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Second order necessary conditions for optimal control

problems with endpoints-constraints and convex

control-constraints ∗

Li Deng†

Abstract In this manuscript, we consider a control system governed by a general

ordinary differential equation on a Riemannian manifold, with its endpoints satisfy-

ing some inequalities and equalities, and its control constrained to a closed convex

set. We concern on an optimal control problem of this system, and obtain the second

order necessary condition in the sense of convex variation (Theorem 2.2). To this

end, we first obtain a second order necessary condition of an optimization problem

(Theorem 4.2) via separation theorem of convex sets. Then, we derive our necessary

condition by transforming the optimal control problem into an optimization problem.

It is worth to point out that, our necessary condtition evolves the curvature tensor,

which is trivial in Euclidean case. Moreover, even M is a Euclidean space, our result is

still of interest. Actually, we give an example (Example 2.1) which shows that, when

an optimal control stays at the boundary of the control set, the existing results are

invalid while Theorem 2.2 works.
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Convex constraints, Riemannian manifold
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In this paper, we consider a control system described by a general ordinary differential

equation with the state restricted to a manifold, with the initial and terminal states re-

stricted to inequality-type and equality-type constraints, and with the control constrained

pointwisely to a convex set. For this control system, we study the second order necessary

optimality condition for an optimal control problem.

Before elaborating on our problem, we introduce some notions on manifolds. Let n ∈ N

and M be a complete simply connected, n-dimensional manifold with Riemannian metric

g. Let ∇ be the Levi-Civita connection on M related to g, ρ(·, ·) be the distance function

on M , and TxM and T ∗
xM be respectively the tangent and cotangent spaces of M at

x ∈ M . Denote by 〈·, ·〉 and | · | the inner product and the norm over TxM related to

g, respectively. Also, denote by TM ≡ ⋃

x∈M
TxM , T ∗M ≡ ⋃

x∈M
T ∗
xM and C∞(M) the

tangent bundle, the cotangent bundle and the set of smooth functions on M , respectively.

Let j, k ∈ N, T > 0, U be a subset of Rm (m ∈ N), and f : [0, T ] ×M × U → TM ,

φi : M × M → R (i = 0, 1, · · · , j) and ψ = (ψ1, · · · , ψk)⊤ : M × M → Rk be maps

(satisfying suitable assumptions to be given later). Set by

U = {v : [0, T ] → U | v(·) is measurable} (1.1)

the set of all possible controls. Consider the following optimal control problem

(OCP ) Find a control ū(·) and a trajectory ȳ(·) minimizing

J(y(·), u(·)) ≡ φ0(y(0), y(T )),

subject to

ẏ(t) = f(t, y(t), u(t)), a.e. t ∈ [0, T ]; u(·) ∈ U ; (1.2)

and
{

φi(y(0), y(T )) ≤ 0, i = 1, · · · , j,
ψ(y(0), y(T )) = 0.

(1.3)

ū(·), ȳ(·) and (ū(·), ȳ(·)) are respectively called optimal control, optimal trajectory

and optimal pair.

For problem (OCP ), Deng and Zhang ([5]) obtained the second order necessary con-

dition via spike variation, by applying the separation theorem of convex sets to a suitably

chosen set related to the second order spike variation. In this paper, we are concerned

with the second order necessary condition obtained by convex variation.

In optimal control theory, optimality conditions are usually obtained by two kinds of

variations of trjectories: spike and convex variations. In this paper, we call a necessary

condition obained by convex variation (resp. spike variation) a necessary condition in the

sense of convex variation (resp. spike variation). For the first order necessary optimality
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condition, the condition in the sense of spike variation is always more precise than that

in the sense of convex variation, i.e. the latter can be deduced directly from the former.

However, for the second order necessary condition, it is hard to assess which condition

is better. As already explained in [5, Section 1], the second order necessary condition

only makes sense along a critical direction, in which the first order necessary condition is

trivial. Since different variations lead to different first order necessary conditions, critical

directions in the senses of different variations are distinct. Consequently the corresponding

second order necessary conditions are different. They are always complementary to each

other. Two examples in [10] (or [4, Section 3.5]) show that, these two kinds of second

order necessary conditions can not cover each other. Our main result ( Theorem 2.2) is

the second order necessary condition in the sense of convex variation, which can be viewed

as a complement to [5, Theorem 2.2].

For problem (OCP ), when M is a Euclidean space, the second order necessary con-

dition in the sense of convex variation is given by [7, Theorem 3.1]. Comparing to it,

our main result (i.e. Theorem 2.2) has two differences: i) The curvature tensor of the

Riemannian manifold arises. This is the same case as the corresponding second order

necessary condition in the sense of spike variation (i.e. [5, Theorem 2.2]); ii) There is

another extra term (i.e. the first integral of the left hand side of inequality (2.23)), which

always makes sense when an optimal control stays at the boundary of the control set, and

provides additional informations. We explain this by Example 2.1, in which Theorem 2.2

works, while [7, Theorem 3.1] fails.

The appearance of the curvature tensor results from the second order variation of

trajectories evolved on Riemannian manifolds. The extra term (the first integral of the

left hand side of inequality (2.23)) comes from the use of “the second-order adjacent

subset” introduced in [1, Definition 4.7.2, p. 171]. More precisely, we prove Theorem 2.2

by using the second order necessary condition of a solution to an optimization problem

with inequality-type and equality-type constraints (i.e. Theorem 4.2), which evolves “the

second-order adjacent subset”. With this nontrivial term, Theorem 4.2 generalizes [7,

Theorem 4.1], see Remark 4.1 for details.

This paper is organised as follows. The main results are stated in Section 2, the

variations of trajectories to the second order are given in Section 3, and Section 4 is

devoted to the proof of the main results.
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2 Statement of the main results

2.1 Notations and assumptions

We first introduce some notions. Denote by i(x), |T (x)|, ∇T , R, the injectivity radius (at

the point x ∈ M), the norm of the tensor field T at the point x ∈ M (see [3, (2.5)]), the

covariant derivative of the tensor field T and the curvature tensor ( of (M,g)), respectively.

For any x, y ∈M with ρ(x, y) < min{i(x), i(y)}, by [3, Lemma 2.1], there exists a unique

shortest geodesic connecting x and y. We denote the parallel translation of a tensor from x

to y along this geodesic by Lxy. For a smooth function h :M ×M → R of two arguments,

we denote by ∇ih(y1, y2) the covariant derivative of h with respect to the ith argument yi

with i = 1, 2. Namely, we have

∇ih(y1, y2)(X) = X(yi)(h(y1, y2)), ∀X ∈ TM.

Thus, ∇ih(y1, y2) ∈ T ∗
yi
M . For a smooth vector valued map ψ = (ψ1, · · · , ψk)⊤ :M×M →

Rk (k > 0), we denote the first and second order covariant derivatives with respect to the

ith argument (i = 1, 2) respectively by

∇iψ(X) = (∇iψ1(X), · · · ,∇iψk(X))⊤,

∇2
iψ(X,Y ) = (∇2

iψ1(X,Y ), · · · ,∇2
iψk(X,Y ))⊤,

(2.1)

for allX,Y ∈ TM. The corresponding norms are given respectively by |∇iψ| =
∑k

l=1 |∇iψl|
and |∇2

iψ| =
∑k

l=1 |∇2
iψl|. For the definitions of the above notions, please see [3, Section.

2].

To present the optimality conditions of problem (OCP ), we need to introduce two

functions: Lagrange and Hamiltonion functions. When k > 0, the Lagrange function

L : M × M × R1+j+k → R is defined by L(y1, y2; ℓ) ≡ ∑j
i=0 ℓiφi(y1, y2) + ℓ⊤ψψ(y1, y2),

where ℓ = (ℓ0, · · · , ℓj , ℓ⊤ψ )⊤. When k = 0, the corresponding Lagrange function L :

M ×M × R1+j → R is L(y1, y2; ℓ) ≡
∑j

i=0 ℓiφi(y1, y2), where ℓ = (ℓ0, · · · , ℓj)⊤. For each

ℓ ∈ R1+j+k, we also denote by diL(y1, y2; ℓ) the differential of L with respect to the variable

yi (i = 1, 2), i.e. diL(y1, y2; ℓ) ∈ T ∗
yiM satisfies diL(y1, y2; ℓ)(X) = X(yi)(L(y1, y2; ℓ)) for

all X ∈ TM . The Hamiltonian function H : [0, T ]× T ∗M × U → R is given by

H(t, y, p, u) ≡ p(f(t, y, u)), ∀ (t, y, p, u) ∈ [0, T ]× T ∗M × U. (2.2)

Throughout this paper, we denote by X̃ ∈ T ∗M (resp. X̃ ∈ TM) the dual covector

(resp. vector) of X ∈ TM (resp. X ∈ T ∗M), see [5, Section 2.1] for the detailed definition.

Then, we recall some definitions concerning tangent sets. For more details, we refer

to [1]. Let X be a metric space with a metric d, and K ⊂ X be a subset. The distance

between a point x ∈ X and K is defined by distK(x) := inf{d(x, y); y ∈ K}. Let {Kh}h>0
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be a family of subsets of X . The lower limit of {Kh}h>0 is given by

Liminfh→0+Kh := {v ∈ X ; lim
h→0+

distKh(v) = 0}.

When X is a normed vector space, the adjacent cone to a subset K ⊂ X at a point x ∈ K

(i.e. x belongs to the closure of K) is defined by (see [1, p.127])

T ♭K(x) := Liminfh→0+
K − x

h
. (2.3)

Moreover, for v ∈ T ♭K(x), the second-order adjacent subset to K at (x, v) is given by (see

[1, Definition 4.7.2, p. 171])

T
♭(2)
K (x, v) := Liminfh→0+

K − x− hv

h2
. (2.4)

By the definition of the lower limit of a family of subsets, one can respectively characterise

T ♭K(x) and T
♭(2)
K (x, v) in terms of sequences:

(i) v ∈ T ♭K(x) if and only if, for any hn → 0+ as n→ +∞, there exists vn ∈ X approaching

to v, such that x+ hnvn ∈ K for each n ≥ 1;

(ii) Given v ∈ T ♭K(x), w ∈ T
♭(2)
K (x, v) if and only if, for any hn → 0+ as n → +∞, there

exists wn ∈ X approaching to w, such that x+ hnv + h2nwn ∈ K for each n ≥ 1.

The main assumptions are exhibited as follows:

(C1) U ⊂ Rm is convex and closed.

(C2) The map f(= f(t, x, u)) : [0, T ]×M ×U → TM is measurable in t, and C1 in (x, u).

Moreover, there exists a constant K > 1 such that,

|Lx1x̂1f(s, x1, u1)− f(s, x̂1, u2)| ≤ K(ρ(x1, x̂1) + |u1 − u2|),
|f(s, x0, u1)| ≤ K,

|φi(x1, x2)− φi(x̂1, x̂2)| ≤ K(ρ(x1, x̂1) + ρ(x2, x̂2)), i = 0, · · · , j,
|ψ(x1, x2)− ψ(x̂1, x̂2)| ≤ K(ρ(x1, x̂1) + ρ(x2, x̂2)),

(2.5)

for all s ∈ [0, T ], u1, u2 ∈ U , and xl, x̂l ∈ M satisfying ρ(xl, x̂l) < min{i(xl), i(x̂l)}
for l = 1, 2, where x0 ∈M is fixed.

