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Abstract

We prove a local existence and uniqueness result for the non-
relativistic and relativistic Vlasov-Poisson system for data which need
not even be continuous. The corresponding solutions preserve all the
standard conserved quantities and are constant along their pointwise
defined characteristic flow so that these solutions are suitable for the
stability analysis of not necessarily smooth steady states. They sat-
isfy the well-known continuation criterion and are global in the non-
relativistic case. The only unwanted requirement on the data is that
they be spherically symmetric.
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1 Introduction

The Vlasov-Poisson system

∂tf + v · ∂xf − ∂xU · ∂vf = 0, (1.1)
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∆U = 4πρ, lim
|x|→∞

U(t, x) = 0, (1.2)

ρ(t, x) =

∫

R3

f(t, x, v) dv (1.3)

describes a large ensemble of particles which interact only by the gravita-
tional field which they create collectively. Here f = f(t, x, v) ≥ 0 denotes
the particle density on phase space, t ∈ R, x ∈ R

3, and v ∈ R
3 denote time,

position, and velocity, ρ is the spatial mass density induced by f , and U is
the gravitational potential induced by ρ. This system is used in astrophysics
for modeling galaxies or globular clusters, cf. [3]. If the Vlasov equation (1.1)
is replaced by

∂tf +
v

√

1 + |v|2
· ∂xf − ∂xU · ∂vf = 0, (1.4)

the relativistic Vlasov-Poisson system is obtained. Here v should be thought
of as momentum; v/

√

1 + |v|2 is then the induced velocity of a particle of
unit mass.

An important feature of these systems is that they posses a plethora of
steady states. One way to obtain steady states is to make an ansatz

f(x, v) = φ(E(x, v)), E(x, v) := U(x) +

{ 1
2 |v|

2 non-relativistic case,
√

1 + |v|2 relativistic case,

(1.5)

with some ansatz function φ; E is the local or particle energy in a stationary
potential U = U(x). This ansatz reduces the (relativistic) Vlasov-Poisson
system to a semilinear Poisson equation for U , namely (1.2) where the right
hand side depends on U through the ansatz (1.5). We refer to [20] and
the references there for sufficient conditions on φ such that this leads to
physically viable steady states with finite mass and compact support. The
classical example are the polytropic models where

φ(E) = (E0 −E)k+; (1.6)

the subscript + denotes the positive part. Here −1 < k < 7/2 and E0 < 0
is a cut-off energy. One can also take sums of such ansatz functions with
different cut-off energies and/or different exponents, and if one requires U
to be spherically symmetric, the ansatz may also depend on the particle
angular momentum L := |x × v|. The important point for the present
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paper is that for these steady states f need not be smooth and not even
continuous. If one wants to investigate the stability of such a steady state
a natural class of perturbations are the dynamically accessible ones, where
the stationary particle distribution is rearranged via a measure-preserving
homeomorphism of phase space caused for example by the action of some
exterior, perturbing force. The resulting, dynamically accessible data are
then in general as regular or irregular as the original steady state. For
example, if we pick k = 0 in (1.6), then the distribution function of both
the steady state and its perturbation attains only the values 0 and 1 and is
discontinuous.

It is desirable to have an existence and uniqueness result for the time de-
pendent problem for such data, where the resulting solutions should preserve
all the conserved quantities like the total energy and the so-called Casimir
functionals, since these are used in the stability analysis. In addition, the
characteristic flow corresponding to the Vlasov equation should exist and
f should be constant along this flow; this property is more important in a
stability analysis (and elsewhere) than the Vlasov equation itself. We refer
to [8, 9, 10, 11, 15, 16, 21] and the references there for stability results for the
(relativistic) Vlasov-Poisson system. In the present paper we provide a local
existence and uniqueness result as specified above. The characteristic flow of
the corresponding Vlasov equation will be defined pointwise on phase space,
and f will be constant along it; we call such solutions strong Lagrangian so-
lutions. For the data we require that f̊ = f|t=0 is a non-negative, bounded,

and measurable function with compact support, and in addition, that f̊ is
spherically symmetric; a function g : R3 ×R

3 → R is spherically symmetric,
if g(Ax,Av) = g(x, v) for all x, v ∈ R

3 and A ∈ SO(3). In passing we note
that our result answers a question which was left open in the stability anal-
ysis [11]. The symmetry assumption is of course undesirable, and it is an
open problem, how far one can relax this assumption without loosing any of
the properties of the solution. It is also an open problem whether one can
preserve these properties for not necessarily bounded data, such as would
arise by perturbing polytropic steady states with −1 < k < 0.

