principal plays the role of
the advertiser and the population of agents decides whether they want to buy a product. Stackelberg
equilibria with a mean-field of agents have also been applied in the context of epidemic containment: the
aforementioned [7] proposes an application with two cities where the agents can move between cities and
the principal can influence the quality of healthcare, while in [27] the authors consider a model where the
principal can choose a tax policy and a testing policy.

1.3 Contributions and paper structure

The scientific contribution of this work is two-fold. Firstly, we move beyond current theory and consider
a Stackelberg game between a principal and an extended MFG. A common assumption in extended
MFGs is that any dependency on the joint distribution of action and state only involves dependencies
on the marginal distributions. We avoid this assumption in order to capture the epidemiological aspects
outlined in Section 1.1. The trade-off is that, at some points in the paper, we need to make assumptions
about the existence and uniqueness of mean field Nash equilibria. We work in the weak probabilistic
formulation of the problem and we allow the player’s action to depend on their state. Our numerical
experiments show that contact factors do differ between the compartments of the population. To the
best of our knowledge, compartmental models with applications towards epidemics which incorporate at
the same time a non-cooperative population and a regulator have not yet been suggested or studied in
the literature.

Secondly, we propose an innovative numerical scheme based on neural networks, and validate its
performance on simple examples for which we can derive semi-explicit solutions. To obtain a problem
amenable to numerical treatment by optimization procedures, we first rewrite the principal’s problem
under the constraint of the mean field Nash equilibrium as an optimal control problem with two forward
stochastic equations. Then, the numerical scheme relies on the approximation of the population by
an interacting particle system and the approximation of the controls by neural networks, including the
principal’s policy. The optimization of the principal’s cost is then performed using a variant of stochastic
gradient descent to update the neural networks’ parameters.

We carry out multiple numerical experiments studying model characteristics and policy impact. As a
first step towards understanding how a regulator should design containment policies, we test the popula-
tion’s reaction to various policies. We show that when the agents minimize their own cost and behave as
in a Nash equilibrium, they adopt some level of cautiousness, which reduces the severity of the epidemic
compared to an unconstrained free spread scenario. Moreover, we show that taking early action (e.g.,
deciding on an early lockdown) has a bigger impact on disease spread than a strategic action taken later.
In a second numerical test, we solve the full Stackelberg game problem (where the regulator optimizes
over the policies to minimize its own cost) for both the SIR-based example of Section 1.1 and an extended
model with two more additional states for the agents (E: Exposed and D: Deceased). For the latter,
we show that if agents are not feeling safe enough, they are able to rationally choose lower contact levels
than the recommended levels by the regulator.

The rest of the paper is structured as follows. In Section 2 the Stackelberg game between a principal
and a non-cooperative population is introduced and analyzed. In Section 3 the details of the numerical
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approach are presented. Finally, Section 4 contains the evaluation of the numerical method and further
simulations. All proofs have been postponed to appendices.

2 The model

2.1 Preliminaries

We adopt the following notation throughout the paper: m is a finite integer corresponding to the number
of states, E := {e1, . . . , em} is a state space where ei ∈ Rm is the basis vector in direction i, A := [0, 1] is
an action space, and R := P(A×E) is the set of Borel probability measures on A×E. We endow A with
the Euclidean metric | · |, E with a bounded discrete metric, and A× E with the 1-product metric. We
will identify the set P(E) with the m-dimensional simplex and use the Euclidean metric ‖ · ‖ to measure
distances on P(E) (the choice of metric on P(E) is irrelevant since all metrics derived from norms on
P(E) are equivalent). We endow R with the 1-Wasserstein metric WR which is well-defined on R since
A× E is compact.

Let T > 0 be a constant corresponding to a finite time horizon. Let Λ be the set of measurable Rm+ -
valued functions with domain [0, T ] and let M(R) and M(P(E)) be the set of measurable mappings from
[0, T ] to R and to P(E), respectively. Let Q : [0, T ]×A×R 7→ Rm×m be a bounded measurable function
such that Q(t, a, ρ) is a transition rate matrix, also called Q-matrix,4 for all (t, a, ρ) ∈ [0, T ]×A×R.

A process (Xt)t∈[0,T ] will in short-hand be denoted X. Let Ω be the space of càdlàg functions
ω : [0, T ]→ E and from now on let X be the canonical process, Xt(ω) = ω(t). Denote by F := (Ft)t∈[0,T ]

the natural filtration generated by X, with Ft := σ({Xs, s ≤ t}) and F := FT , and by A the collection
of F-predictable processes α with values in A. For any probability measure Q on (Ω,F) we denote by
EQ expectation under Q.

On (Ω,F,F) we consider the probability measure P under which the law of X0 is p0 ∈ P(E) and X is
a continuous time Markov chain with transition rate from ei to ej equal to 1 if (i, j) ∈ G ⊂ {1, . . . ,m}2,
otherwise zero. Here G represents a graph of states on which a typical agent evolves. Denote the
corresponding Q-matrix by Q0. We let, for i = 1, . . . ,m,

ψ(ei) := diag(Q0ei)−Q0diag(ei)− diag(ei)Q
0, t ∈ [0, T ], (2.1)

and let ψt = ψ(Xt−). Denote by ψ+
t the Moore-Penrose generalized inverse of the matrix ψt. Expectation

under P is abbreviated to E.
We denote byH2 the set of F-adapted and real-valued càdlàg processes Y such that E[

∫ T
0
Y 2
t dt] < +∞

and by H2
X the set of F-adapted and Rm-valued left-continuous processes Z such that E[

∫ T
0
‖Zt‖2Xt−dt] <

+∞. The seminorms ‖ · ‖ei , i = 1, . . . ,m, and the stochastic seminorm ‖ · ‖Xt− are defined by

‖z‖2ei := z∗ψ(ei)z, ‖z‖2Xt− := z∗ψtz, z ∈ Rm. (2.2)

Hereinafter we use a superscript ∗ to denote the transpose of a vector or a matrix.

2.2 The Stackelberg extended MFG in a general setting

We consider a society made up of a population of non-cooperative players and one principal agent. We
begin by focusing on the game between the members of the population. As is common in the MFG
paradigm, a representative player takes the role of any individual in the population. Given knowledge of
how the population and the principal agent act over time, the representative player optimizes their cost
functional.

4That is, q(t, i, j, a, ρ) ≥ 0 for all 1 ≤ i, j,≤ m and
∑

j 6=i q(t, i, j, a, ρ) = −q(t, i, i, a, ρ), where q(t, i, j, a, ρ) is
the element element at row i and column j of Q(t, a, ρ).
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To use strategy α = (αt)t∈[0,T ] ∈ A the representative player pays the expected total cost

Jλ,ξ(α,ρ) := EQα,ρ
[∫ T

0

f(t,Xt, αt, ρt;λt)dt− U(ξ)

]
, (2.3)

where (λ, ξ) is the principal’s policy choice, f : [0, T ]×E ×A×R → R is a running cost which depends
on the policy λ, ρ = (ρt)t∈[0,T ] ∈ M(R) is a flow of measures in R representing the joint state-control
distribution in the population, and Qα,ρ is a probability measure over (Ω,F). The notation will be our
convention throughout the paper whenever there is no possibility for confusion. The canonical process
X appearing in (2.3) models the representative player’s dynamics under the probability measure Qα,ρ.
Under Qα,ρ, X is a pure-jump process with transition rate matrix Q(t, αt, ρt) at time t.5

The agent is truly representative if their joint distribution of action and state agrees with the popula-
tion. The consistency condition in MFG assures just this, see (ii) in definition 2.1 where the equilibrium
notion in the population’s problem is formalized.

Definition 2.1. If the pair (α̂, ρ̂) ∈ A×M(R) satisfies

(i) α̂ = arg infα∈A J
λ,ξ(α, ρ̂);

(ii) ∀t ∈ [0, T ] : ρ̂t = Qα̂,ρ̂ ◦ (α̂t, Xt)
−1,

we say that (α̂, ρ̂) is a mean-field Nash equilibrium given the contract (λ, ξ). We denote by N (λ, ξ) the
set of such mean field Nash equilibria.