(C3) The map f = (f(s, x, u)) is C2 in (x, u) ∈ M × U , and φ0, · · · , φj , ψ are C2 over

M ×M . Furthermore, there exists a positive constant K > 1 such that

|∇xf(s, x1, u1)− Lx̂1x1∇xf(s, x̂1, u2)| ≤ K(ρ(x1, x̂1) + |u1 − u2|),
|∇uf(s, x1, u1)− Lx̂1x1∇uf(s, x̂1, u2)| ≤ K(ρ(x1, x̂1) + |u1 − u2|),
|∇1φi(x1, x2)− Lx̂1x1∇1φi(x̂1, x2)| ≤ Kρ(x1, x̂1), i = 0, 1, · · · , j,
|∇2φi(x1, x2)− Lx̂2x2∇2φi(x1, x̂2)| ≤ Kρ(x2, x̂2), i = 0, 1, · · · , j,
|∇1ψ(x1, x2)− Lx̂1x1∇1ψ(x̂1, x2)| ≤ Kρ(x1, x̂1),

|∇2ψ(x1, x2)− Lx̂2x2∇2ψ(x1, x̂2)| ≤ Kρ(x2, x̂2),

(2.6)
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for all x1, x̂1, x2, x̂2 ∈M with ρ(x1, x̂1) < min{i(x1), i(x̂1)} and ρ(x2, x̂2) < min{i(x2),
i(x̂2)}, and (s, u1, u2) ∈ [0, T ]× U × U , where ∇uf(s, x, u) is defined by

∇uf(s, x, u)(η, V )

= limǫ→0+
1
ǫ

(

f(s, x, u+ ǫV )(η) − f(s, x, u)(η)
)

, ∀ (η, V ) ∈ T ∗
xM × Rm,

(2.7)

with its norm

|∇uf(s, x, u)| ≡ sup{∇uf(s, x, u)(η, V ); (η, V ) ∈ T ∗
xM × Rm, |η| + |V | ≤ 1},

and ∇xf(s, x, u) is the covariant derivative of f(s, x, u) with respect to the state

variable x ∈M , and is defined by

∇xf(s, x, u)(η,X) = ∇Xf(s, ·, u)(η), ∀ (η,X) ∈ T ∗
xM × TxM, (2.8)

with its norm given by [3, (2.5)].

We should mention that, for l = 1, 2 and i = 0, · · · , j, by [3, Lemma 4.1], we obtain

from (2.5) and (2.6) that, f and ∇xf are both Lipschitz continuous with respect to the

variable (x, u) ∈ M × U , and φi, ψ, ∇lφi and ∇lψ are Lipschitz continuous. These

conditions can be checked by computing the norms of ∇xf , ∇2
xf , ∇lφi, ∇2

l φi, ∇lψ and

∇2
l ψ.

2.2 Main results

In this subsection, we fix an optimal pair (ū(·), ȳ(·)). For a function defined on [0, T ] ×
M × U , we denote by

ϕ[t] ≡ ϕ(t, ȳ(t), ū(t)), ∀ t ∈ [0, T ] (2.9)

for abbreviation. Set

IA ≡ {i ∈ {1, · · · , j}; φi(ȳ(0), ȳ(T )) = 0} ∪ {0}, (2.10)

IN ≡ {0, 1, · · · , j} \ IA. (2.11)

Given a vector ℓ = (ℓ0, · · · , ℓj , ℓ⊤ψ )⊤ ∈ R1+j+k, we denote by pℓ(·) the solution to

{

∇ ˙̄y(t)p
ℓ = −∇xf [t](p

ℓ(t), ·), a.e. t ∈ (0, T ),

pℓ(T ) = d2L(ȳ(0), ȳ(T ); ℓ),
(2.12)

with ∇xf given by (2.8). It is a covector field along ȳ(·), i.e. pℓ(t) ∈ T ∗
ȳ(t)M for each

t ∈ [0, T ]. Furthermore, for a function ϕ defined on [0, T ]× T ∗M × U , we set

ϕ[t, ℓ] = ϕ(t, ȳ(t), pℓ(t), ū(t)), ∀ t ∈ [0, T ] (2.13)

for abbreviation.

The first order necessary condition of an optimal pair in the secnse of convex variation

is stated as follows.
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Theorem 2.1 Assume U ⊂ Rm (m ∈ N) is convex, and condition (C2) holds. If

(ū(·), ȳ(·)) is optimal pair for problem (OCP ) with ū(·) ∈ L2(0, T ;Rm) ∩ U , then there

exists ℓ = (ℓ0, ℓ1, · · · , ℓj , ℓ⊤ψ )⊤ ∈ R1+j+k \ {0} such that

ℓi ≤ 0, if i ∈ IA; ℓi = 0, if i ∈ IN , (2.14)

and

∇uH[t, ℓ](v(t)) ≤ 0, a.e. t ∈ [0, T ], (2.15)

holds for all v(·) ∈ L2(0, T ;Rm) with v(t) ∈ T ♭U (ū(t)) a.e t ∈ [0, T ], where pℓ(·) is a

covector field along ȳ(·) satisfying (2.12) and initial condition

pℓ(0) = −d1L(ȳ(0), ȳ(T ); ℓ), (2.16)

and ∇uH(t, y, η, u)(V ) (with (t, y, η, u, V ) ∈ [0, T ] × T ∗M × U × Rm) is defined by

∇uH(t, y, η, u)(V ) = lim
ǫ→0+

1

ǫ

(

H(t, y, η, u + ǫV )−H(t, y, η, u)
)

. (2.17)

From the viewpoint of calculus, when the first order necessary condition is trivial in

some direction, it is necessary to find the second order necessary condition along this

direction. Thus, in what follows, we give the definition of critical direction in the sense of

convex variation.

Definition 2.1 Assume that (ū(·), ȳ(·)) is an optimal pair of problem (OCP ) with

ū(·) ∈ L2(0, T ;Rm) ∩ U , and that all the assumptions in Theorem 2.1 hold. A function

v(·) ∈ L2(0, T ;Rm) is called a singular direction in the sense of convex variation, if it

satisfies

v(t) ∈ T ♭U (ū(t)), a.e. t ∈ [0, T ],

∇1φi(ȳ(0), ȳ(T ))(Xv(0)) +∇2φi(ȳ(0), ȳ(T ))(Xv(T )) ≤ 0, ∀ i ∈ IA,

∇1ψ(ȳ(0), ȳ(T ))(Xv(0)) +∇2ψ(ȳ(0), ȳ(T ))(Xv(T )) = 0 (omit if k = 0),

(2.18)

where ∇iψ is defined by (2.1), and Xv(·) is a vector field along ȳ(·) (i.e. Xv(t) ∈ Tȳ(t)M

for all t ∈ [0, T ]) and verifies

∇ ˙̄y(t)Xv = ∇xf [t](·,Xv(t)) +∇uf [t](·, v(t)), a.e. t ∈ (0, T ), (2.19)

with ∇xf and ∇uf given respectively by (2.8) and (2.7).

Along a critical direction v(·) defined above, the first order necessary condition in the

sense of convex variation is trival. To show this, we need a definition as follows.

Definition 2.2 Assume that all the assumptions in Theorem 2.1 hold, and that (ū(·),
ȳ(·)) is an optimal pair of problem (OCP ). A vector ℓ = (ℓ0, ℓ1, · · · , ℓj , ℓ⊤ψ )⊤ ∈ R1+j+k\{0}
is called a Lagrange multiplier in the sense of convex variation, if it satisfies (2.14), and

(2.15) holds for all v(·) ∈ L2(0, T ;Rm) with v(t) ∈ T ♭U (ū(t)) a.e t ∈ [0, T ], where pℓ(·)
satisfies (2.12) and (2.16).
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Thus, we can understand the first order necessary condition in the sense of convex

variation (i.e. Theorem 2.1) as follows: if (ū(·), ȳ(·)) is an optimal pair, there exists a

Lagrange multiplier in the sense of convex variation. Moreover, if v(·) ∈ L2(0, T ;Rm) is a

crictical direction in the sense of convex variation, with Xv(·) satisfying (2.18) and (2.19),

then for any Lagrange multiplier ℓ ∈ R1+j+k \{0}, by (2.18), (2.12), (2.16), (2.19), (2.15)

and integration by parts, we have

0 ≤∇1L(ȳ(0), ȳ(T ); ℓ)(Xv(0)) +∇2L(ȳ(0), ȳ(T ); ℓ)(Xv(T ))

=

∫ T

0
∇uH[t, ℓ](v(t))dt ≤ 0,

which implies ∇uH[t, ℓ](v(t)) = 0 a.e t ∈ [0, T ]. Thus, along direction v(·), the first order

necessary condition in the sense of convex variation is trivial.

Then, along this direction v(·), we shall study the second order necessary condition.

To this end, associated to v(·) and Xv(·), we set

I ′0 ≡ IN ∪ {i ∈ IA; ∇1φi(ȳ(0), ȳ(T ))(Xv(0)) +∇2φi(ȳ(0), ȳ(T ))(Xv(T )) < 0};

I ′′0 ≡ {0, 1, · · · , j} \ I ′0.
(2.20)

The second order necessary condition of optimal pairs is as follows.

Theorem 2.2 Assume that conditions (C1) − (C3) hold, and that (ū(·), ȳ(·)) with

ū(·) ∈ L2(0, T ;Rm)∩U is an optimal pair of problem (OCP ). Let v(·) ∈ L2(0, T ;Rm) be a

critical direction in the sense of convex variation, with Xv(·) satisfying (2.18) and (2.19).

Assume that there exist ℓ(·) ∈ L2(0, T ;Rm) and ǫ0 > 0 such that

distU (ū(t) + ǫv(t)) ≤ ǫ2ℓ(t),∀ǫ ∈ [0, ǫ0], a.e. t ∈ [0, T ], (2.21)

and that the set B ≡ {σ(·) ∈ L2(0, T ;Rm); σ(t) ∈ T
♭(2)
U (ū(t), v(t)) a.e. t ∈ [0, T ]} 6= ∅.

Then, there exists a Lagrange multiplier ℓ = (ℓφ0 , ℓφ1 , · · · , ℓφj , ℓ⊤ψ )⊤ ∈ R1+j+k \ {0} satis-

fying

ℓφi = 0, if i /∈ I ′′0 , (2.22)

such that

∫ T
0 ∇uH[t, ℓ](σ(t))dt + 1

2

∫ T
0

{

∇2
xH[t, ℓ](Xv(t),Xv(t))

+2∇u∇xH[t, ℓ](Xv(t), v(t)) +∇2
uH[t, ℓ](v(t), v(t))

−R(p̃ℓ(t),Xv(t), f [t],Xv(t))
}

dt+ 1
2∇2

1L(ȳ(0), ȳ(T ); ℓ)(Xv(0),Xv(0))

+∇1∇2L(ȳ(0), ȳ(T ); ℓ)(Xv(T ),Xv(0))

+1
2∇2

2L(ȳ(0), ȳ(T ); ℓ)(Xv(T ),Xv(T )) ≤ 0

(2.23)
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holds for all σ(·) ∈ B, where pℓ(·) satisfies (2.12) and (2.16), p̃ℓ(t) (t ∈ [0, T ]) is the dual

vector of pℓ(t), H[t, ℓ] is defined in (2.2) and (2.13), for each (t, y, η, u) ∈ [0, T ]×T ∗M×U ,

∇xH(t, y, η, u)(X) = ∇xf(t, y, u)(η,X), ∀X ∈ TyM,

∇u∇xH(t, y, η, u)(X,V ) =
d

ds

∣

∣

∣

s=0
∇xH(t, y, η, u + sV )(X), ∀ (X,V ) ∈ TyM × Rm,

∇2
uH(t, y, η, u)(V, V ) =

d2

ds2

∣

∣

∣

s=0
H(t, y, η, u + sV ), ∀V ∈ Rm,

∇2
xH(t, y, η, u)(X,X) = ∇2

xf(t, y, u)(η,X,X), ∀X ∈ TyM,

and ∇i∇jL(ȳ(0), ȳ(T ); ℓ) (i, j = 1, 2) is defined by [5, (5.11)].

Remark 2.1 [7, Theorem 3.1] considers a special case of problem (OCP ): M is a

Euclidean space. Theorems 2.1 & 2.2 differ from [7, Theorem 3.1] in three aspects. First,

Theorem 2.1 extends [7, Theorem 3.1] from a Euclidean space to a Riemannian manifold.

