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Abstract

We propose a fast and robust scheme for the direct minimization of the Ohta–Kawasaki energy that char-
acterizes the microphase separation of diblock copolymer melts. The scheme employs a globally conver-
gent modified Newton method with line search which is shown to be mass-conservative, energy-descending,
asymptotically quadratically convergent, and typically three orders of magnitude more efficient than the
commonly-used gradient flow approach. The regularity and the first-order condition of minimizers are
carefully analyzed. A numerical study of the chemical substrate guided directed self-assembly of diblock
copolymer melts, based on a novel polymer-substrate interaction model and the proposed scheme, is pro-
vided.

Keywords: the Ohta-Kawasaki Model, the nonlocal Cahn-Hilliard model, block copolymer, directed
self-assembly, Newton method, Hessian approximation.

1. Introduction

A block copolymer (BCP) is a polymer consisting of sub-chains or blocks of chemically distinct monomers
joined by covalent bonds, each block being a linear series of identical monomers. A large collection of one
type of block copolymer is called a melt. At high temperatures, the blocks in an incompressible melt are
mixed homogeneously. As the temperature is reduced, the dislike blocks tend to segregate and lead to a
process termed microphase separation. The microphase separation of BCP melts results in the self-assembly
of meso-scale multi-phase ordered structures, such as lamellae, spheres, cylinders, and gyroids [1, 5, 26].
The microphase separation could be further guided by chemically and/or topologically patterned templates
formed on the underlying surface, enabling the design of complex nano-structures. This process is referred to
as the directed self-assembly (DSA) of BCPs. The design of the DSA of BCPs to reproduce nano-structures
with desired features is highly attractive in nano-manufacturing applications [4, 31, 40, 45].

Computational studies of the DSA of BCPs have proven to be valuable in determining the effects of
material properties, film thickness, polymer-substrate interactions, and geometric confinement on the self-
assembly process [23, 34, 48, 49]. Continuum models of microphase separation of BCP melts [37], such as
the self-consistent field theory (SCFT) model, the Ohta-Kawasaki (OK) model, and the Swift–Hohenberg
model, make possible the exploration of the space of nano-structures formed by the DSA process with a
relatively low computational cost. They are often used in design and inverse problems associated with the
DSA of BCPs [21, 27–29, 32, 36, 43]. To further reduce the computational cost, it is essential to develop
fast and robust algorithms for obtaining model solutions, particularly since the model must be repetitively
solved in the course of solving design and inverse problems.

In this work, we focus on the OK model for microphase separation of diblock copolymer (BCP with two
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blocks) melts. The OK model, first introduced in [39], is a density functional theory derived from the SCFT
model. Its connection to particle-based models of polymers is discussed in [12, 20, 37, 39]. The OK model
leads to a free energy functional in terms of the relative local densities of the monomers that characterize the
phase separation. The minimizers of the free energy subject to incompressibility constraints represent the
possible equilibrium morphologies of the microphase separation. Various studies have demonstrated success
in using the OK model to depict periodic structures of the diblock copolymer microphase separation that
agree with those observed in experiments and fine-scale models [6, 9–11].

The OK model also belongs to a class of nonlocal Cahn-Hilliard models and minimizing the OK free
energy through the nonlocal Cahn-Hilliard equation, i.e., the mass-conservative gradient flow of the OK
energy, is commonly-adopted in the literature [9–11, 41, 43, 50]. The nonlocal Cahn-Hilliard equation is a
time-dependent fourth-order nonlinear PDE, known for its stiffness. To solve for the minimizers of the OK
free energy through the nonlocal Cahn-Hilliard equation, one needs to solve for the steady-state solutions
while retaining energy stability and accuracy. This typically requires a large number of small time steps
and results in slow linear convergence. Despite this downside, the nonlocal Cahn-Hilliard equation is used
in many computationally challenging studies on the DSA of BCPs in the literature, such as the numerical
investigation of the equilibrium morphology phase diagram [9–11] and the design of optimal DSA guiding
patterns [43]. The gradient flow approach is also referred to as the continuous steepest descent method in the
context of the SCFT model. As pointed out in [20, p.234], since the SCFT model is an equilibrium model
and only the steady states are of physical interest, one ultimately does not care much about the accuracy
of the PDE solve, as the goal is to obtain the steady-state solutions as quickly as possible. The same
argument applies to the OK model, which is posed as an energy minimization problem similar to the SCFT
model. Therefore, it is natural that we seek to develop numerical schemes that preserve the advantages
of the gradient flow approach, such as mass conservation, global convergence, and energy stability, while
discarding its slow and fictitious dynamical trajectory.

In this paper, we propose a fast and robust algorithm for the direct minimization of the OK energy
functional that greatly reduces the computational cost of using the OK model. A globally convergent
modified Newton method with line search, defined in an appropriate function space setting, is used for the
mass-conservative minimization of the OK energy. The minimization iterations are shown to monotonically
decrease the OK energy, attain quadratic convergence, and find local minimizers three order of magnitude
faster than the traditional gradient flow approach.

The rest of the paper is organized as followings. In Section 2, the OK energy functional is introduced
and relevant Hilbert spaces are defined. The minimization problem of the OK energy functional is posed
in these function spaces. In Section 3, the first order optimality condition is reformulated by transforming
the test space. The regularity of the minimizers is analyzed for establishing the two-way equivalency of
the transformation. In Section 4, a mass-conservative Newton method for minimizing the OK energy is
proposed and analyzed. A modified Hessian operator is introduced and we show that it can be employed
to generate energy-descending Newton steps, thus leading to global convergence. The choice of appropriate
initial guesses is discussed. In Section 5, numerical examples are presented to demonstrate the properties of
the proposed scheme. In Section 6, we provide a numerical study of the chemical substrate guided DSA of
BCPs with the proposed scheme. A novel polymer-substrate interaction model based on the OK model is
introduced. The conclusion is given in Section 7.

2. Problem Statement

2.1. The OK energy functional

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded domain. Let uA,uB : Ω→ [0, 1] be the normalized segment densities
of monomer A and B inside the domain. They satisfy the incompressibility constraint, uA +uB = 1. Define
an order parameter u := uA − uB ∈ [−1, 1] that represents the normalized local density difference between
the two phases. We consider the following form of the OK energy functional:

FOK(u) :=
1

2

∫

Ω

{
2κW (u) + ε2|∇u|2 + σ(u−m)(−∆−1)(u−m)

}
dx . (1)
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where κ, ε, σ ∈ R+ are scalar parameters. The constant m is the spatial or mass average of the order
parameter, i.e., m = |Ω|−1

∫
Ω
u dx ∈ [−1, 1]. This equality is typically imposed as the incompressibility

constraint on the order parameter for a given m.
W is a double well potential function that reaches minimum at ±1. It originally had the following form:

W (u) =

{
1
4 (1− u2) , u ∈ [−1, 1] ;

∞ , otherwise .
(2)

The infinite walls at u = ±1 allow the range of u to be extended to the real axis. The approximate fourth-
order polynomial form of the double well potential with global minimum at u = ±1 is often considered as
an alternative:

W (u) =
1

4
(1− u2)2 . (3)

The action of the Laplacian inverse in (1) is defined by the solution of the Poisson equation with the
homogeneous Neumann boundary condition:

w = (−∆−1)(u−m) ⇐⇒
{
−∆w = u−m in Ω ;

∇w · ν = 0 on ∂Ω ,
(4)

where ν is the unit vector normal to ∂Ω.
The κ and ε terms in (1) define the Ginzburg-Landau energy and are often associated with the Cahn-

Hilliard and Allen-Cahn models of phase change. The σ term is responsible for the long-range interaction
and is usually expressed as follows:

Fσ =
σ

2

∫

Ω

∫

Ω

(
u(x)−m

)
G(x,y)

(
u(y)−m

)
dx dy , (5)

where G is the Green’s function of the Laplacian operator. Fσ is therefore often referred to as the nonlocal
energy.

The scalar parameters in the OK energy are linked to the material parameters of the diblock copolymer.
In particular, an appeal to self-consistent field theory in [12] leads to the relations

κ = 1 , ε2 =
l2

3f(1− f)χ|D|2/d , σ =
36|D|2/d

f2(1− f)2l2χN2
, (6)

where N is the degree of polymerization of the polymer, χ is the Flory-Huggins parameter that indicates
the strength of repulsion between dissimilar monomers, l is the statistical segment length of the polymer,
and f ∈ (0, 1) is the segment ratio of one of the sub-chains in the polymer. The domain D refers to the
physical domain, whereas Ω in the energy is originally defined as a normalized domain of unit volume. To
maintain generality of the model, we treat κ as an arbitrary positive number and Ω as an arbitrary bounded
domain with sufficiently regular boundary. The regularity of the boundary is discussed in Section 3.1.