We state in Proposition 2.7 below that (under suitable assumptions) (α̂, ρ̂) ∈ N (λ, ξ) if (Y ,Z, α̂, ρ̂,Q)
is a solution to the following equation6 under P

Yt = U(ξ) +

∫ T

t

Ĥ(s,Xs−, Zs, ρ̂s)ds−
∫ T

t

Z∗sdMs,

Et = 1 +

∫ t

0

Es−X∗s−
(
Q(s, α̂t, ρ̂s)−Q0

)
ψ+
s dMs,

ρ̂t = Q ◦ (α̂t, Xt)
−1
,
dQ
dP

= ET , α̂t = â(t,Xt−, Zt, ρ̂t),

(2.4)

where Ĥ is the minimized Hamiltonian of the representative player and â is the minimizer, defined in (2.9)
below. The solution has a (λ, ξ)-dependence (entering the problem through U(ξ) and the Hamiltonian)
which we suppress to alleviate the notation.

The principal’s problem is to find the policies that yield the most favorable configuration of minor
players in terms of their cost. By using policies (λ, ξ) as incentives, the principal can modify the set
of mean-field Nash equilibria N (λ, ξ) and hence exert influence over the population’s behavior. In the
sequel, unless otherwise mentioned, we consider the following class of policies for the principal.

Definition 2.2. A policy (λ, ξ) is admissible if the deterministic mapping λ ∈ Λ, the real-valued random
variable ξ is F-measurable, and that N (λ, ξ) is a singleton. We denote the set of admissible policies by
C.

5Existence of the measure Qα,ρ is granted by Girsanov Theorem under some conditions, see for example [8]
and the references therein. The hypothesis on Q stated in Section 2.2 is strong enough for existence to hold.

6We define a solution to (2.4) in line with [8, Def. 2]: the tuple (Y, Z, α, ρ,Q) is a solution to the McKean-
Vlasov BSDE (2.4) if Y ∈ H2, Z ∈ H2

X , α ∈ A, ρ ∈ M(R), Q is a probability measure on (Ω,F), and (2.4) is
satisfied P-a.s. for all t ∈ [0, T ].
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To use an admissible policy (λ, ξ) ∈ C the principal pays the cost

where p̂λ,ξt (ei) = ρ̂λ,ξt (A, ei), i = 1, . . . ,m, and (α̂λ,ξ, ρ̂λ,ξ) = N (λ, ξ).
The last aspect of the problem is a walk-away option of the minor players: all Nash equilibria are

disregarded in which the representative agent’s expected total cost is higher than the reservation threshold
κ. The principal’s optimization problem is

V (κ) := inf
(λ,ξ)∈C

inf
Jλ,ξ(N (λ,ξ))≤κ

J(λ, ξ). (2.5)

2.3 Analysis of the Stackelberg extended MFG

In this section we will state results under the hypotheses presented below. While setting the hypotheses,
we also make the notation used in the previous section precise.

Hypothesis 2.3 (Structure and regularity of the Q-matrix).

(i) There exists constants C1, C2 > 0 such that for all (t, i, j, α, ρ) ∈ [0, T ] × G × A × R we have
0 < C1 < q(t, i, j, α, ρ) < C2. For all (i, j) ∈ {1, . . . ,m}2\G, q(t, i, j, α, p) = 0 for t ∈ [0, T ], α ∈ A,
ρ ∈ R.

(ii) There exists a constant C > 0 such that for all t ∈ [0, T ], (i, j) ∈ G, α, α′ ∈ A, and ρ, ρ′ ∈ R, we
have

|q(t, i, j, α, ρ)− q(t, i, j, α′, ρ′)| ≤ C (|α− α′|+WR(ρ, ρ′)) . (2.6)

Hypothesis 2.4 (Regularity of the running cost).

There exists a constant C > 0 such that for all (t, i, `) ∈ [0, T ] × {1, . . . ,m} × Rm+ , α, α′ ∈ A,
p, p′ ∈ P(E), ρ, ρ′ ∈ R, we have

|f(t, ei, α, ρ; `)− f(t, ei, α
′, ρ′; `)| ≤ C (|α− α′|+WR(ρ, ρ′)) . (2.7)

Given a policy (λ, ξ) ∈ C, the Hamiltonian for the representative player’s optimization problem is the
function H : [0, T ]× E × Rm ×A×R → R

H : (t, x, z, α, ρ) 7→ x∗
(
Q(t, α, ρ)−Q0

)
z + f(t, x, α, ρ;λt). (2.8)

The representative player’s reduced Hamiltonian in state ei is Hi : (t, z, α, ρ) 7→ H(t, ei, z, α, ρ), i =
1, . . . ,m.

Hypothesis 2.5 (Minimizer of the Hamiltonian).

(i) For any t ∈ [0, T ], i ∈ {1, . . . ,m}, z ∈ Rm and ρ ∈ R, the mapping α 7→ Hi(t, z, α, ρ) admits a
unique minimizer which we denote by âi(t, z, ρ).

(ii) âi is measurable on [0, T ]× Rm ×R for every i ∈ {1, . . . ,m}.

With the minimizers at hand we define the representative player’s optimized Hamiltonian Ĥ and the
optimizer α̂ as

Ĥ(t, x, z, ρ) :=

m∑
i=1

1ei(x)Ĥi(t, z, ρ), â(t, x, z, ρ) :=

m∑
i=1

1ei âi(t, z, ρ), (2.9)

where Ĥi(t, z, ρ) = Hi(t, z, âi(t, z, ρ), ρ).
In the notation, we intentionally differentiate between a strategy and the function minimizing the

Hamiltonian by denoting the former with the greek letter α and the latter with the hatted latin letter
â. By evaluating the function â as in (2.4) we get an admissible strategy of feedback form (feedback
on state, aggregate, and joint distribution). Later, in Proposition 2.7, we study how â can be used to
construct a mean-field Nash equilibrium.

9
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Hypothesis 2.6 (Regularity of the Hamiltonian minimizer).

There exists a constant C > 0, independent of the principal’s policy, such that for all (t, i, ρ) ∈
[0, T ]× {1, . . . ,m} ×R and z, z′ ∈ Rm:

|âi(t, z, ρ)− âi(t, z′, ρ)| ≤ C‖z − z′‖ei . (2.10)

The following result provides necessary and sufficient conditions for a mean-field Nash equilibrium.
The proof follows the lines of [7, Thm. 1].

Proposition 2.7. Assume that Hypothesis 2.3–2.6 hold true. If (2.4) admits a solution (Y ,Z,α,ρ,Q)
then (α,ρ) is a mean-field Nash equilibrium (according to Definition 2.1). Conversely, if (α̂, ρ̂) is a
mean-field Nash equilibrium then (2.4) admits a solution (Y ,Z,α,ρ,Q) such that α = α̂, dP ⊗ dt-a.s.,
and ρt = ρ̂t, dt-a.e.

Given Z ∈ H2
X , λ ∈ Λ, and real-valued F0-measurable Y0, consider under P:

Y Z,λ,Y0

t = Y0 −
∫ t

0

Ĥ(s,Xs−, Zs, ρ̂
Z,λ,Y0
s )ds+

∫ t

0

Z∗sdMs,

Et = 1 +

∫ t

0

Es−X∗s−
(
Q(s, α̂Z,λ,Y0

s , ρ̂Z,λ,Y0
s )−Q0

)
ψ+
s dMs,

ρ̂Z,λ,Y0

t = QZ,λ,Y0 ◦
(
α̂Z,λ,Y0

t , Xt

)−1

,
dQZ,λ,Y0

dP
= ET ,

α̂Z,λ,Y0

t = â(t,Xt−, Zt, ρ̂
Z,λ,Y0

t ), p̂Z,λ,Y0

t (·) = ρ̂Z,λ,Y0

t (A, ·).

(2.11)

These are the same equations as (2.4), except that the dynamic of Y is written in the forward direction
of time. Here Y0 is fixed instead of YT .

Hypothesis 2.8 (Regularity of the principal’s cost).

(i) The function U : R→ R is invertible.

(ii) c0, f0 are measurable on [0, T ]× R3.

