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Kalman-Bucy filtering and minimum mean square estimator under

uncertainty

Shaolin Ji Chuiliu Kong Chuanfeng Sun Ji-Feng Zhang

Abstract. In this paper, we study a generalized Kalman-Bucy filtering problem under uncertainty. The

drift uncertainty for both signal process and observation process is considered and the attitude to uncertainty

is characterized by a convex operator (convex risk measure). The optimal filter or the minimum mean square

estimator (MMSE) is calculated by solving the minimum mean square estimation problem under a convex

operator. In the first part of this paper, this estimation problem is studied under g-expectation which is a

special convex operator. For this case, we prove that there exists a worst-case prior P θ∗

. Based on this P θ∗

we obtained the Kalman-Bucy filtering equation under g-expectation. In the second part of this paper, we

study the minimum mean square estimation problem under general convex operators. The existence and

uniqueness results of the MMSE are deduced.

Key words. Kalman-Bucy filtering; minimum mean square estimator; drift uncertainty; convex opera-

tor; minimax theorem; backward stochastic differential equation

AMS subject classifications. 62M20, 60G35, 93E11, 62F86

1 Introduction

It is well-known that Kalman-Bucy filtering is the foundation of modern filtering theory (see Bensoussan[3],

Bian and Crisan [5], Liptser and Shiryaev [27], Xiong [34]). It lays the groundwork for further study of

optimization problems under partial information in various fields. For example, Duncan and Pasik-Dunan

[12], Huang, Wang and Zhang [20], Øksendal and Sulem [28], Tang [33] studied the optimal control (game)

for partially observed stochastic systems; Lakner [26], Bensoussan and Keppo [4] considered the utility

maximization problem under partial information in mathematical finance and so on.

Let’s first recall the classic Kalman-Bucy filtering theory. The model is described as follows: under the

probability measure P,










































dx(t) = (B(t)x(t) + b(t))dt+ dw(t),

x(0) = x0,

dm(t) = (H(t)x(t) + h(t))dt+ dv(t),

m(0) = 0

(1.1)
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where x(·) is the signal process, m(·) is the observation process, w(·) and v(·) are two independent Brownian

motions. The coefficients B(t), H(t), b(t), h(t) are deterministic uniformly bounded functions in t ∈ [0, T ],

x0 is a given constant vector. Set Zt = σ{m(s); 0 ≤ s ≤ t} which represents all the observable information

up to time t. The Kalman filter x̄(t) of x(t) is

x̄(t) = EP[x(t)|Zt]

where EP[·] denotes the expectation with respect to the probability measure P. It is well-known that the

optimal estimator x̄(t) of the signal x(t) solves the following minimum mean square estimation problem:

min
ζ∈L2

Zt
(Ω,P )

EP ‖x(t)− ζ‖2.

So x̄(t) is also called the minimum mean square estimator, or MMSE for short.

In this paper, we suppose that there exists model uncertainty for the system (1.1). In other words, we

don’t know the true probability P and only know that it falls in a set of probability measures P which is called

the prior set. For continuous-time models, Chen and Epstein [8] first proposed one kind of model uncertainty

which is usually called drift uncertainty. Later Epstein and Ji proposed more general uncertainty models

(see [14] and [15] for details), Guo [19] introduced some basic scientific problems concerning the estimation,

control, and games of dynamical systems with uncertainty and shared some related theoretical progress. In

this paper, we introduce the following drift uncertainty model: for every P θ ∈ P , consider










































dx(t) = (B(t)x(t) + b(t)− θ1(t))dt+ dwθ1(t),

x(0) = x0,

dm(t) = (H(t)x(t) + h(t)− θ2(t))dt + dvθ2(t),

m(0) = 0,

(1.2)

where wθ1 and vθ2 are Brownian motions under P θ and θ = (θ1, θ2) ∈ Θ is called the uncertainty parameter.

When θ changes, the distribution of the solutions x(·) and m(·) of the above equations also change. The

question now is how to calculate the Kalman filter in such an uncertain environment. A natural idea is to

calculate the worst-case minimum mean square estimation problem:

min
ζ

sup
P θ∈P

EP θ (‖x(t) − ζ‖2) (1.3)

which is to minimize the maximum expected loss over a range of possible models. Recently, Borisov [6] and

[7] studied this type of estimator for finite state Markov processes with uncertainty of the transition intensity

and the observation matrices. Allan and Cohen [1] investigated the Kalman-Bucy filtering with a uncertainty

parameter by a control approach. Moreover, in the past decade, much research has been discussed depending

on the technique of H∞ filter, see [9]-[10] and so on. Different from this paper, the design goal of H∞ filter

is to guarantee that the filtering error system is asymptotically stable, while achieving a prescribed H∞

performance level. From another perspective, (1.3) can be rewritten as a minimum mean square estimation

problem under a sublinear operator:

min
ζ

E(‖x(t)− ζ‖2)
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where E(·) := supP θ∈P EP θ [·] is a sublinear operator. Recently, Ji, Kong and Sun [21] and [22] studied

Kalman-Bucy filtering under sublinear operators when the drift uncertainty appears in the signal process

and the observation process respectively. The related literatures about the minimum mean square estimation

problems under sublinear operators include Sun, Ji [32] and Ji, Kong, Sun [23] in which they considered

these problems on L∞(Ω, P ) and Lp(Ω, P ) respectively.

However, when we study some problems, especially financial and risk management problems, we need

to use a more general nonlinear operator: the convex operator or convex risk measure. For example, in the

last decade, the concept of convex risk measure (a special convex operator) has been extensively studied in

various fields (see Föllmer, Schied [17], Arai, Fukasawa [2] et al). So it is an interesting problem to solve

the minimum mean square estimation problem under the convex operator. Unlike sublinear operators, the

lack of positive homogeneity results in an extra penalty term in the expression of convex operators. For the

convex operator ρ(·), that is to say, ρ(·) can be represented as

ρ(·) = sup
P θ∈P

[EP θ [·]− α(P θ)],

where α(P θ) is a penalty function defined on a probability measure set. If ρ(·) is sublinear, the α(P θ) takes

values in {0,∞}. The main difference between this paper and the previous ones is how to deal with the

penalty term.

In this paper, we first generalize the Kalman-Bucy filtering to accommodate drift uncertainty in both

signal process and observation process and the attitude to uncertainty is characterized by a convex operator

(convex risk measure). In more details, we consider system (1.2) and calculate the MMSE by solving

min
ζ

sup
P θ

[EP θ [‖x(t)− ζ‖2] + α0,t(P
θ)] = min

ζ
Eg[‖x(t)− ζ‖2]

where

Eg[·] := sup
P θ

[EP θ [‖ · ‖2] + α0,t(P
θ)] (1.4)

is called g-expectation introduced by Peng [29]. In our context, Eg[·] is a special convex operator and (1.4)

is it’s dual representation obtained in El Karoui et al [13]. Under some mild conditions, we prove that there

exists a worst-case prior P θ∗

. Based on this P θ∗

we obtained the filtering equation by which the MMSE x̂

is governed.

The convex g-expectation is just a special convex operator. It is worth studying the minimum mean

square estimation problem under the general convex operator. In the second part of this paper, we solve

the following problem (For the convenience of readers, we misused some notations in the introduction and

Section 4):

min
ζ

ρ(‖x(t)− ζ‖2)

where ρ(·) is a general convex operator (convex risk measure). The existence and uniqueness results of the

MMSE under the general convex operator are deduced.

The paper is organized as follows. In Section 2, we give some preliminaries and formulate our filtering

problem under g-expectations. In Section 3, the worst-case prior P θ∗

is obtained and the corresponding

Kalman-Bucy filtering equation (3.8) is deduced. We study the minimum mean square estimation problem

under general convex operators L
p
F(P) and obtain the existence and uniqueness results of the MMSE in

Section 4.
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2 Preliminaries and problem formulation

Let (Ω,F ,P) be a complete probability space on which two independent n-dimensional and m-dimensional

Brownian motions w(·) and v(·) are defined. For the sake of generality, they are not standard. The means

of w(·) and v(·) are zero and the covariance matrices are Q(·) and R(·) respectively. We assume that the

matrix R(·) is uniformly positive definite. For a fixed time T > 0, denote by F ={Ft, 0 ≤ t ≤ T } the natural

filtration of w(·) and v(·) satisfying the usual conditions. We assume F = FT . For any given Euclidean

space H, denote by 〈·, ·〉 (resp. ‖ · ‖) the scalar product (resp. norm) of H. Let A⊺ denote the transpose of

a matrix A. For a Rn-valued vector x = (x1, · · ·, xn)
⊺, |x| := (|x1|, · · ·, |xn|)

⊺; for two Rn-valued vectors x

and y, x ≤ y means that xi ≤ yi for i = 1, · · ·, n. Through out this paper, 0 denotes the matrix/vector with

appropriate dimension whose all entries are zero. For 1 < p < ∞, denote by L
p
F
(0, T ;H) the space of all the

F-adapted H-valued stochastic processes on [0, T ] such that

E

[

∫ T

0

‖f(r)‖pdr

]

< ∞, ∀f ∈ L
p
F
(0, T ;H).