There exists an extensive literature concerning the initial value prob-
lem for the Vlasov-Poisson system, and a bit less for its relativistic version,
and to put the present paper into context we recall some of it. For the non-
relativistic version, Batt [2] proved local existence and uniqueness of smooth
solutions together with a continuation criterion, and he used the latter to
obtain global existence for smooth, spherically symmetric data. The latter
result is known to be false for the relativistic version, cf. [7]. For the non-
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relativistic version smooth solutions exist globally also for non-symmetric
data, as was shown by Pfaffelmoser [19] and simultaneously but indepen-
dently by Lions and Perthame [17], cf. also [21]. Global weak solutions for
the non-relativistic system, which are neither known to be unique nor to pre-
serve the usual conserved quantities, were obtained for example in [1, 13].
More recently, Lagrangian flows for non-smooth vector fields have been in-
vestigated and used to construct Lagrangian solutions of the Vlasov-Poisson
system for L1 data, cf. [4] and the references there. However, [4] considers
the non-relativistic, repulsive case of the Vlasov-Poisson system where the
sign of the right hand side in the Poisson equation (1.2) is reversed. We
do not know whether these results can be extended to the attractive case
stated above or to the relativistic one. The relation of the flow of ordinary
differential equations with coefficients in Sobolev spaces to linear transport
equations like the Vlasov equation was studied in the seminal paper [5]. It
should be emphasized that the results and techniques in [4, 5] are much more
far reaching and sophisticated than the present investigation and in partic-
ular do not rely on any symmetry assumption. Indeed, the main point of
the present investigation is to show that for the price of assuming spherical
symmetry, Lagrangian solutions with all the desired properties, in particu-
lar, with a pointwise defined characteristic flow, can be obtained by quite
elementary methods for both the non-relativistic and the relativistic Vlasov-
Poisson system; in passing we note that all our results hold equally well for
the repulsive case mentioned above.

In the next section we state our results, and the proofs are given in
Section 3. The present paper is based on the first authors master thesis [14].

2 Main results

We start by making precise our solution concept; throughout the paper
integrals without an explicitly denoted domain of integration extend over
R
3 or R6.

Definition 2.1. A measurable function f : [0, T [×R
6 → R with T > 0 is

a strong Lagrangian solution of the non-relativistic or relativistic Vlasov-
Poisson system iff:

(i) The induced mass density

ρf (t, x) = ρ(t, x) :=

∫

f(t, x, v) dv
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and the induced gravitational field

Ff (t, x) = F (t, x) :=

∫

x− y

|x− y|3
ρ(t, y) dy

exist for all (t, x) ∈ [0, T [×R
3, and F is continuous and Lipschitz

continuous in x, locally uniformly in t, i.e., for every 0 < T ′ < T
there exists L > 0 such that for all t ∈ [0, T ′] and x, x′ ∈ R

3,

|F (t, x)− F (t, x′)| ≤ L |x− x′|.

(ii) f is constant along its characteristics, i.e., for all (t, z) ∈ [0, T [×R
6,

the mapping s 7→ f(s, Z(s, t, z)) is constant, where s 7→ Z(s, t, z) =
(X,V )(s, t, x, v) is the solution of the characteristic system

ẋ = v or ẋ =
v

√

1 + |v|2
, v̇ = −F (s, x) (2.1)

with Z(t, t, z) = z = (x, v).

The gravitational field F defined in part (i) is the gradient of the poten-
tial determined by (1.2), and the conditions on F guarantee the existence of
the characteristic flow used in part (ii) of the definition, see also Lemma 3.1
below. Formally, the definition can be relaxed by replacing the assumptions
on the field F by the properties of the induced flow, obtained in Lemma 3.1.
We also note that no symmetry assumption enters in this definition.