Consider the following optimal control problem

Ṽ (κ) := inf
Y0:E[Y0]≤κ

inf
Z∈H2

X
λ∈Λ

EQZ,λ,Y0
[∫ T

0

(
c0

(
t, p̂Z,λ,Y0

t

)
+ f0(t, λt)

)
dt

+ C0

(
p̂Z,λ,Y0

T

)
+ U−1

(
−Y Z,λ,Y0

T

)]
,

(2.12)

under the dynamic constraint (2.11) under P (the dynamic under QZ,λ,Y0 is given below in (3.1)). The
optimization is now performed not only over the principal’s control policy, λ, but also over the initial
condition Y0 and the Z component. Since we want to find a solution to (2.4), the terminal YT must, by
definition of the representative agent’s problem, equal the utility U(ξ) of the terminal payment ξ. This
remark allows us to remove ξ from the principal’s problem, replacing it by U−1(YT ).

Proposition 2.9. If Hypothesis 2.3–2.6, 2.8 hold true, then Ṽ (κ) = V (κ).

The proof follows the lines of [7, Thm. 2].
Our final result says that certain extended MFGs of the type (2.3) are equivalent to regular MFGs

(where there is no dependence on the distribution of player actions) in the sense that the two problem’s

10
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Nash equilibria are the same. The key property of games with this feature is that their Hamiltonian and
transition rate matrix evaluated at the mean-field Nash equilibrium are functions of the equilibrium state
distribution, not the full joint distribution of equilibrium state and control. The property is formalized
in the following hypothesis:

Hypothesis 2.10 (Properties for Nash equilibria simplification).

(i) There exists a unique solution (Ŷ , Ẑ, α̂, ρ̂, Q̂) to (2.4).

(ii) There exists measurable functions āi : [0, T ]×Rm×P(E)→ A, f̄ : [0, T ]×E×A×Rm×A×P(E)→
R and Q̄ : [0, T ]×A× P(E) such that for all (t, i, z, ρ, `) ∈ [0, T ]× {1, . . . ,m} × Rm ×R× Rm+ :

âi(t, z, ρ̂t) = āi(t, z, p̂t),

f(t, ei, âi(t, z, ρ̂t), ρ̂t; `) = f̄(t, ei, āi(t, z, p̂t), p̂t; `),

Q(t, âi(t, z, ρ̂t), ρ̂t) = Q̄(t, āi(t, z, p̂t), p̂t),

(2.13)

where p̂t(ei) := ρ̂t(A, ei), i = 1, . . . ,m.

(iii) There exists constants C1 and C2, independent of the principal’s policy, such that for all (t, i) ∈
[0, T ]× {1, . . . ,m}, z, z′ ∈ Rm and p, p′ ∈ P(E):

|āi(t, z, p)− āi(t, z′, p′)| ≤ C1‖z − z′‖ei + (C1 + C2‖z‖ei)‖p− p′‖. (2.14)

Assuming that hypothesis 2.10 is true we define the non-extended mean field Nash equilibrium of the
game as follows:

Definition 2.11. Let (α,p) ∈ A ×M(P(E)) and denote by Qα,p ∈ P(Ω) the measure such that the
coordinate process Xt has transition rate matrix Q̄(t, αt, pt) under Qα,p. Assume that (ᾱ, p̄) ∈ A ×
M(P(E)) satisfies

(i) ᾱ = arg infα∈A EQα,p̄
[∫ T

0
f̄(t,Xt, αt, p̄t)dt− U(ξ)

]
,

(ii) ∀t ∈ [0, T ], i ∈ {1, . . . ,m} : p̄t(i) = Qᾱ,ρ̄ (Xt = ei).

Then (ᾱ, p̄) is called a non-extended mean field Nash equilibrium.

The following result allows a simplification of the Nash equilibrium through a non-extended problem.
The proof is found in Appendix A.

Proposition 2.12. Assume Hypothesis 2.3–2.5, 2.10 to be true. Denote the tuple of Hypothesis 2.10(i)
by (Ŷ , Ẑ, α̂, ρ̂,Q). The pair (α̂, ρ̂) is a mean-field Nash equilibrium. Let p̂t be the the E-marginal of ρ̂t
and let (ᾱ, p̄) be a non-extended mean field Nash equilibrium, satisfying Definition 2.11. Then p̂t = p̄t
for dt-a.e. t ∈ [0, T ] and α̂t = ᾱt dP⊗ dt-a.e..

3 Numerical approach

In this section, we propose a numerical method to solve the Stackelberg equilibrium. This requires finding
the optimal policy of the principal and the associated mean-field Nash equilibrium for the population of
agents. The principal’s policy influences the Nash equilibrium in a rather intricate way. For this reason,
we depart from existing numerical methods for finite state mean field games such as [1], and we propose a
probabilistic method in which Monte Carlo samples are generated to train neural networks approximating
the optimal controls, including the principal’s policy.
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3.1 Monte Carlo simulation

From Proposition 2.9, we know that solving the original Stackelberg MFG problem amounts to solving an
optimal control problem in which the state can be viewed as (X,Y ) and has a forward dynamics: under
P, X is a continuous time Markov chain with Q-matrix Q0 and Y satisfies (2.11). We recall that the
controls are Z ∈ H2

X , λ ∈ Λ, and a real-valued F0-measurable random variable Y0. This problem involves
the state and action distribution. We replace this distribution by an empirical distribution obtained with
an interacting system of particles and we discretize the time integral. We first note that, given a triple
of controls (Z,λ, Y0), the dynamic (2.11) can be written as:

Y Z,λ,Y0

t = Y0 −
∫ t

0

f(s,Xs−, α̂
Z,λ,Y0

t , ρ̂Z,λ,Y0
s ;λs)ds+

∫ t

0

Z∗sdMZ,λ,Y0
s ,

Et = 1 +

∫ t

0

Es−X∗s−
(
Q(s, α̂Z,λ,Y0

s , ρ̂Z,λ,Y0
s )−Q0

)
ψ+
s dMs,

ρ̂Z,λ,Y0

t = QZ,λ,Y0 ◦
(
α̂Z,λ,Y0

t , Xt

)−1

,
dQZ,λ,Y0

dP
= ET ,

α̂Z,λ,Y0

t = α̂(t,Xt−, Zt, ρ̂
Z,λ,Y0

t ;λs), p̂Z,λ,Y0

t (·) = ρ̂Z,λ,Y0

t (A, ·),

(3.1)

where the processMZ,λ,Y0 is defined by:

MZ,λ,Y0

t =Mt −
∫ t

0

X∗s−
(
Q(s, α̂Z,λ,Y0

s , ρ̂Z,λ,Y0
s )−Q0

)
ds,

is a QZ,λ,Y0 -martingale. Furthermore, from this definition we see that the canonical process X satisfies,
under QZ,λ,Y0 ,

Xt = X0 +

∫ t

0

X∗s−Q(s, α̂Z,λ,Y0
s , ρ̂Z,λ,Y0

s )ds+MZ,λ,Y0

t . (3.2)

In other words, under the probability measure QZ,λ,Y0 , the intensity rate of X is given by Q(s, α̂Z,λ,Y0
s ,

ρ̂Z,λ,Y0
s ).

To simulate Monte Carlo trajectories, we will use the expressions (3.1)–(3.2). For simplicity of
the implementation, we assume that given any admissible policy (λ, ξ), we can express the induced
equilibrium control α̂ as a function of p̂, the flow of second marginals of the equilibrium distribution flow
ρ̂. To wit, for every (λ, ξ), denoting (Y ,Z, α̂, ρ̂,Q) the solution to (2.4), we assume that there exists
ǎ : [0, T ]× E × Rm × P(E)→ R such that

α̂t = ǎ (t,Xt, Zt, p̂t) ,

where p̂t = ρ̂t(A, ·) is the state marginal of ρ̂. This is automatically true if the minimizer â of the
Hamiltonian is independent of the first marginal of ρ, i.e.,

âi(t, z, ρ) = ǎi(t, z, ρ(A, ·)),

for a function ǎi : [0, T ] × Rm × P(E) → R, which is often assumed to be true in extended MFGs, see
e.g. [8, Assumption 3.4] in the finite space setting and [35, 36] in the continuous space setting. However, it
also holds in more general situations, for instance when the equilibrium control can be expressed in terms
of the solution to a forward-backward PDE system [24, 10, 29] in the continuous space setting. In such
cases, the equilibrium control is expressed as a feedback function of (t, x) related to the backward PDE,
and the distribution of actions can be recovered from this feedback control and the state distribution
related to the forward PDE.