The Kalman-Bucy filtering theory is based on a reference probability measure P for the system (1.1).

However, if we don’t know the true probability measure P and only know that it falls in the set P which

is a suitably chosen space of equivalent probability measures, then it is naturally to study the worst-case

minimum mean square estimators (MMSE).

2.1 Prior set and g-expectation

In order to characterize uncertainty, we introduce the prior set P and g-expectation which is a special convex

operator.

Let θ(·) = (θ1(·), θ2(·))
⊺ be a Rn+m-valued progressively measurable process on [0, T ]. For a given

constant µ, let Θ be the set of all Rn+m-valued progressively measurable processes θ with |θi(t)| ≤ µ, 0 ≤

t ≤ T . Define

P = {P θ|
dP θ

dP
= fθ(T ) for θ ∈ Θ} (2.1)

where

fθ(T ) := exp
(

−

∫ T

0

θ
⊺

1 (t)dw(t) −
1

2

∫ T

0

‖θ1(t)‖
2dt−

∫ T

0

θ
⊺

2 (t)dv(t) −
1

2

∫ T

0

‖θ2(t)‖
2dt

)

.

Due to the boundedness of θ, the Novikov’s condition holds (see Karatzas, Shreve [25]). Therefore, P θ

defined by (2.1) is a probability measure which is equivalent to probability measure P and the processes

wθ1(t) = w(t) +
∫ t

0 θ1(s)ds and vθ2(t) = v(t) +
∫ t

0 θ2(s)ds are Brownian motions under this probability

measure P θ by Girsanov’s theorem. The set Θ characterizes the ambiguity and P is usually called the prior

set.

Then, we introduce g-expectation and it’s dual representation (see [29] and [13]). In the following we will

see that g-expectation is a powerful tool for studying uncertainty.

Definition 2.1 we call a function g : Ω × [0, T ] × Rn × Rm → R a standard generator if it satisfies the

following conditions:
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• (g(ω, t, z1, z2))t∈[0,T ] is an adapted process with

E

∫ T

0

|g(ω, t, z1, z2)|
2dt < ∞

for all z1 ∈ Rn and z2 ∈ Rm;

• g(ω, t, z1, z2) is Lipschitz continuous in z1 and z2, uniformly in t and ω: there exists constant µ > 0

such that for all z1, z̃1 ∈ Rn and z2, z̃2 ∈ Rm we have

|g(ω, t, z1, z2)− g(ω, t, z̃1, z̃2)| ≤ µ(‖z1 − z̃1‖+ ‖z2 − z̃2‖);

• g(ω, t, 0, 0) = 0 for all t ≥ 0 and ω ∈ Ω.

For a standard generator g, the following backward stochastic differential equation (BSDE for short)















−dY (t) = g(t, Z1(t), Z2(t))dt− Z
⊺

1 (t)dw(t) − Z
⊺

2 (t)dv(t), t ∈ [0, T ]

Y (T ) = ξ

with terminal condition ξ ∈ L2
FT

(Ω,P) has a unique square integrable solution (Y (t),

Z1(t), Z2(t))t∈(0,T ] (see [29]). Peng [29] calls Y (t) := Eg(ξ|Ft) the (condition) g-expectation of ξ at time t.

Definition 2.2 A standard generator g is called a convex generator if g(ω, t, z1, z2) is convex in z1 and z2

for z1 ∈ Rn and z2 ∈ Rm. The g-expectation with a convex generator is called the convex g-expectation.

Now we give the dual representation of the convex g-expectation through the prior set and the concave

dual function of g.

Let

G(ω, t, θ1, θ2) = infz1∈Rn,z2∈Rm [g(ω, t, z1, z2) + 〈z1, θ1〉+ 〈z2, θ2〉],

(ω ∈ Ω, t ∈ [0, T ], θ1 ∈ Rn, θ2 ∈ Rm)

be the concave dual function of g(ω, t, z1, z2).

EI Karoui et al. [13] (also see Delbaen et al. [11]) established the following dual representation for

g-expectation: for a Fs-measurable random variable ξ, the g-expectation at time t can be represented as

Eg(ξ|Ft) = sup
P θ∈P

[EP θ [ξ|Ft] + αt,s(P
θ)] (2.2)

where

αt,s(P
θ) := EP θ [

∫ s

t

G(r, θ1(r), θ2(r))dr|Ft], 0 ≤ t ≤ s ≤ T. (2.3)

Remark 2.3 It is easy to check that Eg(·|Ft) is a special convex operator (see (4.1)). Moreover, if we let

the standard generator g(t, z1, z2) = µ(|z1| + |z2|), then the corresponding dual function of g(t, z1, z2) and

penalty term αt,s(P
θ) are simultaneously equal to 0. Then the above convex operator Eg(·|Ft) degenerates to

a sublinear operator.
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2.2 Problem formulation

We formulate the Kalman-Bucy filtering problem under uncertainty. For every θ ∈ Θ, under the probability

measure P θ ∈ P










































dx(t) = (B(t)x(t) + b(t)− θ1(t))dt+ dwθ1(t),

x(0) = x0,

dm(t) = (H(t)x(t) + h(t)− θ2(t))dt + dvθ2(t),

m(0) = 0,

(2.4)

where x(·) ∈ L2
F
(0, T ;Rn) is the signal process and m(·) ∈ L2

F
(0, T ;Rm) is the observation process. The

coefficients B(t) ∈ Rn×n, H(t) ∈ Rm×n, b(t) ∈ Rn, h(t) ∈ Rm are deterministic uniformly bounded

functions in t ∈ [0, T ], x0 ∈ Rn is a given constant vector. Set

Zt = σ{m(s); 0 ≤ s ≤ t}

which represents all the observable information up to time t. We want to calculate the MMSE of the signal

x(t) by solving the following worst-case minimum mean square estimation problem:

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,Rn)
Eg(‖x(t)− ζ(t)‖2) = inf

ζ(t)∈L
2+ǫ
Zt

(Ω,P,Rn)
sup
P θ∈P

[EP θ (‖x(t) − ζ(t)‖2)

+α0,t(P
θ)]

(2.5)

where L2+ǫ
Zt

(Ω,P,Rn) is the set of all the Rn-valued (2 + ǫ) integrable Zt-measurable random variables and

0 < ǫ < 1.

Definition 2.4 If x̂(t) ∈ L2+ǫ
Zt

(Ω,P,Rn) satisfies

Eg(‖x(t)− x̂(t)‖2) = inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,Rn)
Eg(‖x(t)− ζ(t)‖2),

then we call x̂(t) the minimum mean square estimator (MMSE) of x(t).

3 Kalman-Bucy filtering under g-expectation

In this section, we calculate the minimum mean square estimator x̂(t) of the problem (2.5) for t ∈ [0, T ].

Without loss of generality, all the statements in this section are only proved in the one dimensional case.

Lemma 3.1 The set { dP θ

dP
: P θ ∈ P} ⊂ L1+ 2

ǫ (Ω,F ,P) is σ(L1+ 2
ǫ (Ω,F ,P), L1+ ǫ

2 (Ω,F ,P))-compact and P

is convex.

Proof. Since θ is bounded, by Theorem 5.3 in the Appendix, the set { dP θ

dP
: P θ ∈ P} is bounded in

norm ‖ · ‖1+ 2
ǫ
. From Theorem 4.1 of Chapter 1 in Simons [31], we know that the set { dP θ

dP
: P θ ∈ P} is

σ(L1+ 2
ǫ (Ω,F ,P), L1+ ǫ

2 (Ω,F ,P))-compact.
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Let θ1 = (θ11 , θ
1
2)

⊺ and θ2 = (θ21, θ
2
2)

⊺ belong to Θ. fθ1

and fθ2

denote the corresponding exponential

martingales: for t ∈ [0, T ],

fθi

(t) = exp(

∫ t

0

θi1(s)dw(s) −
1

2

∫ t

0

(θi1(s))
2ds+

∫ t

0

θi2(s)dv(s) −
1

2

∫ t

0

(θi2(s))
2ds)

which satisfies

dfθi

(t) = fθi

(t)(θi1(t)dw(t) + θi2(t)dv(t)), i = 1, 2.