2.2. The Laplacian inverse operator and the Hilbert space H̊−1

To arrive at a mathematically rigorous problem formulation, we define the Laplacian inverse operator
(4) in a weak sense. First, we need to define some function spaces.

Consider decomposing H1 := H1(Ω) into H̊1 ⊕ C, where H̊1 is a subspace of H1 consisting of functions
with zero spatial average and C consists of constant-almost-everywhere functions:

H̊1 :=
{
v ∈ H1 :

∫

Ω

v dx = 0
}
, C :=

{
v ∈ H1 : v = const a.e.

}
. (7)

In particular, H̊1 is a Hilbert space equipped with the inner product (u, v)H̊1 = (∇u,∇v), where (·, ·) denotes
the L2(Ω) inner product.
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The dual space (H̊1)∗ can be naturally extended to a subspace of (H1)∗, denoted H̊−1, by taking C as
the kernel,

H̊−1 :=
{
f ∈ (H1)∗

∣∣ 〈f, c〉 = 0 ∀c ∈ C
}
, (8)

where 〈·, ·〉 is the duality pairing of (H1)∗ and H1.
Now we define a Laplacian inverse operator (−∆N )−1 : H̊−1 → H̊1 that weakly solves the Poisson

equation with the homogeneous Neumann boundary condition:
(
∇
(
(−∆N )−1f

)
,∇ṽ

)
= 〈f, ṽ〉 ∀ṽ ∈ H1, f ∈ H̊−1 . (9)

The Laplacian inverse operator is linear, bounded and bijective. As a result, we can define an inner product
on H̊−1 via the Laplacian inverse operator:

(f, g)H̊−1 :=
(
(−∆N )−1f, (−∆N )−1g

)
H̊1 =

{ 〈
f, (−∆N )−1g

〉
;〈

g, (−∆N )−1f
〉
.

(10)

H̊−1 is complete under the inner product [13, p. 32], which makes
(
H̊−1, (·, ·)H̊−1

)
a Hilbert space.

Let R be the L2 Riesz map, R : L2 3 v 7→ (v, ·) ∈
(
L2
)∗

. The nonlocal energy (5) can be expressed
weakly as:

Fσ =
σ

2
‖R(u−m)‖2H̊−1 . (11)

2.3. The minimization problem in H̊1

Given m ∈ (−1, 1) and κ, ε, σ ∈ R+, consider the weak form of the OK energy FOK : H̊1
m → R+:

FOK(u) = κ ‖W (u)‖L1 +
ε2

2
‖u−m‖2H̊1 +

σ

2
‖R(u−m)‖2H̊−1 , (12)

where H̊1
m :=

{
v ∈ H1 : v −m ∈ H̊1

}
and W : H1 → L1 with W (u) = (1− u2)2/4.

The minimization problem is posed as follows:

Find umin ∈ H̊1
m such that : umin = arg min

u∈H̊1
m

FOK(u) . (13)

The first and second order conditions for the minimizers are

umin ∈ H̊1
m such that :

{ 〈
DF (umin), ũ0

〉
= 0 ∀ũ0 ∈ H̊1 ;

∃α > 0 :
〈
D2F (umin)ũ0, ũ0

〉
≥ α ‖∇ũ0‖ ∀ũ0 ∈ H̊1 ,

(14)

where DF : H̊1
m → (H̊1)∗ is the Gâteaux derivative of FOK at u ∈ H̊1

m:
〈
DF (u), ũ0

〉
:=
(
κW ′(u), ũ0

)
+
(
ε2∇u,∇ũ0

)
+
(
σ(−∆N )−1R(u−m), ũ0

)
∀ũ0 ∈ H̊1 , (15)

and D2F (u) : H̊1 → (H̊1)∗ is a linear Hessian operator that corresponds to the second-order Gâteaux
derivative of FOK at u ∈ H̊1

m:
〈
D2F (u)û0, ũ0

〉
:=
(
κW ′′(u)û0, ũ0

)
+ (ε2∇û0,∇ũ0) +

(
σ(−∆N )−1R(û0), ũ0

)
∀û0, ũ0 ∈ H̊1 . (16)

As the Gâteaux derivatives DF (u) and D2F (u) are defined on the subspace H̊1 of H1, this minimization
problem is difficult to implement numerically without adaptation. One could adopt a constrained minimiza-
tion approach and introduce a Lagrange multiplier into the energy functional in order to extend the test
space to H1. A first-order method that utilizes this approach is the mass-constrained Allen-Cahn equation.
In the following section, we adopt a different approach. The problem is reformulated via the H̊−1 inner-
product such that the solution space and the test space of the transformed first-order condition are all in
H1. Such an approach is known to give rise to the local/nonlocal Cahn-Hilliard equation [18]. We instead
focus on the equivalency between the original formulation in H̊1 and the transformed formulation in H̊−1.
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3. The First-Order Condition in H̊−1

In this section, we first show regularity results for the critical points of the OK energy functional. Then
we utilize the H̊−1 inner-product to transform the first-order condition (15). The two-way equivalency of
the transformation is established along the way.

3.1. On the regularity of the critical points of FOK

Despite residing in H̊1
m, the critical points of FOK that satisfy the first-order condition (15) usually

possess bounded derivatives of order higher than one. Let uc ∈ H̊1
m such that DF (uc) ≡ 0; we have

(ε2∇uc,∇ũ0) =
(
κW ′(uc), ũ0

)
+
(
σ(−∆N )−1R(uc −m), ũ0

)
∀ũ0 ∈ H̊1 . (17)

Consequently, the first-order condition implies uc can be expressed as weak solutions to the pure Neumann
Poisson problem, which admits the possibility of applying the Neumann elliptic regularity theorem on uc.
A general observation is that the highest order of the bounded derivatives of uc is dictated by the highest
order permissible by the Neumann elliptic regularity theorem for the given domain Ω [13].

The following proposition is a reflection of this general observation. It shows that high regularity of the
critical points can be achieved with high regularity of the domain boundary. The proof of the proposition
is provided in Appendix A. Here we define Hk := Hk(Ω), and H̊k

m := H̊1
m ∩Hk with k ≥ 1.

Proposition 3.1 (Regularity of the critical points). Let uc ∈ H̊1
m and DF (uc) ≡ 0. If Ω has a boundary of

class Cr,1 [22] with r ≥ 1 and satisfies the cone condition [2], then uc ∈ H̊r+1
m .

From now on, we proceed with the assumption that the domain boundary ∂Ω is sufficiently regular
to imply at least uc ∈ H̊3

m if DF (uc) ≡ 0. For the numerical examples in Section 5 and 6, we consider
rectangular domains in 2d and box domains in 3d, with which we have at least uc ∈ H̊4

m if DF (uc) ≡ 0
[24, 30].

The following proposition further establishes that the critical points and the Laplacian of the critical
points satisfy the homogeneous Neumann boundary condition if the critical points have sufficiently high
regularity. The proof is also provided in Appendix A.

Proposition 3.2 (Boundary conditions of the critical points). Let uc ∈ H̊1
m and DF (uc) ≡ 0.

(i) If uc ∈ H̊2
m, then ∇uc · ν = 0.

(ii) If uc ∈ H̊4
m, then ∇(∆uc) · ν = 0 on ∂Ω.

3.2. The H̊−1 first-order condition

Assume u ∈ H̊3
m and ∇u · ν = 0 on ∂Ω. We consider the equivalent representation of DF (u) in H̊1, in

the sense that
〈
DF (u), ũ0

〉
=
(
G(u), ũ0

)
∀ũ0 ∈ H̊1:

G(u) = κW ′(u)− ε2∆u+ σ(−∆N )−1R(u−m)− s1 , (18)

where s1 = (kW ′(u)− ε2∆u, 1).
With R(ũ0) ∈ H̊−1, define ṽ0 ∈ H̊1 such that ṽ0 = (−∆N )−1R(ũ0). We invoke the definition of the H̊−1

inner product (10):
〈
DF (u), ũ0

〉
=
〈
R(ũ0), G(u)

〉
=
(
G(u), ṽ0

)
H̊1 , (19a)

(
G(u), ṽ0

)
H̊1 =

(
κ∇W ′(u),∇ṽ0

)
−
(
ε2∇∆u,∇ṽ0

)
+
(
σ(u−m), ṽ0) . (19b)

Let us define A : H3 → (H1)∗ such that
〈
A(u), ũ

〉
:=
(
κ∇W ′(u),∇ũ

)
−
(
ε2∇∆u,∇ũ

)
+
(
σ(u−m), ũ) . (20)

Notice that the operator A identifies the subset of its domain H̊3
m with H̊−1, as C is in the kernel of the

gradient operator and R(H̊1). This leads to the following lemma.
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Lemma 3.1. We have A(u) ∈ H̊−1 if and only if u ∈ H̊3
m.

