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Abstract. This paper studies an infinite horizon optimal control problem for discrete-time linear
systems and quadratic criteria, both with random parameters which are independent and identically
distributed with respect to time. A classical approach is to solve an algebraic Riccati equation that
involves mathematical expectations and requires certain statistical information of the parameters.
In this paper, we propose an online iterative algorithm in the spirit of Q-learning for the situation
where only one random sample of parameters emerges at each time step. The first theorem proves
the equivalence of three properties: the convergence of the learning sequence, the well-posedness of
the control problem, and the solvability of the algebraic Riccati equation. The second theorem shows
that the adaptive feedback control in terms of the learning sequence stabilizes the system as long as
the control problem is well-posed. Numerical examples are presented to illustrate our results.
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1. Introduction and main results. This paper aims to propose an online algo-
rithm to solve the infinite horizon linear quadratic (LQ) control problem for discrete-
time systems with random parameters. Given an initial state x0 = x ∈ Rn, the system
evolves as

xt+1 = Λt+1

[
xt
ut

]
, t = 0, 1, 2, . . . , (1.1)

where xt ∈ Rn denotes the state and ut ∈ Rm the control at time t; the cost function
is defined as

J(x, u·) =

∞∑
t=0

[
xTt , u

T
t

]
Nt+1

[
xt
ut

]
. (1.2)

The random parameters Λt+1 and Nt+1 that affect the system from t to t + 1 are
not exposed until time t + 1. The objective of this control problem is to minimize
the expected value of the cost function among all admissible controls; the selection of
such a control ut is only based on the information of parameters up to time t. In this
paper, we assume that Nt is positive semidefinite, and the random matrices [ΛT

t , Nt]
with t = 1, 2, . . . are independent and identically distributed, but their statistical
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information is previously unknown. In what follows, [ΛT, N ] denotes an independent
copy of [ΛT

1 , N1].
The study of optimal control of discrete-time linear systems with independent

random parameters can date back to Kalman [19] in 1961, motivated by random
sampling systems [20]. Unsurprisingly, such models arise also in many other situations,
for instance, control systems that involve state and control-dependent noise [12, 22,
16], digital control of diffusion processes [29], and macroeconomic systems [10, 3]
where the randomness of parameters of econometric models is taken into account.

Due to the wide application background, the LQ problem with random parameters
has been extensively studied (see [19, 12, 1, 5, 21, 11, 23, 35, 25, 6, 17, 32] for example).
As far as the infinite horizon problem is concerned, the key issues addressed mostly
in the literature include:
• to determine whether the LQ problem is well-posed, i.e., the value function

V (x) := inf
u·

E[J(x, u·)] (1.3)

is finite for all x ∈ Rn; and if it is well-posed,
• to construct an optimal control u?· for each x such that E[J(x, u?· )] = V (x).

Moreover, it is known that the well-posedness issue has an intimate link to stabiliz-
ability of the system (1.1) which in itself is an important topic and has also been
widely discussed (see [22, 21, 11, 23, 34] for example).

For the above issues, a commonly used approach in the literature is to apply
stochastic dynamic programming [2] to the LQ problem, resulting in an algebraic
Riccati equation (ARE) that characterizes the value function and the optimal (feed-
back) control. In this sense, the problem can be perfectly solved if the distribution
of the random parameters are known. To capture more mathematical insights, let us
quickly look at the informal derivation. The value function, if it is finite, is believed
to be a quadratic form, say, V (x) = xTKx with some positive semidefinite matrix K,
then Bellman’s principle of optimality gives that

xTKx = inf
ut

E
{[
xTt , u

T
t

]
Nt+1

[
xt
ut

]
+ xTt+1Kxt+1

∣∣∣∣xt = x

}
= inf

ut
E
{[
xTt , u

T
t

]
(Nt+1 + ΛT

t+1KΛt+1)

[
xt
ut

] ∣∣∣∣xt = x

}
= min
u∈Rm

[
xT, uT

](
E[Nt+1 + ΛT

t+1KΛt+1]
) [x
u

]
∀x ∈ Rn;

(1.4)

the last unconditional extremum can be solved out explicitly. To proceed further,
let us introduce some notations used frequently in this paper. Let Sd+ be the set of
positive semidefinite d× d-matrices with d = n+m, and for any P ∈ Sd+ we refer to
its certain submatrices according to the following partition:

P =

[
Pxx Pxu
Pux Puu

]
with Pxx ∈ Rn×n, (1.5)

and define the following two mappings:

Π(P ) := Pxx − PxuP+
uuPux,

Γ(P ) := −P+
uuPux,

(1.6)

where P+
uu denotes the Moore–Penrose pseudoinverse of Puu. Using the above nota-

tions, one can easily obtain from (1.4) that

K = Π(E[N + ΛTKΛ]), (1.7)
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Algorithm 1 Q-learning for LQ problem with random parameters

1: Set the initial matrix Q0.
2: while not converged do
3: Qt+1 ← Qt + αt(Nt+1 + ΛT

t+1Π(Qt)Λt+1 −Qt).
4: end while

which is exactly the algebraic Riccati equation (ARE) for LQ problem (1.1)–(1.2).
Moreover, the infimum in (1.4) can be achieved by taking

ut = Γ(E[N + ΛTKΛ])xt,

which gives the optimal feedback control of the LQ problem. In principle, to com-
pute the expectation in (1.7) one need know certain statistical information of the
parameters Nt and Λt.