What comes new is that, the curvature tensor of the Riemannian manifold appears in

the second order necessary condition. Second, [7, Theorem 3.1] says that, if ū(·) is an

optimal control, the first order necessary condtion is that, there exists a nontrivial vector

ℓ = (ℓφ0 , · · · , ℓφj , ℓ⊤ψ )⊤ ∈ R1+j+k \ {0} satisfying (2.14), such that the following inequality

holds:

∫ T

0
∇uH[t, ℓ](v(t))dt ≤ 0, ∀ v(·) ∈ L∞(0, T ;Rm) ∩ (U − {ū(·)}). (2.24)

While (2.15) is of pointwise form, which is easier to be checked. Third, when there exists

a set A ⊂ [0, T ] with its Lebesgue measure bigger than zero, such that ū(t) belongs to the

boundary of U for all t ∈ A, the set {v(·) ∈ L2(0, T ;Rm)| v(t) ∈ T ♭U (ū(t)) a.e. t ∈ [0, T ]}
is some times larger than L∞(0, T ;Rm) ∩ (U − ū(·)) (see Example 2.1). Consequently,

when a singular direction v(·) in the sense of convex variation satisfies v(t) ∈ T ♭U (ū(t)) \
{U − {ū(t)}} for t ∈ A, compared to [7, Theorem 3.1 ], we still have further information

about an optimal pair (see (2.23)). We shall use Example 2.1 below to illustrate it more

explicitly.

Example 2.1 Given T ∈ (0, 3−
√
5) and θ > 2, consider the control system

{

ẏ1(t) = u2(t), a.e. t ∈ (0, T ),

ẏ2(t) = −y21(t) + 4y1(t)u2(t)− θu1(t)
2, a.e. t ∈ (0, T ),

(2.25)

where (u1(t), u2(t)) ∈ B(1)
△
= {(x, y)⊤ ∈ R2|x2 + y2 ≤ 1} a.e. t ∈ (0, T ). Set by

φ0(y1(0), y2(0), y1(T ), y2(T )) = y2(T ) and ψ(y1(0), y2(0), y1(T ), y2(T )) = (y1(0)−1, y2(0))
⊤.

Then, the optimal control problem is to minimize φ0(y1(0), y2(0), y1(T ), y2(T )), where
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(y1(·), y2(·), u1(·), u2(·)) is subject to (2.25) and ψ(y1(0), y2(0), y1(T ), y2(T )) = 0. Con-

sider the control ū(t) = (ū1(t), ū2(t))
⊤ ≡ (0,−1)⊤. The corresponding trajectroy is

(ȳ1(t), ȳ2(t)) = (1− t,−1

3
t3 + 3t2 − 5t), ∀ t ∈ [0, T ].

Then, we shall use [7, Theorem 3.1 ] and Theorem 2.2 respectively to check whether ū(·)
is optimal.

Solution. It can be checked that T ♭B(1)((0,−1)⊤) = {(x, y)⊤|x ∈ R, y ≥ 0}, which is

strictly larger than B(1) − (0,−1)⊤. We also have T
♭(2)
B(1)((0,−1)⊤, (1, 0)⊤) = {(x, y)|x ∈

R, y ≥ 1
2}. By the [7, Theorem 3.1(i) ](or Theorem 2.1), there exists a unique ℓ =

(ℓ0, ℓ1, ℓ2)
⊤ ∈ R3 \ {0} (up to a positive factor) satisfying ℓ0 ≤ 0 and (2.24) (or (2.15)),

and we also have −ℓ2 = ℓ0 and ℓ1 = (6T − T 2)ℓ0. Without loss of generality, we as-

sume ℓ0 = −1. We observe that, for all v(·) ∈ L∞(0, T ;R2) ∩ (U − {ū(·)}), the relation
∫ T
0 ∇uH[t, ℓ](v(t))dt < 0 holds, which means that, [7, Theorem 3.1(ii) ](the second order

necessary condition) can not be applied to ū(·). However, by Theorem 2.1 we know that

v(t) ≡ (1, 0)⊤ ∈ T ♭B(1)(ū(t)) \ (B(1) − {ū(t)}) (t ∈ [0, T ]) is a singular direction. Set by

σ(t) ≡ (0, 12)
⊤ ∈ T

♭(2)
B(1)(ū(t), (1, 0)

⊤) (t ∈ [0, T ]). The left hand side of (2.23) is reduced to

T (−1
3T

2+ 5
2T + θ− 2) > 0, which contradicts (2.23). Consequently, ū(·) is not an optimal

control. �

Then, we would apply Theorem 2.2 to the following problem

(OCPE) Minimize J(u(·)) =
∫ T
0 f0(t, y(t), u(t))dt over u(·) ∈ U subject to (1.2), y(0) =

y0 and y(T ) = y1, where y0, y1 ∈ M are fixed, and f : R+ ×M × U → TM and

f0 : R+ ×M × U → R are given maps.

The Hamiltonian function He : [0, T ] × T ∗M × U × R → R is given by He(t, y, p, u, ℓ) =

p(f(t, y, u))+ℓf0(t, y, u), where (t, y, p, u, ℓ) ∈ [0, T ]×T ∗M×U×R. We need the following

assumption:

(Ce) The maps f and f0 are measurable in t, C2 in (x, u), and there exist a constant

K > 1 and x0 ∈M such that

|f0(s, x1, u1)− f0(s, x2, u2)| ≤ K(ρ(x1, x2) + |u1 − u2|),
|f0(s, x0, u1)| ≤ K,

|∇xf
0(s, x1, u1)− Lx̂1x1∇xf

0(s, x̂1, u2)| ≤ K
(

ρ(x1, x2) + |u1 − u2|
)

,

|∇uf
0(s, x1, u1)−∇uf

0(s, x̂1, u2)| ≤ K
(

ρ(x1, x2) + |u1 − u2|
)

,

hold for all x1, x̂1, x2 ∈M , u1, u2 ∈ U and s ∈ R+, with ρ(x1, x̂1) < min{i(x1), i(x̂1)}.

Then, the corresponding second order necessary condition is stated as follows.
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Corollary 2.1 Assume that conditions (C1) and (Ce) hold, that there exist a constant

K > 1 and x0 ∈M such that the first two lines of (2.5) and (2.6) hold for all x1, x̂1 ∈M
with ρ(x1, x̂1) < min{i(x1), i(x̂1)}, u1, u2 ∈ U and s ∈ R+, and that (ū(·), ȳ(·)) is an

optimal pair of problem (OCPE). Then, there exist ℓ0 ≤ 0 and ϕ ∈ T ∗
y1M such that

(ℓ0, ϕ) 6= 0 and

∇uH
e[t, ℓ0, ϕ](w(t)) ≤ 0, a.e. t ∈ [0, T ], (2.26)

holds for any w(·) ∈ L2(0, T ;Rm) with w(t) ∈ T ♭U (ū(t)) a.e. t ∈ [0, T ], where we have used

notion (2.9), pℓ0ϕ(·) solves
{

∇ ˙̄y(t)pℓ0ϕ = −∇xf [t](pℓ0ϕ(t), ·) − ℓ0∇xf
0[t], a.e. t ∈ (0, T ),

pℓ0ϕ(T ) = ϕ,
(2.27)

and we have adopted [t, ℓ0, ϕ] = (t, ȳ(t), pℓ0ϕ(t), ū(t), ℓ0) for abbreviation. Moreover, for

any v(·) ∈ L2(0, T ;Rm) with v(t) ∈ T ♭U (ū(t)) a.e. t ∈ [0, T ] and vector field Xv(·) along ȳ(·)
satisfying (2.19), Xv(0) = 0, Xv(T ) = 0, and

∫ T
0

(

∇xf
0[t](Xv(t)) +∇uf

0[t](v(t))
)

dt ≤ 0,

there exist (ℓ̂0, ϕ̂) ∈
(

(−∞, 0] × T ∗
y1M

)

\ {0} satisfying (2.26) and (2.27) (with (ℓ0, ϕ)

replaced by (ℓ̂0, ϕ̂)), such that

∫ T
0 ∇uH

e[t, ℓ̂0, ϕ̂]σ(t)dt+
1
2

∫ T
0

(

∇2
xH

e[t, ℓ̂0, ϕ̂](Xv(t),Xv(t))

+2∇u∇xH
e[t, ℓ̂0, ϕ̂](Xv(t), v(t)) +∇2

uH
e[t, ℓ̂0, ϕ̂](v(t), v(t))

−R(p̃
ℓ̂0ϕ̂

(t),Xv(t), f [t],Xv(t))
)

dt ≤ 0,

(2.28)

holds for all σ(·) ∈ B, where pℓ̂0ϕ̂(·) is the solution to (2.27) with (ℓ0, ϕ) replaced by (ℓ̂0, ϕ̂),

p̃ℓ̂0ϕ̂(t) (t ∈ [0, T ]) is the dual vector of pℓ̂0ϕ̂(t), and for (t, y, η, u, ℓ) ∈ [0, T ]×T ∗M×U×R,

the corresponding values of ∇uH
e, ∇xH

e, ∇2
xH

e, ∇u∇xH
e and ∇2

uH
e at (t, y, η, u, ℓ) are

respectively defined by

∇uH
e(t, y, η, u, ℓ)(V ) =

d

ds

∣

∣

∣

s=0
He(t, y, η, u + sV, ℓ),

∇xH
e(t, y, η, u, ℓ)(X) = ∇xf(t, y, u)(η,X) + ℓ∇xf

0(t, y, u)(X),

∇2
xH

e(t, y, η, u, ℓ)(X,X) = ∇2
xf(t, y, u)(η,X,X) + ℓ∇2

xf
0(t, y, u)(X,X),

∇u∇xH
e(t, y, η, u, ℓ)(X,V ) =

d

ds

∣

∣

∣

s=0
∇xH

e(t, y, η, u + sV, ℓ)(X),

∇2
uH

e(t, y, η, u, ℓ)(V, V ) =
d2

ds2

∣

∣

∣

s=0
H(t, y, η, u + sV, ℓ),

where (X,V ) ∈ TyM × Rm.

By Theorem 2.2, we can use the idea in [5, Section 3.1] to prove Corollary 2.1, and we

omit its proof.
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For the case that U is open (not necessarily convex), [3, Theorem 3.2] gives the second

order necessary condition of optimal pairs of problem (OCPE), which is in fact obtained

through convex variation. Thus, Corollary 2.1 is an complement to it.

3 Variations of Trajectories

In this section, we will compute variations of (1.2), in the sense of convex variation.

Proposition 3.1 Assume that conditions (C2) and (C3) hold, and that U ⊂ Rm (m ∈
N) is convex. Let ū(·) ∈ L2(0, T ;Rm)∩U and (ū(·), ȳ(·)) satisfy (1.2). FixW ∈ Tȳ(0)M and

v(·) ∈ L2(0, T ;Rm). Let Xv(·) be a vector field along ȳ(·) and satisfy (2.19). Assume a set

{σǫ(·)}ǫ>0 ⊂ L2(0, T ;Rm) is bounded in L2(0, T ;Rm), with supǫ>0 ‖σǫ(·)‖L2(0,T ;Rm) = Cσ.

Denote by yǫ(·) the solution to (1.2) corresponding to the control uǫ(·) := ū(·) + ǫv(·) +
ǫ2σǫ(·) and the initial state yǫ(0) = expȳ(0)(ǫXv(0) + ǫ2W ). Also denote by Y Xv

σǫW
(·) the

solution to






















∇ ˙̄y(t)Y
Xv
σǫW

(Z) = ∇xf [t](Z, Y
Xv
σǫW

(t)) +∇uf [t](Z, σǫ(t)) +∇u∇xf [t](Z,Xv(t), v(t))

−1
2R(Z̃,Xv(t), ˙̄y(t),Xv(t)) +

1
2∇2

xf [t](Z,Xv(t),Xv(t))

+1
2∇2

uf [t](Z, v(t), v(t)), a.e. t ∈ (0, T ],∀ Z ∈ T ∗M,

Y Xv
σǫW

(0) =W,

(3.1)

where we adopt notion (2.9), and

∇2
uf [t](Z, v(t), v(t)) =

∂2

∂s2

∣

∣

s=0
f
(

t, ȳ(t), ū(t) + sv(t)
)

(Z),

∇u∇xf [t]
(

Z,Xv(t), v(t)
)

=
∂

∂s

∣

∣

s=0
∇xf

(

t, ȳ(t), ū(t) + sv(t)
)(

Z,Xv(t)
)

.