For a measurable, bounded, and compactly supported state g : R6 →
[0,∞[ we define its kinetic and potential energies as

Ekin(g) :=
1

2

∫∫

|v|2g(x, v) dv dx

or

Ekin(g) :=

∫∫

√

1 + |v|2g(x, v) dv dx,

Epot(g) := −
1

2

∫∫∫∫

g(x, v) g(y,w)

|x− y|
dv dw dx dy,

and a Casimir functional is defined as

C(g) :=

∫∫

Φ
(

g(x, v)
)

dv dx,

where Φ: R → R is continuous with Φ(0) = 0
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Theorem 2.2. Let f̊ : R6 → [0,∞[ be measurable, bounded, compactly sup-
ported and spherically symmetric. Then there exists a unique, spherically
symmetric, strong Lagrangian solution f : [0, T [×R

6 → [0,∞[ of the (rela-
tivistic) Vlasov-Poisson system with f(0) = f̊ . If T > 0 is chosen maximal,
then in the non-relativistic case, T = ∞. In the relativistic case, T = ∞ if

sup
{

|v| | (x, v) ∈ supp f(t), 0 ≤ t < T
}

< ∞.

The energy and all Casimir functionals are conserved, i.e., for all t ∈ [0, T [,

Ekin

(

f(t)
)

+ Epot

(

f(t)
)

= Ekin

(

f̊
)

+ Epot

(

f̊
)

, C
(

f(t)
)

= C
(

f̊
)

.

Some additional properties of the solution f which come out of the proof
will be listed below.

3 Proofs

3.1 The characteristic flow and the Vlasov equation

We recall the relevant properties of the flow induced by (2.1).

Lemma 3.1. Let F : [0, T [×R
3 → R

3 be continuous and Lipschitz continu-
ous with respect to x, locally uniformly in t. Then the following holds:

(a) For every t ∈ [0, T [ and z = (x, v) ∈ R
3 × R

3 there exists a unique
solution [0, T [∋ s 7→ Z(s, t, z) of (2.1) with Z(t, t, z) = z. The flow
Z is continuous on [0, T [×[0, T [×R

6 and Lipschitz continuous with
respect to z, locally uniformly in s and t.

(b) For every s, t ∈ [0, T [, the mapping Z(s, t, ·) : R6 → R
6 is measure

preserving, i.e.,

|det ∂zZ(s, t, z)| = 1 for almost every z ∈ R
6,

and one-to-one and onto with inverse Z−1(s, t, ·) = Z(t, s, ·).

(c) For any measurable function Φ: R6 → R, any measurable set D ⊂ R
6,

and any s, t ∈ [0, T [ the change-of-variables formula holds:

∫

Z(s,t,D)
Φ(z) dz =

∫

D
Φ(Z(s, t, z)) dz.
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(d) If F in addition is spherically symmetric, i.e., F (t, Ax) = AF (t, x)
for all t ∈ [0, T [, x ∈ R

3, and A ∈ SO(3), then so is Z = (X,V ),
i.e., (X,V )(s, t, Ax,Av) = (AX,AV )(s, t, x, v) for all s, t ∈ [0, T [,
x, v ∈ R

3, and A ∈ SO(3).

Proof. Most of parts (a) and (b) is standard ODE theory. The fact that for
s and t fixed, Z(s, t, ·) is Lipschitz implies that the derivative ∂zZ(s, t, z)
exists for almost all z; the exceptional set of measure zero may depend on s
and t, but this causes no problems. To prove the assertion on the functional
determinant, let J ∈ C∞

c (R3) be a smooth, compactly supported function
with

∫

J = 1, i.e., a Friedrichs mollifier. For ǫ > 0, we define Jǫ := ǫ−3J(·/ǫ)
and the smoothed field Fǫ(t) := Jǫ ∗ F (t) where F (t) = F (t, ·) for t ∈ [0, T [.
The corresponding flow Zǫ is differentiable with respect to z with

det ∂zZǫ(s, t, z) = 1, s, t ∈ [0, T [, z ∈ R
6,

since the vector field generating this flow is divergence free on R
3 × R

3, cf.
for example [21, Lemma 1.2]. Moreover, Zǫ(s, t, z) → Z(s, t, z) for ǫ → 0,
uniformly in z and locally uniformly in s and t. Now let φ ∈ C∞

c (R6) denote
any test function. Then the change-of-variables formula for Lipschitz contin-
uous transformations—cf. [6, *263F Corollary]—and the above convergence
imply that
∫