The above argument can be rigorized without much effort; actually, under rather
general settings, LQ problem (1.1)–(1.2) is well-posed if and only if ARE (1.7) has
a solution (see [11, 23] or Theorem 1.1 below). Utilizing this relation, some useful
criteria for well-posedness of infinite horizon LQ problems are obtained in the pa-
pers [12, 5, 21, 11] under various circumstances where the mathematical expectation
in ARE (1.7) can be evaluated accurately.

A natural question is, how to solve LQ problem (1.1)–(1.2) when the statistical
information of the parameters is inadequate and ARE (1.7) fails to work.

In this paper we propose a Q-learning algorithm to tackle this question. Q-
learning is a value-based reinforcement learning algorithm which is used to find the
optimal control policy using a state-control value function, called the Q-function or
Q-factor, instead of the usual value function in dynamic programming; see [7, 28]. The
original and most widely known Q-learning algorithm of Watkins [33] is a stochastic
version of value iteration, applying to Markov decision problems with unknown costs
and transition probabilities. The starting point is to reformulate Bellman’s equation
into an equivalent form that is particularly convenient for deriving learning algorithm.
Let us briefly illustrate how this works in our case. Defining

Q∗ = E[N + ΛTKΛ] ∈ Rd×d,

ARE (1.7) are equivalent to the following equation:

Q∗ = E[N + ΛTΠ(Q∗)Λ]. (1.8)

The mathematical convenience of this reformulation derives from the fact that the
nonlinear operator Π(·) appears inside the expectation in (1.8), whereas it appears
outside the expectation in ARE (1.7). This fact plays an important role in the feasi-
bility and convergence of Q-learning algorithms.

Algorithm 1 presented above is our Q-learning algorithm for LQ problem (1.1)–
(1.2), where the learning rate sequence (αt ∈ [0, 1] : t = 0, 1, . . . ) satisfies

∞∑
t=0

αt =∞ and

∞∑
t=0

α2
t <∞, (1.9)

which can be random as long as αt is measurable to σ{Λs, Ns : s = 1, . . . , t}. The
objective of this algorithm is to learn the matrix Q∗ (if it exists) that solves (1.8),
based on the observed samples of the parameters.
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Algorithm 1 is an online learning algorithm. As pointed out by Tsitsiklis [31], the
Q-learning algorithm is recursive and each new piece of information of the parameters
is immediately used for computing an additive correction term to the old estimates.
The iteration in Algorithm 1, i.e.,

Qt+1 = Qt + αt(Nt+1 + ΛT
t+1Π(Qt)Λt+1 −Qt) (1.10)

can be regarded as a stochastic version of the standard fixed-point iteration based on
the equation (1.8).

The first theorem of this paper draws a full picture of the relationship among the
LQ problem, ARE, and the Q-learning algorithm.

Theorem 1.1. Let (Qt)t≥0 be the sequence constructed in Algorithm 1. In
addition to the above setting, we assume that E[‖N‖22 + ‖ΛTΛ‖22] is finite and E[N ] is
positive definite.

Then, the following statements are equivalent:
a) LQ problem (1.1)–(1.2) is well-posed;
b) ARE (1.7) admits a solution K;
c) (Qt)t≥0 is bounded with a positive probability;
d) (Qt)t≥0 converges almost surely (a.s.) to a deterministic matrix Q? ∈ Sd+.

Moreover, if either statement is valid, one has the following properties:
1) the value function V (x) = xTKx for all x ∈ Rn;
2) the solution of ARE (1.7) is unique and given by K = Π(Q?);
3) the optimal control is given by feedback form u?t = Γ(Q?)xt;
4) Q? satisfies (1.8), i.e., Q? = E[N + ΛTΠ(Q?)Λ],

where the mappings Π(·) and Γ(·) are defined in (1.6).
In the theorem, we use ‖·‖2 to denote the 2-norm of Matrix. It is worth noting that

statement (c) in this theorem looks relatively weak, but it still implies the convergence
of Qt and the well-posedness of the LQ problem. Form above theorem, the sequence
Qt is either convergent or divergent with probability 1. So we have

Corollary 1.2. The probability that (Qt)t≥0 is bounded is either 0 or 1.
This zero-one law endows the algorithm with great applicability. Indeed, this

proves, at least theoretically, that just running or stimulating the system for one
sample trajectory, we can almost certainly detect whether the LQ problem is well-
posed or not, and also obtain the desired matrix Q? if it exists.

The next theorem concerns the stabilization of system (1.1). We say system (1.1)
is stabilizable a.s. if under some control the state vanishes a.s. as time tends to
infinity. In terms of the sequence Qt from Algorithm 1, it is natural to construct an
adaptive feedback control

ua
t = Γ(Qt)xt. (1.11)

It will be shown that this control stabilizes the system a.s. as long as the LQ problem
is well-posed.