Then, for any α > 0, there exists ǫ0 > 0 such that

|Vǫ(t)− ǫXv(t)− ǫ2Y Xv
σǫW

(t)| ≤ αǫ2, ∀ t ∈ [0, T ], ∀ ǫ ∈ [0, ǫ0], (3.2)

where

Vǫ(t) := exp−1
ȳ(t) yǫ(t), t ∈ [0, T ]. (3.3)

Proof. The proof is split into three steps.

Step 1. We claim that, there exists ǫ̂ > 0 such that (3.3) can be defined for ǫ ∈ [0, ǫ̂],

and

|Vǫ(t)| = ρ(yǫ(t), ȳ(t))

≤ ǫe
1
2
(K+ 1

2
)T
(

|Xv(0) + ǫW |2 + 4K2‖v‖2L2(0,T ;Rm) + 4K2C2
σ

)
1
2
, t ∈ [0, T ],

(3.4)
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for all ǫ ∈ [0, ǫ̂].

In fact, let ǫ0 ∈ (0, 1] be such that ǫ0|Xv(0)| + ǫ20|W | < i(ȳ(0)), where the injectivity

radius i(y0) of the point y0 is defined in [3, Section 2.1]. Then, by [3, Lemma 5.2], the

triangle inequality of ρ(·, ·) and [3, Lemma 2.2], we have

ρ(yǫ(t), ȳ(0)) ≤ ρ(yǫ(t), yǫ(0)) + ρ(yǫ(0), ȳ(0))

≤ (1 + ρ(x0, ȳ(0)) + ǫ|Xv(0)| + ǫ2|W |)eKt, ∀ t ∈ [0,+∞), ∀ ǫ ∈ [0, ǫ0].
(3.5)

By HopfRinow theorem (see [8, Theorem. 16, p. 137]), there exists δ > 0 such that

i(y) ≥ δ for all y ∈M with ρ(ȳ(0), y) ≤ (1 + ρ(x0, ȳ(0)) + ǫ0|Xv(0)|+ ǫ20|W |)eKT . Similar

to (3.5), for any t, t̂ ∈ [0,+∞), we have

ρ(yǫ(t), ȳ(t)) ≤
(

2 + 2ρ(x0, ȳ(0)) + ǫ|Xv(0)| + ǫ2|W |
)

(eKt − eKt̂) + ρ(yǫ(t̂), ȳ(t̂)), (3.6)

for all ǫ ∈ [0, ǫ0].

Let t̂ = 0 in (3.6). We take ǫ1 > 0 such that ǫ1|Xv(0)| + ǫ21|W | = δ
2 , and take T1 > 0

such that (2 + 2ρ(x0, ȳ(0)) + ǫ1|Xv(0)|+ ǫ21|W |
)

(eKT1 − 1) = δ
2 . Thus, we can define (3.3)

over [0, T1] ∩ [0, T ], and obtain by [3, (2.17) & (2.19)], [5, (2.2)] and (C2) that

d
dtρ

2(yǫ(t), ȳ(t)) = ∇1ρ
2(yǫ(t), ȳ(t))

(

f(t, yǫ(t), uǫ(t))− Lȳ(t)yǫ(t)f(t, ȳ(t), uǫ(t))
)

+∇2ρ
2(yǫ(t), ȳ(t))

(

f(t, ȳ(t), uǫ(t)) − f [t]
)

≤ (K + 1
2 )ρ

2(yǫ(t), ȳ(t)) + 4ǫ2K2(|v(t)|2 + |σǫ(t)|2),
(3.7)

for all t ∈ [0, T1] ∩ [0, T ] and ǫ ∈ [0, ǫ1]. By the Gronwall’s inequality and [3, Lemma 2.2],

we obtain that (3.4) holds for all t ∈ [0, T1] ∩ [0, T ] and ǫ ∈ [0, ǫ1].

If T1 < T , we set t̂ = T1 in (3.6), ǫ̂ = min{ǫ1, δ
2Cv,σ

}with (Cv,σ)
2 = e(K+ 1

2
)T
(

2|Xv(0)|2+
2ǫ21|W |2+4K2‖v‖2

L2(0,T ;Rm)+4K2C2
σ

)

, and T2 > T1 satisfying
(

2+2ρ(x0, ȳ(0))+ǫ̂|Xv(0)|+
ǫ̂2|W |

)

(eKT2 − eKT1) = δ
2 . Then we can define (3.3) over [0, T2] ∩ [0, T ] for ǫ ∈ [0, ǫ̂], and

consequently (3.7) holds for t ∈ [0, T2] ∩ [0, T ] and ǫ ∈ [0, ǫ̂]. Analogously we get (3.4) for

t ∈ [0, T2] ∩ [0, T ] and ǫ ∈ [0, ǫ̂]. Recursively, if Ti < T , we take t̂ = Ti (i ≥ 2), and set

Ti+1 > Ti such that

(

2 + 2ρ(x0, ȳ(0)) + ǫ̂|Xv(0)| + ǫ̂2|W |
)

(eKTi+1 − eKTi) =
δ

2
. (3.8)

Then, one can define (3.3) over [0, Ti+1] ∩ [0, T ]. Consequently, we obtain (3.4) for t ∈
[0, Ti+1] ∩ [0, T ] and ǫ ∈ [0, ǫ̂]. It follows from (3.8) that there eixsts I ∈ N, such that

TI > T , and consequently, (3.4) holds for t ∈ [0, T ] and ǫ ∈ [0, ǫ̂].

Step 2. Let {e1, · · · , en} ⊂ Tȳ(0)M be an orthonormal basis at ȳ(0), i.e. 〈ei, ej〉 = δji for

i, j = 1, · · · , n, where δji is the usual Kronecker symbol. Denote by {di}ni=1 ⊂ T ∗
ȳ(0)M the
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dual basis to it. For t ∈ [0, T ], set respectively by ei(t) = L
ȳ(·)
ȳ(0)ȳ(t)ei and di(t) = L

ȳ(·)
ȳ(0)ȳ(t)di

for i = 1, · · · , n, where Lȳ(·)
ȳ(0)ȳ(t) is the parallel translation along the curve ȳ(·) and from

ȳ(0) to ȳ(t), see [3, Section 2.2] for its detailed definition, and then ∇ ˙̄y(t)ei(·) = 0 and

∇ ˙̄y(t)di(·) = 0 for i = 1, · · · , n. We deduce from [3, (2.7)&(2.6)] that, {ei(t)}ni=1 ⊂ Tȳ(t)M

is an orthonormal basis, and {di(t)}ni=1 ⊂ T ∗
ȳ(t)M is the dual basis to it.

For ǫ ∈ [0, ǫ̂] and t ∈ [0, T ], it follows from ”Step 1”, [3, Lemma 2.1] and the definition

of exponential map (see [3, Section 2.1]) that, there exists a unique geodesic

β(θ; t) = expȳ(t)(θVǫ(t)), ∀ θ ∈ [0, 1], (3.9)

connecting β(0; t) = ȳ(t) and β(1; t) = yǫ(t). For θ ∈ [0, 1], denote by Lȳ(t)β(θ;t) : Tȳ(t)M →
Tβ(θ;t)M the parallel translation along the geodesic β(·; t) (t ∈ [0, T ] is fixed), from ȳ(t)

to β(θ; t). By [3, (2.6)] we know that {ei(t)}ni=1 and {Lȳ(t)β(θ;t)ei(t)}ni=1 are respectively

orthonormal bases at Tȳ(t)M and Tβ(θ;t)M for each t ∈ [0, T ] and θ ∈ [0, 1]. Thus, we can

write

Vǫ(t) =
n
∑

i=1

aǫi(t)ei(t), t ∈ [0, T ], (3.10)

where {aǫ1(t), · · · , aǫn(t)} satisfies
∑n

i=1 a
ǫ
i(t)

2 = |Vǫ(t)|2, ∀ t ∈ [0, T ]. By the linearity of

Lȳ(t)β(θ;t) : Tȳ(t)M → Tβ(θ;t)M and [3, (2.8)] we have

Lȳ(t)β(θ;t)Vǫ(t) =

n
∑

i=1

aǫi(t)Lȳ(t)β(θ;t)ei(t), |Lȳ(t)β(θ;t)Vǫ(t)| = |Vǫ(t)|, ∀ t ∈ [0, T ]. (3.11)

Fix any t ∈ [0, T ] and i ∈ {1, · · · , n}. By [3, Lemma 2.2], Newton-Leibniz formula and

the exchange of integral order, we derive

〈∇ ˙̄y(t)Vǫ, ei(t)〉
= d

dt〈Vǫ, ei(t)〉
= − d

dt

(

1
2∇1ρ

2(ȳ(t), yǫ(t))(di(t))
)

:= P i1(t) +∇uf [t]
(

di(t), ǫv(t) + ǫ2σǫ(t)
)

+
∫ 1
0 ∇2

uf{t, τ}ǫ
(

di(t), ǫv(t) + ǫ2σǫ(t), ǫv(t) + ǫ2σǫ(t)
)

(1− τ)dτ,

(3.12)

where

{t, τ}ǫ := (t, ȳ(t), ū(t) + τǫv(t) + τǫ2σǫ(t)), ∀ t ∈ [0, T ], τ ∈ [0, 1], (3.13)

and
P i1(t)

:= −1
2

{

∇2∇1ρ
2(ȳ(t), yǫ(t))(ei(t), f(t, yǫ(t), uǫ(t)))

−∇2∇1ρ
2(ȳ(t), ȳ(t))(ei(t), f(t, ȳ(t), uǫ(t)))

+∇2
1ρ

2(ȳ(t), yǫ(t))(ei(t), f [t])−∇2
1ρ

2(ȳ(t), ȳ(t))(di(t), f [t])
}

.
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From the definitions of geodesic (see [3, (2.1)]) and parallel translation (see [3, Section

2.2]) and [3, Lemma 2.1], we obtain

∂

∂θ
β(θ; t) = Lȳ(t)β(θ;t)

∂

∂θ

∣

∣

∣

0
β(θ; t) = Lȳ(t)β(θ;t)Vǫ(t), θ ∈ [0, 1]. (3.14)

Applying [3, Lemma 2.2] and Newton-Leibniz formula to P i1(t), we have

P i1(t) = Ii1(t) + Ii2(t) + Ii3(t),

where

Ii1(t) =− 1

2

∫ 1

0

[

∇2∇2
1ρ

2(ȳ(t), β(θ; t))
(

ei(t), f [t],
∂

∂θ
β(θ; t)

)

−∇2∇2
1ρ

2(ȳ(t), β(0; t))
(

ei(t), f [t],
∂

∂θ

∣

∣

∣

0
β(θ; t)

)]

dθ,

Ii2(t) =− 1

2

∫ 1

0

[

∇2
2∇1ρ

2(ȳ(t), β(θ; t))
(

ei(t), f(t, β(θ; t), uǫ(t)),
∂

∂θ
β(θ; t)

)

−∇2
2∇1ρ

2(ȳ(t), β(0; t))
(

ei(t), f(t, β(0; t), uǫ(t)),
∂

∂θ

∣

∣

∣

0
β(θ; t)

)]

dθ,

and

Ii3(t) =∇xf [t](di(t), Vǫ(t)) +

∫ 1

0
∇u∇xf(t, ȳ(t), u

θ
ǫ (t))

(

di(t), Vǫ(t), ǫv(t)

+ ǫ2σǫ(t)
)

dθ − 1

2

∫ 1

0

[

∇2∇1ρ
2(ȳ(t), β(θ; t))

(

ei(t),∇ ∂
∂θ
β(θ;t)f(t, ·, uǫ(t))

)

−∇2∇1ρ
2(ȳ(t), ȳ(t))

(

ei(t),∇ ∂
∂θ

|0β(θ;t)
f(t, ·, uǫ(t))

)]

dθ,

with uθǫ(t) = ū(t) + θ(ǫv(t) + ǫ2σǫ(t)), θ ∈ [0, 1]. We use Newton-Leibniz formula again to

the above three items, exchange the integration order, and get

Ii1(t) = −1

4
∇2

2∇2
1ρ

2(ȳ(t), ȳ(t))
(

ei(t), f [t], Vǫ(t), Vǫ(t)
)

+ Îi1(t), (3.15)

Ii2(t) = −1

4
∇3

2∇1ρ
2(ȳ(t), ȳ(t))