Let λ1 and λ2 be nonnegative constants which belong to (0, 1) with λ1 + λ2 = 1. Define















θλ1 (t) =
λ1θ

1
1(t)f

θ1 (t)+λ2θ
2
1(t)f

θ2 (t)

λ1fθ1 (t)+λ2fθ2 (t)
,

θλ2 (t) =
λ1θ

1
2(t)f

θ1 (t)+λ2θ
2
2(t)f

θ2 (t)

λ1fθ1 (t)+λ2fθ2 (t)
.

It is easy to verify that

d(λ1f
θ1

(t) + λ2f
θ2

(t)) = (λ1f
θ1

(t) + λ2f
θ2

(t))(θλ1 (t)dw(t) + θλ2 (t)dv(t)).

Since fθi

(t) > 0, i = 1, 2, the process θλ = (θλ1 , θ
λ
2 )

⊺ belongs to Θ. Therefore, it results in that P is convex.

This completes the proof.

Lemma 3.2 The penalty term α0,T (P
θ) is a concave functional on P.

Proof. Let θ1 = (θ11, θ
1
2)

⊺ and θ2 = (θ21, θ
2
2)

⊺ belong to Θ. fθ1

and fθ2

denote the exponential martingales

respectively as in Lemma 3.1. By Lemma 3.1, the exponential martingale (λ1
dP θ1

dP
+ λ2

dP θ2

dP
) is generated

by θλ = (θλ1 , θ
λ
2 ). It yields that

α0,T (λ1P
θ1

+ λ2P
θ2

) = E[(λ1f
θ1

(T ) + λ2f
θ2

(T ))

∫ T

0

G(t, θλ1 (t), θ
λ
2 (t))dt].

Since G(t, ·, ·) is a concave function, we have

α0,T (λ1P
θ1

+ λ2P
θ2

)

≥ E[(λ1f
θ1

(T ) + λ2f
θ2

(T ))(
∫ T

0
λ1f

θ1 (t)

λ1fθ1 (t)+λ2fθ2 (t)
G(t, θ11(t), θ

1
2(t))

+
∫ T

0
λ2f

θ2 (t)

λ1fθ1 (t)+λ2fθ2 (t)
G(t, θ21(t), θ

2
2(t)))dt]

= E[(
∫ T

0
λ1f

θ1

(t)G(t, θ11(t), θ
1
2(t)) +

∫ T

0
λ2f

θ2

(t)G(t, θ21(t), θ
2
2(t)))dt]

= E[λ1f
θ1

(T )
∫ T

0 G(t, θ11(t), θ
1
2(t))dt] + E[λ2f

θ2

(T )
∫ T

0 G(t, θ21(t),

θ22(t))dt] = λ1α0,T (P
θ1

) + λ2α0,T (P
θ2

).

Therefore, the penalty term α(P θ) is a concave functional on P . This completes the proof.

Remark 3.3 It is easy to check that for any t ∈ [0, T ], α0,t(P
θ) is a concave functional on P and

α0,t(P
θ) = E[fθ(T ) ·

∫ t

0

G(s, θ1(s), θ2(s))ds] = E[fθ(t) ·

∫ t

0

G(s, θ1(s), θ2(s))ds].
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Lemma 3.4 Suppose that the stochastic processes (gm(t))t∈[0,T ],m = 1, 2, ... and (f∗(t))t∈[0,T ] are exponen-

tial martingales respect to the filtration F and (gm(T ) − f∗(T ))
L2(Ω,F ,P)
−−−−−−→ 0. Then for any 0 ≤ t ≤ T , we

have

(θmi (t)− θ∗i (t))
L2(Ω,F ,P)
−−−−−−→ 0, i = 1, 2,

where θm(t) = (θm1 (t), θm2 (t)) ∈ Θ and θ∗(t) = (θ∗1(t), θ
∗
2(t)) ∈ Θ are respectively generators of (gm(t))t∈[0,T ],m =

1, 2, ... and (f∗(t))t∈[0,T ].

Proof. Denote the generator of gm(·) by θm = (θm1 , θm2 ), i.e., for 0 ≤ t ≤ T ,

gm(t) = exp(

∫ t

0

θm1 (s)dw(s) −
1

2

∫ t

0

(θm1 (s))2ds+

∫ t

0

θm2 (s)dv(s) −
1

2

∫ t

0

(θm2 (s))2ds).

We want to prove that (θm) converges to θ∗. Since gm(·) and f∗(·) are martingales and gm(T )
L2(Ω,F ,P)
−−−−−−→

f∗(T ), it is easy to verify that gm(t)
L2(Ω,F ,P)
−−−−−−→ f∗(t) for any t ∈ [0, T ]. Applying Itô’s formula to (gm(t) −

f∗(t))2, we have

d(gm(t)− f∗(t))2

= 2(gm(t)− f∗(t))[(gm(t)θm1 (t)− f∗(t)θ∗1(t))dw(t) + (gm(t)θm2 (t)

−f∗(t)θ∗2(t))dv(t)] + (gm(t)θm1 (t)− f∗(t)θ∗1(t))
2dt+ (gm(t)θm2 (t)

−f∗(t)θ∗2(t))
2dt.

Taking expectation on both sides,

E[(gm(T )− f∗(T ))2] = E[
∫ T

0 (gm(t)θm1 (t)− f∗(t)θ∗1(t))
2dt]

+E[
∫ T

0
(gm(t)θm2 (t)− f∗(t)θ∗2(t))

2].

(3.1)

Since lim
m→∞

E[(gm(T )− f∗(T ))2] = 0, it yields that

lim
m→∞

E[

∫ T

0

(gm(t)θmi (t)− f∗(t)θ∗i (t))
2dt] = 0, i = 1, 2. (3.2)

Note that

E[
∫ T

0 (gm(t)θm1 (t)− f∗(t)θ∗1(t))
2dt]

= E
∫ T

0 [(f∗(t)− gm(t))2(θ∗1(t))
2 + (gm(t))2(θ∗1(t)− θm1 (t))2

+2(f∗(t)− gm(t))gm(t)θ∗1(t)(θ
∗
1(t)− θm1 (t))]dt.

Because gm(t)
L2(Ω,F ,P)
−−−−−−→ f∗(t) and θ is bounded, we have

lim
m→∞

E[(f∗(t)− gm(t))2(θ∗1(t))
2] = 0;

lim
m→∞

E[(f∗(t)− gm(t))gm(t)θ∗1(t)(θ
∗
1(t)− θm1 (t))] = 0.
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Therefore, lim
m→∞

E[(gm(t))2(θ∗1(t) − θm1 (t))2] = 0. It results in that (gm(t))2(θ∗1(t) − θm1 (t))2
P
−→ 0. Since

gm(t)
P
−→ f∗(t), we have (θ∗1(t)−θm1 (t))2

P
−→ 0. Due to the boundedness of θ, we obtain (θ∗1(t)−θm1 (t))

L2(Ω,F ,P)
−−−−−−→

0. Similarly, we can obtain (θ∗2(t)− θm2 (t))
L2(Ω,F ,P)
−−−−−−→ 0. This completes the proof.

In the following, we prove that the worst-case prior P θ∗

exists.

Theorem 3.5 For a given t ∈ [0, T ], there exists a θ∗ ∈ Θ such that

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
Eg[(x(t) − ζ(t))2]

= sup
P θ∈P

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ [(x(t) − ζ(t))2] + α0,t(P

θ)]

= inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ∗ [(x(t) − ζ(t))2] + α0,t(P

θ∗

)].

(3.3)

Proof. Firstly, we prove the first equality. According to Lemmas 3.1 and 3.2, the original robust estimation

problem (2.5) satisfies minimax theorem 5.1. Therefore, the first equality is verified.

Secondly, we prove the second equality. Choose a sequence {θn}, n = 1, 2, · · · such that

lim
n→∞

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θn [(x(t) − ζ(t))2] + α0,t(P

θn

)]

= sup
P θ∈P

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[α0,t(P

θ) + EP θ [(x(t) − ζ(t))2]].