Theorem 1.3. Under the same setting of Theorem 1.1, if LQ problem (1.1)–(1.2)
is well-posed, then the state xa

t under the control ua
t satisfies

J(x, ua
· ) <∞ and

∞∑
t=0

(
|xa
t |2 + |ua

t |2
)
<∞ (1.12)

a.s. for any initial state x ∈ Rn; consequently, the adaptive feedback control ua
· given

by (1.11) stabilizes system (1.1) a.s.
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The stabilization in this result is in the path-wise sense, whereas a relevant
definition widely used in the literature is called the mean-square stabilization, i.e.,
the second-order moment of the state, E[‖xt‖22], tends to zero under certain control
(see [11, 34] from example). Either of these two definitions cannot cover each other,
while the path-wise one is relatively suitable in our setting because our learning algo-
rithm is carried out along one single sample path. Nevertheless, certain modification
of the adaptive feedback control (1.11) may stabilize the system in these two sense
simultaneously; one possible way is to cut-off the feedback coefficient Γ(Qt) when its
norm is larger than some given bound. The details are left to interested readers.

Let us give some remarks from the technical aspect. Like the original Q-learning,
our algorithm can also be embedded into a broad class of stochastic approximation
algorithms studied in [18, 31], two celebrated papers that give rigorous convergence
proofs of the original Q-learning. However, the results in those papers cannot apply
to Algorithm 1 directly for two reasons: firstly, they all require certain contraction
conditions which are not satisfied in our case, and secondly, the partial order of
vectors used in [31] are substantially different from that of symmetric matrices, so
the monotonicity condition required there is not satisfied either. In the proof of
Theorem 1.1 we adopt the comparison argument from [31]. The crucial fact we used
is the monotonicity property of Π(·), which helps us construct upper and lower bounds
forQt from ARE on the one hand, and an upper bound for the approximating sequence
of ARE from Qt on the other hand. The equivalence of statements (a) and (b), i.e.,
the well-posdness of LQ problem and the solvability of ARE, is proved by means of
Bellman’s principle of optimality; similar results can be found in [11, 23] where the
control is restricted in the feedback form.

The conditions of our results are quite general. The positive definiteness of E[N ]
can be weakened to some extent (see Remark 3.8), which ensures the same property
of the solution of ARE and the limit Q? (in this case the pseudoinverses in (1.7) and
Π(Q?) are the standard matrix inverses). The finiteness of E[‖N‖22 + ‖ΛTΛ‖22] is a
natural condition to prove the convergence of Algorithm 1 by use of some classical
results from stochastic approximation theory. In applications, the verification of these
conditions may depend on certain qualitative properties of specific systems rather
than the full statistical information of parameters. For example, the conditions are
automatically satisfied if Λ,N are bounded and N is positive definite a.s. Numerical
examples are presented in Section 5. Nevertheless, it would be interesting to extend
the results to the indefinite case, in which the matrix N is not necessarily positive
semidefinite. The indefinite LQ problem has applications in many fields such as
robust control, mathematical finance, and so on; for more details, we refer the reader
to [27, 9, 26, 24].

As far as LQ problems with unknown parameters are concerned, our approach
is different from the well-known adaptive control [4] in some respects. First, the
types of randomness are different: the noise in our model is multiplicative and has
no specific structure, whereas most of control systems studied in adaptive control
are perturbed by additive noise, for example, the linear–quadratic–Gaussian control
problem (see [8, 13, 15, 4] and references therein); as for multiplicative noise, the
adaptive control algorithms proposed in [1, 30], of which the convergence are not
proved, still specify the type of noise and how it enters into the system. Second, a
typical adaptive control algorithm consists of two parts: parameter estimation (or
system identification) and control law, while in our approach we do not pursuit to
identify the system but directly learn the state-control value function that yields the
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value function and control law. Nevertheless, an adaptive control algorithm usually
makes use of the inputs and outputs of the system, but not the direct observation of
the sample of parameters as we do in this paper. Obviously, in a period [t, t+ 1], the
information of inputs and outputs is often insufficient to determine the exact value of
the sample of parameters. Modification of our algorithm based on inputs and outputs
is expected in future work.

The rest of this paper is organized as follows. Section 2 presents some auxiliary
lemmas. The whole of Section 3 is devoted to the proof of Theorem 1.1, split into
five subsections. Section 4 gives the proof of Theorem 1.3. Numerical examples and
further discussion are presented in Section 5.

2. Auxiliary lemmas. Let us introduce some notations used in what follows.
For a vector x and a matrix M , |x| and ‖M‖2 denote their 2-norms, respectively.
For two symmetric matrices M1,M2 with the same size, we write M1 ≥ M2 (resp.
M1 > M2) if M1−M2 is positive semidefinite (resp. definite); the notations M1 ≤M2

and M1 < M2 are similarly understood. In denotes the n× n identity matrix, and O
the zero matrix whose size is determined by the context.

Lemma 2.1. For any Q1, Q2 ∈ Sd+, we have

Π(Q1 +Q2) ≥ Π(Q1) + Π(Q2). (2.1)

In particular, if Q1 ≤ Q2 then Π(Q1) ≤ Π(Q2).
Proof. Recalling the definition of Π(·) in (1.6), one has that

min
v∈Rm

[
x
v

]T
Q

[
x
v

]
= xTΠ(Q)x, ∀Q ∈ Sd+, x ∈ Rd, (2.2)

which implies

xTΠ(Q1 +Q2)x ≥ xTΠ(Q1)x+ xTΠ(Q2)x.

So (2.1) is proved.
Notice that Π(Q) ≥ O for any Q ∈ Sd+. If Q1 ≤ Q2, then

Π(Q2) ≥ Π(Q1) + Π(Q2 −Q1) ≥ Π(Q1).