(

ei(t), f [t], Vǫ(t), Vǫ(t)
)

+ Îi2(t), (3.16)

and

Ii3(t)

= ∇xf [t](ei(t), Vǫ(t)) + ǫ∇u∇xf [t](di(t), Vǫ(t), v(t))

−1
4∇2∇1ρ

2(ȳ(t), ȳ(t))
(

ei(t),∇ ∂
∂τ

|0β(τ ;t)
∇ ∂

∂τ
β(τ ;t)f(t, ·, ū(t))

)

+ Îi3(t),

(3.17)

where we have used (3.10), (3.11), (3.14), and the fact that β(·; t) is a geodesic,

Îi1(t) =− 1

2

n
∑

k,l=1

∫ 1

0

[

∇2
2∇2

1ρ
2(ȳ(t), β(θ; t))

(

ei(t), f [t], Lȳ(t)β(θ;t)ek(t), Lȳ(t)β(θ;t)el(t)
)

−∇2
2∇2

1ρ
2(ȳ(t), ȳ(t))

(

ei(t), f [t], ek(t), el(t)
)]

(1− θ)dθ aǫk(t)a
ǫ
l (t),
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Îi2(t) =− 1

4
∇3

2∇1ρ
2(ȳ(t), ȳ(t))

(

ei(t), f(t, ȳ(t), uǫ(t))− f [t], Vǫ(t), Vǫ(t)
)

−
n
∑

k,l=1

1

2

∫ 1

0

[

∇3
2∇1ρ

2(ȳ(t), β(τ ; t))
(

ei(t), f(t, β(τ ; t), uǫ(t)),

Lȳ(t)β(θ;t)ek(t), Lȳ(t)β(θ;t)el(t)
)

−∇3
2∇1ρ

2(ȳ(t), ȳ(t))
(

ei(t), f(t, ȳ(t), uǫ(t)),

ek(t), el(t)
)]

aǫk(t)a
ǫ
l (t)(1 − τ)dτ − 1

2

∫ 1

0
∇2

2∇1ρ
2(ȳ(t), β(τ ; t))

(

ei(t),

∇ ∂
∂τ
β(τ ;t)f(t, ·, uǫ(t)),

∂

∂τ
β(τ ; t)

)

(1− τ)dτ,

and

Îi3(t)

=− 1

4
∇2∇1ρ

2(ȳ(t), ȳ(t))
(

ei(t),∇ ∂
∂τ

|0β(τ ;t)
∇ ∂

∂τ
β(τ ;t)[f(t, ·, ū(t))− f(t, ·, uǫ(t))]

)

− 1

2

∫ 1

0

[

∇2∇1ρ
2(ȳ(t), β(τ ; t))

(

ei(t),∇ ∂
∂τ
β(τ ;t)∇ ∂

∂τ
β(τ ;t)f(t, ·, uǫ(t))

)

−∇2∇1ρ
2(ȳ(t), ȳ(t))

(

ei(t),∇ ∂
∂τ

|0β(τ ;t)
∇ ∂

∂τ
β(τ ;t)f(t, ·, uǫ(t))

)]

(1− τ)dτ

+ ǫ

∫ 1

0

[(

∇u∇xf(t, ȳ(t), u
θ
ǫ (t))−∇u∇xf [t]

)(

di(t), Vǫ(t), v(t)
)

+ ǫ∇u∇xf(t, ȳ(t), u
θ
ǫ (t))

(

di(t), Vǫ(t), σǫ(t)
)]

dθ

− 1

2

∫ 1

0
∇2

2∇1ρ
2(ȳ(t), β(τ ; t))

(

ei(t),∇ ∂
∂τ
β(τ ;t)f(t, ·, uǫ(t)),

∂

∂τ
β(τ ; t)

)

(1− τ)dτ.

Following the same argument as that used in [3, (5.18)], we have

〈Z(β(s; t)),∇ ∂
∂τ

|sβ(τ ;t)
∇ ∂

∂τ
β(τ ;t)f(t, ·, u)〉

= ∇2f(t, β(s; t), u)
(

Z̃, ∂∂τ

∣

∣

∣

s
β(τ ; t), ∂∂τ

∣

∣

∣

s
β(τ ; t)

)

,
(3.18)

where (s, u, Z) ∈ [0, 1] × U × TM , and Z̃ is the dual covector of Z.

Step 3. Recall (2.19), (3.1), (3.12), (3.15) - (3.17). For ǫ ∈ [0, ǫ̂], by (3.18), [3, Lemma
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2.2 & Lemma 2.3] and Newton-Leibniz formula, we get

〈Vǫ(t)− ǫXv(t)− ǫ2Y Xv
σǫW

(t), ei(t)〉

=

∫ t

0
〈∇ ˙̄y(s)Vǫ − ǫ∇ ˙̄y(s)Xv − ǫ2∇ ˙̄y(s)Y

Xv
σǫW

, ei(s)〉ds

=

∫ t

0

{

∇xf [s]
(

di(s), Vǫ(s)− ǫXv(s)− ǫ2Y Xv
σǫW

(s)
)

+ǫ2
∫ 1

0

[

∇2
uf{s, τ}ǫ

(

di(s), v(s), v(s)
)

−∇2
uf [s]

(

di(s), v(s), v(s)
)]

(1− τ)dτ

−1
2R(ei(s), Vǫ(s), f [s], Vǫ(s)) +

ǫ2

2 R(ei(s),Xv(s), f [s],Xv(s))

+1
2∇2

xf [s]
(

di(s), Vǫ(s), Vǫ(s)
)

− ǫ2

2 ∇2
xf [s]

(

di(s),Xv(s),Xv(s)
)

+ǫ∇u∇xf [s]
(

di(s), Vǫ(s)− ǫXv(s), v(s)
)}

ds+ ǫ2P i2(t),

(3.19)

where

P i2(t)

=

∫ t

0

{

∫ 1

0

[

2ǫ∇2
uf{s, τ}ǫ

(

di(s), v(s), σǫ(s)
)

+ ǫ2∇2
uf{s, τ}ǫ

(

di(s), σǫ(s), σǫ(s)
)]

(1− τ)dτ +
1

ǫ2

(

Îi1(s) + Îi2(s) + Îi3(s)
)}

ds.

It follows from (C2)−(C4) and (3.4) that |P i1(t)| is bounded for t ∈ [0, T ]. By applying

Gronwall’s inequality to (3.19), we obtain that, there exists a positive constant C such

that

|Vǫ(t)− ǫXv(t)| ≤ Cǫ2, ∀ t ∈ [0, T ], ∀ ǫ ∈ [0, ǫ̂].

Applying Gronwall’s inequality again to (3.19), we obtain from the above inequality,

Lebesgue’s dominated convergence theorem, (3.4) and (C2)− (C4) that, given any α > 0,

there exists ǫ0 ∈ (0, ǫ̂] such that (3.2) holds. The proof is concluded. �

4 Proof of Theorem 2.2

In Section 4.1, we obtain the second order necessary condition of an optimization problem

(problem (OP )), see Theorem 4.2. In Section 4.2, we transform problem (OCP ) into an

optimization problem, which is a special case of problem (OP ), and prove Theorem 2.2

by Theorem 4.2.

4.1 An optimization problem

Let X be a Banach space, and E ⊂ X be a convex subset of it. Given maps φ̂i : X → R

with i = 0, · · · , j, and ψ̂ = (ψ̂1, · · · , ψ̂k)⊤ : X → Rk (k ∈ N ∪ {0}), consider the following

optimization problem.
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(OP) Find ē ∈ E such that it minimizes φ̂0(e) with e ∈ E subject to

φ̂i(e) ≤ 0, i = 1, · · · , j,
ψ̂(e) = 0.

(4.1)

ē is called a solution or a minimizer of problem (OP ).

Set Φ̂ : X → R1+j+k by Φ̂ = (φ̂0, φ̂1, · · · , φ̂j , ψ̂1, · · · , ψ̂k)⊤. Given any index set

I ⊆ {0, 1, · · · , j}, we denote by Φ̂I = (φ̄0, φ̄1, · · · , φ̄j , ψ̂1, · · · , ψ̂k)⊤, where φ̄i = φ̂i if i ∈ I,

and φ̄i = 0 if i /∈ I.

Assume ē ∈ E is a minimizer of problem (OP ). Set by

ÎA ≡ {i ∈ {1, · · · , j}; φ̂i(ē) = 0} ∪ {0},
ÎN ≡ {i ∈ {1, · · · , j}; φ̂i(ē) < 0}.

To state the necessary condition of problem (OP ), we introduce the following condition.

(C5) Φ̂ is Fréchet differentiable at ē ∈ E, and we denote its Fréchet derivative at

ē ∈ E by DΦ̂(ē) =
(

Dφ̂0(ē), · · · ,Dφ̂j(ē),Dψ̂1(ē), · · · ,Dψ̂k(ē)
)⊤

, where Dφ̂i(ē)

(i = 0, 1, · · · , j) and Dψ̂l(ē) (l = 1, · · · , k) are the Fréchet derivatives of φ̂i and

ψ̂l at ē respectively. For any x ∈ X ,

DΦ̂(ē)(x) ≡
(

Dφ̂0(ē)(x), · · · ,Dφ̂j(ē)(x),Dψ̂1(ē)(x), · · · ,Dψ̂k(ē)(x)
)⊤
.

For each y ∈ X , there exists

D2Φ̂(ē)(y) =
(

D2φ̂0(ē)(y), · · · ,D2φ̂j(ē)(y),D
2ψ̂1(ē)(y), · · · ,D2ψ̂k(ē)(y)

)⊤ ∈ R1+j+k,

such that the following relation holds: for any α > 0 and C > 0, there exists ǫ0 > 0

depending on α and C, such that

|Φ̂(ē+ ǫy + ǫ2η)− Φ̂(ē)− ǫDΦ̂(ē)(y) − ǫ2DΦ̂(ē)(η) − 1

2
ǫ2D2Φ̂(ē)(y)| ≤ αǫ2,

for all η ∈ X with |η| ≤ C and ǫ ∈ [0, ǫ0].

Lemma 4.1 Assume that ē ∈ E is a minimizer of (OP ) with φ̂0(ē) = 0, and that

(C5) holds. Let y ∈ T ♭E(ē) satisfy

{

Dφ̂i(ē)(y) ≤ 0, for i ∈ ÎA,

Dψ̂(ē)(y) = 0, T
♭(2)
E (ē, y) 6= ∅,

(4.2)

where Dψ̂(ē) =
(

Dψ̂1(ē), · · · ,Dψ̂k(ē)
)⊤

is a linear map from X to Rk. Set

Î ′0 ≡ ÎN ∪ {i ∈ ÎA;Dφ̂i(ē)(y) < 0},
Î ′′0 ≡ {0, 1, · · · , j} \ Î ′0.
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Denote by

K ≡ {DΦ̂Î′′0
(ē)(x) +

1

2
D2Φ̂Î′′0

(ē)(y);x ∈ T
♭(2)
E (ē, y)} ⊂ R1+j+k (4.3)

and

Kψ̂ = {Dψ̂(ē)(x) + 1

2
D2ψ̂(ē)(y);x ∈ T

♭(2)
E (ē, y)} ⊂ Rk.

Then K and Kψ̂ are both convex. Moreover, we set by Y ≡ (Y0, Y1, · · · , Yj)⊤, with

Yi =

{

Dφ̂i(ē)(y), i ∈ ÎA,
0, i /∈ ÎA,

and by

Z ≡ (−∞, 0)j+1 − {λ(φ̂(ē) + Y ); λ > 0}, (4.4)

where φ̂ = (φ̂0, φ̂1, · · · , φ̂j)⊤. If K and Z×{0} can not be seperated by any linear functional:

there does not exist ℓ ∈ R1+j+k \ {0} such that

ℓ⊤(DΦ̂Î′′0
(ē)(x) +

1

2
D2Φ̂Î′′0

(ē)(y)) ≤ ℓ⊤(z⊤, 0)⊤, ∀x ∈ T ♭(2)E (ē, y), ∀z ∈ Z, (4.5)

then, affKψ̂ is a subspace of Rk, where affKψ̂ is the affine hull of Kψ̂ (see [9, p.6]), and

the dimension of affKψ̂ is bigger than zero (see [9, p. 4]). We denote it by D(Kψ̂) .