The following theorem establishes a connection between the kernel of DF and A that gives rise to the
H̊−1 first-order condition, under which the solution space and the test space are both extended to H1:

Theorem 3.1 (The H̊−1 first-order condition). We have uc ∈ H̊1
m and DF (uc) ≡ 0 if and only if uc ∈ H3

and A(uc) ≡ 0.

Proof. (⇒) Equation (18) and (19) lead to
〈
A(uc), ṽ0

〉
= 0 ∀ṽ0 ∈

{
v ∈ H̊3 : ∇v · ν = 0 on ∂Ω

}
. The test

space can be trivially extended to H1, as no high-order derivative or boundary term appears in A and C is
in the kernel of H̊−1.

(⇐) If uc ∈ H3 and A(uc) ≡ 0, then uc ∈ H̊3
m by Lemma 3.1. If A(uc) is restricted to (−∆N )−1R(H̊1),

it is clear that uc satisfies DF (uc) ≡ 0 by reversing the arguments that lead to (19).

Remark 3.1. The strong form of the H̊−1 first order condition is

∆(κW ′(uc)− ε2∆uc)− σ(uc −m) = 0 in Ω ; (21a)

∇uc · ν = ∇(∆uc) · ν = 0 on ∂Ω . (21b)

These equations characterize the steady state of the nonlocal Cahn-Hilliard equation. The strong form above
is equivalent to the H̊1 first-order condition only if there is enough regularity to claim uc ∈ H̊4

m if DF (uc) ≡ 0.

3.3. The mixed H̊−1 first-order condition

We define the following operator B : H1 ×H1 → (H1)∗ × (H1)∗:

〈
B(u, µ), (ũ, µ̃)

〉
:=
(

(∇µ,∇ũ) + (σ(u−m), ũ), (µ, µ̃)−
(
κW ′(u), µ̃

)
− (ε2∇u,∇µ̃)

)
, ∀ũ, µ̃ ∈ H1 . (22)

The following theorem identifies the kernel of DF with the the kernel of B.

Theorem 3.2 (The mixed H̊−1 first-order condition). We have B(uc, µc) ≡ 0 if and only if uc ∈ H̊1
m and

DF (uc) ≡ 0.

Proof. (⇒) uc ∈ H̊1
m is implied by taking ũ ∈ C. Consider subtracting s2 = (κW ′(uc), 1) from µc such

that µc − s2 ∈ H̊1 and restricting ũ to be in (−∆N )−1R(H̊1). Then we invoke the definition of the H̊−1

inner-product (10) to arrive at

(
µc − σ(−∆N )−1(uc −m), ũ0

)
= 0 ∀ũ0 ∈ H̊1 .

Additionally, restricting µ̃ to H̊1 gives us

(µc, ũ0) = (κW ′(uc), ũ0) + (ε2∇uc,∇ũ0) ∀ũ0 ∈ H̊1 .

Combining the two equations above, we have DF (uc) ≡ 0.
(⇐) Theorem 3.1 established the equivalence between DF (uc) ≡ 0 and A(uc) ≡ 0. A(uc) ≡ 0 implies

B(uc, µc) ≡ 0 by defining µc = κW ′(uc)− ε2∆uc.

4. The Newton Iteration for Energy Minimization

Given u0 ∈ H̊1
m, consider the sequence of functions {un}∞n=1 generated by a Newton method with line

search globalization for minimizng the OK energy:

un+1 = un + tnδun ∀n ∈ N ∪ {0} , (23)
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where the step length tn ∈ (0, 1] and the Newton step δun is given by the following variational problem in
H̊1:

Find δun ∈ H̊1 such that :
〈
D2F (un)δun, ũ0

〉
= −

〈
DF (un), ũ0

〉
∀ũ0 ∈ H̊1 . (24)

Now consider the H̊−1 variational Newton step problem defined with H1 test spaces:

Find (δun, µ̂) ∈ H1 ×H1 such that:

(∇µ̂n,∇ũn) + (σδun, ũ) = −(∇µn,∇ũ)−
(
σ(un −m), ũ)

)
∀ũ ∈ H1 , (25a)

(µ̂n, µ̃)−
(
κW ′′(un)δun, µ̃

)
−
(
ε2∇(δun),∇µ̃

)
= 0 ∀µ̃ ∈ H1 . (25b)

with µn ∈ H1 subject to

(µn, µ̃) =
(
κW ′(un), µ̃

)
+ (ε2∇un,∇µ̃)) ∀µ̃ ∈ H1 . (26)

The following proposition shows that, if δun solves the H̊−1 variational Newton step problem at un ∈ H̊1
m,

then it also solves the corresponding H̊1 problem at un.

Proposition 4.1. Suppose δu is a solution to the H̊−1 Newton step problem ( (25) and (26)) at un ∈ H1.
Then

(i) δun ∈ H̊1 if and only if un ∈ H̊1
m.

(ii) if un ∈ H̊1
m, then δun also solves the H̊1 variational Newton step problem (24).

Proof. (i) Assume δu ∈ H̊1, taking ũ = c ∈ C in (25a) gives (σ(un − m), c) = 0 and un ∈ H̊1
m. The

converse is true for the same argument.

(ii) un ∈ H̊1
m implies δun ∈ H̊1. The rest of the proof follows closely to that of Theorem 3.2. Define

s3 =
(
kW ′(un), 1

)
and s4 =

(
kW ′′(un), 1

)
. Consider replacing µ and µ̂ with µ − s3 ∈ H̊1 and

µ̂ − s4 ∈ H̊1 in (25a). Restricting ũ to (−∆N )−1R(H̊1) in (25a) and invoking the definition of the
H̊−1 inner-product (10), we have

(
µ̂n + σ(−∆N )−1δun + µn + σ(−∆N )−1(un −m)), ũ0

)
= 0 ∀ũ0 ∈ H̊1 .

Restricting µ̃ in (25b) to H̊1, we have D2F (un)δun −DF (un) ≡ 0.

The following lemma further establishes that the Newton iterates (23) generated by the H̊−1 Newton
step problem are indeed in H̊1

m for n ≥ 1 if t0 = 1, even when the initial guess u0 ∈ H1 does not have the
spatial average of m.

Lemma 4.1. Given t0 = 1 and arbitrary u0, µn, µ̂n,∈ H1, the H̊−1 Newton iterates {un}∞n=1 generated by
(23) and the H̊−1 variational Newton steps (25) are in H̊1

m.

Proof. Let ũ = c ∈ C in (25a), then it implies (δun, c) = −(un − m, c) ∀n ∈ N ∪ {0}. With t0 = 1, (23)
implies

(u1, c) = (u0, c) + (δu0, c) = (m, c)⇒ u1 ∈ H̊1
m

(t1δu1, c) = −
(
t1(u1 −m), c

)
= 0⇒ δu1 ∈ H̊1 and u2 ∈ H̊1

m .

By induction, un ∈ H̊1
m ∀n ∈ N.
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The above proposition and lemma establish that the H̊−1 Newton iteration is equivalent to the H̊1 New-
ton iteration, if an appropriate initial guess is provided. Furthermore, the fact that µ̂ can be arbitrary allows
us to modify the Hessian operator to achieve monotonic energy descent. In the following subsections, we
propose a modified Hessian operator that generates energy-descending Newton iterations when implemented
along with line search methods. This leads to global convergence of the Newton iteration. Then we discuss
the choice of appropriate initial guess. A summary of the scheme is provided at the end of the section.

Remark 4.1. When σ = 0, the solutions to the H̊−1 Newton step problem (25) do not satisfy the H̊1

Newton step problem (24). In this case, one could take σ to be very small and essentially interpret it as a
stabilization term. Moreover, having σ ∼ 0 implies that the physical domain is much smaller in scale than
the statistical segment length of the polymer according to (6), and thus not of interest in the context of the
phase separation of BCPs.