φ(z)|det ∂zZ(s, t, z)| dz =

∫

φ(Z(t, s, z)) dz = lim
ǫ→0

∫

φ(Zǫ(t, s, z)) dz

= lim
ǫ→0

∫

φ(z)|det ∂zZǫ(s, t, z)| dz =

∫

φ(z) dz.

Hence, |det ∂zZ(s, t, z)| = 1 for almost every z. Combining this again with
[6, *263F Corollary] yields part (c). Part (d) follows by uniqueness.

Given a field F as specified in the previous lemma and initial data we
can solve the corresponding Vlasov equation.

Lemma 3.2. Let F be as in Lemma 3.1, Z the flow obtained there, and
let f̊ : R6 → R be measurable, bounded, and compactly supported, and define
f(t, z) := f̊(Z(0, t, z)) for all t ∈ [0, T [ and z ∈ R

6. Then the following
holds:

(a) f is constant along solutions of (2.1), and f(0) = f̊ .

(b) For every t ∈ [0, T [ and p ∈ [1,∞], supp f(t) = Z(t, 0, supp f̊), and
‖f(t)‖p = ‖f̊‖p; here ‖ · ‖p is the Lp norm on R

6, and f(t) = f(t, ·).
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(c) f ∈ C
(

[0, T [;L1(R6)
)

.

(d) If F and f̊ are spherically symmetric, then so is f(t) for every t ∈
[0, T [.

Proof. With the possible exception of part (c) all of this is quite obvious by
the definition of f and Lemma 3.1. As to part (c), we first notice that f(t) is
measurable, since f̊ is measurable and Z(t, 0, ·) is one-to-one and Lipschitz.
Now let ǫ > 0 be arbitrary and choose g ∈ C∞

c (R6) such that ‖f̊ − g‖1 < ǫ.
Then for any t, t′ ∈ [0, T [,

‖f(t)− f(t′)‖1 ≤

∫

|f̊(Z(0, t, z)) − g(Z(0, t, z))| dz

+

∫

|f̊(Z(0, t′, z)) − g(Z(0, t′, z))| dz

+

∫

|g(Z(0, t, z)) − g(Z(0, t′, z))| dz

≤ 2ǫ+

∫

BR

|g(Z(0, t, z)) − g(Z(0, t′, z))| dz,

where BR ⊂ R
6 is a sufficiently large ball about the origin, and the assertion

follows by continuity of g and Z.

3.2 Local existence

In this section we prove the local existence part of Theorem 2.2. To this end
we consider the following iteration scheme which is essentially the same as
in [21, Thm. 1.1].

We define the 0th iterate of the field as F0(t, x) = 0 for all t ∈ [0,∞[
and x ∈ R

3. Assume that for some n ∈ N0 a field Fn : [0,∞[×R
3 → R

3 is
already defined which has the following properties.
Field properties: Fn is continuous in t and x, Lipschitz continuous in x,
locally uniformly in t, bounded on [0, T ′]×R

3 for any T ′ > 0, and spherically
symmetric.

The field F0 clearly has these properties. Lemma 3.1 yields a correspond-
ing flow Zn, and Lemma 3.2 yields the n-th iterate fn. We complete one
iteration step by defining ρn := ρfn and Fn+1 := Ffn , cf. Definition 2.1 (i).
Local existence now follows in three steps.
Step 1. In this step we prove that the iteration is well defined. Let

Pn(t) := sup
{

|Vn(s, 0, z)| | z ∈ supp f̊ , 0 ≤ s ≤ t
}

,
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and pick R̊, P̊ > 0 such that supp f̊ ⊂ BR̊ ×BP̊ ; the latter balls are now in
R
3. Then

fn(t, x, v) = 0 for |v| ≥ Pn(t) or |x| ≥ R̊+

∫ t

0
Pn(s) ds,

ρn(t, x) = 0 for |x| ≥ R̊+

∫ t

0
Pn(s) ds,

and

‖ρn(t)‖∞ ≤
4π

3
‖f̊‖∞Pn(t)

3.