Moreover, there exist h1, · · · , hD(Kψ̂)+1
∈ T

♭(2)
E (ē, y) and δ0 > 0, such that

B
affKψ̂

(δ0) ⊆ Int co{Dψ̂(ē)(hl) +
1

2
D2ψ̂(ē)(y)}D(Kψ̂)+1

l=1 , (4.6)

Dφ̂i(ē)(hl) +
1

2
D2φ̂i(ē)(y) < 0, l = 1, · · · ,D(Kψ̂) + 1, if i ∈ Î ′′0 , (4.7)

where “IntA” and “coA” are respectively the interior and the convex hull of a set A,

B
affKψ̂

(δ0) is the closed ball in subspace affKψ̂ with center 0 ∈ affKψ̂ and radius δ0, and

D2ψ̂(ē)(y) =
(

D2ψ̂1(ē)(y), · · · ,D2ψ̂k(ē)(y)
)⊤

.

Proof. First, since E is convex, one can check by definition that T
♭(2)
E (ē, y) is convex,

and consequently K and Kψ̂ are convex.

Second, we claim that

0 ∈ riKψ̂, (4.8)

where riKψ̂ is the interior of set Kψ̂ relative to its affine hull (see [9, p.44]). Consequently,

affKψ̂ is a subspace of Rk. By contradiction, we assume (4.8) were not true. Since the

affine hull of Kψ̂ is closed (see [9, p. 44]), and ri Kψ̂ is not empty (by [9, Theorem 6.2, p.

45]), it follows from [2, Lemma 3.1] that, there exists ξ ∈ Rk \ {0} such that

ξ⊤(Dψ̂(ē)(x) +
1

2
D2ψ̂(ē)(y)) ≤ 0, ∀x ∈ T ♭(2)E (ē, y). (4.9)
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Consequently we have

(0, ξ⊤)(DΦ̂Î′′0
(ē)(x) +

1

2
D2Φ̂Î′′0

(ē)(y)) ≤ 0, ∀x ∈ T ♭(2)E (ē, y), (4.10)

which contradicts the condition that K and Z × {0} are not separated by any linear

functional.

Third, if D(Kψ̂) ≤ 0, then D(Kψ̂) = 0, due to Kψ̂ 6= ∅. Consequently, we have

Kψ̂ = {0}. Then, for any β ∈ Rk \{0}, (4.9) holds with ξ replaced by β, and consequently

(4.10) holds with (0, ξ⊤) replaced by (0, β⊤). A contradiction follows.

Finally, there exist x1, · · · , xD(Kψ̂)+1
∈ T

♭(2)
E (ē, y) such that

0 ∈ Int co{Dψ̂(ē)(xl) +
1

2
D2ψ̂(ē)(y)}D(Kψ̂)+1

l=1 . (4.11)

According to [2, Lemma 3.1], (Z × {0}) ∩ K 6= ∅. Then, there exist z0, z1, · · · , zj ∈
(−∞, 0), λ > 0 and x̃ ∈ T

♭(2)
E (ē, y) such that

zi = Dφ̂i(ē)(x̃) +
1
2D

2φ̂i(ē)(y), if φ̂i(ē) = 0, Dφ̂i(ē)(y) = 0;

zi − λφ̂i(ē) = 0, if φ̂i(ē) < 0;

zi − λDφ̂i(ē)(y) = 0, if φ̂i(ē) = 0, Dφ̂i(ē)(y) < 0;

(4.12)

and Dψ̂(ē)(x̃) + 1
2D

2ψ̂(ē)(y) = 0. Let η ∈ (0, 1) be such that

0 > (1− η)
(

Dφ̂i(ē)(xl) +
1
2D

2φ̂i(ē)(y)
)

+ η
(

Dφ̂i(ē)(x̃) +
1
2D

2φ̂i(ē)(y)
)

= Dφ̂i(ē)((1 − η)xl + ηx̃) + 1
2D

2φ̂i(ē)(y),

for all l = 1, · · · ,D(Kψ̂) + 1 and i ∈ {0, 1, · · · , j} satisfying φ̂i(ē) = 0 and Dφ̂i(ē)(y) = 0.

Set hl = ηx̃ + (1 − η)xl, for l = 1, · · · , k + 1. Then (4.7) follows, and (4.6) follows from

(4.11). �

The following results are respectively the first and second order necessary conditions

of an minimizer of (OP ), and the idea of proving them partially comes from [7, Theorem

4.1].

Theorem 4.1 Assume that (C5) holds, and that ē ∈ E is a solution to problem (OP ).

Then, there exists (ℓφ̂0 , · · · , ℓφ̂j , ℓ
⊤
ψ̂
)⊤ ∈ R1+j+k \ {0} such that

ℓφ̂i ∈ (−∞, 0], i = 0, · · · , j; ℓφ̂i = 0, if i ∈ ÎN ;

j
∑

i=0

ℓφ̂iφ̂i(ē) = 0; (4.13)

∑

i∈ÎA

ℓ
φ̂i
Dφ̂i(ē)(x) + ℓ⊤

ψ̂
Dψ̂(ē)(x) ≤ 0, ∀x ∈ T ♭E(ē). (4.14)
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Theorem 4.2 Assume that (C5) holds, that ē ∈ E is a solution to problem (OP ) with

φ̂0(ē) = 0, and that y ∈ T ♭E(ē) satisfies (4.2). Then, there exists (ℓφ̂0 , ℓφ̂1 , · · · , ℓφ̂j , ℓ
⊤
ψ̂
)⊤ ∈

R1+j+k \ {0} satisfying (4.13), (4.14),

ℓφ̂i = 0, if i /∈ Î ′′0 , (4.15)

and
∑

i∈Î′′0
ℓφ̂iDφ̂i(ē)(x) + ℓ⊤

ψ̂
Dψ̂(ē)(x) +

∑

i∈Î′′0

1
2ℓφ̂iD

2φ̂i(ē)(y)

+1
2ℓ

⊤
ψ̂
D2ψ̂(ē)(y) ≤ 0, ∀x ∈ T

♭(2)
E (ē, y).

(4.16)

Remark 4.1 If y ∈ T ♭E(ē) satisfies (4.2), it is easy to see that the first order necessary

condition becomes trivial along the direction y: for any ℓ = (ℓφ̂0 , · · · , ℓφ̂j , ℓ
⊤
ψ̂
)⊤ ∈ R1+j+k \

{0} satisfying (4.13) and (4.14), it holds that
∑

i∈ÎA
ℓφ̂iDφ̂i(ē)(y) + ℓ⊤

ψ̂
Dψ̂(ē)(y) = 0.

Thus Theorem 4.2 gives further information of ē along direction y. When ē ∈ IntE,

0 ∈ T
♭(2)
E (ē, y), and consequently Theorem 4.2 is consistent with [7, Theorem 4.1]. When ē

is on the boundary of E, 0 ∈ T ♭(2)E (ē, y) is not always true, thus, compared to [7, Theorem

4.1], the first two terms of the left hand side of (4.16) are extra terms.

Since the proof of Theorem 4.1 is analogous to that of Theorem 4.2, we only prove

Theorem 4.2 and give the key point of proving Theorem 4.1: The set {DΦ̂ÎA(ē)(x)|x ∈
T ♭E(ē)} is separated from

(

(−∞, 0)j+1 − {λ(φ̂(ē);λ > 0}
)

× {0}.

Proof of Theorem 4.2

Step 1. We shall prove the case that k > 0.

First, we claim that there exists ℓ ≡ (ℓφ̂0 , · · · , ℓφ̂j , ℓ
⊤
ψ̂
)⊤ ∈ R1+j+k \ {0} such that (4.5)

holds.

By contradiction, it follows from Lemma 4.1 that (4.6) and (4.7) hold. Fix hl (l =

1, · · · ,D(Kψ̂)+1). Recall the definition of the second-order adjacent set (see Section 2.1).

For any ǫ→ 0+, there exists hǫl → hl as ǫ→ 0+ such that ē+ ǫy + ǫ2hǫl ∈ E. Then, there

exists ǫ0 > 0 such that ē+ǫy+ǫ2hǫl ∈ E for all ǫ ∈ [0, ǫ0] and l = 1, · · · ,D(Kψ̂)+1. By the

convexity of E, for any x =
∑D(Kψ̂)+1

l=1 νlhl ∈ co{h1, · · · , hD(Kψ̂)+1
}with (ν1, · · · , νD(Kψ̂)+1

)

satisfying
D(Kψ̂)+1
∑

l=1

νl = 1; νl ≥ 0 for l = 1, · · · ,D(Kψ̂) + 1, (4.17)

it holds that ē+ ǫy + ǫ2
∑D(Kψ̂)+1

l=1 νlh
ǫ
l ∈ E, for all ǫ ∈ [0, ǫ0].
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Relation (4.2) and (C5) imply that exists ǫ1 ∈ (0, ǫ0] such that

∣

∣

∣
ǫ−2ψ̂(ē+ ǫy + ǫ2

∑D(Kψ̂)+1
l=1 νlh

ǫ
l )−Dψ̂(ē)(

∑D(Kψ̂)+1
l=1 νlhl)− 1

2D
2ψ̂(ē)(y)

∣

∣

∣

≤
∣

∣

∣

∑D(Kψ̂)+1
l=1 νlDψ̂(ē)(h

ǫ
l − hl)

∣

∣

∣

+
∣

∣

∣
ǫ−2ψ̂(ē+ ǫy + ǫ2

∑D(Kψ̂)+1
l=1 νlh

ǫ
l )−Dψ̂(ē)(

∑D(Kψ̂)+1
l=1 νlh

ǫ
l )− 1

2D
2ψ̂(ē)(y)

∣

∣

∣

< δ0, ∀ǫ ∈ [0, ǫ1],

where ν1, · · · , νD(Kψ̂)+1
satisfy (4.17).

According to (4.2), (4.7) and (C5), one can find ǫ2 ∈ (0, ǫ1] such that, for any ǫ ∈ [0, ǫ2],

the following relations hold: for i ∈ Î ′′0 ,

φ̂i(ē+ ǫy + ǫ2
∑D(Kψ̂)+1

l=1 νlh
ǫ
l )

= ǫ2
∑D(Kψ̂)+1

l=1 νl

(

Dφ̂i(ē)(hl) +
1
2D

2φ̂i(ē)(y)
)

+ǫ2
∑D(Kψ̂)+1

l=1 νlDφ̂i(ē)(h
ǫ
l − hl) +

[

φ̂i(ē+ ǫy + ǫ2
∑D(Kψ̂)+1

l=1 νlh
ǫ
l )

−ǫ2∑D(Kψ̂)+1
l=1 νl

(

Dφ̂i(ē)(h
ǫ
l ) +

1
2D

2φ̂i(ē)(y)
) ]

< 0;

(4.18)

for i /∈ Î ′′0 ,

φ̂i(ē+ ǫy + ǫ2
∑D(Kψ̂)+1

l=1 νlh
ǫ
l )

= φ̂i(ē) + ǫDφ̂i(ē)(y) + ǫ2
∑D(Kψ̂)+1

l=1 νl

(

Dφ̂i(ē)h
ǫ
l +

1
2D

2φ̂i(ē)(y)
)

+
[

φ̂i(ē+ ǫy + ǫ2
∑D(Kψ̂)+1

l=1 νlh
ǫ
l )− φ̂i(ē)− ǫDφ̂i(ē)(y)

−ǫ2∑D(Kψ̂)+1
l=1 νl

(

Dφ̂i(ē)h
ǫ
l +

1
2D

2φ̂i(ē)(y)
)]

< 0.