4.1. Generating energy-descending Newton iteration

To achieve global convergence of the Newton iteration with line search, we seek to produce search
directions that are descent directions on the energy [38]. If the search direction δun that solves the H̊1

Newton step problem (24) at un ∈ H̊1
m also satisfies the following condition:

〈
DF (un), δun

〉
< 0 ⇐⇒

〈
D2F (un)δun, δun

〉
> 0 , (27)

then, with a sufficiently small tn ∈ (0, 1], we have FOK(un + tnδun) < FOK(un). The appropriate tn can be
found by line search methods, such as backtracking line search based on the Armijo condition. If the energy
is reduced at each step, the iterations will eventually enter the ball of convergence of a critical point, leading
to quadratic convergence with tn = 1 and D2F (un) coercive. The energy-descending Newton iteration is
global convergent if, additionally, the Hessian operator is Lipschitz continuous and bounded from above [38,
p.40]. We note that the Hessian operator satisfies both of the conditions if the state is bounded point-wise,
which is generally true due to the double well potential which has global minimum at ±1.

Of course, the condition (27) is not necessarily satisfied at any un ∈ H̊1
m, as the Hessian operator

D2F (un) may not be coercive due to the non-convex double well potential term. We thus seek to modify
the Hessian operator by convexifying the double well potential.

4.1.1. The modified Hessian operator: a Gauss-Newton type approximation

Consider the following decomposition of W ′′(u):

W ′′(u) = 2u2 + (u2 − 1) . (28)

The first term is always positive and the second term could be negative, especially since u typically takes
values between ±1. It is also typical that the minimizers contain large regions with u close to ±1, which
makes the second term relatively small. As a result, we choose an approximation to W ′′(u) by scaling down
this term with a weight γ ∈ [1, 0]:

W ′′γ (u) = 2u2 + γ(u2 − 1) , (29)

thus γ allows interpolation between a Newton (γ = 1) and a Gaussian-Newton (γ = 0) method. Consider a
weighted linear operator Hγ(u) : H̊1 → (H̊1)∗ defined with W ′′γ :

〈
Hγ(u)û0, ũ0

〉
=
(
κW ′′γ (u)û0, ũ0

)
+ (ε2∇û0,∇ũ0) +

(
σ(−∆N )−1R(û0), ũ0

)
. (30)

In particular, Hγ(u)→ D2F (u) as γ → 1 and H0(u) is coercive at any u ∈ H̊1
m:

〈
H0(u)ũ0, ũ0

〉
= (2κu2, ũ2

0) + ε2 ‖∇ũ0‖2 + σ ‖R(ũ0)‖2H̊−1
0
≥ ε2 ‖∇ũ0‖2 ∀ũ0 ∈ H̊1 . (31)

The following proposition indicates that the modified Hessian operator Hγ(u) is coercive with a sufficiently
small γ:
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Figure 1: The modified double well potential with γ = 0, 0.2, 0.4, 0.6, 0.8, 1.

Proposition 4.2. There exists a constant γc(κ, ε,Ω) > 0 such that Hγ(u) is coercive at any u ∈ H̊1
m for

γ ∈ [0, γc].

Proof. Inequality (31) implies
〈
Hγ(u)ũ0, ũ0

〉
=
〈
H0(u)ũ0, ũ0

〉
+
(
κγ(u2−1)ũ0, ũ0

)
≥ ε2 ‖∇ũ0‖2−κγ ‖ũ0‖2 ≥

(ε2 − c2pκγ) ‖∇ũ0‖2 ∀ũ0 ∈ H̊1, where cp is the Poincaré constant. Therefore, γc = ε2/(c2pκ).

4.1.2. The modified Newton step problem: a backtracking approach

Now consider the H̊1 Hessian-modified Newton step problem:

Find δun ∈ H̊1 such that : Hγn(un)δun = −DF (un) , (32)

where γn ∈ (0, 1] is small enough so that
〈
DF (un), δun)

〉
< 0, i.e., δun is a descent direction. The follow-

ing algorithm, a corollary to Proposition 4.2, finds the appropriate γn by backtracking along a decreasing
sequence γ from 1 to 0.

Algorithm 1: Generating an energy-descending Newton step δun ∈ H̊1 at un ∈ H̊1
m

Result: Obtain δun such that
〈
DF (un), δun)

〉
< 0

Given un ∈ H̊1
m such that DF (un) 6≡ 0 and γ = {γ1 = 1, γ2 < 1, γ3 < γ2, . . . , 0};

for γk in γ, k = 1, 2, . . . do
Solve (32) for δun with γn = γk;

if
〈
DF (un), δun)

〉
< 0 then

break
end

end

The above algorithm also applies to the corresponding H̊−1 Hessian-modified Newton step problem and
leads to monotonic energy descent after the initial projection step according to Proposition 4.1 and Lemma
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4.1:

Find (δun, µ̂) ∈ H1 ×H1 such that:

(∇µ̂n,∇ũ) + (σδun, ũ) = −(∇µn,∇ũ)−
(
σ(un −m), ũ)

)
∀ũ ∈ H1 , (33a)

(µ̂n, µ̃)−
(
κW ′′γn(un)δun, µ̃

)
−
(
ε2∇(δun),∇µ̃

)
= 0 ∀µ̃ ∈ H1 . (33b)

Backtracking on the weight γ from 1 to 0 until a descent direction is found guarantees that in the vicinity
of a local minimum, the resulting coercivity of the Hessian will lead to termination of Algorithm 1 with
γ = 1, and thus the full Hessian will be used in producing the Newton step. This in turn guarantees that
the proposed method attain asymptotic quadratic convergence.

4.1.3. Backtracking line search on FOK
Once δun ∈ H̊1 is obtained such that

〈
DF (un), δun

〉
< 0, we seek to determine a step size tn that

provides sufficient descent in the energy. Here we consider using backtracking line search via the Armijo
condition to obtain tn. Given an Armijo constant c ∈ (0, 1), typically chosen to be 10−4, and a sequence of
step sizes αk = 21−k, k ∈ N, we seek to find the smallest K ∈ N such that

FOK(un + αKδun) ≤ FOK(un) + cαK
〈
DF (un), δun

〉
. (34)

We take tn = αK .
This procedure involves evaluating the energy and the action of DF (un) and, thus, requires comput-

ing (−∆N )−1R(un + αkδun − m) at various αk. Let us define wn := (−∆N )−1R(un − m) and δwn :=
(−∆N )−1R(δun). Then the linearity of the Laplacian inverse operator leads to:

(−∆N )−1R(un + αkδun −m) = wn + αkδwn . (35)

One only needs to find δwn to evaluate energy and conduct the backtracking line search, if wn is known.

4.2. On the initial guess and the homogeneous state

A natural choice of the initial guess for the Newton iteration is the homogeneous state, i.e., u0 = m,
as it is an unbiased high-energy state for spinodal decomposition problems. However, this particular initial
guess is not suitable for initiating the iterations, as it is a trivial solution to the first order condition (15).
Moreover, whether it satisfies the second-order condition (16) is parameter-dependent:

〈
D2F (m)ũ0, ũ0

〉
≤ (ε2 + c2pσ) ‖∇ũ0‖2 |m| < 1/

√
3 , (36a)

〈
D2F (m)ũ0, ũ0

〉
≥
{ (

ε2 + c2pκ(3m2 − 1)
)
‖∇ũ0‖2 |m| < 1/

√
3 ;

ε2 ‖∇ũ0‖2 |m| ≥ 1/
√

3 ,
(36b)

for all u0 ∈ H̊1. The homogeneous state is a local minimizer when |m| ≥ 1/
√

3. It is also a local minimizer
when ε2 ≥ c2pκ(1−3m2) and |m| < 1/

√
3. In other parameter regions, it is not straightforward to determine

whether the homogeneous state is a local minimizer or a local maximizer on a general domain.
For certain domains and boundary conditions, one can exactly determine whether the homogeneous state

is a global minimizer. For example, Choksi et al. [11] showed that, for cubic domains with periodic boundary
conditions and κ = 1, the homogeneous state is the global minimizer when 1−m2 ≤ 2ε

√
σ.