(3.4)

Set fθn

(T ) = dP θn

dP
. By Komlós theorem A.3.4 in [30], there exists a subsequence {fθnk (T )}k≥1 of {f

θn

(T )}n≥1

and a f∗(T ) ∈ L1(Ω,F ,P) such that

lim
m→∞

1

m

m
∑

k=1

fθnk
(T ) = f∗(T ), P− a.s.. (3.5)

Let gm(T ) =
1

m

m
∑

k=1

fθnk
(T ). We have gm(T )

P−a.s.
−−−−→ f∗(T ). By Theorem 5.3 in the Appendix, for any given

constant p > 1 and m, we have E(gm(T ))K ≤ M where K = (1+ 2
ǫ
)p and M = exp((K2 −K)µ2T ). Then,

we have
{

|gm(T )|1+
2
ε : m = 1, 2, · · ·

}

is uniformly integrable. Therefore, it results in that gm(T )
L

1+ 2
ǫ (Ω,F ,P)

−−−−−−−−→

f∗(T ) and f∗(T ) ∈ L1+ 2
ǫ (Ω,F ,P). According to the convexity and weak compactness of the set { dP θ

dP
: P θ ∈

P}, there exists a θ∗ such that dP θ∗

dP
= f∗(T ).

Then we prove that the probability measure P θ∗

with respect to obtained generator θ∗ satisfies (3.3).

9



Based on (3.4) and (3.5), we have

sup
P θ∈P

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ [(x(t) − ζ(t))2] + α0,t(P

θ)]

= lim
n→∞

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[E[fP θn

(T )(x(t)− ζ(t))2] + α0,t(P
θn)]

= lim
k→∞

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[E[fP

θnk (T )(x(t)− ζ(t))2] + α0,t(P
θnk )]

= lim
m→∞

1
m

m
∑

k=1

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[E[fP

θnk (T )(x(t) − ζ(t))2] + α0,t(P
θnk )]

≤ lim inf
m→∞

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)

1
m

m
∑

k=1

[E[fP
θnk (T )(x(t)− ζ(t))2] + α0,t(P

θnk )]

≤ lim inf
m→∞

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[E[gm(T )(x(t) − ζ(t))2] + α0,t(P

θm

)]

(3.6)

where the last inequality is due to the concavity of α(·). By (3.6) and Lemma 3.4, it results in that

sup
P θ∈P

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ [(x(t) − ζ(t))2] + α0,t(P

θ)]

≥ inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ∗ [(x(t) − ζ(t))2] + α0,t(P

θ∗

)]

= inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[E[ lim

m→∞
gm(T )(x(t) − ζ(t))2]

+E[f∗(T )
∫ t

0 G(r, θ∗1(r), θ
∗
2(r))dr]]

= inf
ζ(t)∈L2+ǫ

Zt
(Ω,P,R)

[E[ lim
m→∞

gm(T )(x(t) − ζ(t))2]

+E[ lim
m→∞

(gm(T )
∫ t

0 G(r, θm1 (r), θm2 (r))dr)]]

≥ lim sup
m→∞

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[E[gm(T )(x(t) − ζ(t))2]

+E[gm(T )
∫ t

0
G(r, θm1 (r), θm2 (r))dr]]

≥ sup
P θ∈P

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ [(x(t) − ζ(t))2] + α0,t(P

θ)]

(3.7)

where the second inequality is based on the upper semi-continuous property. Therefore,

sup
P θ∈P

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ [(x(t) − ζ(t))2] + α0,t(P

θ)]

= inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ∗ [(x(t) − ζ(t))2] + α0,t(P

θ∗

)].

By minimax theorem (Theorem 5.1 in the Appendix), we obtain

sup
P θ∈P

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ [(x(t) − ζ(t))2] + α0,t(P

θ)]

= inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
sup
P θ∈P

[EP θ [(x(t) − ζ(t))2] + α0,t(P
θ)]
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which implies that

inf
ζ(t)∈L2+ǫ

Zt
(Ω,P,R)

Eg[(x(t)− ζ(t))2]

= inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
sup
P θ∈P

[EP θ [(x(t) − ζ(t))2] + α0,t(P
θ)]

= inf
ζ(t)∈L2+ǫ

Zt
(Ω,P,R)

[EP θ∗ [(x(t) − ζ(t))2] + α0,t(P
θ∗

)].

This completes the proof.

For the obtained θ∗(t) = (θ∗1(t), θ
∗
2(t)) in Theorem 3.5, set θ̂∗i (t) = EP θ∗ [θ∗i (t)|Zt], i = 1, 2.

Theorem 3.6 The MMSE x̂(t) of problem (2.5) equals EP θ∗ [x(t)|Zt] and satisfies the following equation:



























dx̂(t) = (B(t)x̂(t) + b(t)− θ̂∗1(t))dt+ (P (t)H(t)− ̂x(t)θ∗2(t)

+x̂(t)θ̂∗2(t))R(t)−1dÎ(t),

x̂(0) = x0,

(3.8)

where θ∗ is obtained in Theorem 3.5, ̂x(t)θ∗2(t) := EP θ∗ [x(t)θ∗2(t)|Zt] and the so called innovation process

Î(t) := m(t)−
∫ t

0 (H(s)x̂(s)+ g(s)− θ̂∗2(s))ds, 0 ≤ t ≤ T is a Zt-measurable Brownian motion. The variance

of the estimation error P (t) = EP θ∗ [(x(t) − x̂(t))2] satisfies the following equation:



























dP (t)
dt

= −EP θ∗ [(P (t)H(t)− ̂x(t)θ∗2(t) + x̂(t)θ̂∗2(t))R
−1(t)(H(t)P (t) − ̂θ∗2(t)x(t)

+θ̂∗2(t)x̂(t))] + 2EP θ∗ [− ̂x(t)θ∗1(t) + x̂(t)θ̂∗1(t)] + 2B(t)P (t) +Q(t),

P (0) = 0.

(3.9)

Proof. For the obtained optimal θ∗(t) = (θ∗1(t), θ
∗
2(t)) in Theorem 3.5, the system (2.4) and problem

(2.5) can be reformulated correspondingly under P θ∗

. In more detail, on the filtered probability space

(Ω,F , {Ft}0≤t≤T , P
θ∗

), the processes x(·) and m(·) satisfy the following equations:











































dx(t) = (B(t)x(t) + b(t)− θ∗1(t))dt + dwθ∗

1 (t),

x(0) = x0,

dm(t) = (H(t)x(t) + h(t)− θ∗2(t))dt + dvθ
∗

2 (t),

m(0) = 0.

(3.10)

We solve the minimum mean square estimation problem

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ∗ [(x(t) − ζ(t))2] + α0,t(P

θ∗

)]. (3.11)

Since α0,t(P
θ∗

) is a constant, we only need to consider the following optimization problem:

inf
ζ(t)∈L

2+ǫ
Zt

(Ω,P,R)
[EP θ∗ [(x(t) − ζ(t))2]. (3.12)
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In [27], Liptser and Shiryaev studied the optimal estimator of the following problem:

inf
ζ(t)∈L2

Zt
(Ω,P θ∗ ,R)

EP θ∗ [(x(t)− ζ(t))2]. (3.13)

By Theorem 8.1 in [27], the optimal estimator x̂(t) = EP θ∗ [x(t)|Zt] satisfies (3.8). Since B(t), H(t), b(t) and

h(t) are uniformly bounded, deterministic functions and θ∗ is bounded, by Theorem 6.3 (see Chapter 1 in

[35]), the solution x̂(t) to (3.8) also belongs to L2+ǫ
Zt

(Ω,P,R). It yields that x̂(t) is the optimal solution of

problem (3.12) at time t ∈ [0, T ]. This completes the proof.

Corollary 3.7 If θ∗(t) is adapted to Zt, then x̂(t) satisfies the following equation:















dx̂(t) = (B(t)x̂(t) + b(t)− θ∗1(t))dt+ P (t)H(t)R(t)−1dÎ(t),

x̂(0) = x0,

(3.14)

where P (t) satisfies the following Riccati equation:















dP (t)
dt

= B(t)P (t) + P (t)B(t)⊺ − P (t)H(t)⊺R(t)−1H(t)P (t) +Q(t),

P (0) = 0.

(3.15)

Define

A(t, s) = exp
∫

t

s
(B(r)−P (r)H(r)2R−1(r))dr .

x̄(t) is governed by














dx̄(t) = (B(t)x̄(t) + b(t))dt + P (t)H(t)⊺R(t)−1dI(t),

x̄(0) = x0,

(3.16)

where

I(t) = m(t)−

∫ t

0

(H(s)x̄(s) + h(s))ds.