(4.19)

Then, from the above relations and (4.6), we can define a map

G : co{Dψ̂(ē)(hl) +
1

2
D2ψ̂(ē)(y)}D(Kψ̂)+1

l=1 →

co{Dψ̂(ē)(hl) +
1

2
D2ψ̂(ē)(y)}D(Kψ̂)+1

l=1

by

G
(

Dψ̂(ē)(
∑D(Kψ̂)+1

l=1 νlhl) +
1
2D

2ψ̂(ē)(y)
)

= −ǫ−2
2 ψ̂(ē+ ǫ2y + ǫ22

∑D(Kψ̂)+1
l=1 νlh

ǫ2
l ) +Dψ̂(ē)(

∑D(Kψ̂)+1
l=1 νlhl) +

1
2D

2ψ̂(ē)(y),

for all ν1, · · · , νD(Kψ̂)+1
satisfying (4.17). Obviously G is continuous and co{Dψ̂(ē)(hl) +

1
2D

2ψ̂(ē)(y)}D(Kψ̂)+1
l=1 is convex and compact. By Brouwer fixed point theorem, there exists

ν⋆1 , · · · , ν⋆D(Kψ̂)+1
satisfying (4.17) such that G

(

Dψ̂(ē)
(

∑D(Kψ̂)+1
l=1 ν⋆l hl

)

+ 1
2D

2ψ̂(ē)(y)
)

=
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Dψ̂(ē)(
∑D(Kψ̂)+1

l=1 ν⋆l hl) +
1
2D

2ψ̂(ē)(y), which implies ψ̂(ē+ ǫ2y + ǫ22
∑D(Kψ̂)+1

l=1 ν⋆l h
ǫ2
l ) = 0.

Recalling (4.18) and (4.19), we obtain that ē+ ǫ2y+ ǫ22
∑D(Kψ̂)+1

l=1 ν⋆l h
ǫ2
l satisfies (4.1) and

φ̂0(ē+ ǫ2y + ǫ22
∑D(Kψ̂)+1

l=1 ν⋆l h
ǫ2
l ) < 0, which contradicts the optimality of ē.

Second, from (4.5) and the special structure of (4.4), we obtain (4.13), (4.15), and

ℓ⊤(DΦ̂Î′′0
(ē)(x) +

1

2
D2Φ̂Î′′0

(ē)(y)) ≤ inf
z∈Z

ℓ⊤(z⊤, 0)⊤ = 0, ∀x ∈ T
♭(2)
E (ē, y),

which implies (4.16).

Finally, from [1, Proposition 4.2.1] and [6, Lemma 2.4] we have

T
♭(2)
E (ē, y) = T

♭(2)
E (ē, y) + T ♭E(ē). (4.20)

If (4.14) were not true, there would exist x0 ∈ T ♭E(ē) such that
∑

i∈ÎA
ℓ
φ̂i
Dφ̂i(ē)(x0) + ℓ⊤

ψ̂
Dψ̂(ē)(x0) > 0. Fix any σ ∈ T 2

E(ē, y). Choosing λ > 0 big

enough such that

∑

i∈Î′′0
ℓφ̂iDφ̂i(ē)(σ + λx0) + ℓ⊤

ψ̂
Dψ̂(ē)(σ + λx0) +

∑

i∈Î′′0

1
2ℓφ̂iD

2φ̂i(ē)(y)

+1
2ℓ

⊤
ψ̂
D2ψ̂(ē)(y) > 0,

which contradicts (4.16), and the proof is concluded.

Step 2. For the case k = 0, there exists (ℓ
φ̂0
, · · · , ℓ

φ̂j
)⊤ ∈ R1+j \ {0} such that

j
∑

l=0

ℓφ̂lβl ≤
j

∑

l=0

ℓφ̂lzl, ∀ (β0, · · · , βj)⊤ ∈ K, (z0, · · · , zj)⊤ ∈ Z.

If it were not true, by [2, Lemma 3.1] we would have K ∩ Z 6= ∅. Then, there exists

x̃ ∈ T
♭(2)
E (ē, y), λ > 0 and (z0, · · · , zj)⊤ ∈ (−∞, 0)1+j such that (4.12) holds. Thus, for

any i = 0, · · · , j, we obtain from (C5) and (4.12) that, there exists ǫ̃ > 0 such that, for

any ǫ ∈ [0, ǫ̃] the following relation

φ̂i(ē+ ǫy + ǫ2x̃)

=φ̂i(ē) + ǫDφ̂i(ē)(y) + ǫ2Dφ̂i(ē)(x̃) +
ǫ2

2
D2φ̂i(ē)(y) +

[

φ̂i(ē+ ǫy + ǫ2x̃)

− φ̂i(ē)− ǫDφ̂i(ē)(y)− ǫ2Dφ̂i(ē)(x̃)−
ǫ2

2
D2φ̂i(ē)(y)

]

<0,

holds for i = 0, 1, · · · , j, which contradicts the optimality of ē. �

4.2 Proof of Theorem 2.2

We need the following lemmas.
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Lemma 4.2 Assume U ⊂ Rm is closed. Fix ū(·) ∈ U . Let v(·) ∈ L1(0, T ;Rm) be

such that v(t) ∈ T ♭U (ū(t)) a.e. t ∈ [0, T ]. Assume there exist a positive constant ǫ0 and

ℓ(·) ∈ Li(0, T ;Rm) (i = 1 or 2) such that (2.21) holds. Fix any σ(·) ∈ L1(0, T ;Rm)

such that σ(t) ∈ T
♭(2)
U (ū(t), v(t)) a.e. t ∈ [0, T ]. Then, for any ǫ ∈ (0, ǫ0], there exists

σǫ(·) ∈ Li(0, T ;Rm) such that uǫ(t) := ū(t) + ǫv(t) + ǫ2σǫ(t) ∈ U and limǫ→0+ σǫ(t) = σ(t)

a.e. t ∈ [0, T ], and

‖σǫ(·)‖Li(0,T ;Rm) ≤ ‖ℓ‖Li(0,T ;Rm) + 2‖σ‖Li(0,T ;Rm). (4.21)

Proof Since U is closed, by [1, Corollary 8.2.13, p. 317], for every ǫ > 0, there exist

measurable functions ωǫ, zǫ : [0, T ] → U such that

distU (ū(t) + ǫv(t) + ǫ2σ(t)) = |ū(t) + ǫv(t) + ǫ2σ(t)− ωǫ(t)| a.e. t ∈ [0, T ], (4.22)

aǫ(t) := distU (ū(t) + ǫv(t)) = |ū(t) + ǫv(t)− zǫ(t)| a.e. t ∈ [0, T ]. (4.23)

Set σǫ(t) =
1
ǫ2

(

ωǫ(t)− ū(t)− ǫv(t)
)

for t ∈ [0, T ]. Then, we have ū(t)+ ǫv(t)+ ǫ2σǫ(t) ∈ U

a.e t ∈ [0, T ]. Since σ(t) ∈ T
♭(2)
U (ū(t), v(t)) a.e. t ∈ [0, T ], recalling (4.22) and (2.4), we

have

0 = lim
ǫ→0+

1

ǫ2
|ū(t) + ǫv(t) + ǫ2σ(t)− ωǫ(t)| = lim

ǫ→0+
|σǫ(t)− σ(t)|, a.e. t ∈ [0, T ]. (4.24)

Applying (4.22), (4.23) and (2.21), we have, for ǫ ∈ (0, ǫ0],

ǫ2(|σǫ(t)| − |σ(t)|) ≤ |ǫ2σ(t)− ǫ2σǫ(t)| = |ū(t) + ǫv(t) + ǫ2σ(t)− ωǫ(t)|
≤ |ū(t) + ǫv(t) + ǫ2σ(t)− zǫ(t)| ≤ aǫ(t) + ǫ2|σ(t)| ≤ ǫ2(ℓ(t) + |σ(t)|), a.e. t ∈ [0, T ],

which implies that, σǫ(·) ∈ Li(0, T ;Rm) and (4.21), if ℓ(·) ∈ Li(0, T ;Rm) (i = 1, 2). �

Lemma 4.3 Assume U ⊂ Rm is closed. Fix ū(·) ∈ L2(0, T ;Rm) ∩ U . Let v(·) ∈
L2(0, T ;Rm) be such that v(t) ∈ T ♭U (ū(t)) a.e. in [0, T ]. Then, v(·) ∈ T ♭L2(0,T ;Rm)∩U (ū(·)).
Moreover, for any σ(·) ∈ L2(0, T ;Rm) such that σ(t) ∈ T

♭(2)
U (ū(t), v(t)) a.e. in [0, T ] and

(2.21) holds for some ℓ(·) ∈ L2(0, T ;Rm) and ǫ0 > 0, it holds that σ(·) ∈ T
♭(2)
U∩L2(0,T ;Rm)

(ū(·),
v(·)).

Proof. First, by [1, Corollary 8.2.13, p. 317], for each ǫ > 0, there exists a measurable

map vǫ : [0, T ] → Rm such that vǫ(t) ∈ U−{ū(t)}
ǫ and distU−{ū(t)}

ǫ

v(t) = |v(t) − vǫ(t)| for
almost every t ∈ [0, T ]. It follows from (2.3) that limǫ→0+ |v(t) − vǫ(t)| = 0 a.e. t ∈ [0, T ].

Then, we have

|vǫ(t)| − |v(t)| ≤ |vǫ(t)− v(t)| ≤ |v(t)− 1

ǫ
(ū(t)− ū(t))| = |v(t)|.

We obtain from Lebesgue’s dominated convergence theorem that limǫ→0+ vǫ(·) = v(·) in

L2(0, T ;Rm), consequently we have v(·) ∈ T ♭U∩L2(0,T ;Rm)(ū(·)).
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Then, it follows from Lemma 4.2 that, for any ǫ > 0, there exists σǫ(·) ∈ L2(0, T ;Rm)

such that limǫ→0+ σǫ(·) = σ(·) in L2(0, T ;Rm) and ū(·)+ǫv(·)+ǫ2σǫ(·) ∈ U ∩L2(0, T ;Rm),

and consequently σ(·) ∈ T
♭(2)
U∩L2(0,T ;Rm)

(ū(·), v(·)). The proof is concluded. �

Then, we are going to prove Theorem 2.2.

Proof of Theorem 2.2 First, we shall transform problem (OCP ) to an optimiza-

tion problem. Assume (ū(·), ȳ(·)) is an optimal pair for problem (OCP ) with ū(·) ∈
L2(0, T ;Rm). For any (Y, u(·)) ∈ Tȳ(0)M × L2(0, T ;Rm), set

φ̂i(Y, u(·)) ≡ φi
(

yu(0; expȳ(0)Y ), yu(T ; expȳ(0)Y )
)

, i = 1, · · · , j,
φ̂0(Y, u(·)) ≡ φ0

(

yu(0; expȳ(0)Y ), yu(T ; expȳ(0)Y )
)

− φ0(ȳ(0), ȳ(T )),

ψ̂(Y, u(·)) ≡ ψ
(

yu(0; expȳ(0)Y ), yu(T ; expȳ(0)Y )
)

,

(4.25)

where yu(·;x) is the solution to (1.2) with initial state x ∈M and control u(·), and expx·
is the exponential map at x (see Section [3, Section 2.1]).

We obtain from the optimality of (ū(·), ȳ(·)) for problem (OCP ) that, (0, ū(·)) ∈
Tȳ(0)M × U is the solution to the following optimization problem

(ÕCP ) Find (Y, u(·)) ∈ Tȳ(0)M ×
(

L2(0, T ;Rm) ∩ U
)

minimizes φ̂0(Y, u(·)) subject to

φ̂i(Y, u(·)) ≤ 0 for i = 1, · · · , j, ψ̂(Y, u(·)) = 0 and (Y, u(·)) ∈ Tȳ(0)M × (U ∩
L2(0, T ;Rm)).

Second, we shall check that condition (C5) holds. Fix (V, v(·)) ∈ Tȳ(0)M×L2(0, T ;Rm).