We accept the homogeneous state as a solution when it is a dominant minimizer, or even a global
minimizer in some cases. However, for the purpose of acquiring the minimizers that exhibit phase separation,
the initial guess should be sufficiently bounded away from the homogeneous state. The typical initial guess
or initial condition used in the literature is the homogeneous state perturbed by pointwise-uniform noise
[41, 43, 50]:

u0(x) = m+ sr(x) , (37)

where r(x) is a random variable with uniform distribution in [−1, 1] and the scalar s controls the distance
to the homogeneous state, typically chosen to be 0.05 for the gradient flow approach.
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However, u0 does not belong to H1 and depends on the spatial disctretization in the numerical imple-
mentation. We thus consider a similar form given by an isotropic Gaussian random field (GRF) transformed
by the error function:

u0(x) = m+ s erf
(
uG(x)

)
, uG ∼ N (0, C0) , (38)

where C0 is the covariance operator. We consider a covariance operator defined as the inverse of an elliptic
differential operator [8]:

C0(δG, γG) = (δG − γG∆)−2 . (39)

The Laplacian operator is equipped with the Robin boundary condition

∇uG · ν + βuG = 0 on ∂Ω , (40)

where βG =
√
γGδG/1.42 is chosen to maintain a spatially-uniform pointwise-variance proportional to

δ−4
G (γG/δG)−d/2. The correlation length is proportional to

√
γG/δG. The resulting GRF initial guesses

can be tuned to mimic the initial guesses produced by (37) for a given mesh while staying invariant to the
spatial discretization.

4.3. Summary of the proposed scheme

Algorithm 2: The energy-descending Newton iteration for the minimization of the OK energy.

Result: Given an initial guess u0 ∈ H1, generate an minimization sequence {(un, µn)}Nn=0 of FOK

such that ‖B(uN , µN )‖((H1)∗)2 < tol.

n = 0;

if u0 6∈ H̊1
m then

Solve (26) for µ0;
Solve (33) for δu0 with γ0 = 1;
u1 = u0 + δu0;
n = n+ 1;

end
Solve (26) for µn;
Solve the Poisson problem for wn;
while ‖B(un, µn)‖((H1)∗)2 ≥ tol do

Solve for δun by Algorithm 1 with (33);
Solve the Poisson problem for δwn;
Conduct Armijo backtracking line search on FOK to obtain the step size tn;
un+1 = un + tnδun;
wn+1 = wn + tnδwn;
Solve (26) for µn+1;
n = n+ 1;

end

5. Numerical Examples

In this section, we present numerical examples of the minimization of the OK energy functional by the
proposed algorithm described in the previous section. We use the finite element method to discretize the
H1 space. The discretizations and solves are implemented through version 2019.1.0 of the FEniCS library
[3, 35]. The numerical examples include: (1) initial guesses generated by GRFs; (2) the demonstration of
mass-conserving, energy-descending, and asymptotically quadratically convergent properties of the proposed
scheme; (3) a mesh refinement study to show the independence of the number of minimization iterations
from mesh discretization; (4) a comparison between the solutions obtained by the conventional gradient flow
approach and the proposed scheme.
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5.1. Initial guesses

We consider a unit square domain discretized by uniform linear triangular elements. Initial guesses
formed by both the pointwise-uniform noise (37) and the GRFs (38) are generated on the domain, with
m = 0 and s = 1. The GRFs are obtained through the covariance operator (39) with parameters (δG, γG) =
(100, 0.0016). The numerical implementation of the GRF generation can be found in the hIPPYlib library
[46]. The initial guesses for both approaches are formed on meshes with different cell sizes and compared in
Figure 2. It is clear that the structure of the initial guesses generated by the GRFs is invariant to changes
in the discretization while the structure of the initial guesses generated by the pointwise-uniform noise is
not. Additionally, the former follow the pointwise-uniform distribution after the transformation through the
error function, as indicated by Figure 3.

A heuristic approach to generate initial guesses by the GRFs that mimic the conventional initial guesses
on the mesh with a distance of scale le between its neighboring degree-of-freedoms (DoFs) is to set γG and
δG such that

√
γG/δG = 0.4le and δ−2

G (γG/δG)−d/4 = 2.5le.

100× 100 cells 200× 200 cells 300× 300 cells

Figure 2: Initial guesses generated on meshes consisting of uniform triangular elements with decreasing cell sizes. The figures
on top row are the initial guesses generated by the pointwise-uniform noise (37) and the figures on the bottom row are the
initial guesses generated by the GRFs (38).

5.2. Mass conservation, monotonic energy descent, and asymptotic quadratic convergence

We consider a square 2D domain of Ω = [0, 40]2. The domain is discretized with uniform triangular
elements with 100 cells in each direction. The finite element discretization and the resulting systems of
equations of the H̊−1 Newton step problem and the homogeneous Neumann Poisson problem are presented
in Appendix B. All the systems of equations are symmetrized and solved by direct solvers through Cholesky
decomposition.

Let us consider a set of parameters (m,κ, ε, σ) = (0, 1, 0.4, 0.7). A minimization sequence, {un, µn}Nn=0,
for the parameters is produced via the proposed scheme. The double well backtracking sequence is set
to γ = {1, 0.5, 0} and the residual norm tolerance of tol = 10−8. The initial guess is generated by setting
(s, δG, γG) = (0.05, 2.5, 0.064). In Figure 4, the evolution of (1) the OK free energy, (2) the distance from H̊1

m,

{
∣∣(un −m, 1)

∣∣}Nn=0, (3) the residual norm,
{
‖B(un, µn)‖((H1)∗)2

}N
n=1

, and (4) the weight on the modified
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Figure 3: A histogram of the vertex values of the transformed GRFs in Figure 2 with the mesh of 300 × 300 cells. The
pointwise-uniform distribution across samples is implied by ergodicity.
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Figure 5: The evolution of the order parameter for a minimization sequence generated by the proposed scheme, with the
parameters (m,κ, ε, σ) = (0, 1, 0.4, 0.7) and the double well backtracking sequence γ = {1, 0.5, 0}.

Hessian operator, {γn}Nn=1, of the minimization sequence are presented. The figures show that the energy is
monotonically decreasing. The double well backtracking algorithm for generating energy-descending Newton
steps is activated many times, indicated by the change in γn. These results confirm that the proposed scheme
leads to monotonic energy descent that enables global convergence. Notice that u0 6∈ H̊1

m and the first step
is a projection step. The rest of the sequence stays in H̊1

m, which verifies Lemma 4.1 of the proposed scheme.
The figures show that asymptotic quadratic convergence in the residual norm, with no corresponding double
well backtracking (γn = 1). The evolution of the order parameter is shown in Figure 5.

5.3. Independent of the number of iterations from mesh discretization

We present a numerical example to demonstrate that the number of iterations to obtain the OK model
solutions via the proposed scheme is generally independent of the number of the DoFs of the discretization.
Consider the square 2D domain of Ω = [0, 40]2 discretized with uniform triangular elements of 200, 400,
600, and 800 cells in each direction. The OK model is solved via the proposed scheme with the param-
eters (m,κ, ε, σ) = (0.35, 1, 0.3, 0.7), the double well backtracking sequence γ = {1, 0.5, 0}, and the four
different discretizations. An initial guess is generated with (s, δG, γG) = (0.05, 2.5, 0.064) and the 800× 800
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Figure 4: The evolution of the OK energy, the residual norm, the distance to H̊1
m (or the incompressibility residual), and

the double well backtracking constant of a minimization sequence generated by the proposed scheme, with the parameters
(m,κ, ε, σ) = (0, 1, 0.4, 0.7) and the double well backtracking sequence γ = {1, 0.5, 0}.
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Discretization 200× 200 cells 400× 400 cells 600× 600 cells 800× 800 cells
Number of iterations 118 103 102 111

Model solutions

Table 1: The model solutions and the number of iterations to reach below a residual norm value of 10−8 given by the proposed
Newton scheme, with model parameters (m,κ, ε, σ) = (0.35, 1, 0.3, 0.7), the double well backtracking sequence γ = {1, 0.5, 0},
and increasing numbers of DoFs for the discretization.

mesh discretization. The initial guess is then projected to the finite element spaces defined by the four
discretizations. The number of iterations for each solve as well as the solution states are shown in Table 1.
The numerical results show that the proposed Newton scheme takes a similar number of iterations to reach
similar solution states for spatial discretization with increasing DoFs.

5.4. Comparison to the gradient flow approach

Now we consider the gradient flow approach to minimize the OK energy, i.e., solving the following
Cahn-Hilliard equation

ut(x, t)−∆
(
kW ′

(
u(x, t)

)
− ε2∆u(x, t)

)
+ σ

(
u(x, t)−m

)
= 0 (x, t) ∈ Ω× (0, T ] (41a)

∇u(x, t) · ν = ∇
(
∆u(x, t)

)
· ν = 0 (x, t) ∈ ∂Ω× (0, T ] (41b)

u(t,x)− u0(x) = 0 (x, t) ∈ Ω× {0} (41c)

where u : H1
(
0, T ;H4(Ω)

)
.