Now we recall that for any ρ ∈ L1∩L∞(R3) the field generated by ρ satisfies
the estimate

‖Fρ‖∞ ≤ 3(2π)2/3‖ρ‖
1/3
1 ‖ρ‖2/3∞ , (3.1)

cf. for example [21, Lemma P1]. Since fn ∈ C([0,∞[;L1(R6)) and hence
ρn ∈ C([0,∞[;L1(R3)), (3.1) implies that Fn+1 is continuous in t. Moreover,
for all t ≥ 0,

‖Fn+1(t)‖∞ ≤ 3(2π)2/3‖ρn(t)‖
1/3
1 ‖ρn(t)‖

2/3
∞ ≤ Cf̊Pn(t)

2, (3.2)

where

Cf̊ := 4 · 31/3π4/3‖f̊‖
1/3
1 ‖f̊‖2/3∞ , (3.3)

in particular, the field Fn+1 is bounded, locally uniformly in t. The spherical
symmetry is inherited by fn, and hence by ρn and Fn+1, and to see that Fn+1

has the field properties formulated above, it remains to show its Lipschitz
property; this is the first instance where we need to exploit the symmetry
assumption. Because of the latter,

Fn+1(t, x) = Gn+1(t, r)
x

r
, where Gn+1(t, r) :=

4π

r2

∫ r

0
ρn(t, s) s

2ds; (3.4)

here r = |x|, and we identify ρn(t, x) and ρn(t, r). For any t ≥ 0 and
0 < u < r,

|Gn+1(t, r)−Gn+1(t, u)| ≤
4π

r2

∫ r

u
ρn(t, s) s

2ds

+ 4π
∣

∣

∣

1

r2
−

1

u2

∣

∣

∣

∫ u

0
ρn(t, s) s

2ds

≤
20π

3
‖ρn(t)‖∞|r − u|. (3.5)
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The required Lipschitz property of Fn+1 follows from (3.5).
Step 2: We establish bounds that are uniform in n. The definition of Pn

and (3.2) imply that for n ∈ N0 and t ≥ 0,

Pn+1(t) ≤ P̊ +

∫ t

0
‖Fn+1(s)‖∞ds ≤ P̊ + Cf̊

∫ t

0
Pn(s)

2ds.

If we drop the subscripts of P and replace ≤ by =, we obtain an integral
equation the unique, maximal solution of which is

Q : [0, (P̊Cf̊ )
−1[→ [0,∞[, t 7→

P̊

1− P̊Cf̊ t
, (3.6)

and a straight forward induction argument shows that Pn(t) ≤ Q(t) for all
n ∈ N0 and t ∈ [0, δ0[, where δ0 := (P̊Cf̊ )

−1.

Step 3: We show that on any compact subinterval [0, δ] ⊂ [0, δ0[ the iteration
sequence converges in a suitable sense, and its limit is a strong Lagrangian
solution.

Using the characteristic system and observing that in view of the uniform
bounds and (3.5) the fields Fn are Lipschitz in x uniformly on [0, δ] and
uniformly in n we find that

|Zn+1(t, 0, z) − Zn(t, 0, z)| ≤C

∫ t

0
|Zn+1(s, 0, z) − Zn(s, 0, z)| ds

+

∫ t

0
‖Gn+1(s)−Gn(s)‖∞ds;

here and in what follows C denotes a positive constant which may only
depend on f̊ and δ0 and which may change its value from line to line. For
the relativistic case we note that the map v 7→ v/

√

1 + |v|2 is Lipschitz
continuous. By Gronwall,

|Zn+1(t, 0, z) − Zn(t, 0, z)| ≤ C

∫ t

0
‖Gn+1(s)−Gn(s)‖∞ds. (3.7)

The crucial point is to estimate the latter difference, and this is also the
point where the symmetry assumption enters most strongly, cf. (3.4). For
t ∈ [0, δ], r ≥ 0 and n ∈ N we first note that by the uniform estimate on ρn,

DGn(t, r) := |Gn+1(t, r)−Gn(t, r)|

=
4π

r2

∣

∣

∣

∫ r

0

(

ρn(t, s)− ρn−1(t, s)
)

s2ds
∣

∣

∣
≤ C r. (3.8)
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On the other hand, denoting z = (y, v) ∈ R
3 × R

3,

{Zn(0, t, z) | |y| ≤ r} = {z̃ ∈ R
6 | ∃ z ∈ Br × R

3 such that Zn(t, 0, z̃) = z}

= {z̃ ∈ R
6 | |Xn(t, 0, z̃)| ≤ r}.