We now present the scheme with a finite number of particles and discrete time steps. We consider
N > 0 particles and denote JNK = {1, . . . , N} the set of indexes. Given measurable control functions
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z : [0, T ] × E → Rm, λ : [0, T ] → Rm+ , y0 : E → R, we construct trajectories (Xi
tn , Y

i
tn)n,i=1,...,N . After

initialization, we proceed iteratively for every n ≥ 1 while tn ≤ T : Xi
tn is sampled with Q-matrix given

by
Qitn := Q(tn, α

i
tn , ρ

N
tn),

where

ρNtn =
1

N

N∑
i=1

δ(Xitn ,α
i
tn)

is the empirical action-statae distribution, and

αitn = ǎ(t,Xi
tn , z(tn, X

i
tn), pNtn), where pNtn =

1

N

N∑
i=1

δXitn
.

Based on (3.2), we define:

∆Mi
tn = −(Xi

tn+1
−Xi

tn)− (Xi
tn)∗Qitn(tn+1 − tn),

and then, based on (3.1), we let: Y i0 = y(Xi
0) and for n ≥ 0,

Y itn+1
= Y itn − f(tn, X

i
tn , α

i
tn , ρ

N
tn ;λ(tn))(tn+1 − tn) + z(tn, X

i
tn)∗∆Mi

tn .

Here tn corresponds to the time of the n-th jump in the particle system (Xi)i=1,...,N . In the implementa-
tion, these trajectories are constructed using a time marching procedure from time 0 until time T , with
steps corresponding to jumps. For more details, see Algorithm 1.

3.2 Approximation based on neural networks

In order to have a problem amenable to numerical treatment, we replace the controls (Z,λ, Y0) by
parameterized functions zθ1 : [0, T ] × E → Rm, λθ2 : [0, T ] → Rm+ , and y0,θ3 : E → R with respective
parameters θ1, θ2, θ3. Since the number of states m is potentially large, we choose to use neural networks
and, to be specific, in the implementation we take feedforward fully connected neural networks. Then,
taking into account the time discretization and the approximation using a finite number of particles as
described above, instead of (2.12), and considering a finite number M of Monte Carlo samples, the goal
is now to minimize over θ = (θ1, θ2, θ3) the objective function:

JN (θ) =
1

M

M∑
j=1

[
ntot−1∑
n=0

(
c0

(
tn, p̄

j,N,θ
tn

)
+ f0(tn, λθ2(tn))

)
(tn+1 − tn)

+ C0

(
p̄j,N,θT

)
+

1

N

N∑
i=1

U−1
(
−Y j,i,θT

)] (3.3)

where, for j = 1, . . . ,M , (Y j,i,θ)i∈JNK and p̄j,N,θ are constructed by Algorithm 1 using (z, λ, y0) =
(zθ1 , λθ2 , y0,θ3). Intuitively, in the limit when M , N and the number of parameters θ go to infinity, we
would expect infθ JN (θ) to converge to the principal’s optimal cost.

To optimize over θ = (θ1, θ2, θ3), we rely on a variant of stochastic gradient descent (namely the
Adaptive Moment Estimation algorithm). This kind of methods is particularly well suited to the min-
imization of JN in (3.3) since on the one hand the number of parameters in deep neural networks is
potentially large and on the other hand this cost is written as an expectation and can thus be computed
using Monte Carlo samples. Our method can be viewed as an adaptation of the second algorithm in [5]
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to the finite state case and its generalization to the Stackelberg setting with a principal. More precisely,
we introduce for a sample S = (Xi

tn , Y
i
tn , Z

i
tn)n=0,...,ntot,i∈JNK of a population of N particles:

JNS (θ) =

ntot−1∑
n=0

(
c0

(
tn, p̄

N,θ
tn

)
+ f0(tn, λθ2(tn))

)
(tn+1 − tn)

+ C0

(
p̄N,θT

)
+

1

N

N∑
i=1

U−1
(
−Y i,θT

) (3.4)

where pNtn = 1
N

∑N
i=1 δXitn

. Note that (3.3) is simply the average of JNS over M samples (here one sample

corresponds to the trajectories of one population). See Algorithm 2 for more details on the stochastic
gradient descent (SGD) method applied in the context of Stackelberg mean field game.

Remark 3.1. If the regulator is not optimizing its own outcomes, in other words if the policies set by
the regulator, (λ, ξ), are exogenous, the neural network approach can be still used. Since λ is known in
Section 3.1, we can write system (3.1) controlled only by Z and Y0. Then in Section 3.2, we replace
controls (Z, Y0) by parameterized functions zθ1 : [0, T ] × E → Rm and y0,θ2 : E → R with respective
parameters θ1, θ2. Then considering a finite number M of Monte Carlo samples with N particles in each,
the goal is to minimize over θ = (θ1, θ2) the loss function:

LN (θ) =
1

M

M∑
j=1

[(
U(ξ)− 1

N

N∑
i=1

Y j,i,θT

)2]
(3.5)

4 Experimental results

4.1 SIR equilibrium with a fixed policy

Our first numerical experiment is an extended MFG with SIR dynamics. The principal is not active
in this experiment; we think of the principal as a static regulator who has beforehand declared a fixed
policy. The purpose is two-fold. Firstly, since a semi-explicit solution is attainable the numerical method’s
accuracy can be evaluated (see Fig. 2 and 3), and secondly, we illuminate the game-aspect of the model
and how the agents are prone to “cheat” a little and use a less conservative socialization protocol than
the incentivized one.

We begin by recalling the problem introduced in Section 1.1 and we focus here on the limiting problem
with a continuum of agents. The representative agent evolves according to the rate matrix Q(t, αt, ρt)
given in (1.6) and the running cost in (1.7). As stated in Section 1.1, the running cost does not depend
on the extended mean field, however the dynamic does, making the problem an extended MFG. The
representative agent’s terminal utility is U(ξ) = ξ.

Given (λ, ξ), the mean field Nash equilibrium can be reduced to the solution of a system of forward-
backward ODEs as we explain in more details below. We solve the ODEs by iteratively solving the
forward and the backward equations, until the distance between two iterates is small enough.

Since the neural network based method we propose is new, we consider a testbed on which we can
assess its correctness using a well-studied approach, which serves as a benchmark. For any given (λ, ξ),
the mean field Nash equilibrium can be reduced to the solution of a system of forward-backward ODEs,
in the spirit of, for example, [4, Section 7.2.2]. The forward equation describes the evolution of the
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Algorithm 1: Monte Carlo simulation an interacting batch

1 Input: Transition rate matrix Q; number of particles N ; time horizon T ; initial
distribution p0; control functions λ, y0, z

2 Output: Approximate sampled trajectories of (X,Y ,Z) solving (3.1)–(3.2)

1: Let n = 0, t0 = 0; pick Xi
0 ∼ p0 i.i.d and set Y i

0 = y0(Xi
0), i ∈ JNK

2: while tn ≤ T do
3: Set Zitn = z(tn, X

i
tn), αitn = ǎ(tn, X

i
tn , Z

i
tn , ptn), i ∈ JNK

4: Let ρ̄Ntn = 1
N

∑N
i=1 δ(Xi

tn
,αi

tn
) and p̄Ntn = 1

N

∑N
i=1 δXi

tn

5: Pick (T i,e)e∈E,i∈JNK i.i.d. with exponential distribution of parameter 1

6: Set the holding times: τ i,e = T i,e/QXi
tn
,e(tn, α

i
tn , ρ̄

N
tn), i ∈ JNK, e ∈ E

7: Let ei? = arg mine∈E τ
i,e and τ i? = τ i,e

i
? = mine∈E τ

i,e, i ∈ JNK
8: Let i? = arg mini∈JNK τ

i
? be the first particle to jump

9: Let ∆t = τ i?? be the time increment
10: Set Xi?

tn+∆t = ei?? , and for every i 6= i?, set Xi
tn+∆t = Xi

tn

11: Let ∆M i
tn = Xi

tn+∆t −Xi
tn − (Xi

tn)∗Q(tn, α
i
tn , ρ̄

N
tn)∆t, i ∈ JNK

12: Let Y i
tn+∆t = Y i

tn − f(t,Xi
tn , α

i
tn , ρ̄

N
tn ;λ(tn))∆t+ (Zitn)∗∆M i

tn , i ∈ JNK
13: Set n = n+ 1 and tn = tn−1 + ∆t
14: end while
15: Set ntot = n, tntot = T, (Xi

tntot
, Y i

tntot
, Zitntot

) = (Xi
tntot−1

, Y i
tntot−1

, Zitntot−1
)