This concludes the proof.
The coming result about a deterministic recursion is elementary.
Lemma 2.2. Let (ft : t = 0, 1, 2, . . . ) be a bounded real valued sequence, and

(βt) ⊂ [0, 1] satisfy
∑
t βt =∞. Suppose the sequence yt satisfies

yt+1 ≤ (1− βt)yt + βtft.

Then

lim sup
t→∞

yt ≤ lim sup
t→∞

ft.

Proof. Let f̃t = sups≥t fs. Then f̃t ≥ ft and f̃t ≥ f̃t+1 for all t = 0, 1, 2, . . . Also,

define a sequence (ỹt) with ỹ0 = |y0|+ |f̃0| and

ỹt+1 = (1− βt)ỹt + βtf̃t. (2.3)
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It follows from induction that

ỹt ≥ yt and f̃t ≤ ỹt.

Moreover, since ỹt+1 is a convex combination of ỹt and f̃t, one has ỹt+1 ≤ ỹt. There-
fore, ỹt and f̃t are both decreasing and convergent. Because the sequence

zt := ỹ0 − ỹt+1 =

t∑
s=0

βs+1(ỹs − f̃s)

is uniformly bounded, plus the facts that ỹs − f̃s is non-negative and
∑
s βs = ∞,

there is subsequence {t′} from {t} such that

lim
t′→∞

(ỹt′ − f̃t′) = 0,

which implies that ỹt and f̃t enjoy the same limit. So

lim sup
t→∞

ft = lim
t→∞

f̃t = lim
t→∞

ỹt ≥ lim sup
t→∞

yt.

The proof is complete.
The following two results of stochastic approximation are important in our argu-

ment.
Lemma 2.3. Let {Ft : t = 0, 1, 2, . . . } be a filtration on a probability space

(Ω,F ,P), and for each t, let rt and αt be Ft-adapted scalar processes, where αt ∈
[0, 1] satisfies (1.9). Suppose that there is an increasing sequence of stopping times
(τk : k = 1, 2, . . . ) such that

1. P(supk τk =∞) > 0;
2. E[1{t<τk}rt+1|Ft∧τk ] = 0 for all t, k;
3. E[1{t<τk}r

2
t+1

∣∣Ft∧τk ] ≤ µk a.s. with a sequence of deterministic numbers µk.
Let wt satisfy the recursion:

wt+1 = (1− αt)wt + αtrt+1, t = 0, 1, 2 . . .

Then limt→∞ wt = 0 on {supk τk =∞} a.s.
Proof. First of all, we assume that E[rt+1|Ft] = 0 and E[r2

t+1|Ft] ≤ µ a.s. with
some number µ. Then convergence of wt follows from some classical results in stochas-
tic approximation theory, e.g., Dvoretzky’s extended theorem [14].

Now for any k ≥ 0, define rkt = 1{t<τk}rt and Fkt = Ft∧τk . Then from the
assumptions and the above argument, the sequence wkt constructed by

wkt+1 = (1− αt)wkt + αtr
k
t+1, wk0 = w0

converges to zero a.s. Notice that wkt = wt for all t < τk, so we have limt→∞ wt = 0
on {supk τk =∞} a.s.

Lemma 2.4. Let αt be a [0, 1]-valued process adapted to a filtration Ft and satisfy
(1.9), and let Rt be an Ft-adapted process with values in a vector space equipped with
norm ‖ · ‖. Then the iterative process

Xt+1 = (1− αt)Xt + αtRt+1

converges to zero a.s. under the following assumptions:
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1. ‖E[Rt+1|Ft]‖ ≤ λ‖Xt‖ a.s. with some constant λ < 1,
2. E[‖Rt+1‖2|Ft] ≤ µt a.s., where µt ∈ Ft and P{supt |µt| <∞} = 1.

Proof. By means of stopping skill, it suffices to prove the lemma with µk domi-
nated by a constant µ. Let

St+1 = Rt+1 − E[Rt+1|Ft].

Applying Lemma 2.3, one has that the vector sequence Wt defined by

Wt+1 = (1− αt)Wt + αtSt+1

converges to zero a.s. Setting Yt = Xt −Wt, then

‖Yt+1‖ = ‖(1− αt)Yt + αtE[Rt+1|Ft]‖
≤ (1− αt)‖Yt‖+ λαt‖Yt +Wt‖

≤ [1− (1− λ)αt]‖Yt‖+ (1− λ)αt
λ

1− λ
‖Wt‖.

From Lemma 2.2 it follows that

lim sup
t→∞

‖Yt‖ ≤
λ

1− λ
lim
t→∞

‖Wt‖ = 0 a.s.

This concludes the lemma.

3. Proof of Theorem 1.1. It is easily seen that (d) ⇒ (c). In the coming five
subsections, we shall prove the relations (a) ⇒ (b), (b) ⇒ (a), (b) ⇒ (c), (c) ⇒ (b),
and (c) ⇒ (d), respectively.

Let us do some preparations. Recall that [ΛT
t , Nt] with t = 1, 2, . . . are inde-

pendent and identically distributed matrix-valued random variables on a probability
space (Ω,F ,P), and [ΛT, N ] denotes an independent copy of [ΛT

1 , N1]. Introduce the
filtration (Ft) with F0 = {∅,Ω} and

Ft = σ{Λs, Ns : s = 1, . . . , t}, t = 1, 2, . . . .

Also recall that the control sequence is allowed to be any Ft-adapted process in Rm
(not necessarily of feedback form).