Hence we can rewrite the modulus of the field as

Gn+1(t, r) =
1

r2

∫

|y|≤r
ρn(t, y) dy =

1

r2

∫

{z∈R6||y|≤r}
f̊(Zn(0, t, z)) dz

=
1

r2

∫

Zn(0,t,Br×R3)
f̊(z) dz =

1

r2

∫

{z∈R6||Xn(t,0,z)|≤r}
f̊(z) dz,

(3.9)

where we have used the change-of-variables formula from Lemma 3.1 (c).
This implies that

DGn(t, r) ≤
1

r2

∣

∣

∣

∫

{z∈R6||Xn(t,0,z)|≤r}
f̊(z) dz −

∫

{z∈R6||Xn−1(t,0,z)|≤r}
f̊(z) dz

∣

∣

∣

≤
1

r2
‖f̊‖∞λ(Dn), (3.10)

where λ denotes the Lebesgue measure, and

Dn :=
{

z ∈ supp f̊ | |Xn(t, 0, z)| ≤ r < |Xn−1(t, 0, z)|

∨ |Xn−1(t, 0, z)| ≤ r < |Xn(t, 0, z)|
}

.

Defining

dn := sup
z ∈ supp f̊

|Xn(t, 0, z) −Xn−1(t, 0, z)|,

we observe that

λ(Dn) ≤ λ
({

z ∈ supp f̊ | |Xn(t, 0, z)| ≤ r < dn + |Xn(t, 0, z)|

∨ |Xn−1(t, 0, z)| ≤ r < dn + |Xn−1(t, 0, z)|
})

≤ λ
({

z ∈ supp f̊ | |Xn(t, 0, z)| ≤ r < dn + |Xn(t, 0, z)|
})

+ λ
({

z ∈ supp f̊ | |Xn−1(t, 0, z)| ≤ r < dn + |Xn−1(t, 0, z)|
})

=: λ(D1
n) + λ(D2

n).
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We use the fact that the characteristic flow is measure preserving to eliminate
the Xn-terms:

λ(D1
n) = λ(Zn(t, 0,D

1
n))

= λ
({

Zn(t, 0, z) |z ∈ suppf̊ ∧ |Xn(t, 0, z)| ≤ r < dn + |Xn(t, 0, z)|
})

= λ
({

(y, v) ∈ Zn(t, 0, supp f̊) | |y| ≤ r < dn + |y|
})

≤ λ
(

{y ∈ BR | r − dn < |y| ≤ r} ×BR

)

≤ C
(

r3 − (r − dn)
3
+

)

,

where we recall that by our uniform estimates, Zn(t, 0, supp f̊) ⊂ BR ×BR

with some radius R > 0 which is uniform in n ∈ N0 and t ∈ [0, δ]. The same
result holds for D2

n; we just have to replace Zn by Zn−1. Hence

λ(Dn) ≤ C
(

r3 − (r − dn)
3
+

)

. (3.11)

If r ≤ dn, we use (3.8) to find that

DGn(t, r) ≤ C r ≤ C dn.

If r > dn, (3.10) and (3.11) imply that

DGn(t, r) ≤
C

r2
(d3n + 3r2dn) ≤ C dn.