The solutions obtained by the gradient flow approach and the proposed scheme are compared in Table
2. The computational domain for the solutions is the unit square and it is discretized by uniform triangular
finite elements with 200 cells in each direction. Solutions for the same parameters are obtained through the
same initial state generated with (s, δG, γG) = (0.1, 100, 0.0016). Here we consider two sets of parameters
with (κ, ε, σ) = (1.0, 0.01, 500) and two different mass averages, m = 0 and m = 0.3. For the proposed
scheme, a double well backtracking sequence of γ = {1, 0.75, 0.5, 0.25, 0} is employed. For the gradient flow
approach, the mixed formulation and the first-order convex-splitting scheme for temporal discretization is
implemented [15, 16, 25, 47]. The step size for the temporal discretization is set to the conventional value
δt = ε2 = 10−4.

The minimizers obtained by both methods are similar in terms of the feature size and periodicity, while
the gradient flow approach is more costly. It requires O(105) time steps to reach a value below the residual
norm tolerance of 10−6. On the contrary, the proposed Newton scheme takes fewer than 200 iterations by
solving systems of equations with similar asymptotic computational complexity at each Newton iteration as
that of the gradient flow approach at each time step. A comparison of the computational complexity at each
time step or Newton iteration for the gradient flow approach and the proposed Newton scheme is presented
in Table 3. From this example, we can see that the proposed scheme is around three orders of magnitude
faster than the traditional gradient flow approach.

Remark 5.1. Although the gradient flow approach requires many more iterative solves to reach solutions
compared to the proposed scheme, several studies have been done to construct preconditioners that make the
nonlinear solve at each time step scalable with respect to the DoFs of the spatial discretization [17, 33]. It
is noteworthy that the H̊−1 Newton step problem of the proposed scheme is much more ill-conditioned than
the Newton step problem for the nonlinear solves of the gradient flow approach. Therefore, an appropriate
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Gradient flow
approach

Proposed Newton
scheme

m = 0

Number of time steps
or iterations

6.54× 105 160

m = 0.3

Number of time steps
or iterations

1.36× 105 141

Table 2: A comparison between the minimizers obtained through the gradient flow and the proposed scheme, and the number
of time steps (gradient flow) or Newton iterations (proposed method) to reach below a residual norm value below 10−6.

Linear system solves
per time step or

iteration
Operation counts

Gradient flow
approach

Solving a nonlinear
algebraic system with

2N × 2N Jacobian via an
iterative method

O(N3/2) × number of
iterative solves

Proposed Newton
scheme

Solving 2N × 2N Newton
step problems with
backtracking on the

double well

O(N3/2) × number of
double well backtracking

steps

Solving an
(N + 1)× (N + 1) linear

system for δwn

O(N logN) with
pre-factorization

Solving an N ×N linear
system for µn

O(N logN) with
pre-factorization

Table 3: A comparison of the computational complexity of the gradient flow approach and the proposed Newton method,
measured by the dominant cost of linear system solves at each time step (gradient flow) or Newton iteration (proposed method).
The 2D domain discretized with N DoFs, and an optimal complexity sparse directed solver is assumed. The proposed Newton
scheme is seen to have the same asymptotic complexity as the gradient flow approach per time step or iteration.
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preconditioner is imperative for accelerating the proposed scheme, especially when considering 3D problems
that require iterative solves for the linear systems. See Appendix C for a discussion on a preconditioner that
accelerates iterative solvers for the H̊−1 Newton step problem in a portion of the parameter space.

6. Chemical Substrate Guided DSA of BCPs

In this section, the proposed scheme is used to study the chemical substrate guided DSA of BCPs.
A novel polymer-substrate interaction energy based on the OK model is first introduced. A generalized
modified Hessian operator is proposed to accommodate the additional polymer-substrate interaction. Then
we present a numerical study based on a physically-reasonable set up.

6.1. The polymer-substrate interaction energy

Suppose that a patterned chemical substrate is placed on the bottom boundary (x3 = 0) of a 3d box
domain D, which contains a diblock copolymer melt consisting of monomers of type A and B. Let ∂Ds ⊂ ∂D
be the region occupied by the chemical substrate. The chemical substrate interacts with both monomers in
the diblock copolymer. Let ηK , K = A,B, be the dimensionless parameters that represent the strength of
interaction between monomer type K and the substrate. In accordance with [14], we define the contribution
of the polymer-substrate interaction to the free energy:

Fs(uA, uB) =
∑

K=A,B

ηK exp
(
− x2

3

2d2
s

)
uK1(x1,x2,0)∈∂Ds

, (42)

where 1 is an indicator function and ds is the decay length scale of the substrate effect in the direction
perpendicular to the substrate. It has the following form:

ds = csRe = cs
√
Nl , (43)

where cs is a positive scalar parameter and Re is the mean-square end-to-end distance of the polymer.
Following the relations between the material parameters and the OK model parameters (6), the decay
length scale can be expressed as:

d2
s =

12
√

3c2sε√
σ(1−m2)

. (44)

The above energy can be reformulated as a function of the order parameter u := uA − uB . It is further
shifted and normalized by the Flory-Huggins parameter χ, in accordance with the derivation in [12], leading
to the following form of the polymer-substrate interaction energy:

Fs(u) =





ηs

2
exp

(
− x2

3

2d2
s

)
u1(x1,x2,0)∈∂Ωs

, u ∈ [0, 1] ;

∞ , otherwise ,

(45)

where ηs := (ηB − ηA)/χ and ∂Ωs is the region occupied by the chemical substrate on the normalized
domain Ω with a unit volume. Notice that, if ηs > 0, then the monomer A is more attractive to the
substrate, resulting in a lower energy at u = 1, and vice versa. If |ηs| > 1, one of u = ±1 is no longer a local
minimum1, hence we only consider ηs ∈ [−1, 1]. The total interaction energy now has the form:

I(u) = W (u) + Fs(u) =





1

4
(1− u2) +

ηs

2
exp

(
− x2

3

2d2
s

)
u1(x1,x2,0)∈∂Ωs

, u ∈ [−1, 1] ;

∞ , otherwise ,

(46)

1If one of u = ±1 is not a local minimum, then the density multiplication effect [34, 44] can no longer be induced by the
chemical substrate.
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We now seek to formulate an approximate form of the total interaction energy that has the following
properties: (1) it has the form of a double well, i.e., with local minima at u = ±1; (2) it maintains the same
energy difference between u = ±1 as the original form; (3) it resembles the shape of the original form in
u ∈ [−1, 1]. We thus fit a fourth-order polynomial P4(u) with the following constraints:

P4(1) = 0 , P4(−1) = 2I(−1) , P ′4(1) = 0 , P ′4(−1) = 0 , P4(umax) = I(umax) , (47)

where umax is the local maximizer of I. The solution to the polynomial fitting problem reveals that the
approximate total interaction energy has the following form:

P4(u) =
1

4
(1− u2)2 +

ηs
4

exp
(
− x2

3

2d2
s

)
(u3 − 3u+ 2)1(x1,x2,0)∈∂Ωs

. (48)

A comparison between the approximate form P4 and the original form I is shown in Figure 6. The approxi-
mate form is simply a sum between the approximate double well potential and a third-order polynomial that
represents the contribution of the polymer-substrate interaction. We thus redefine the polymer-substrate
interaction energy and the total interaction energy as

Fs(u) =
ηs
4

exp
(
− x2

3

2d2
s

)
(u3 − 3u+ 2)1(x1,x2,0)∈∂Ωs

, (49)

I(u) =
1

4
(1− u2)2 +

ηs
4

exp
(
− x2

3

2d2
s

)
(u3 − 3u+ 2)1(x1,x2,0)∈∂Ωs

. (50)
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Figure 6: A comparison between the approximate total interaction energy (48) and its original form (46) at ηs = 0, 0.4, 0.8 and
x ∈ ∂Ds.

6.2. Generalizing the modified Hessian operator

To solve the OK model with the additional polymer-substrate interaction energy, we generalize the
modified Hessian operator in Section 4.1. Consider the following decomposition of I ′′(u):

I ′′(u) = 3u2 +
3

2
ηs exp

(
− x2

3

2d2
s

)
u1(x1,x2,0)∈∂Ωs

− 1

=
(√

2u+
3
√

2

8
ηs exp

(
− x2

3

2d2
s

)
1(x1,x2,0)∈∂Ωs

)2

+ u2 − 1− 9

32
η2
s exp

(
− x2

3

d2
s

)
1(x1,x2,0)∈∂Ωs

.