It is convenient to define two mappings

Φt(Q) := Nt + ΛT
t Π(Q)Λt,

Φ(Q) := E[N + ΛTΠ(Q)Λ]
(3.1)

for Q ∈ Sd+; apparently, Φ(Q) = E[Φt(Q)].
An important fact is that Φt(·) and Φ(·) are both increasing, i.e., if Q1 ≤ Q2 then

Φt(Q1) ≤ Φt(Q2) and Φ(Q1) ≤ Φ(Q2). This follows from the monotonicity of Π(·),
see Lemma 2.1.

Occasionally, Λt ∈ Rn×d is written into a block matrix Λt = [At, Bt] with At ∈
Rn×n, then the system reads

xt+1 = At+1xt +Bt+1ut. (3.2)

From the condition of Theorem 1.1, there are two numbers ε0 ∈ (0, 1] and µ0 > 0
such that

E[N + ΛTΛ] ≥ ε0Id, E[‖N‖22 + ‖ΛTΛ‖22] ≤ µ0. (3.3)

8



Finally, we claim that, if ut ∈ L2(Ω) for all t, then xt ∈ L2(Ω) for all t. Indeed,
assuming xt ∈ L2(Ω) we compute

E[|xt+1|2|Ft] = E
{[
xTt , u

T
t

]
ΛT
t+1Λt+1

[
xt
ut

] ∣∣∣∣Ft}
=
[
xTt , u

T
t

]
(E[ΛT

t+1Λt+1])

[
xt
ut

]
≤ c(µ0)(|xt|2 + |ut|2),

thus, E[‖xt+1‖2] < ∞. The claim is so verified by induction. This ensures the well-
posedness of the LQ problem in finite horizon.

3.1. From LQ problem to ARE. Consider the optimal control in finite hori-
zon: let T be a large natural number and define

VT (x, t) = inf
ut,...,uT−1

E
{ T−1∑

s=t

[
xTs , u

T
s

]
Ns+1

[
xs
us

] ∣∣∣∣xt = x

}
.

Recalling (1.3) the value function V (·) of the original problem, it is easily seen that

VT (x, t) ≤ V (x) ∀x ∈ Rn, t = 0, 1, . . . , T − 1.

For this finite horizon problem, it follows from Bellman’s principle of optimality (cf.
[Aoki, p. 32]) that

VT (x, t) = inf
ut

E
{[
xTt , u

T
t

]
Nt+1

[
xt
ut

]
+ VT (xt+1, t+ 1)

∣∣∣∣xt = x

}
for t = 0, 1, . . . , T − 1; in particular, we set VT (x, T ) = 0. Assume that VT (x, t+ 1) is
a quadratic form for some t ≤ T − 1, namely,

VT (x, t+ 1) = xTKt+1,Tx, where Kt+1,T is a symmetric matrix.

Then VT (x, t) is also a quadratic form:

VT (x, t) = inf
ut

E
{[
xTt , u

T
t

]
Nt+1

[
xt
ut

]
+
[
xTt , u

T
t

]
ΛT
t+1Kt+1,TΛt+1

[
xt
ut

] ∣∣∣∣xt = x

}
= inf

ut
E
{[
xT, uTt

](
Nt+1 + ΛT

t+1Kt+1,TΛt+1

) [ x
ut

]}
= inf
u∈Rm

[
xT, uT

]
E[Nt+1 + ΛT

t+1Kt+1,TΛt+1]

[
x
u

]
= xTΠ(E[Nt+1 + ΛT

t+1Kt+1,TΛt+1])x

=: xTKt,Tx.

By induction, one has

VT (x, t) = xTKt,Tx ∀ t = 0, 1, . . . , T, (3.4)

where the matrices Kt,T satisfy the following algebraic Riccati equations:

Kt,T = Π(E[N + ΛTKt+1,TΛ]), KT,T = O. (3.5)
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The following result shows that ARE (1.7) has a solution as long as the LQ problem
is well-posed.

Proposition 3.1. Define a sequence {Kt : t = 0, 1, 2, . . . } recursively as follows:

K0 = O,

Kt+1 = Π(E[N + ΛTKtΛ]).
(3.6)

If LQ problem (1.1)–(1.2) is well-posed, then Kt converges to a matrix K that solves
ARE (1.7). Moreover, the solution K obtained here is the minimum solution of ARE
(1.7), i.e., K ≤ K̃ if K̃ also satisfies ARE (1.7).

Proof. Comparing (3.5) and (3.6), it is easily seen that Kt = KT−t,T for any
T > t, which along with (3.4) yields xTKT−tx = xTKt,Tx = VT (x, t). According to
its definition, VT (x, 0) is increasing in T , so KT is also increasing. Therefore, if LQ
problem (1.1)–(1.2) is well-posed, then for any unit x ∈ Rn,

xTKTx = VT (x, 0) ≤ V (x) <∞, (3.7)

which means that {xTKtx : t ≥ 0} is uniformly bounded, as Kt is increasing, this fact
implies that Kt converges to a matrix, denoted by K. From the recursive relation of
Kt, one has that K obtained satisfies ARE. Moreover, (3.7) implies that

xTKx ≤ V (x) ∀x ∈ Rn. (3.8)

Let K̃ be any solution of ARE (1.7). Since K0 = O ≤ K̃, it follows from induction and
the monotonicity of Π(·) that Kt ≤ K̃, which implies the limit K is also dominated
by K̃. The proof is complete.