Combining both results, we see that

‖Gn+1(t)−Gn(t)‖∞ ≤ C sup
z ∈ supp f̊

|Xn(t, 0, z) −Xn−1(t, 0, z)|

≤ C sup
z ∈ supp f̊

|Zn(t, 0, z) − Zn−1(t, 0, z)|,

and together with (3.7) we finally arrive at the estimate

‖Fn+1(t)− Fn(t)‖∞ ≤ C

∫ t

0
‖Fn(s)− Fn−1(s)‖∞ds, (3.12)

which holds for all n ∈ N and t ∈ [0, δ]. This implies that (Fn) is a Cauchy
sequence in the space C([0, δ];L∞(R3)). Thus there exists a limiting field
F : [0, δ] × R

3 → R
3 such that Fn → F uniformly on [0, δ] × R

3. The field
is bounded and continuous. By the previous two steps, Fn is Lipschitz
continuous in x, uniformly in t ∈ [0, δ] and in n ∈ N. Hence F is Lipschitz
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continuous in x, uniformly in t ∈ [0, δ]. Since δ < δ0 is arbitrary, the field
F exists and has the desired properties on [0, δ0[. Lemma 3.1 yields the
corresponding flow Z, and Zn → Z uniformly on [0, δ] × [0, δ] × R

6 for all
δ < δ0. If we define f(t, z) = f̊(Z(0, t, z)) according to Lemma 3.2 it remains
to show that F is indeed the field induced by f .

By Lebesgue’s dominated convergence theorem and (3.9),

G(t, r) = lim
n→∞

Gn(t, r) =
1

r2
lim
n→∞

∫

{z∈R6||Xn−1(t,0,z)|≤r}
f̊(z) dz

=
1

r2

∫

{z∈R6||X(t,0,z)|≤r}
f̊(z) dz =

1

r2

∫

{z∈R6||y|≤r}
f̊(Z(0, t, z)) dz,

which implies that

F (t, x) = G(t, r)
x

r
=

∫∫

x− y

|x− y|3
f(t, y, v) dv dy.

Hence f has all the properties of a strong Lagrangian solution on [0, δ[, and
of course f(0) = f̊ .

3.3 Uniqueness

Assume that we have two spherically symmetric, strong Lagrangian solutions
to the same initial data with fields F and F̃ . Then on any time interval [0, δ]
where both are defined we can treat the difference F−F̃ exactly as we treated
Fn+1 − Fn above, in particular F − F̃ must satisfy the analogue of (3.12)
which implies that the two fields and hence the two solutions are equal on
[0, δ].

Remark. The argument above yields uniqueness only within the class of
spherically symmetric, strong Lagrangian solutions, which is sufficient for
what follows below. However, uniqueness holds also within the class of (not
necessarily symmetric) strong Lagrangian solutions for data f̊ which are
measurable, bounded, and compactly supported. To see this, we observe
that for such solutions the induced spatial density is again bounded and
compactly supported with respect to x, locally uniformly in t. Moreover,
such solutions are easily seen to be weak solutions, and the uniqueness results
in [18, 22] apply, at least in the non-relativistic case; it seems reasonable to
expect this to remain true also in the relativistic case.

13



3.4 Continuation and global existence

We can extend the unique, strong Lagrangian solution to its maximal inter-
val of existence [0, T [. Assume that

P ∗ := sup
{

|v| | (x, v) ∈ supp f(t), 0 ≤ t < T
}

< ∞. (3.13)

For any t0 ∈ [0, T [,

‖f(t0)‖∞ = ‖f̊‖∞, ‖f(t0)‖1 = ‖f̊‖1,

and hence Cf(t0) = 4 · 31/3π4/3‖f(t0)‖
1/3
1 ‖f(t0)‖

2/3
∞ = Cf̊ , cf. (3.3). We

define δ∗0 := (P ∗Cf(t0))
−1 = (P ∗Cf̊ )

−1. Arguing exactly as before we obtain

a strong Lagrangian solution on the interval [t0, t0 + δ∗0 [ to the initial data
f(t0) prescribed at t0. By uniqueness, this solution must coincide with f
as long as both exist. If T were finite, this would extend the maximal
solution beyond T , provided we choose t0 close enough to T ; note that δ∗0 is
independent of t0.

The continuation criterion which is now established applies to both the
non-relativistic and the relativistic case, and in the former we can verify
that (3.13) indeed holds and hence T = ∞. To this end we observe that the
corresponding argument of Horst [12] applies to strong Lagrangian solutions,
see also [21, Thm. 1.4].