16: return (Xi
tn , Y

i
tn , Z

i
tn)n=0,...,ntot,i∈JNK and (tn)n=0,...,ntot

Algorithm 2: SGD for Stackelberg Mean Field Game

1 Input: Initial parameter θ0; number of iterations K; sequence (βk)k=0,...,K−1 of
learning rates; transition rate matrix Q; number of particles N ; time horizon T ; initial
distribution p0

2 Output: Approximation of θ∗ minimizing JN defined by (3.3)

1: for k = 0, 1, 2, . . . ,K − 1 do
2: Sample S = (Xi

tn , Y
i
tn , Z

i
tn)n=0,...,ntot,i∈JNK and (tn)n=0,...,ntot using Algorithm 1 with

control functions (z, λ, y0) = (zθk,0 , λθk,1 , y0,θk,2) and parameters: transition rate matrix
Q; number of particles N ; time horizon T ; initial distribution p0

3: Compute the gradient ∇JNS (θk) of JNS (θk) defined by (3.4)
4: Set θk+1 = θk − βk∇JNS (θk)
5: end for
6: return θK

15



Stackelberg MFG for Epidemic Control

Table 1: Parameter values, policies, and contact factor in the four numerical experiments on the
SIR extended MFG. The regulator declares a fixed policy (λ, ξ).

Test case Contact factor ξ λ
(S)
t λ

(I)
t λ

(R)
t

Free spread Constant 0 1 1 1

No lockdown MF Nash eq. 0 1 1 1

Late lockdown MF Nash eq. 0 1− 0.31t>40 0.9− 0.31t>40 1

Early lockdown MF Nash eq. 0 1− 0.31t≤10 0.9− 0.31t≤10 1

Parameter T p0 cλ cI β γ η

Value in tests 50 (0.9, 0.1, 0) 10 1 0.25 0.1 0

population distribution while the backward characterizes the value function of an infinitesimal agent:

ṗt(S) = −β
(
λ

(S)
t +

β

cλ
λ

(I)
t pt(I)(ut(S)− ut(I))

)
λ(I)pt(S)pt(I) + ηpt(R),

ṗt(I) = β
(
λ

(S)
t +

β

cλ
λ

(I)
t pt(I)(ut(S)− ut(I))

)
λ(I)pt(S)pt(I)− γpt(I),

ṗt(R) = γpt(I)− ηpt(R)

u̇t(S) = βλ(S)λ(I)pt(I)(ut(S)− ut(I)) +
1

2cλ

(
βλ(I)pt(S)(ut(S)− ut(I))

)2
u̇t(I) = γ(ut(I)− ut(R))− cI
u̇t(R) = κ(ut(R)− ut(S))

uT (e) = 0, p0(e) = pe0, e ∈ {S, I,R},

(4.1)

They are, in the finite state MFG, the counterparts to Kolmogorov-Fokker-Planck and Hamilton-
Jacobi-Bellman partial differential equations arising in continuous space MFGs. For more details on the
derivation of these ODEs for a (slightly different) class of finite-state MFGs, we refer the reader to [4,
Section 7.2.2].

The six equations are coupled, reflecting the fact that an agent cannot compute their value function
(and their optimal control) without knowing the population evolution when in Nash equilibrium, and
the population distribution cannot be computed without knowing the controls chosen by the agents. For
this reason, we cannot solve one equation before the other. We propose to solve this system by solving
iteratively the forward and the backward ODEs in turn, plugging the solution of the previous iteration
in the equation at the current iteration. To implement this strategy, we discretize time and replace the
distribution and the value function by vectors (see Algorithm 3). In our implementation, we used an
explicit Euler scheme.

When we analyze Figure 2 and Figure 3 (also Figure 4 and 5), we see that neural network based
method is accurately computes the results obtained by the ODE method.
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Algorithm 3: ODE Approach for the finite-state Mean Field Game

1 Input: Time horizon T ; Time Increments ∆t; Initial discretized flow of state

distribution and value function p(0) = {p0, p∆t, p2∆t, . . . , pT } and
u(0) = {u0, u∆t, u2∆t, . . . , uT }; initial state distribution p0; terminal condition of value
function uT ; Tolerance τ

2 Output: Equilibrium discretized flow of state distribution and corresponding value
function: (p̂0, p̂∆t, . . . , p̂T ) and (û0, û∆t, . . . , ûT )
1: k ← 0
2: while ||p(k) − p(k−1)|| > τ or ||u(k) − u(k−1)|| > τ do
3: Compute p(k+1) solving the forward equation in (4.1) with u replaced by u(k)

4: Compute u(k+1) solving the backward equation in (4.1) with p replaced by p(k+1)

5: Update p(k−1) ← p(k), p(k) ← p(k+1), u(k−1) ← u(k), u(k) ← u(k+1)

6: k ← k + 1
7: end while
8: return p(k) and u(k)
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Figure 2: Late lockdown with the ODE solver. Evolution of the population state distribution
(left), evolution of the controls (middle), convergence of the solver (right).
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Figure 3: Late lockdown with Algorithm 2. Evolution of the population state distribution (left),
evolution of the controls (middle), convergence of the loss value (right).
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Figure 4: Early lockdown with the ODE solver. Evolution of the population state distribution
(left), evolution of the controls (middle), convergence of the solver (right).
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Figure 5: Early lockdown with Algorithm 2. Evolution of the population state distribution
(left), evolution of the controls (middle), convergence of the loss value (right).

To illustrate the impact of the agents’ optimization and the impact of the regulator’s choice of policy,
we consider four test cases, presented in Table 1. The parameters related to the dynamics are chosen
according to the following assumptions on COVID-19 pandemic: Since the average recovery duration is
around 10 days, the recovery rate is taken as γ = 0.1 1/days; furthermore, to our up to date knowledge,
the reinfection possibility is lower in the first 3 months and for later times it is uncertain.6 Therefore,
in some experiments in this paper, the reinfection rate η is taken 0 or 0.01. Finally, since it is hard to
estimate infection rate β directly, we used the estimates on Basic Reproduction number (R0) of COVID-
19. The CDC uses R0 = 2.5 in the “Current Best Estimate” scenario in its simulations.7 Therefore, we
use β = R0 × γ = 0.25 in our simulations. For the parameters related to the cost function of agents, we
choose cI = 1 and cλ = 10 to balance the powers of the different cost terms. Since cI stands alone while
cλ is multiplied with a term likely to be much more smaller than 1, we decide to use a higher cλ value.
Further, we also rule out extreme cases. For example, if cI is taken to be too dominant then susceptible
people will decide to minimize their contact factor, which leads to unrealistic results. Also, cI is not
taken to be very small (≈ 0), since that means sickness does not come with an added negative effect.
We know from our experience during COVID-19 pandemic that being sick has both social and economic
burden.

6https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html
7https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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Figure 6: Evolution of the population state distribution in the four test cases, obtained using
an ODE solver.

Fig. 6 displays the evolution of the population’s state distribution in each of the four test cases. In
it, it is worth to note that the proportion of infected is decreasing from first test case to the last one,
which can be interpreted in the following way: In the Nash equilibrium the agents take action to reduce
the risk of being infected compared with letting the epidemic spread freely; imposing λ(I) < 1 encourages
the players to be more cautious and hence decreases further infections; last, recommending a λ(I) that is
low in the beginning and then relaxing it (early lockdown case) helps avoiding the first peak (around 15
days) but leads to another peak later (around 28 days). We can further infer that the cumulative number
of infected people can be decreased the most with the early lockdown policy. Therefore, we conclude that
early actions are more effective at decreasing the severeness of the disease.