3.2. From ARE to LQ problem. Assume that ARE (1.7) has a solution K.
Select the control

ut = Γxt with Γ = Γ(E[N + ΛTKΛ]), (3.9)

where Γ(·) is defined in (1.6). Recalling (3.2), the system becomes

xt+1 = (At+1 +Bt+1Γ )xt =: Āt+1xt,

and the cost function reads

J(x, Γx·) =

∞∑
t=0

xTt
[
In, Γ

T
]
Nt+1

[
In
Γ

]
xt =:

∞∑
t=0

xTt M̄t+1xt.

To show that E[J(x, Γx·)] <∞, we define

V̄T (x, t) = E
{ T−1∑

s=t

xTs M̄s+1xs

∣∣∣∣xt = x

}
.

With a similar argument as in the last subsection, one can show that there is a
symmetric matrix K̄t,T such that xTK̄t,Tx = V̄T (x, t), and

K̄t,T = E[M̄t+1 + ĀT
t+1K̄t+1,T Āt+1], K̄T,T = O.

Direct computation gives that

E[M̄t+1 + ĀT
t+1K̄t+1,T Āt+1] = Π(E[Nt+1 + ΛT

t+1K̄t+1,TΛt+1]),
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which implies K̄t,T = Kt,T , where Kt,T is defined in (3.4). Thus, one has

V̄T (x, 0) = xTK̄0,Tx = xTK0,Tx = xTKTx,

where KT is defined in (3.6). It follows from induction that KT ≤ K, so

V (x) ≤ E[J(x, Γx·)] ≤ lim sup
T→∞

V̄T (x, 0) ≤ xTKx <∞ ∀x ∈ Rn. (3.10)

Therefore, the LQ problem is well-posed.
Remark 3.2. If ARE has a unique solution K (which is proved in Lemma 3.5),

then it follows from (3.8) and (3.10) that V (x) = xTKx, and consequently, V (x) =
E[J(x, Γx·)] for all x ∈ Rn. This means that the feedback control ut = Γ(E[N +
ΛTKΛ])xt is optimal.

Remark 3.3. The assumption that E[N ] is positive definite is not used above to
prove the equivalence of statements (a) and (b), i.e., the well-posedness of LQ problem
and the solvability of ARE. Off course, if stament (a) or (b) holds, then it must have
that E[N ] is non-negative definite. But it allows E[N ] to be degenerate.

3.3. From ARE to boundedness of Qt. Assume that ARE (1.7) has a solu-
tion K. The basic idea of this part is to transform the problem into an equivalent
form in which the solution of ARE becomes the identity matrix. Denote

Q∗ := E[N + ΛTKΛ], (3.11)

Γ := Γ(Q∗) = −(Q∗uu)−1Q∗ux.

Since E[N ] ≥ ε0Id, one has

K = Π(E[N + ΛTKΛ]) ≥ Π(E[N ]) ≥ ε0In > O. (3.12)

Similarly, E[Q∗] ≥ ε0Id. Let L and M be invertible matrices such that

LTKL = In, MTQ∗uuM = Im.

Introducing

C :=

[
In O
Γ Im

] [
L O
O M

]
=

[
L O
ΓL M

]
,

we define

Λ̃t := L−1ΛtC,

Ñt := CTNtC.

It is easily verified that

In = Π(E[Ñ + Λ̃TΛ̃]).

This means, after transformation, the solution of (new) ARE is the identity matrix
In.

Now we reformulate the Q-learning process. Let

Q̃t := CTQtC.
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We define

Φ̃t(Q) := Ñt + Λ̃T
t Π(Q)Λ̃t,

Φ̃(Q) := E[Φ̃t(Q)] = E[Ñ + Λ̃TΠ(Q)Λ̃].

Observing

CTQC =


LT(QxuΓ + ΓTQux
+Qxx + ΓTQuuΓ )L

LT(Qxu + ΓTQuu)M

MT(Qux +QuuΓ )L MTQuuM

 , (3.13)

one can check that

Π(CTQC) = LTΠ(Q)L. (3.14)

Under the above transformation, the iteration in Algorithm 1 is equivalently written
into

Q̃0 = CTQ0C,

Q̃t+1 = Q̃t + αt(Φ̃t+1(Q̃t)− Q̃t).

According to Q∗ = Φ(Q∗), one can see that

Id = Φ̃(Id). (3.15)

In other words, Id is a fixed point of Φ̃(·).
Define affine mappings

Ψt(Q) := Ñt + Λ̃T
t QxxΛ̃t ≥ Φ̃t(Q) (3.16)

and

Ψ(Q) := E[Ψt(Q)] ≥ Φ̃(Q). (3.17)

Comparing to Φ̃(·), the most important property of Ψ(·) is that Ψ(·) is a contraction
mapping under matrix 2-norm. To see this, one first obtains from (3.15) and (3.17)
that

Id = Ψ(Id) = E[Ñ + Λ̃TΛ̃]. (3.18)

E[N ] > O implies E[Ñ ] > O, so there is a positive number λ < 1 such that

E[Λ̃TΛ̃] = Id − E[Ñ ] ≤ λId. (3.19)

Using an elementary fact from linear algebra: STTS ≤ ‖T‖2 STS, where T is a
symmetric matrix, one has that for any Q1, Q2 ∈ Sd+,

‖Ψ(Q1)−Ψ(Q2)‖2 = ‖E[Λ̃T(Q1,xx −Q2,xx)Λ̃]‖2
≤ ‖Q1,xx −Q2,xx‖2‖E[Λ̃TΛ̃]‖2
≤ λ‖Q1 −Q2‖2.