3.5 Conservation laws

The conservation of Casimir functionals is a direct consequence of the
change-of-variables formula in Lemma 3.1 (c) and the definition of a strong
Lagrangian solution.

Next we prove conservation of energy for the non-relativistic case, the
relativistic case being completely analogous. We use the fact that the flow
is measure preserving, cf. Lemma 3.1 (b), together with the fact that f is
constant along the flow and the fundamental theorem of calculus, and we
recall the notation z = (x, v) ∈ R

3×R
3 and analogously, z̃ = (x̃, ṽ) ∈ R

3×R
3.
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Then

2Ekin(f(t)) + 2Epot(f(t))

=

∫

|v|2f(t, z) dz −

∫∫

f(t, z) f(t, z̃)

|x− x̃|
dz dz̃

=

∫

|V (t, 0, z)|2f(t, Z(t, 0, z)) dz −

∫∫

f(t, Z(t, 0, z)) f(t, Z(t, 0, z̃))

|X(t, 0, z) −X(t, 0, z̃)|
dz dz̃

=

∫∫ t

0

d

ds

(

|V (s, 0, z)|2f(s, Z(s, 0, z))
)

ds dz +

∫

|v|2f̊(z) dz

−

∫∫∫ t

0

d

ds

(

f(s, Z(s, 0, z)) f(s, Z(s, 0, z̃))

|X(s, 0, z) −X(s, 0, z̃)|

)

ds dz dz̃

−

∫∫

f̊(z) f̊ (z̃)

|x− x̃|
dz dz̃

= 2Ekin(f̊) + 2Epot(f̊)

− 2

∫∫ t

0
V (s, 0, z) · F (s,X(s, 0, z)) f(s, Z(s, 0, z)) ds dz

+

∫∫∫ t

0

X(s, 0, z) −X(s, 0, z̃)

|X(s, 0, z) −X(s, 0, z̃)|3
·
(

V (s, 0, z) − V (s, 0, z̃)
)

f(s, Z(s, 0, z)) f(s, Z(s, 0, z̃)) ds dz dz̃;

in the last step we used that f is a strong Lagrangian solution so that

d

ds
f(s, Z(s, 0, z)) = 0, s ∈ [0, T [.

Using Fubini’s theorem and reversing the change of variables via z 7→
Z(0, s, z) and z̃ 7→ Z(0, s, z̃), we obtain

Ekin(f(t)) + Epot(f(t)) =Ekin(f̊) +Epot(f̊)−

∫ t

0

∫

v · F (s, x) f(s, z) dz ds

+
1

2

∫ t

0

∫∫

(v − ṽ)·
x− x̃

|x− x̃|3
f(s, z̃) f(s, z) dz̃ dz ds.

(3.14)

Since f is a strong Lagrangian solution,

F (s, x) =

∫

x− x̃

|x− x̃|3
f(s, z̃) dz̃

for all (s, x) ∈ [0, T [×R
3 so that the two integrals in (3.14) cancel, and the

proof of the conservation laws and of Theorem 2.2 is complete.
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3.6 Further solution properties and remarks

(a) The above proof shows that the conservation laws hold for any strong
Lagrangian solution; the symmetry assumption on the data did not
enter in that argument.

(b) In none of the preceding arguments did we use the attractive nature
of the force field so that our results hold for the plasma physics case
as well, where the sign in the right hand side of (1.2) is reversed. In
the relativistic, plasma physics case the estimates in [7], which equally
well apply to strong Lagrangian solutions, imply that T = ∞, i.e., the
solutions are global (for spherically symmetric data).

(c) The proof of Theorem 2.2 implies that for all t ∈ [0, T [ the functions
f(t) and ρ(t) are bounded, measurable functions with compact sup-
port, and the control on the support is locally uniform in t. In the
non-relativistic case the bound on the velocity support of f(t) is glob-
ally uniform in t, which follows from the estimates in Horst [12], cf.
[21, Thm. 1.4].

(d) Our existence proof is completely constructive and does not rely on
compactness arguments, which typically are used for obtaining weak
solutions, and it covers both the non-relativistic and the relativistic
case. The price to pay for this is the unwanted symmetry assumption
on the initial data.
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