4.2 A semi-explicitly solvable Stackelberg game

We now add the regulator’s optimization to the previous example, making it a Stackelberg game. The
regulator pays a cost that is increasing with the number of infections and any deviation of the issued

policy λ = (λ
(S)
t , λ

(I)
t , λ

(R)
t )t∈[0,T ] from some endogenously recommended levels, λ̄. There are multiple

ways we can think of the latter: as levels recommended by the health authorities such as C.D.C.; an
average of what other regulators are doing (e.g., other countries’ regulations)8; or budgetary constraints.
We will take on the viewpoint that λ̄ is a health authority recommendation to the regulating body that

8A scenario with multiple competing regulators is a highly interesting and relevant problem. During the past
year, we have seen such opposition between US states, and EU member states. We imagine that in such a model
we would sometimes see alignment of recommendations and other times specialization. However, the case is
beyond the scope of this paper.
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is “the government”.
Turning to the specifics, we set C0(p) = 0 and we assume that the government minimizes the propor-

tion of the infected people over time and tries to set socialization levels close to the levels recommended
by the health authorities:

c0(t, p) = cInf p(I)2, f0(t, λ) =
∑

i∈{S,I,R}

β̄(i)

2

(
λ(i) − λ̄(i)

)2

(4.2)

for constant λ̄, β̄ ∈ Rm+ and cInf > 0. The next proposition provides a semi-explicit construction of the
optimal contract and the mean-field Nash equilibrium in this case. A proof is presented in appendix B.

Proposition 4.1. Consider the Stackelberg game of this section. Let H̃ : [0, T ]×P(E)×Rm×A×Rm+ → R
be defined by:

H̃(t, π, y, α̃, λ) := (y(I)− y(S))βλ(I)απ(I)π(S) + (y(R)− y(I)) γ

+ (y(S)− y(R)) η + c0(t, π) + f0(t, λ)

+
cλ
2

(
λ(S) − α̃

)2

π(S) + cIπ(I).

(4.3)

Let (α̂(πt, yt), λ̂
(S)(πt, yt), λ̂

(I)(πt, yt), λ̂
(R)(πt, yt)) be the solution to

(∇α̃,∇λ)H̃(t, πt, yt, α̂(πt, yt), λ̂(πt, yt)) = 0, (4.4)

assumed to exist uniquely and be admissible, and (π,y) solves

π̇t = ∇yH̃(t, πt, yt, α̂(πt, yt), λ̂(πt, yt), π0 = p0,

ẏt = −∇πH̃(t, πt, yt, α̂(πt, yt), λ̂(πt, yt)), yT = 0.
(4.5)

Denote by (π̂, ŷ) the solution to (4.5) and let us define the processes α̂ ∈ A and Ẑ ∈ H2
X by:

α̂t = α̂(π̂t, ŷt)1S(Xt−) + λ̂(I)(π̂t, ŷt)1I(Xt−) + λ̂(R)
1R(Xt−)

Ẑt =

cλ
(
α̂(π̂t, ŷt)− λ̂(S)(π̂t, ŷt)

)
βλ̂(I)(π̂t, ŷt)π̂t(I)

1S(Xt−)1(λ(I) > 0), 0, 0

 .
(4.6)

Now let y0 ∈ Rm be such that p∗0y
0 ≤ κ. We then define the random variable ξ̂ almost surely by the

Stieltjes integral

ξ̂ := −X∗0y0 +

∫ T

0

(
f(t,Xt−, α̂t, π̂t) +X∗t−Q̄(t, α̂t, π̂t)Ẑt

)
dt−

∫ T

0

Ẑ∗t dXt−. (4.7)

Then (λ̂, ξ̂) is an optimal contract. Moreover, under the optimal contract, every agent adopts the strategy
where they pick the control α̂t and the flow of distribution of agents’ states is π̂.

The next numerical experiment is a comparison of Algorithm 2 and the semi-explicit solution of
Proposition 4.1. The results are presented in Fig. 7–8 and the parameters used in the simulation are
found in Table 2. The additional parameters are chosen as follows: For λ̄, we assumed that health
authorities recommend a stricter policy for the infected people than susceptible and recovered people;
therefore λ̄(I) is equal to 0.7, while λ̄(S) and λ̄(R) are equal to 1. Further, for the government it is more
important to follow the guidelines for infected people and if there is no reinfection as in this experiment
here it is not important to follow the guidelines for the recovered people; therefore, β̄(i) are taken 0.2,
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1 and 0, respectively for i ∈ {S, I,R}. The value of the loss in the numerical scheme of Algorithm 2
converges to the optimal value from the semi-explicit solution. Furthermore, the population dynamics
are very similar in both solutions. As for the controls, we see that in both cases, the agents tend to follow
closely the regulator’s policy. The policies λ(S),λ(I) output by Algorithm 2 seem to capture the average
value of the policies given by the semi-explicit solution. Since the loss value is very close to the optimal
one, we deduce that these policies are approximately optimal.

Table 2: Parameter values for the SIR Stackelberg MFG experiment.

T p0 cλ cI cInf β̄ λ̄ β γ η κ

30 (0.9, 0.1, 0) 10 0.5 1 (0.2, 1, 0) (1, 0.7, 0) 0.25 0.1 0 0
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Figure 7: SIR Stackelberg mean field game with Algorithm 2. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the loss value (right). Here,
green line refers to the loss function found by the neural network based approach and the red
line shows the optimal loss value.
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Figure 8: SIR Stackelberg mean field game with ODE solver. Evolution of the population state
distribution (left), evolution of the controls (middle), convergence of the solver (right).

4.3 A more complex model: SEIRD

To illustrate the flexibility and scalibility of the proposed numerical method, we now consider a more
complex model. On top of the S, I and R states considered above, we add two new states: Exposed (E)
and Dead (D). An individual is in state E when it has been infected but is not yet infectious. Hence the
agents evolve from S to E and then I, and the infection rate from S to E depends on the proportion of
the infected people. From the point of view of the dynamics, the state D is absorbing but it is important
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for the cost functions discussed below. Now R is interpreted as recovered. We consider the states in the
order: S,E, I,R,D. A representative agent evolves according to the rate matrix Q(t, αt, ρt),

Q(t, α, ρ) =


· · · βαt

∫
A
aρt(da, I) 0 0 0

0 · · · ε 0 0

0 0 · · · γ δ

η 0 0 · · · 0

0 0 0 0 · · ·

 , (4.8)

where β, γ, η,Λ, δ ∈ R+ are constants. See Fig. 9 for a diagram of the dynamics.
The cost of the agents generalizes the previous example (1.7) by incorporating terms related to the

new states as follows:

f(t, x, α, ρ;λ) =
cλ
2

(
λ(S) − α

)2

1S(x) +
1

2

(
λ(E) − α

)2

1E(x)+(
1

2

(
λ(I) − α

)2

+ cI

)
1I(x) +

1

2

(
λ(R) − α

)2

1R(x) + cD1D(x),
(4.9)

where cλ, cI , cD ∈ R+ are constants. We note that the final term in (4.9) represents a cost of passing due
to the disease (transitioning to the absorbing state D) and a preference for doing so as late as possible.
The terminal payment utility is U(ξ) = ξ. Further, we also modify the cost of the regulator:

c0(t, p) = cinfp(I)2, f0(t, λ) =
∑

i∈{S,E,I,R}

β̄(i)

2

(
λ(i) − λ̄(i)

)2

, C0(p) = cdp(D), (4.10)

for constant λ̄, β̄ ∈ Rm+ and cinf , cd > 0. Compared to previous experiments, the regulator is now paying
an additional terminal cost C0(p) depending on the proportion of deceased people at the end of the time
horizon. We set the coefficients cd and cD to high values to put more importance to the cost terms related
to death. Further we assumed that mortality rate δ is 1%.

As it can be seen in the top plots in Figure 10, playing the mean field Nash Equilibrium under the
control of regulator flattens the curve of infections compared to free spread. We also see that when
susceptible players do not feel safe enough with the recommended socialization levels they use a lower
contact rate. This showcases the ability of the model to capture a population that is more risk-averse than
their regulator. On a final note, this experiment shows that agents may not follow exactly what regulator
proposes; therefore, the regulator should not assume during policy optimization that the population will
strictly obey the announced policy.

Table 3: Parameter values for the SEIRD Stackelberg MFG experiment.

T p0 cλ cI cInf β̄ λ̄

30 (0.9, 0, 0.1, 0, 0) 10 1 1 (0.2, 0.2, 1, 0) (1, 1, 0.7, 1)

β γ η ε δ cd cD

0.25 0.1 0.01 2 0.01 20 20
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Figure 9: SEIRD model corresponding to the Q-matrix (4.8).