Since λ < 1, Ψ(·) is a contraction mapping.
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Introduce the iteration:

P0 = CTQ0C,

Pt+1 = Pt + αt(Ψt+1(Pt)− Pt).
(3.20)

From (3.16) one can see that

Q̃t ≤ Pt ∀ t = 0, 1, 2, . . . (3.21)

So Pt is an upper bound process of Q̃t.
Lemma 3.4. Under the above setting, Pt converges to Id a.s. Consequently, the

sequence Qt is bounded a.s.
Proof. Define Xt = Pt − Id. Using the relation Id = Ψ(Id), one has

Xt+1 =(1− αt)Xt + αtRt+1

with

Rt+1 := Ψt+1(Pt)−Ψ(Pt) + E[ΛT(Pt,xx − In)Λ].

Now we check that

E[Rt+1|Ft] = E[Ψt+1(Pt)−Ψ(Pt)|Ft] + E[ΛT(Pt,xx − In)Λ]

= E[ΛT(Pt,xx − In)Λ] ≤ ‖Pt,xx − In‖2E[ΛTΛ]

≤ λ‖Pt,xx − In‖2Id ≤ λ‖Xt‖2Id,

which implies ‖E[Rt+1|Ft]‖2 ≤ λ‖Xt‖2. Moreover, we have

‖Rt+1‖22 ≤ 3(‖Ψt+1(Pt)‖22 + ‖Ψ(Pt)‖22 + ‖E[ΛT(Pt,xx − In)Λ]‖22)

≤ 6(‖Nt+1‖22 + ‖ΛT
t+1Λt+1‖22‖Pt‖22 + ‖E[N ]‖22 + ‖E[ΛTΛ]‖22‖Pt‖22

+ ‖E[ΛTΛ]‖22‖Xt‖22).

Since Λt+1 is independent of Ft,

E[‖ΛT
t+1Λt+1‖22‖Pt‖22|Ft] = ‖Pt‖22 E[‖ΛT

t+1Λt+1‖22|Ft]
= ‖Pt‖22 E[‖ΛTΛ‖22].

Using the relation ‖Pt‖2 ≤ 1 + ‖Xt‖2 and recalling the constant µ0 from (3.3), one
obtains

E[‖Rt+1‖22|Ft] ≤ 12µ0 + 12µ0‖Pt‖22 + 6µ0‖Xt‖22 ≤ 36µ0 + 30µ0‖Xt‖22.

Therefore, to apply Lemma 2.4 it suffices to prove that the sequence Xt (or equiva-
lently, Pt) is bounded a.s. The proof is quite similar to that of [31, Theorem 1]. For
completeness, we give the details as follows.

Let ε > 0 satisfy λ(1 + ε) = 1, and m̃t := 1 + maxs≤t ‖Xs‖2. Define a sequence
mt ∈ Ft recursively: m0 = 1 and

mt+1 =

{
mt, if m̃t+1 ≤ mt(1 + ε),

min{(1 + ε)k : m̃t+1 ≤ (1 + ε)k}, if m̃t+1 > mt(1 + ε),

where k is an integer. Notice that ‖Xt‖2 ≤ mt(1 + ε), and ‖Xt‖2 ≤ mt if mt > mt−1.
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Define St+1 = m−1
t (Ψt+1(Pt)−Ψ(Pt)). Obviously, E[St+1|Ft] = 0; and by above

arguments, E[‖St+1‖22|Ft] < C a.s. for all t and some constant C > 0. Then it follows
from Lemma 2.4 that the sequence Zt defined by

Zt+1 = (1− αt)Zt + αtSt+1

converges to zero matrix, so there is a full probability set Ω′ ⊂ Ω and a random time
T (ω) for each ω ∈ Ω′ such that ‖Zt(ω)‖2 < ε/2 for all t ≥ T (ω).

Fix an ω ∈ Ω′. If mt(ω) = mT (ω) for all t > T (ω), then ‖Xt(ω)‖ is bounded by
mT (ω)(1 + ε), the proof is so concluded. Otherwise, there is a τ > T (ω) such that
mτ > mτ−1, thus ‖Xτ‖2 ≤ mτ . Define Zτt with Zττ = O and

Zτt+1 = (1− αt)Zτt + αtSt+1, t = τ, τ + 1, . . .

Notice that for t ≥ τ + 1,

Zt =
[ t−1∏
s=τ

(1− αs)
]
Zτ + Zτt ,

so ‖Zτt (ω)‖2 ≤ ‖Zτ (ω)‖2 + ‖Zt(ω)‖2 < ε. Next, we prove by induction that

Xt ≤ mτ (Id + Zτt ) < mτ (1 + ε)Id, t = τ, τ + 1, . . . (3.22)

This holds true when t = τ . Assume that it holds for τ, τ + 1, . . . , t. Under this
assumption, one knows that mτ = mτ+1 = · · · = mt. Defining

Ψ̂(Q) := E[ΛTQxxΛ] ≤ λ‖Q‖2Id,

we compute (recalling that λ(1 + ε) = 1)

Xt+1 = (1− αt)Xt + αtΨ̂(Xt) + αtmtSt+1

≤ (1− αt)mτ (Id + Zτt ) + αtλ‖Xt‖2Id + αtmτSt+1

< (1− αt)mτ (Id + Zτt ) + αtλmτ (1 + ε)Id + αtmτSt+1

= (1− αt)mτ (Id + Zτt ) + αtmτId + αtmτSt+1

= mτ [Id + (1− αt)Zτt + αtSt+1]

= mτ (Id + Zτt+1).