For ǫ > 0, we denote by y(·; expȳ(0) ǫV, ū(·) + ǫv(·)) the solution to (1.2) corresponding to

the initial state expȳ(0) ǫV and the control ū(·) + ǫv(·). For i = 0, 1, · · · , j, we obtain from

Proposition 3.1 that

φ̂i(ǫV, ū(·) + ǫv(·)) − φ̂i(0, ū(·))

=ǫ
[

∇1φi(ȳ(0), ȳ(T ))(V ) +∇2φi(ȳ(0), ȳ(T ))(Xv,V (T ))
]

+ o(ǫ),

where Xv,V (·) is the solution to (2.19) with Xv,V (0) = V . This implies that φ̂i is Fréchet

differentiable at (0, ū(·)), and its Fréchet derivative is as follows

Dφ̂i(0, ū(·))(V, v(·)) = ∇1φi(ȳ(0), ȳ(T ))(V ) +∇2φi(ȳ(0), ȳ(T ))(Xv,V (T )). (4.26)

Similarly we can show that ψ̂ is Fréchet differentiable at (0, ū(·)), and its Fréchet derivative

is given by

Dψ̂(0, ū(·))(V, v(·)) = ∇1ψ(ȳ(0), ȳ(T ))(V ) +∇2ψ(ȳ(0), ȳ(T ))(Xv,V (T )), (4.27)

where ∇iψ (i = 1, 2) is defined in (2.1).

Fix any (W,σ(·)) ∈ Tȳ(0)M × L2(0, T ;Rm). Denote by Xσ,W (·) the solution to (2.19)

with v(·) replaced by σ(·) and Xσ,W (0) = W . For any ǫ > 0, we denote by yǫ(·) the
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solution to (1.2) with initial state expȳ(0)(ǫV + ǫ2W ) and control ū(·) + ǫv(·) + ǫ2σ(·).
Denote by Y

Xv,V
σW (·) the solution to (3.1) with (σǫ(·),Xv(·)) replaced by (σ(·),Xv,V (·)).

We employ the notations Vǫ(·) and β(·; t) (t ∈ [0, T ]) given respectively by (3.3) and (3.9).

Note that (3.14) still holds. Fix α > 0. It follows from Proposition 3.1 that, there exists

ǫ1 > 0 such that

Vǫ(t) = ǫXv,V (t) + ǫ2Y
Xv,V
σW (t) + γǫ(t), ∀ t ∈ [0, T ], ǫ ∈ [0, ǫ1], (4.28)

with

|γǫ(t)| ≤
α

2K
ǫ2, ∀ ǫ ∈ [0, ǫ1], (4.29)

where constant K is given in condition (C2).

Set by

D2φ̂i(0, ū(·))(V, v(·))
= ∇2

1φi(ȳ(0), ȳ(T ))(V, V ) + 2∇2∇1φi(ȳ(0), ȳ(T ))(V,Xv,V (T ))

+∇2
2φi(ȳ(0), ȳ(T ))(Xv,V (T ),Xv,V (T )) + 2∇2φi(ȳ(0), ȳ(T ))(Y

Xv,V
00 (T )),

(4.30)

where Y
Xv,V
00 (·) is the solution to (3.1) with σ(·) = 0 and W = 0, and with Xv(·) replaced

by Xv,V (·). It is easy to check that

Y
Xv,V
σW (t) = Y

Xv,V
00 (t) +Xσ,W (t), ∀ t ∈ [0, T ], (4.31)

where Xσ,W (·) is the solution to (2.19) with initial state Xσ,W (0) = W , and with v(·)
replaced by σ(·).

For i = 0, 1, · · · , j, we obtain by Newton-Leibniz formula, exchange of integral vari-

ables, (4.28) and (4.31) that

φ̂i(ǫV + ǫ2W, ū(·) + ǫv(·) + ǫ2σ(·)) − φ̂i(0, ū(·)) − ǫDφ̂i(0, ū(·))(V, v(·))

− ǫ2
[

Dφ̂i(0, ū(·))(W,σ(·)) +
1

2
D2φ̂i(0, ū(·))(V, v(·))

]

= Lǫi ,

where

Lǫi =

∫ 1

0

[

∇2
1φi(β(τ ; 0), β(τ ;T ))

( ∂

∂τ
β(τ ; 0),

∂

∂τ
β(τ ; 0)

)

−∇2
1φi(ȳ(0), ȳ(T ))(V, V )ǫ2

+ 2∇2∇1φi(β(τ ; 0), β(τ ;T ))
( ∂

∂τ
β(τ ; 0),

∂

∂τ
β(τ ;T )

)

− 2ǫ2∇2∇1φi(ȳ(0), ȳ(T ))(V,

Xv,V (T )) +∇2
2φi(β(τ ; 0), β(τ ;T ))

( ∂

∂τ
β(τ ;T ),

∂

∂τ
β(τ ;T )

)

− ǫ2∇2
2φi(ȳ(0), ȳ(T ))(Xv,V (T ),Xv,V (T ))

]

(1− τ)dτ +∇2φi(ȳ(0), ȳ(T ))(γǫ(T )).
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By (3.14) and (4.28), we have

Lǫi =ǫ
2

∫ 1

0

[

∇2
1φi(β(τ ; 0), β(τ ;T ))(Lȳ(0)β(τ ;0)V,Lȳ(0)β(τ ;0)V )−∇2

1φi(ȳ(0), ȳ(T ))(V, V )

+ 2∇2∇1φi(β(τ ; 0), β(τ ;T ))(Lȳ(0)β(τ ;0)V,Lȳ(T )β(τ ;T )Xv,V (T ))

− 2∇2∇1φi(ȳ(0), ȳ(T ))(V,Xv,V (T )) +∇2
2φi(β(τ ; 0), β(τ ;T ))(Lȳ(T )β(τ ;T )Xv,V (T ),

Lȳ(T )β(τ ;T )Xv,V (T ))−∇2
2φi(ȳ(0), ȳ(T ))(Xv,V (T ),Xv,V (T ))

]

(1− τ)dτ + o(ǫ2)

+∇2φi(ȳ(0), ȳ(T ))(γǫ(T )).

Applying Lebesgue’s dominated convergence theorem, (C2), (C3), (4.26) and (4.31) to

the above identity, we obtain that, there exists ǫ̃0 ∈ (0, ǫ1] such that |Lǫi | ≤ αǫ2 for all

ǫ ∈ [0, ǫ̃0]. Similarly one can show that, there exists ǫ0 ∈ (0, ǫ̃0] such that

∣

∣

∣
ψ̂(ǫV + ǫ2W, ū(·) + ǫv(·) + ǫ2σ(·)) − ψ̂(0, ū(·)) − ǫDψ̂(0, ū(·))(V, v(·))

− ǫ2[Dψ̂(0, ū(·))(W,σ(·)) + 1

2
D2ψ̂(0, ū(·))(V, v(·))

]∣

∣

∣
≤ αǫ2,

for all ǫ ∈ [0, ǫ0], where

D2ψ̂(0, ū(·))(V, v(·))
= ∇2

1ψ(ȳ(0), ȳ(T ))(V, V ) + 2∇2∇1ψ(ȳ(0), ȳ(T ))(V,Xv,V (T ))

+∇2
2ψ(ȳ(0), ȳ(T ))(Xv,V (T ),Xv,V (T )) + 2∇2ψ(ȳ(0), ȳ(T ))(Y

Xv,V
00 (T )).

(4.32)

Thus, for problem (ÕCP ), condition (C5) holds.

Third, we shall use Theorem 4.1 to prove Theorem 2.1. Recalling (2.10), (2.11),

(2.20) and (4.25), we have IA = {i ∈ {1, · · · , j}| φ̂i(0, ū(·)) = 0} ∪ {0} and IN = {i ∈
{1, · · · , j}| φ̂i(0, ū(·)) < 0}. Applying Theorem 4.1 to problem (ÕCP ), we can find

ℓ = (ℓφ0 , · · · , ℓφj , ℓψ) ∈ R1+j+k \ {0} satisfying (2.14) and

∑

i∈IA
ℓφi (∇1φi(ȳ(0), ȳ(T ))(Y ) +∇2φi(ȳ(0), ȳ(T ))(Xw,Y (T )))

+ℓ⊤ψ (∇1ψ(ȳ(0), ȳ(T ))(Y ) +∇2ψ(ȳ(0), ȳ(T ))(Xw,Y (T ))) ≤ 0,
(4.33)

for all (Y,w(·)) ∈ Tȳ(0)M × T ♭U∩L2(0,T ;Rm)(ū(·)), where Xw,Y (·) is the solution to (2.19)

with Xw,Y (0) = Y , and we have used (4.26) and (4.27). Let pℓ(·) be the solution to

(2.12). Inserting (2.12) into (4.33) and integrating by parts, we can obtain from Lemma

4.3 that,
∫ T
0 ∇uH[t, ℓ](w(t)) ≤ 0 holds for all w(·) ∈ L2(0, T ;Rm) with w(t) ∈ T ♭U (ū(t))

a.e. t ∈ [0, T ], and that (2.16) stands. Applying needle variation to this inequality, we

obtain (2.15). Thus, ℓ is a Lagrange multiplier in the sense of convex variation.

Finally, we shall employ Theorem 4.2 to prove Theorem 2.2. Assume that v(·) ∈
L2(0, T ;Rm) is a singular direction in the sense of convex variation, with Xv(·) satisfying
(2.18) and (2.19), and that (2.21) holds for some ǫ0 > 0 and ℓ(·) ∈ L2(0, T ;Rm). Recall
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(4.30) and (4.32). It follows from Theorem 4.2 and Lemma 4.3 that, there exist a Lagrange

mulitplier in the sense of convex variation ℓ = (ℓφ0 , ℓφ1 , · · · , ℓφj , ℓ⊤ψ )⊤ ∈ R1+j+k \ {0}
satisfying (2.22) and

∑

i∈I′′0
ℓφi

(

∇1φi(ȳ(0), ȳ(T ))(W ) +∇2φi(ȳ(0), ȳ(T ))(Xσ,W (T ) + Y Xv
00 (T ))

)

+ℓ⊤ψ

(

∇1ψ(ȳ(0), ȳ(T ))(W ) +∇2ψ(ȳ(0), ȳ(T ))(Xσ,W (T ) + Y Xv
00 (T ))

)

+1
2

∑

i∈I′′0
ℓφi

(

∇2
1φi(ȳ(0), ȳ(T ))(Xv(0),Xv(0)) + 2∇2∇1φi(ȳ(0), ȳ(T ))(Xv(0),

Xv(T )) +∇2
2φi(ȳ(0), ȳ(T ))(Xv(T ),Xv(T ))

)

+ 1
2ℓ

⊤
ψ

(

∇2
1ψ(ȳ(0), ȳ(T ))(Xv(0),Xv(0))

+2∇2∇1ψ(ȳ(0), ȳ(T ))(Xv(0),Xv(T )) +∇2
2ψ(ȳ(0), ȳ(T ))(Xv(T ),Xv(T )) ≤ 0,

(4.34)

for all (W,σ) ∈ Tȳ(0)M × L2(0, T ;Rm) with σ(t) ∈ T
♭(2)
U (ū(t), v(t)) a.e. t ∈ [0, T ], where

Y Xv
00 (·) is the solution to (3.1) with σ(·) = 0 and W = 0.

Recall that pℓ(·) solves (2.12) with initial data (2.16). We obtain from (2.12), (3.1),

(4.31) and integration by parts over [0, T ] that

0 ≥ −pℓ(0)(W ) + pℓ(T )(Y
Xv,V
σW (T )) + 1

2

(

∇2
2L(ȳ(0), ȳ(T ), ℓ̂)(Xv,V (T ),Xv,V (T ))

+2∇1∇2L(ȳ(0), ȳ(T ); ℓ)(Xv,V (T ), V ) +∇2
1L(ȳ(0), ȳ(T ); ℓ)(V, V )

)

=
∫ T
0

(

pℓ(t)(Y
Xv,V
σW (t))

)′
dt+ I

=
∫ T
0 ∇uH[t, ℓ](σ(t))dt + 1

2

∫ T
0

(

∇2
xH[t, ℓ](Xv,V (t),Xv,V (t))

+2∇u∇xH[t, ℓ](Xv,V (t), v(t)) +∇2
uH[t, ℓ](v(t), v(t))

−R(p̃ℓ(t),Xv,V (t), f [t],Xv,V (t))
)

dt+ I,

where

I = 1
2∇2

1L(ȳ(0), ȳ(T ); ℓ)(V, V ) +∇1∇2L(ȳ(0), ȳ(T ); ℓ)(Xv,V (T ), V )

+1
2∇2

2L(ȳ(0), ȳ(T ); ℓ)(Xv,V (T ),Xv,V (T )),

and thus (2.23) follows. �
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