5 Conclusions

We have studied a Stackelberg mean field game with finite state space using a probabilistic approach.
Compared with deterministic approaches using systems of ODEs, this approach has the advantage of
describing the evolution of the system from the point of view of a typical (infinitesimal) agent. The
theoretical contributions of this paper relate to formulating the Stackelberg game between a principal
and a non-cooperative population. To cover the case of populations given by extended MFGs we establish
the results in Section 2.2. We have then applied this class of models to a problem of epidemic containment
with and SIR-type dynamics. In contrast with the existing literature, our model incorporates at the same
time a non-cooperative population and a regulator such as a government. This problem, which can be
viewed as a control problem under a constraint given by a Nash equilibrium, is complex because the
regulator’s decisions influence only indirectly the population’s equilibrium. A naive approach would have
been to solve a Nash equilibrium for each choice of the regulator’s policy but this is computationally
prohibitive for our model. Thus, building on the probabilistic approach, we introduced a numerical
method based on neural network approximation and Monte Carlo simulations to compute the optimal
policy (see Algorithm 1 and 2). We presented several numerical examples and for some of them we
managed to derive semi-explicit solutions which can be used as benchmarks (see Proposition 4.1). In
particular, we have shown the difference between the uncontrolled scenario, the Nash equilibrium without
regulator’s intervention, and equilibria arising from early or late lockdowns. We have also shown that the
numerical scheme can approximately learn the regulator’s optimal policy, including a non-trivial model
in Section 4.3. Overall, the numerical approach is able to capture well the evolution of the epidemic in
society and provides a satisfactory approximation of the optimal policy of the regulator in presence of a
large number of non-cooperative agents.

Several directions are left for future work. For example, on a theoretical side, we may analyze
Stackelberg mean field games with interaction through the joint state-action distribution under weaker
assumptions. From an applied viewpoint, we may consider more complex finite-state models for instance
to add a regulation aspect to SIR-like models appeared recently in the epidemiological literature. We
believe that the derivation of the semi-explicit solutions can be generalized to more evolved compartmental
models. On the numerical side, the algorithm we proposed is based on approximation by neural networks
and could potentially handle even more complex models. This aspect is important for applications to
epidemiological models. Some realistic features we could consider in future work are for instance age
structure or geography with a network of cities. In both cases, the population is split into more sub-
groups, which increases the number of possible states. Another important point is the impact of testing
on the ability to take optimal decisions. Indeed, testing is directly related to the uncertainty of the
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Figure 10: SEIRD Stackelberg MFG with Algorithm 2 in comparison with free spread SEIRD
dynamics. Comparison of the Evolution of the state distribution (top left), Comparison of the
Cumulative Density of Infected people under Stackelberg MFG and Free Spread (top right);
evolution of the controls (bottom left), convergence of the loss (bottom right).

regulator on the population distribution (e.g., to know what is the current proportion of infected people).
For this aspect, it seems that a probabilistic approach like the one we adopted is particularly well-suited.

A Proofs for Section 2

Propositions 2.7 and 2.9 are adaptations of [7, Thm. 1] and [7, Thm. 2], respectively, to the extended
case, i.e., to the case where the players interact through the joint distribution of the states and the actions
and not only through the distribution of the states. For the sake of brevity we omit the proofs.

Proof of Proposition 2.12. We define the representative agent’s Hamiltonian in the regular mean-field
game h(t, x, z, α, p) in line with H, but with the ”overlined” functions f̄ , Q̄ replacing f and Q. It
follows from the assumptions that āi(t, z, p) is the minimizer of α 7→ h(t, ei, z, α, p) for (t, i, z, p) ∈
[0, T ]× {1, . . . ,m} × Rm × P(E). Let H̄(t, ei, z, p) := h(t, ei, z, āi(t, z, p), p).

By Proposition 2.12, the pair (α̂, ρ̂) is a mean-field Nash equilibrium. Turning to non-extended
mean-field Nash equilibrium, there exists a pair (α′, p′) satisfying Definition 2.11, see for example [8,
Thm 4.1]. Consequently, by [7, Thm. 1], there exists a solution (Y ′, Z′, α′, p′,Q′) to the system (under
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P) 

Y ′t = U(ξ) +

∫ T

t

H̄(s,Xs−, Z
′
s, p
′
s)ds−

∫ T

t

(Z ′s)
∗dMs

E ′t = 1 +

∫ t

0

E ′s−X∗s−
(
Q̄(s, α′s, p

′
s)−Q0

)
ψ+
s dMs,

α′t = ā(t,Xt−, Z
′
t, p
′
t), p′t = Q′ ◦ (Xt)

−1
,
dQ′

dP
= E ′T ,

(A.1)

such that α′ = ᾱ dP⊗ dt-a.e. and p′t = p̄t dt-a.e..
The claim p̂t = p̄t dt-a.e. t ∈ [0, T ] is equivalent to

EQ̂ [Xt]− EQ′ [Xt] = EP[(Êt − E ′t)Xt] = 0, dt-a.e. t ∈ [0, T ]. (A.2)

Let σ̂t and σ′t be the volatility (viewed as row vectors in Rm) of Êt and E ′t, respectively,

σ̂t = Êt−X∗t−
(
Q̄(t, α̂t, p̂t)−Q0

)
ψ+
t , σ′t = E ′t−X∗t−

(
Q̄(t, α′t, p

′
t)−Q0

)
ψ+
t , (A.3)

and let ∆Êt := Êt − Êt−. In the same way we define ∆Xt and ∆E ′t. Since

∆Êt = σ̂t∆Xt, ∆E ′t = σ′t∆Xt, (A.4)

we have by Ito’s formula that under P,

d‖(Êt − E ′t)Xt‖2

= 2
(
Êt− − E ′t−

)2

X∗t−Q
0Xt−dt+ 2

(
Êt− − E ′t−

)
X∗t−ψt (σ̂t − σ′t)

∗
dt

+ Tr
[(

Σt + (Êt − E ′t)Im
)
ψt

(
Σt + (Êt − E ′t)Im

)∗]
dt+ dM̃t,

(A.5)

where M̃ is a P-martingale, Im is the identity matrix in Rm×m and

Rm×m 3 Σt := [Xt(i) (σ̂t(j)− σ′t(j))]ij (A.6)

Firstly, we have that Tr[ψt] =
∑m
i=1[Q0]Xt−,i = 0, secondly,

Tr[Σtψt] = Tr[ψtΣ
∗
t ] = (m− 1) (σ̂t − σ′t)Xt−, (A.7)

and finally, Tr[ΣtψtΣ
∗
t ] = (m− 1) ((σ̂t − σ′t)Xt−)

2
. We gather that

Tr
[(

Σt + (Êt − E ′t)Im×m
)
ψt

(
Σt + (Êt − E ′t)Im×m

)∗]
= 2(m− 1)(σ̂t − σ′t)(Êt− − E ′t−)Xt− + (m− 1) ((σ̂t − σ′t)Xt−)

2
.

(A.8)

Using our calculations above, Young’s inequality, Gronwall’s lemma, and the Lipschitz continuity of Q̄
and ā (see Hypotheses 2.3 and 2.6), we get that for dt-a.e. t ∈ [0, T ],

EP
[
‖(Êt − E ′t)Xt‖2

]
≤ CEP

[∫ t

0

|ā(s,Xs−, Ẑs, p̂s)− ā(s,Xs−, Z
′
s, p
′
s)|2ds

]
≤ CEP

[∫ t

0

(
‖Ẑs − Z ′s‖2Xs− + ‖p̂s − p′s‖2

)
ds

] (A.9)

for some positive constant C. The estimate holds only dt-a.s. since

(Êt− − E ′t−)Xt− = (Êt − E ′t)Xt, (A.10)
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an equality we need in order to apply Gronwall’s lemma, holds only dt-a.e. t ∈ [0, T ]. The constant C

depends on EP
[∫ t

0
E2
t−dt

]
, E ∈ {Ê , E ′}, which is bounded since Q, Q̄, Q0, and Xt− are bounded. After

one more use of Gronwall’s lemma, we arrive to

EP
[
‖(Êt − E ′t)Xt‖2

]
≤ CEP

[∫ t

0

‖Ẑs − Z ′s‖2Xs−ds
]
, dt-a.e. t ∈ [0, T ]. (A.11)

Consider the difference process (δY, δZ) := (Ŷ − Y ′, Ẑ − Z′). The BSDE estimate of [43, Thm. 4.2.3]
yields the second inequality below, the first one follows by the equivalence of norms on Rm:

EP
[∫ t

0

‖Ẑs − Z̄s‖2Xs−ds
]
≤ CEP

[∫ T

0

‖δZt‖2dt

]
≤ C

∫ T

0

‖p̂t − p′t‖2dt. (A.12)

After one final application of Gronwall’s lemma we see that p̂t = p′t for dt-a.e. t ∈ [0, T ] and therefore
p̂t = p̄t for dt-a.e. t ∈ [0, T ].