(51)
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A scalar weight γ ∈ [0, 1] is introduced, similar to (29):

I ′′γ (u) =
(√

2u+
3
√

2

8
ηs exp

(
− x2

3

2d2
s

)
1(x1,x2,0)∈∂Ωs

)2

+ γ
(
u2 − 1− 9

32
η2
s exp

(
− x2

3

d2
s

)
1(x1,x2,0)∈∂Ωs

)
.

(52)

Notice that, when ηs = 0 or (x1, x2, 0) 6∈ ∂Ωs, we recover the results in Section 4.1. The second derivative
above is positive when γ = 0 and it is straightforward to see that Lemma 4.2 still applies for the modified
Hessian operator defined with I ′′γ (u). Consequently, the double well backtracking algorithm for generating
descending Newton steps, Algorithm 1, still holds for the generalized modified Hessian operator and we
retain the global convergence of the proposed algorithm.

6.3. A numerical study with the proposed scheme

We provide an application of the proposed scheme in the context of the chemical substrate guided DSA
of BCPs. Suppose we have a physical domain D = [0, 400] nm× [0, 250] nm× [0, 30] nm, which contains the
melt of a symmetric diblock copolymer. We take the material parameters for the polymer to be

f = 0.5 , χ = 0.1 , N = 900, l = 0.65 nm .

Let the computational domain be Ω = [0, 40] × [0, 25] × [0, 3]. The OK parameters computed by the
relations (6) are (m,κ, ε, σ) = (0, 1, 0.237, 1.68). We first compute two equilibrium morphologies without
the chemical substrate through the proposed scheme. The equilibrium morphologies as well as the evolution
of the residual norm and the energy are shown in Table 4. The equilibrium morphologies have dominant
features of strips perpendicular to the x3 axis, with varying orientations in the x1-x2 plane. Minor non-
uniformity is seen in the x3 direction, mainly located near the boundary.
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Table 4: The top and bottom view of two OK model solutions obtained through the proposed scheme without the chemical
substrate. The domain is discretized with uniform triangular elements with cells of 160×100×12. Each minimization sequence
starts at a random initial guess generated with parameters (s, δ, γ) = (0.05, 80, 0.02). The double well backtracking sequence

is set to γ = {1, 0.5, 0}. The sequence is terminated when the residual norm is lower than 10−7. The Hessian-modified H̊−1

Newton step problems at γ = 0.5, 0 are solved iteratively with the GMRES method and the preconditioner introduced in
Appendix C.

Now consider the scenario where a chemical substrate is placed on a subset of the bottom boundary of
the physical domain, ∂Ds ⊂ ∂D. The chemical substrate pattern is periodic strips with width of 62 nm and
periodicity distance of 100 nm:

∂Ds =

3⋃

k=0

[100k + 19, 100k + 81] nm× [0, 250] nm× {0} nm . (53)
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Its corresponding position on the computational domain is:

∂Ωs =

3⋃

k=0

[10k + 1.9, 10k + 8.1]× [0, 25]× {0} . (54)

We consider two different polymer-substrate interaction parameters, ηs = 0.1, 0.15, and three different decay
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Figure 7: The chemical substrate pattern placed on the bottom boundary of the physical domain and the decay profile of the
polymer-substrate interaction energy in the x3 direction.

length scales, cs = 0.25, 0.5, 0.75. The decay length scale of the polymer-substrate interaction, ds = 2.925cs,
is computed through (44).

The OK energy plus the additional polymer-substrate interaction energy is minimized through the pro-
posed scheme to obtain the equilibrium morphologies for the chemical substrate guided DSA. The equilibrium
states and the evolution of the residual norm are shown in Table 5. When the decay length scale is small, the
equilibrium morphologies exhibit phase separation parallel to the substrate. The monomer A phase (u = 1)
spans the space above the chemical substrate, indicating that the polymer-substrate interaction dominants
the phase separation. As the decay length scale increases, disconnected strips, perpendicular and aligned
with the chemical substrate, start to emerge. The size of the feature is similar to that of the equilibrium
morphologies without the chemical substrate. At cs = 0.5, there are still large regions of the monomer
A phase on the bottom boundary where the chemical substrate is placed, suggesting that the polymer-
substrate interaction is the main cause of the non-uniformity in the x3 direction. For cs = 0.75, aligned
parallel strips are formed at ηs = 0.15, while defects are formed among the parallel strips at ηs = 0.1. The
slow convergence of the minimization iterations at ηs = 0.1 suggests that the energy landscape is flat and
the swift convergence of the minimization iterations at ηs = 0.15 suggests that the lamelle morphology is a
dominant minimizer. The numerical study shows that the decay profile of the polymer-substrate interaction
is crucial to the formation of the lamella morphology beyond the regime of the thin-film approximation and
the polymer-substrate interaction parameter ηs is important to the elimination of defects in the chemical
substrate guided DSA of BCPs.

7. Conclusion

We proposed a fast and robust scheme for the direct minimization of the OK energy. The minimization
problem is posed in the H̊1 space. We studied the regularity of the critical points of the OK energy
and transformed the first order condition via the H̊−1 inner product such that the solution space and
the test space are both in H1. We introduced a globally convergent modified Newton method for the
energy-descending and mass-conservative minimization of the OK energy. The monotonic energy descent is
guaranteed by backtracking on a Gauss-Newton relaxation of the nonconvexity of the double well potential.
Gaussian random fields are used as initial guesses for the minimization iterations. The properties of the
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Table 5: The top, bottom, and top-down view of the equilibrium morphologies as well as the evolution of the residual norm
obtained through the proposed scheme with the chemical substrate pattern of periodic strips, varying polymer-substrate
interaction parameters and decay length scales. The numerical implementation is performed as described in Table 4.
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proposed scheme and its three order of magnitude superior efficiency compared to the gradient flow approach
are demonstrated through numerical examples. We then apply the proposed scheme in the context of
chemical substrate guided DSA of BCPs. A novel polymer-substrate interaction model, in the form of a
third-order polynomial, is derived. We conducted a numerical study, via the proposed scheme, of the chemical
substrate guided DSA of BCPs based on a physically-reasonable set up. We showed, via a numerical example,
that the decay profile of the polymer-substrate interaction and the polymer-substrate interaction strength
is crucial to the formation of defect-free morphologies beyond the regime of the thin-film approximation.
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Appendix A The regularity of the critical points of FOK

Please refer to [2, 19, 22] for known theorems with regard to elliptic PDEs and Sobolev spaces used in the
derivation below. Pieces of the proof below overlap with the work in [13] in the context of the Cahn-Hilliard
equation.

Proof of Proposition 3.1. Let s2 = (κW ′(uc), 1) and define w := (−∆N )−1R(uc − m). The first order
condition (15) implies

(
ε2∇(uc −m),∇ũ

)
= −(κW ′(uc)− s2, ũ)− (σw, ũ) ∀ũ ∈ H1 ,

where ũ0 ∈ H̊1 is extended to ũ ∈ H1. Consequently, ε2(uc −m) = (−∆N )−1R(f) with f = −κW ′(uc) +
s1 − σw and W ′(uc) = u3

c − uc.
Now we apply the elliptic regularity theorem on uc, since it is a solution to the above weak form of the

pure Neumann Poisson equation. First, notice that Sobolev embedding theorem implies uc ∈ H1 ⇒ u3
c ∈ L2.

Hk is an algebra for k > d/2 in a domain that satisfies the cone condition. Thus,

uc ∈ Hk ⇒ u3
c ∈ Hk ∀k ≥ 2 .

Define H0 := L2. For r ≥ 1, if uc ∈ H̊k−1
m with 1 ≤ k ≤ r, the elliptic regularity implies that w ∈ H̊k+1.

Combining the results above, we have f ∈ H̊k−1
m and uc ∈ H̊k+1 by regularity. Take k = r and we have

uc ∈ H̊r+1
m .

Proof of Proposition 3.2. Based on the results in the proof of Proposition 3.1, if uc ∈ H̊2
m, then ∇uc · ν = 0

on ∂Ω is implied by Green’s identity. Moreover, if uc ∈ H̊4
m, we have A(uc) ≡ 0 by Theorem 3.1. Notice that

we have (ε2∇(∆uc) · ν, ũ)L2(∂Ω) + (κW ′′(uc)∇uc · ν, ũ)L2(∂Ω) = 0 ∀ũ ∈ H1, which leads to ∇(∆uc) · ν = 0 on
∂Ω.

Appendix B Finite element discretization

We shall consider a finite-dimensional approximation to the minimization problem and the H̊−1 Newton
iteration via the finite element method.