Corollary 3.8 If the optimal θ∗(t) adapted to subfiltration Zt, with equations (3.16) and (3.8), then the

optimal estimator x̂(t) for any time t ∈ [0.T ] can be expressed as

x̂(t) = x̄(t) +

∫ t

0

(P (s)H(s)R−1(s)θ∗2(s)− θ∗1(s))A(t, s)ds. (3.17)

where x̄(t) is defined by equation (3.16).

Remark 3.9 So far, we have only proved the existence of the optimal θ∗ from the mathematical theory.

Since the complexity of the problem is considered in this paper, it is still a problem to be solved how to

calculate the optimal θ∗. In the future, we plan to study the numerical solutions to the robust estimation

(2.5).
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4 MMSE under general convex operators on L
p
F(P)

In section 3, we boil down the calculation of the Kalman-Bucy filter under uncertainty to solving a minimum

mean square estimation problem under the convex g-expectation. The worst-case prior P θ∗

is obtained and

the corresponding filtering equation (3.8) is deduced.

It is an interesting question whether there are similar results for general convex operators. So in this

section, we investigate the minimum mean square estimation problem under general convex operators on

L
p
F(P) and obtain the existence and uniqueness results of the MMSE.

4.1 General convex operators on L
p

F
(P)

For a given probability space (Ω,F ,P), we denote the set of all F -measurable p-th power integrable random

variables by Lp(Ω,F ,P). Sometimes we use L
p
F(P) for short. Let C be a sub σ-algebra of F . Lp

C(P) denotes

the set of all the p-th power integrable C-measurable random variables. In this paper, we only consider the

case that 1 < p ≤ 2.

Let M denote the set of probability measures absolutely continuous with respect to P. For P ∈ M,

we will use fP to denote the Radon-Nikodym derivative dP
dP

and EP [·] to denote the expectation under P .

Especially, the expectation under P is denoted as E[·]. For a sub σ-algebra C of F and P ∈ M, define

fP
C = E[fP |C].

Definition 4.1 A convex operator is an operator ρ(·) : Lp
F(P) 7→ R satisfying

(i) Monotonicity: for any ξ1, ξ2 ∈ L
p
F(P), ρ(ξ1) ≥ ρ(ξ2) if ξ1 ≥ ξ2;

(ii) Constant invariance: ρ(ξ + c) = ρ(ξ) + c for any ξ ∈ L
p
F(P) and c ∈ R;

(iii) Convexity: for any ξ1, ξ2 ∈ L
p
F(P) and λ ∈ [0, 1], ρ(λξ1 + (1− λ)ξ2) ≤ λρ(ξ1) + (1− λ)ρ(ξ2).

Definition 4.2 A convex operator ρ(·) is called normalized if ρ(0) = 0.

Remark 4.3 In this paper, we will always assume the convex operator is normalized. Moreover, if we define

ρ′(ξ) = ρ(−ξ), then ρ′(·) is a convex risk measure on L
p
F(P).

If ρ(·) is a convex operator, then by Proposition 2.10 and Theorem 2.11 in [24], for any random variable

ξ ∈ L
p
F(P), there exists a set P such that ρ(·) can be represented as

ρ(ξ) = sup
P∈P

[EP [ξ]− α(P )],

where α(P ) := supζ∈Aρ
EP [ζ], Aρ := {ζ ∈ L

p
F(P); ρ(ζ) ≤ 0} called acceptance set, P : = {P ∈ M;

fP ∈ L
q
F (P), α(P ) < ∞}. Moreover, D := {fP ; P ∈ P} is norm-bounded in L

q
F(P) and σ(Lq

F (P), L
p
F(P))-

compact, where σ(Lq
F(P), L

p
F (P)) denotes the weak topology defined on L

q
F(P) and

1
p
+ 1

q
= 1. The set P is

called the representation set of ρ(·). Since α(·) is a convex function defined on M, P is a convex set.

Remark 4.4 Note that α(P ) = supζ∈Aρ
EP [ζ] = supζ∈Aρ

E[fP ζ]. By abuse of notation, we sometimes

write α(fP ) instead of α(P ).

Definition 4.5 The set P is called stable if for any element P ∈ P and any sub σ-algebra C of F , fP

fP
C

still

lies in the set D.
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Definition 4.6 A convex operator ρ(·) is called stable, if its representation set P is stable.

Definition 4.7 A convex operator ρ(·) is called proper if all the elements in its representation set P are

equivalent to P.

For a given ξ ∈ L
4p
F (P), when we only know the information C, we want to find the minimum mean

square estimator of ξ under the convex operator ρ(·). In more detail, we will solve the following optimization

problem:

Problem: For a given ξ ∈ L
4p
F (P), find a η̂ ∈ L

2p
C (P) such that

ρ(ξ − η̂)2 = inf
η∈L

2p

C
(P)

ρ(ξ − η)2. (4.1)

The optimal solution η̂ of (4.1) is called the minimum mean square estimator and we will denote it by

ρ(ξ|C).

Remark 4.8 If we set C = Zt and p = 1+ ǫ
2 with ǫ ∈ (0, 1), then L

2p
C (P) is just the space L2+ǫ

Zt
(Ω,P,Rn) in

subsection 2.2.

4.2 Existence and uniqueness results

In this section, we study the existence and uniqueness of the minimum mean square estimator for problem

4.1. We first give the following assumption.

Assumption 4.9 The convex operator ρ(·) is stable and proper.

4.2.1 Existence

Lemma 4.10 For any given real number γ ≥ 2, if ξ ∈ L
γp
F (P), then we have sup

P∈P

EP [ξ
γp
2 ] < ∞.

Proof. Since {fP ;P ∈ P} is normed bounded in L
q
F(P) and 1 < p ≤ 2, we have

sup
P∈P

EP [ξ
γp
2 ] = sup

P∈P

E[fP ξ
γp
2 ] ≤ sup

P∈P

||fP ||Lq ||ξ
γp
2 ||Lp ≤ sup

P∈P

||fP ||Lq (||ξ||Lγp)γ < ∞.

This completes the proof.

Lemma 4.11 Suppose that Assumption 4.9 holds. Then for any P ∈ P, ξ ∈ L
p
F (P) and sub σ-algebra C of

F , there exists a P̄ ∈ P such that EP̄ [ξ] = E[EP [ξ|C]].

Proof. It is obvious that

E[EP [ξ|C]] = E[
E[ξfP |C]

E[fP |C]
] = E[E[ξ

fP

fP
C

|C]] = E[ξ
fP

fP
C

].

By Definition 4.5, there exists a P̄ ∈ P such that dP̄
dP

= fP

fP
C

which implies that EP̄ [ξ] = E[EP [ξ|C]]. This

completes the proof.
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Proposition 4.12 Suppose that Assumption 4.9 holds. If ξ ∈ L
4p
F (P), then there exists a constant M such

that for any probability measure P ∈ P ,

inf
η∈L

2p

C
(P)

[EP [(ξ − η)2]− α(P )] = inf
η∈L

2p,M

C
(P)

[EP [(ξ − η)2]− α(P )],

where L
2p,M
C (P) denotes all the elements in L

2p
C (P) which are norm-bounded by the constant M .

Proof. Set G = {EP [ξ|C];P ∈ P}. For any P ∈ P , we have E[(EP [ξ|C])
2p] ≤ E[EP [ξ

2p|C]]. By Lemma 4.11,

there exists a P̄ ∈ P such that EP̄ [ξ
2p] = E[EP [ξ

2p|C]]. By Lemma 4.10, there exists a constant M1 such

that supP∈P EP [ξ
2p] ≤ M1. Then G ⊂ L

2p,M
C (P) where M = M

1
2p

1 . Since 1 < p ≤ 2, it is obvious that

G ⊂ L
2p
C (P) ⊂





⋃

0<ǫ≤2

L2+ǫ
C (P)



 .

By the project property of conditional expectations, for any P ∈ P and η ∈ L2+ǫ
C (P) with ǫ ∈ (0, 2], we have

that

EP [(ξ − EP [ξ|C])
2] ≤ EP [(ξ − η)2]

which leads to

inf
η∈L

2p

C
(P)

[EP [(ξ − η)2]− α(P )] ≥ inf
η′∈G

[EP [(ξ − η′)2]− α(P )].

On the other hand, the inverse inequality is obviously true. Then the following equality holds for any P ∈ P :

inf
η∈L

2p

C
(P)

[EP [(ξ − η)2]− α(P )] = inf
η∈G

[EP [(ξ − η)2]− α(P )].