Finally, we compare the controls and get

|α̂t − ᾱt| ≤ C
(
‖Ẑt − Z ′t‖Xt− + ‖p̂t − p′t‖

)
, dP⊗ dt-a.s. (A.13)

where we used Hypothesis 2.10 to link â and ā, and to exploit the Lipschitz continuity of ā. Using the
previous calculations, we conclude that α̂t = ᾱt, dP⊗ dt-a.s..

B Proof for Section 4

Proof of Proposition 4.1. In the setting of the example Hypotheses 2.3–2.5, 2.8, and 2.10 hold true. The
minimizers of the reduced Hamiltonians are

âS(t, z, ρ) = λ
(S)
t +

β

cλ

(∫
A

aρt(da, I)

)
(z(S)− z(I)),

âS(t, z, ρ) = λ
(I)
t , âS(t, z, ρ) = λ

(R)
t .

(B.1)

Imposing the consistency condition on (B.1) we see that the game satisfies hypotheses 2.10(ii) and 2.10(iii).
Thus, since we assume hypothesis 2.10(i), Proposition 2.10 says that the mean field Nash equilibrium is
almost surely equal to the solution of the regular mean-field game with transition rate matrix

Q̄(t, α, p) =

· · · βαλ
(I)
t p(I) 0

0 · · · γ

η 0 · · ·

 , (B.2)

and the minimizers of the reduced Hamiltonians for this regular mean field game are

āS(t, z, ρ) = λ
(S)
t +

β

cλ
λ

(I)
t p(I)(z(S)− z(I)),

āS(t, z, ρ) = λ
(I)
t , āS(t, z, ρ) = λ

(R)
t .

(B.3)
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The principal’s problem, after the same rewriting that yielded (2.11), reads

V (κ) = inf
E[Y0]≤κ

inf
Z∈H2

X
λ∈Λ

EQZ,λ,Y0
[∫ T

0

(
c0(t, pZ,λ,Y0

t ) + f0(t, λt)
)
dt− Y Z,λ,Y0

T

]

= −κ+ inf
Z∈H2

X
λ∈Λ

EQZ,λ,Y0
[∫ T

0

(
c0(t, pZ,λ,Y0

t ) + f0(t, λt)

+
cλ
2

(
λ

(S)
t − āS(t, Zt, p

Z,λ,Y0

t )
)2

1S(Xt−) + cI1I(Xt−)

)
dt

]
,

(B.4)

where −κ is achieved by E[Y0].
The principal’s problem V (κ) can be recast as an optimization problem over A×Λ. Given α ∈ A let

Z̄ be given by, for now formally,

Z̄t(α) :=

(
cλ(αt − λ(S)

t )

βλ
(I)
t p

Z̄(α),λ,Y0

t (I)
1S(Xt−)1(λ

(I)
t > 0), 0, 0

)
, t ∈ [0, T ]. (B.5)

Lemma B.1. Given α ∈ A and λ ∈ Λ, let

Ψ(z) =

(
cλ(αt − λ(S)

t )

βλ
(I)
t Φzt (I)

1S(Xt−)1(λ
(I)
t > 0), 0, 0

)
t∈[0,T ]

(B.6)

for z ∈ H2
X , where Φzt is given by

Φzt = p0 +

∫ t

0

EQz,λ,Y0 [Q̄∗(s, ᾱ(s,Xs−, zs,Φ
z
s ),Φzs )Xs−

]
ds. (B.7)

Then Ψ is well defined as a mapping from H2
X to itself and there exists a unique fixed point to Ψ. We

denote the fixed point of Ψ by Z̄(α) and Φ
Z̄(α)
t by p

Z̄(α),λ,Y0

t . Furthermore, for all t ∈ [0, T ],

ā(t,Xt−, Z̄t(α), p
Z̄(α),λ,Y0

t ) = αt1S(Xt−) + λ
(I)
t 1I(Xt−) + λ

(R)
t 1R(Xt−). (B.8)

Proof. The first observation is there exists a uniform lower bound c such that Φzt (i) ≥ c > 0 for i ∈
{S, I,R} and t ∈ (0, T ]. This grants the first assertion of the lemma, that Ψ(z) ∈ H2

X for all z ∈ H2
X .

Secondly, we have that ∣∣∣Φzt (I)−1 − Φz
′

t (I)−1
∣∣∣2 ≤ CE [∫ t

0

‖zs − z′s‖2dt
]

(B.9)

for some positive constant C. To get (B.9) we used Gronwall’s lemma, Cauchy-Schwartz inequality, and
the boundedness of the coefficients, λ, and the likelihood process dQz,λ,Y0/dP. From (B.9) follows that

E
[
‖Ψt(z)−Ψt(z

′)‖2
]
≤ CE

[∫ t

0

‖zs − z′s‖2dt
]
, t ∈ [0, T ]. (B.10)

and hence ΨN is a contraction mapping for sufficiently large N (by equivalence of norms on Rm). The
existence of a unique fixed point of Ψ follows by the Banach fixed-point theorem for iterated mappings.
Finally, (B.8) follows by plugging in Z̄(α) and pZ̄α,λ,Y0 into (B.3).
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In light of Lemma B.1 and since Q and ᾱ do not depend on the representative agent’s expected total
cost Y0, the principal’s problem can be transformed to

W = inf
α∈A,λ∈Λ

I(α,λ),

I(α,λ) := EQα,λ
[∫ T

0

(
c0(t, pα,λt ) + f0(t, λt) +

cλ
2

(
λ

(S)
t − αt

)2

1S(Xt−) + cI1I(Xt−)
)
dt

]
.

(B.11)

The measure Qα,λ is such that the coordinate process X has transition rate matrix Q̄(t, αt, p
α,λ) under

it, pα,λt is the law of Xt under Q̄(t, αt, p
α,λ).

From the decomposition of the coordinate process,

Xt = X0 +

∫ t

0

Q̄∗(s, αs, p
α,λ
s )Xs−ds+Mα,λ

t , (B.12)

we deduce the dynamic of pα,λ:

pα,λt = p0 +

∫ t

0

EQα,λ [Q̄∗(s, αs, pα,λs )Xs−
]
ds, (B.13)

where we see that the right-hand side depends on the control αs only through the conditional expectation

α̃s := EQα,λ [αs | Xs− = S], s ∈ [0, T ]. Let

Ĩ(α̃,λ) :=

∫ T

0

(
c0(t, pα,λt ) + f0(t, λt) +

cλ
2

(
λ

(S)
t − α̃t

)2

1S(Xt−) + cI1I(Xt−)
)
dt (B.14)

and consider the deterministic control problem

W̃ := inf
α̃∈Ã,λ∈Λ

Ĩ(α̃,λ) (B.15)

where Ã is the collection of all measurable mappings from [0, T ] to A.

Lemma B.2. We have W = W̃ . If (α̃,λ) is a solution to the optimization problem W̃ , then the

predictable process α defined by αt =
∑
i∈{S,I,R} 1i(Xt−)α̃

(i)
t together with λ is an optimal control for

W . Furthermore, an optimal control exists for W̃ .

The proof readily follows by Proposition 1 and Lemma 3 of [7].
We apply the necessary part of the Pontryagin maximum principle to characterizes the solution to

the optimal control problem W̃ and the corresponding flow of probability measures. The Hamiltonian
for the problem W̃ is H̃, defined in (4.3). It is straight forward to obtain the first order optimality

conditions (∇α̃,∇λ)H̃ = 0. After some tedious calculation we reach (4.4). This concludes the proof of
Proposition 4.1.
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[26] M. Huang, R. P. Malhamé, P. E. Caines, et al., Large population stochastic dynamic games:
closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Communications
in Information & Systems, 6 (2006), pp. 221–252.
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