First, we introduce a conforming Galerkin discretization employing Ciarlet-Raviart mixed finite elements.
Let Ph denote a conformal partition Ph of Ω into non-overlapping elements K such that Ω = ∪K∈PhK̄.

Each element is the image of an invertible, generally affine map FK of a reference element K̂. Let P r(K̂)
denote the space of complete polynomials of degree less than or equal to r on K̂, and let Qr(K̂) denote
the space of tensor products of polynomials of degree less than or equal to r on K̂. We construct the
finite-dimensional spaces Sh by:

Sh := Sh,r(Ph) :=
{
vh ∈ H1(Ω) : vh|K = v̂ ◦ F−1

K , v̂ ∈ P r(K̂) or v̂ ∈ Qr(K̂) ∀K ∈ Ph
}
. (55)
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B.1 The Newton step problem

We employ linear finite elements, i.e., the lowest-order approximation based on Sh,1 := Sh,1(Ph), for the
Newton step problem at given uhn ∈ Sh,1:

Find (δuhn, µ̂
h
n) ∈ (Sh,1, Sh,1) such that :

(∇µ̂h,∇ũ) + (σδuhn, ũ) = (∇µhn,∇ũ) +
(
σ(uhn −m), ũ

)
∀ũ ∈ Sh,1 , (56a)

(µ̂hn, µ̃)−
(
κW ′′γ (uhn)δuhn, µ̃

)
− (ε2∇δuhn,∇µ̃) = 0 ∀µ̃ ∈ Sh,1 , (56b)

where γ ∈ [0, 1] and the right hand side function µh is given by the following problem:

Find µhn ∈ Sh,1 such that : (µhn, µ̃) =
(
κW ′(uhn), µ̃

)
+ (ε2∇uhn,∇µ̃) ∀µ̃ ∈ Sh,1 . (57)

Now we consider the above problem in the discrete form. Let {ei}Ni=1 be the basis functions for Sh,1;
then:

uhn =

N∑

i=1

(un)iei , δuhn =

N∑

i=1

(δun)iei , µ̂hn =

N∑

i=1

(µ̂n)iei , µhn =

N∑

i=1

(µn)iei . (58)

where un, δun, µ̂,µ ∈ RN . We define the matrices M,K ∈ RN×N that correspond to the discretized L2

and H̊1 inner products in Sh,1 and the matrix Dn ∈ RN×N that corresponds to the nonlinear term in the
modified Hessian operator:

Mij = (ei, ej) , Kij = (∇ei,∇ej) , (Dn)ij =
(
(uhn)2ei, ej

)
. (59)

Consequently, the discrete Newton step problem is posed as

Hn(γ)

[
δun
µ̂n

]
=

[
σM K

−κ(2 + γ)Dn + κγM− ε2K M

] [
δun
µ̂n

]
=

[
fn
0

]
= gn (60)

where fn := f(µn,un) ∈ RN corresponds to the right-hand side of (56a) and depends on uhn and µhn. It has
the following form:

fn = Kµn + σMun − σmMc . (61)

where c ∈ RN is a vector with entries of all ones and µhn is given by the following discrete problem:

Mµn = κdn − κMun + ε2Kun , (62)

where dn ∈ RN corresponds to the term in the double well potential: (dn)i =
(
(uhn)3, ei

)
.

B.2 The pure Neumann Poisson equation

As demonstrated in Section 4.1.3, solving the Poisson equation with homogeneous Neumann bound-
ary condition is necessary for conducting the Armijo backtracking line search on the energy. There are
many different formulations for this problem, as elaborated by Bochev and Lehoucq in [7]. Here we
employ a saddle point formulation. Consider the following variational problem corresponds to solving
δwn = (−∆N )−1R(δun):

Find (δwn, λ) ∈ H1 × R such that :

(∇δwn,∇w̃) + (λ, w̃) = (δun, w̃) ∀w̃ ∈ H1 , (63a)

(wn, λ̃) = 0 ∀λ̃ ∈ R . (63b)

This formulation is equivalent to a projected problem, in which the right hand side functional is projected
onto H̊−1.

The finite element approximation results in the discrete problem:

L

[
δwn

λ

]
=

[
K Mc
cTM O

] [
δwn

λ

]
=

[
Mδun

0

]
(64)

where δwhn =
∑N
i=1(δwn)iei ∈ Sh,1. To solve for whn =

∑N
i=1(wn)iei ∈ Sh,1, one can solve the above system

by replacing δun with un.
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B.3 Armijo backtracking line search on the energy

The backtracking line search on the energy only requires evaluating the energy difference at each step
size. The majority of the terms that appear in the energy difference are linear, which allows us to reduce
the computational cost of the line search.

Assume δuhn is obtained by the Newton problem at uhn. Assume whn and δwhn are obtained by solving the
pure Neumann Poisson equation. The energy difference at any backtracking constant α is

FOK(uhn + αδuhn)− FOK(uhn) = δUn(α) + δUn(0) + αδLn . (65)

where δU(α) and δLn are given by

δU(α) :=
1

4
κ
(
dn(α)

)T
(un + αδun) , (66)

δLn := δuTnM(−κun −
1

2
κδun + σwn + σδwn) + ε2δuTnK(2un + δun) + σuTnMδwn , (67)

where (dn(α))i =
(
(uhn +αkδu

h
n)3, ei

)
. The term δUn needs to be evaluated at each step size, while δLn can

be determined prior to the backtracking iterations. Once the backtracking converges at αK , dn(αK) can be
reused as dn+1 at the next minimization iteration.

Appendix C A preconditioner for the discrete Newton step problem

Solving the discrete Newton step problem (60) is the most computationally expensive portion of the algo-
rithm. In particular, the double well backtracking algorithm introduced in Section 4.1 to attain monotonic
energy descent further increases the cost. In this section, we consider a preconditioner that can considerably
decrease the cost of solving the discrete Newton step problem in a certain range of the weight γ and the
parameter space (κ, ε, σ).

C.1 The approximate Schur complement preconditioner

We formulate the preconditioner that closely follows a matching technique presented in [17, 33, 41, 42].
The Schur complement of the (1, 1)-block in Hn(γ) (60) is

Sn = M +
ε2

σ
KM−1K +

κ(2 + γ)

σ
DnM−1K− κγ

σ
K . (68)

Consider an approximation to the Schur complement, S̃ = ŜM−1Ŝ, with Ŝ = M + ε√
σ
K:

S̃ = M +
ε2

σ
KM−1K +

2ε√
σ

K . (69)

The following proposition holds:

Proposition C.1. [17] The eigenvalues of S̃
−1

Sn are real and satisfy

λ(S̃
−1

Sn) ∈
[1

2
− κγ

4ε
√
σ
, 1 +

κ

4ε
√
σ

(
γ + κ(2 + γ)λ+

)]
, (70)

where λ+ = max{λmax(M
−1Dn), 0}. If uhn(x) ∈ [−1, 1] ∀x ∈ Ω, then λ+ ≤ 1.

Based on the above proposition, we propose a preconditioner P ∈ R2N×2N that only depends on the
parameters and discretization, and not on un:

P =

[
M σ−1K
−ε2K M + 2ε√

σ
K

]
. (71)
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The preconditioner corresponds to the re-scaled discrete Newton step problem:

H̃n(γ)

[
δun
µ̂n

]
=

[
M σ−1K

−κ(2 + γ)Dn + κγM− ε2K M

] [
δun
µ̂n

]
=

[
σ−1fn

0

]
. (72)

This preconditioner leads to the following lemma:

Lemma C.1. [33] The eigenvalues of P−1H̃n(γ) are real and their values fall within the range of λ(S̃
−1

Sn).

C.2 On the choice of the double well backtracking sequence

According to Proposition C.1 and Lemma C.1, the eigenvalues of the preconditioned discrete Newton
step system have a lower bound of 1

2 −
κγ

4ε
√
σ

. Ideally, we would like the eigenvalues to be clustered away

from the origin for fast convergence of iterative solvers, such as GMRES, which would require

γ < 2ε
√
σ/κ (73)

To reduce the cost of obtaining a descent direction, it is then sensible for the backtracking sequence γ =
{γ(k)}Kk=1 to be

γ(1) = 1 , γ(2) < 2ε
√
σ/κ , . . . , γ(K) = 0 . (74)

Unfortunately, in the case where ε
√
σ/κ > 1

2 , the preconditioner is ineffective when γ = 1. Further work
needs to be done on developing a preconditioner suitable for the full range of γ ∈ [0, 1].
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