Since G ⊂ L
2p,M
C (P) ⊂ L

2p
C (P), it follows that

inf
η∈L

2p
C

(P)
[EP [(ξ − η)2]− α(P )] = inf

η∈L
2p,M

C
(P)

[EP [(ξ − η)2]− α(P )].

This completes the proof.

By Proposition 4.12, it is easy to see that

sup
P∈P

inf
η∈L

2p

C
(P)

[EP [(ξ − η)2]− α(P )] = sup
P∈P

inf
η∈L

2p,M

C
(P)

[EP [(ξ − η)2]− α(P )].

Lemma 4.13 α(·) is a lower semi-continuous (l.s.c.) function on the topology space (D, σ(Lq
F (P), L

p
F(P))).

Proof. For any fixed random variable ζ ∈ Aρ, define ϕ(ζ, fP ) = E[fP ζ] where fP belongs to D. Then

ϕ(ζ, ·) is a continuous function on the topology space (D, σ(Lq
F (P)

, L
p
F(P))). Since α(fP ) = supζ∈Aρ

ϕ(ζ, fP ), based on lower-semicontinuous definition B.1.1 in Pham [30],

then α(P ) is a l.s.c. function on the topology space (D, σ(Lq
F (P), L

p
F(P))). This completes the proof.

For ξ ∈ L
4p
F (P), η ∈ L

2p
C (P) and P ∈ P , define

l(ξ, η, fP ) = E[fP (ξ − η)2]− α(fP ).

Lemma 4.14 For any random variables ξ ∈ L
4p
F (P) and η ∈ L

2p
C (P), l(ξ, η, ·) is an upper semi-continuous

(u.s.c.) function on the topology space (D, σ(Lq
F (P), L

p
F(P))).
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Proof. Since ξ ∈ L
4p
F (P) and η ∈ L

2p
C (P), then (ξ − η)2 ∈ L

p
F(P) which implies that E[fP (ξ − η)2] is a

continuous function with respect to fP on the topology space (D, σ(Lq
F (P), L

p
F (P))). By Lemma 4.13, α(·)

is a l.s.c. function on the topology space (D, σ(Lq
F (P), L

p
F (P))). Thus, l(ξ, η, ·) is an u.s.c. function on the

topology space (D, σ(Lq
F (P), L

p
F (P))). This completes the proof.

Proposition 4.15 Suppose that Assumption 4.9 holds. Then for a given ξ ∈ L
4p
F (Ω,P), there exists a P̂ ∈ P

such that

inf
η∈L

2p,M

C
(P)

[E
P̂
[(ξ − η)2]− α(P̂ )] = sup

P∈P

inf
η∈L

2p,M

C
(P)

[EP [(ξ − η)2]− α(P )],

where M is the constant given in Proposition 4.12.

Proof. Define

β = sup
P∈P

inf
η∈L

2p,M

C
(P)

[EP [(ξ − η)2]− α(P )] = sup
fP∈D

inf
η∈L

2p,M

C
(P)

[E[fP (ξ − η)2]− α(fP )].

Take a sequence {fPn ;Pn ∈ P}n≥1 such that

inf
η∈L

2p,M

C
(P)

[E[fPn(ξ − η)2]− α(fPn)] ≥ β −
1

2n
.

Since D is a weakly compact set, we can take a subsequence {fPni}i≥1 which weakly converges to some

f P̂ ∈ L
q
F(P). Therefore, P̂ ∈ P and there exists a sequence {f P̃i ∈ conv(fPni , fPni+1 , ...)}i≥1 such that f P̃i

converges to f P̂ in L
q
F(P)-norm by Theorem 5.4 in the Appendix.

For any η ∈ L
2p,M
C (P) and i ∈ N,

lim
i→∞

E|f P̃i(ξ − η)2 − f P̂ (ξ − η)2| ≤ lim
i→∞

||(f P̃i − f P̂ )||Lq(P)||(ξ − η)2||Lp(P) = 0,

which leads to

lim
i→∞

E[f P̃i(ξ − η)2] = E[f P̂ (ξ − η)2].

On the other hand,

|α(f P̂ )− α(f P̃i)| = | sup
ζ∈Aρ

E[f P̂ ζ]− sup
ζ∈Aρ

E[f P̃iζ]| ≤ sup
ζ∈Aρ

E[|(f P̂ − f P̃i)ζ|]

≤ sup
ζ∈Aρ

||(f P̃i − f P̂ )||Lq(P)||ζ||Lp(P).

Then,

lim
i→∞

[E[[f P̃i(ξ − η)2]− α(f P̃i)] = E[f P̂ (ξ − η)2]− α(f P̂ )].

Since

[E[f P̃i(ξ − η)2]− α(f P̃i)] ≥ inf
η̃∈L

2p,M

C
(P)

[E[f P̃i(ξ − η̃)2]− α(f P̃i)]

for any η ∈ L
2p,M
C (P), we have that

lim
i→∞

[E[f P̃i(ξ − η)2]− α(f P̃i)] ≥ lim sup
i→∞

inf
η̃∈L

2p,M
C

(P)
[E[f P̃i(ξ − η̃)2]− α(f P̃i)].

16



It yields that

inf
η∈L

2p,M

C
(P)[E[f

P̂ (ξ − η)2]− α(P̂ )]

= inf
η∈L

2p,M
C

(P) limi→∞[E[f P̃i(ξ − η)2]− α(f P̃i)]

≥ lim supi→∞ inf
η̃∈L

2p,M

C
(P)[E[f

P̃i(ξ − η̃)2]− α(f P̃i)].

(4.2)

As α(·) is a convex function and f P̃i ∈ conv(fPni , fPni+1 , ...), we have

lim sup
i→∞

inf
η̃∈L

2p,M
C

(P)
[E[f P̃i(ξ − η̃)2]− α(f P̃i)] ≥ β. (4.3)

Combining (4.2) and (4.3), we obtain the result.

Corollary 4.16 Suppose that Assumption 4.9 holds. Then for a given ξ ∈ L
4p
F (P), there exists a P̂ ∈ P

such that

inf
η∈L

2p

C
(P)

[E
P̂
[(ξ − η)2]− α(P̂ )] = sup

P∈P

inf
η∈L

2p

C
(P)

[EP [(ξ − η)2]− α(P )].

Proof. Choose P̂ as in Proposition 4.15. By Propositions 4.12 and 4.15, the following relations hold

sup
P∈P

inf
η∈L

2p

C
(P)

[EP [(ξ − η)2]− α(P )] = sup
P∈P

inf
η∈L

2p,M

C
(P)

[EP [(ξ − η)2]− α(P )]

= inf
η∈L

2p,M

C
(P)

[E
P̂
[(ξ − η)2]− α(P̂ )] = inf

η∈L
2p
C

(P)
[E

P̂
[(ξ − η)2]− α(P̂ )].

This completes the proof.

Theorem 4.17 (Existence theorem) Suppose that Assumption 4.9 holds. Then there exists a η̂ ∈ L
2p
C (P)

which solves problem (4.1).

Proof. For given ξ ∈ L
4p
F (P), η ∈ L

2p
C (P) and P ∈ P , it is easy to check that l(ξ, ·, fP ) is convex on L

2p
C (P)

and l(ξ, η, ·) is concave on L
q
F(P). As D is σ(Lq

F (P), L
p
F(P))-compact and l(ξ, η, ·) is u.s.c on the topology

space (Lq
F(P), σ(L

q
F (P)

, L
p
F(P))) by Lemma 4.14, we have

inf
η∈L

2p
C

(P)
max
P∈P

[EP [(ξ − η)2]− α(P )] = max
P∈P

inf
η∈L

2p
C

(P)
[EP [(ξ − η)2]− α(P )];

inf
η∈L

2p,M
C

(P)
max
P∈P

[EP [(ξ − η)2]− α(P )] = max
P∈P

inf
η∈L

2p,M
C

(P)
[EP [(ξ − η)2]− α(P )]

by Proposition 4.15, Corollary 4.16 and Theorem 5.1 in the Appendix. With the help of Proportion 4.12,

inf
η∈L

2p

C
(P)

max
P∈P

[EP [(ξ − η)2]− α(P )] = inf
η∈L

2p,M

C
(P)

max
P∈P

[EP [(ξ − η)2]− α(P )].

Therefore, we can take a sequence {ηn;n ∈ N} ⊂ L
2p,M
C (P) such that

ρ(ξ − ηn)
2 < β +

1

2n
,
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where β := infη∈L
2p

C
(P) ρ(ξ−η)2. Since L2p,M

C (P) is a weakly compact set, we can take a subsequence {ηni
}i∈N

of {ηn}n∈N which weakly converges to some η̂ ∈ L
2p,M
C (P). By theorem 5.4 in the Appendix, there exists a

sequence {η̃i ∈ conv(ηni
, ηni+1

, · · · )}i∈N such that η̃i converges to η̂ in L
2p
C (P)-norm. Then

ρ(ξ − η̂)2= ρ(ξ − η̃i + η̃i − η̂)2

= supP∈P [EP [(ξ − η̃i)
2 + (η̃i − η̂)2 + 2(ξ − η̃i)(η̃i − η̂)]− α(P )]

≤ supP∈P [EP [(ξ − η̃i)
2]− α(P )] + supP∈P EP [(η̃i − η̂)2

+2(ξ − η̃i)(η̃i − η̂)]

= ρ(ξ − η̃i)
2 + supP∈P EP [−(η̃i − η̂)2 + 2(ξ − η̂)(η̃i − η̂)]

≤ β + 1
2i−1 + 2 supP∈P ||fP ||Lq ||η̃i − η̂||L2p(1 + ||ξ − η̂||L2p).

(4.4)

As (4.4) holds for any i ≥ 1, we have that ρ(ξ − η̂)2 = β.

4.2.2 Uniqueness

In this subsection, we prove that the optimal solution of problem (4.1) is unique.

Proposition 4.18 Suppose that Assumption 4.9 holds. If η̂ is an optimal solution of problem (4.1), then

there exists a P̂ ∈ P such that η̂ = E
P̂
[ξ|C].

Proof. If η̂ is an optimal solution of problem (4.1), then there exists a P̂ ∈ P such that

sup
P∈P

[E[fP (ξ − η̂)2]− α(P )]

= max
P∈P

[E[fP (ξ − η̂)2]− α(P )]

= inf
η∈L

2p
C

(P)
max
P∈P

[E[fP (ξ − η)2]− α(P )]

= max
P∈P

inf
η∈L

2p

C
(P)

[E[fP (ξ − η)2]− α(P )]

= inf
η∈L

2p
C

(P)
[E[f P̂ (ξ − η)2]− α(P̂ )]

by Corollary 4.16, Theorem 4.17 and Theorem 5.1 in the Appendix. Thus, by Theorem 5.2 in the Appendix,

(η̂, P̂ ) is a saddle point, i.e., for ∀P ∈ P , η ∈ L
2p
C (P), we have

E[fP (ξ − η̂)2]− α(P ) ≤ E[f P̂ (ξ − η̂)2]− α(P̂ ) ≤ E[f P̂ (ξ − η)2]− α(P̂ ).

This shows that if η̂ is an optimal solution, then there exists a P̂ ∈ P such that η̂ = E
P̂
[ξ|C] by the

project property of conditional expectations.

Theorem 4.19 (Uniqueness theorem) Suppose that Assumption 4.9 holds.

Then, the optimal solution of problem (4.1) is unique.
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Proof. Suppose that there exist two optimal solutions η̂1 and η̂2. Denote the corresponding probabilities in

Proposition 4.18 by P̂1 and P̂2 respectively. Then η̂1 = E
P̂1
[ξ|C] and η̂2 = E

P̂2
[ξ|C]. For λ ∈ (0, 1), set

Pλ = λP̂1 + (1− λ)P̂2,

λ
P̂1

= λEPλ [
dP̂1

dPλ
|C],

λ
P̂2

= (1− λ)EPλ [
dP̂2

dPλ
|C].

It is easy to verify that λ
P̂1

+ λ
P̂2

= 1 and EPλ [ξ|C] = λ
P̂1
η̂1 + λ

P̂2
η̂2. Noticing that E

P̂i
[ξ − η̂i|C] = 0,

i = 1, 2, then we have the following inequality (Details of the calculation can be found in Lemma 5.5 in the

Appendix):

EPλ [(ξ − EPλ [ξ|C])2]− α(Pλ)

=EPλ [(ξ − λ
P̂1
η̂1 − λ

P̂2
η̂2)

2]− α(Pλ)

=EPλ [(λ
P̂1
(ξ − η̂1) + λ

P̂2
(ξ − η̂2))

2]− α(Pλ)

=EPλ [λP̂1
(ξ − η̂1)

2 + λ
P̂2
(ξ − η̂2)

2 − λ
P̂1
λ
P̂2
(η̂1 − η̂2)

2]− α(Pλ)

=λE
P̂1
[(ξ − η̂1)

2 − λ
P̂2
((ξ − η̂1)

2 − (ξ − η̂2)
2 + (η̂1 − η̂2)

2) + λ2
P̂2

(η̂1 − η̂2)
2]

+(1− λ)E
P̂2
[λ

P̂1
((ξ − η̂1)

2 − (ξ − η̂2)
2 − (η̂1 − η̂2)

2) + (ξ − η̂2)
2 + λ2

P̂1

(η̂1 − η̂2)
2]

−α(Pλ)

=λE
P̂1
[(ξ − η̂1)

2] + λE
P̂1
[λ2

P̂2

(η̂1 − η̂2)
2]) + (1− λ)E

P̂2
[(ξ − η̂2)

2]− α(Pλ)

+(1− λ)E
P̂2
[λ2

P̂1

(η̂1 − η̂2)
2].

Set β = infη∈L
2p

C
(P) ρ(ξ − η)2. By the above equation and the convexity of α(·),

EPλ [(ξ − EPλ [ξ|C])2]− α(Pλ)

≥λE
P̂1
[(ξ − η̂1)

2] + (1− λ)E
P̂2
[(ξ − η̂2)

2]− [λα(P̂1) + (1− λ)α(P̂2)]

+λE
P̂1
[λ2

P̂2

(η̂1 − η̂2)
2] + (1− λ)E

P̂2
[λ2

P̂1

(η̂1 − η̂2)
2]

=β + λE
P̂1
[λ2

P̂2

(η̂1 − η̂2)
2] + (1− λ)E

P̂2
[λ2

P̂1

(η̂1 − η̂2)
2]

≥β.

(4.5)

On the other hand, since (η̂1, P̂1) is a saddle point, we have

EPλ [(ξ − EPλ [ξ|C])2]− α(Pλ) ≤ EPλ [(ξ − η̂1)
2]− α(Pλ) ≤ E

P̂1
[(ξ − η̂1)

2]− α(P̂1) = β.

It yields that EPλ [(ξ − EPλ [ξ|C])2]− α(Pλ) = β. By (4.5), we deduce that η̂1 = η̂2 P-a.s..

19



4.2.3 Properties of the minimum mean square estimator

Finally, in this subsection, we will list some properties of the MMSE ρ(ξ|C).

Proposition 4.20 If a convex operator ρ(·) is stable and proper, then for any ξ ∈ L
4p
F (P), we have:

i) If C1 ≤ ξ(ω) ≤ C2 for two constants C1 and C2, then C1 ≤ ρ(ξ|C) ≤ C2;

ii) ρ(−ξ|C) = −ρ(ξ|C);

iii) For any given η0 ∈ L
2p
C (P), we have ρ(ξ + η0|C) = ρ(ξ|C) + η0;

iv) If ξ is independent of the sub σ-algebra C under every probability measure P ∈ P, then ρ(ξ|C) is a

constant.

Proof. i) If C1 ≤ ξ(ω) ≤ C2, then for any P ∈ P , C1 ≤ EP [ξ|C] ≤ C2. According to the proof of Theorem

4.19, ρ(ξ|C) ∈ {EP [ξ|C];P ∈ P} which leads to C1 ≤ ρ(ξ|C) ≤ C2.

ii) Since

ρ(ξ − ρ(ξ|C))2 = inf
η∈L

2p
C

(P)
ρ(ξ − η)2 = inf

η∈L
2p
C

(P)
ρ(ξ + η)2 = inf

η∈L
2p
C

(P)
ρ(−ξ − η)2,

we have

ρ(−ξ − (−ρ(ξ|C)))2 = inf
η∈L

2p

C
(P)

ρ(−ξ − η)2.

By Theorem 4.19, −ρ(ξ|C) = ρ(−ξ|C).

iii) Note that

ρ(ξ + η0 − (η0 + ρ(ξ|C)))2 = ρ(ξ − ρ(ξ|C))2 = inf
η∈L

2p

C
(P)

ρ(ξ − η)2 = inf
η∈L

2p

C
(P)

ρ(ξ + η0 − η)2.

By Theorem 4.19, we have η0 + ρ(ξ|C) = ρ(ξ + η0|C).

iv) If ξ is independent of the sub σ-algebra C under every P ∈ P , then EP [ξ|C] is a constant for any

P ∈ P . Since ρ(ξ|C) ∈ {EP [ξ|C];P ∈ P}, we know that ρ(ξ|C) is a constant. This completes the proof.

5 Appendix

For the convenience of the reader, we list the main theorems used in our proofs.

Theorem 5.1 (Fan [16] Theorem 2) Let X be a compact Hausdorff space and Y be an arbitrary set.

Let F be a real valued function defined on X × Y such that, for every y ∈ Y, F (x, y) is a l.s.c(lower-

semicontinuous) on X . If F is convex on X and concave on Y, then

min
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

min
x∈X

F (x, y).

Proof. Refer to Theorem 2 in [16].

Theorem 5.2 (Zǎlinescu [37] Theorem 2.10.1) Let A and B be two nonempty sets and f from A×B

to R
⋃

{∞}. Then f has saddle points, i.e., there exists (x̄, ȳ) ∈ A×B such that

∀x ∈ A, ∀y ∈ B : f(x, ȳ) ≤ f(x̄, ȳ) ≤ f(x̄, y)
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if and only if

inf
y∈B

f(x̄, y) = max
x∈A

inf
y∈B

f(x, y) = min
y∈B

sup
x∈A

f(x, y) = sup
x∈A

f(x, ȳ).

Theorem 5.3 (Girsanov [18]) We suppose that φ(t, ω) satisfies the following conditions:

(1) φ(·, ·) are measurable in both variables;

(2) φ(t, ·) is Ft-measurable for fixed t;

(3)
∫ T

0 |φ(t, ω)|2dt < ∞ almost everywhere; and 0 < c1 ≤ |φ(t, ω)| ≤ c2 for almost all (t, ω), then exp[αζts(φ)]

is integrable and for α > 1

exp
[(α2 − α)

2
(t− s)c21

]

≤ E[exp[αζts(φ)]] ≤ exp
[(α2 − α)

2
(t− s)c22

]

(5.1)

where ζts(φ) =
∫ t

s
φ(u, ω)dwu − 1

2

∫ t

s
φ2(u, ω)du.

Theorem 5.4 (Kôsaku Yosida [36]) Let (X, ‖·‖) be a Banach space and {xn}n∈N be a sequence in X that

converges weakly to some x ∈ X. Then there exists, for any ǫ > 0, a convex combination
∑n

j=1 αjxj , (αj ≥

0,
∑n

j=1 αj = 1) such that ‖x−
∑n

j=1 αjxj‖ ≤ ǫ.

Lemma 5.5 Let η̂1 = E
P̂1
[ξ|C], η̂2 = E

P̂2
[ξ|C], Pλ = λP̂1 + (1 − λ)P̂2, λ

P̂1
= λEPλ

[

dP̂1

dPλ |C
]

, λ
P̂2

=

(1− λ)EPλ

[

dP̂2

dPλ |C
]

. Then we have

EPλ [(ξ − λ
P̂1
η̂1 − λ

P̂2
η̂2)

2]− α(Pλ)

=λE
P̂1

[

(ξ − η̂1)
2
]

+ (1 − λ)E
P̂2

[

(ξ − η̂2)
2
]

+ λE
P̂1

[

λ2
P̂2
(η̂1 − η̂2)

2
]

+ (1 − λ)E
P̂2

[

λ2
P̂1
(η̂1 − η̂2)

2
]

− α(Pλ).

Proof.
EPλ [(ξ − λ

P̂1
η̂1 − λ

P̂2
η̂2)

2]− α(Pλ)

=EPλ

[(

λ
P̂1
(ξ − η̂1) + λ

P̂2
(ξ − η̂2)

)2]
− α(Pλ)

=EPλ

[

λ2
P̂1
(ξ − η̂1)

2 + λ2
P̂2
(ξ − η̂2)

2 + 2λ
P̂1
λ
P̂2
(ξ − η̂1)(ξ − η̂1)

]

− α(Pλ)

=EPλ

[

λ
P̂1
(ξ − η̂1)

2 + λ
P̂2
(ξ − η̂2)

2 − λ
P̂1
λ
P̂2
(η̂1 − η̂2)

2
]

− α(Pλ)

=λE
P̂1
[λ

P̂1
(ξ − η̂1)

2] + (1− λ)E
P̂2
[λ

P̂1
(ξ − η̂1)

2] + λE
P̂1
[λ

P̂2
(ξ − η̂2)

2]

+ (1− λ)E
P̂2
[λ

P̂2
(ξ − η̂2)

2]− λE
P̂1
[λ

P̂1
λ
P̂2
(η̂1 − η̂2)

2]

− (1− λ)E
P̂2
[λ

P̂1
λ
P̂2
(η̂1 − η̂2)

2]− α(Pλ)

=λE
P̂1
[(ξ − η̂1)

2] + (1− λ)E
P̂2
[(ξ − η̂1)

2]− (1− λ)E
P̂2
[λ

P̂2
(ξ − η̂1)

2]

+ λE
P̂1
[(ξ − η̂2)

2]− λE
P̂1
[λ

P̂1
(ξ − η̂2)

2] + (1 − λ)E
P̂2
[(ξ − η̂2)

2]

− λE
P̂1
[λ

P̂2
(ξ − η̂1)

2]− (1 − λ)E
P̂2
[λ

P̂1
(ξ − η̂2)

2]− λE
P̂1
[λ

P̂1
λ
P̂2
(η̂1 − η̂2)

2]

− (1− λ)E
P̂2
[λ

P̂1
λ
P̂2
(η̂1 − η̂2)

2]− α(Pλ).

(5.2)

Since

(1− λ)E
P̂2
[(ξ − η̂1)

2] = (1− λ)E
P̂2
[(λ

P̂1
+ λ

P̂2
)(ξ − η̂1)

2]

and

λE
P̂1
[(ξ − η̂2)

2] = λE
P̂1
[(λ

P̂1
+ λ

P̂2
)(ξ − η̂2)

2],
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it results in that

(5.2) = λE
P̂1
[λ

P̂2
(ξ − η̂2)

2 − λ
P̂2
(ξ − η̂1)

2] + (1 − λ)E
P̂2
[λ

P̂1
(ξ − η̂1)

2 − λ
P̂1
(ξ − η̂2)

2]

− λE
P̂1
[λ

P̂1
λ
P̂2
(η̂1 − η̂2)

2]− (1− λ)E
P̂2
[λ

P̂1
λ
P̂2
(η̂1 − η̂2)

2] + λE
P̂1
[(ξ − η̂1)

2]

+ (1 − λ)E
P̂2
[(ξ − η̂2)

2].

Firstly, we calculate the items with respect to the expectation λE
P̂1
[·], the following relations hold:

λ
P̂2
(ξ2 + η̂22 − 2ξη̂2)− λ

P̂2
(ξ2 + η̂21 − 2ξη̂1)− λ

P̂1
λ
P̂2
(η̂1 − η̂2)

2

=λ
P̂2
[2η̂1(η̂2 − η̂1) + 2ξ(η̂1 − η̂2)] + λ2

P̂2
(η̂1 − η̂2)

2

=λ
P̂2
[2(ξ − η̂1)(η̂1 − η̂2)] + λ2

P̂2
(η̂1 − η̂2)

2.

Since λ
P̂2
(η̂1− η̂2) is C-measurable and (ξ− η̂1) is orthogonal with σ-algebra C under probability measure

P̂1, it results that

λE
P̂1
[λ

P̂2
2(ξ − η̂1)(η̂1 − η̂2)] = λE

P̂1
[λ

P̂2
(η̂1 − η̂2)]EP̂1

[2(ξ − η̂1)] = 0.

Secondly, we can also similarly calculate the items with respect to the expectation (1−λ)E
P̂2
[·]. Finally,

the equation (5.2) can be expressed as

EPλ [(ξ − λ
P̂1
η̂1 − λ

P̂2
η̂2)

2]− α(Pλ)

=λE
P̂1

[

(ξ − η̂1)
2
]

+ (1 − λ)E
P̂2

[

(ξ − η̂2)
2
]

+ λE
P̂1

[

λ2
P̂2
(η̂1 − η̂2)

2
]

+ (1 − λ)E
P̂2

[

λ2
P̂1
(η̂1 − η̂2)

2
]

− α(Pλ).

This completes the proof.
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