Hence, (3.22) holds true. This implies that the sequence Xt(ω) is bounded. The proof
is complete.

The above transformation can also help us prove uniqueness of the solution of
ARE (1.7).

Lemma 3.5. ARE (1.7) has at most one solution.
Proof. If ARE (1.7) is solvable, then it has a minimum solution K in view of

Proposition 3.1. Using this solution to do the transformation above, then In is the
minimum solution to the following equation for K̃:

K̃ = Π(E[Ñ + Λ̃TK̃Λ̃]).

Equivalently, Id is the minimum fixed point of Φ̃(·). Let Q̃ be any fixed point of Φ̃(·),
then

Q̃− Id = Φ̃(Q̃)− Id ≤ Ψ(Q̃)− Id = Ψ(Q̃)−Ψ(Id)

= E[ΛT(Q̃− Id)Λ] ≤ ‖Q̃− Id‖2 E[ΛTΛ].
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From (3.19) one has that

‖Q̃− Id‖2 ≤ ‖E[ΛTΛ]‖2‖Q̃− Id‖2 ≤ λ‖Q̃− Id‖2.

As λ < 1, this means ‖Q̃ − Id‖2 = 0, so Q̃ = Id, implying uniqueness of the fixed
point of Φ̃(·), and furthermore, uniqueness of the solution of ARE (1.7). The proof is
complete.

Let K be the unique solution of ARE (1.7). Then it follows from (3.8) and (3.10)
that V (x) = xTKx for all x ∈ Rn, which proves property (1) in Theorem 1.1.

3.4. From boundedness of Qt to ARE. Recall that E[N ] ≥ ε0Id > O. For
each ε ∈ [0, ε0/2) , we define recursively a sequence of deterministic matrices:

Lε0 = O,

Lεk+1 = Φ(Lεk)− εId, k = 0, 1, 2 . . .
(3.23)

Lemma 3.6. Lεk ≤ Lεk+1 for all k = 0, 1, 2, . . .
Proof. It can be proved easily by induction. First, we have that Lε1 = Φ(O)−εId =

E[N ]− εId > O = Lε0. Assume that Lεk−1 ≤ Lεk. Then from the monotonicity of Φ(·),
one has

Lεk+1 = Φ(Lεk)− εId ≥ Φ(Lεk−1)− εId = Lεk.

The lemma is proved.
Lemma 3.7. Define Θ := {ω : supt ‖Qt‖2 < ∞}. If P(Θ) > 0, then for each

ε ∈ (0, ε0/2), there is a sequence of increasing random times tk such that for almost
all ω ∈ Θ,

Lεk ≤ Qt(ω) ∀t ≥ tk. (3.24)

Proof. We rewrite iteration (1.10) as

Qt+1 = (1− αt)Qt + αtΦt+1(Qt)

= (1− αt)Qt + αt(Φ(Qt) +Rt+1(Qt)),

where

Rt+1(Q) := Φt+1(Q)− Φ(Q).

Now we introduce a decomposition of above iteration. For t = 0, 1, 2, . . . , define

Y0 = O,

Yt+1 = (1− αt)Yt + αtΦ(Qt);

W0 = O,

Wt+1 = (1− αt)Wt + αtRt+1(Qt).

It is easy to know that Qt = Yt +Wt. As Nt+1 and Λt+1 are independent of Ft, one
can check that

E[Rt+1(Qt)|Ft] = O,

E[‖Rt+1(Qt)‖22|Ft] ≤ c(µ0)(1 + ‖Qt‖22),
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where c(µ0) > 0 is a constant depending only on µ0 defined in (3.3). Applying
Lemma 2.3 with

τk := inf{t : ‖Qt‖2 ≥ k},

one has that

lim
t→∞

Wt = O on Θ a.s. (3.25)

We show (3.24) by induction. Obviously, Lε0 = O ≤ Qt for all t ≥ 0. Now we
suppose that Lεk ≤ Qt holds for all t ≥ tk and some random time tk, we shall prove
that, there is a random time tk+1 such that Lεk+1 ≤ Qt for t ≥ tk+1.

Actually, from Lεk ≤ Qt and the monotonicity of Φ(·), we know Φ(Lεk) ≤ Φ(Qt).
From Lemma 2.2, there is a random time t′k+1 ≥ tk, such that

Yt ≥ Φ(Lεk)− 1

2
εId ∀t ≥ t′k+1. (3.26)

According to (3.25), there is another time t′′k+1 such that for almost all ω ∈ Θ,

− 1

2
εId ≤Wt(ω) ≤ 1

2
εId ∀t ≥ t′′k+1. (3.27)

Combining (3.26) and (3.27), and letting tk+1 = max{t′k+1, t
′′
k+1}, one knows that for

almost all ω ∈ Θ,

Qt(ω) = Yt +Wt(ω) ≥ Φ(Lεk)− εId = Lεk+1 ∀t ≥ tk+1.

The proof is complete.
Now let statement (c) in Theorem 1.1 be valid. It follows from Lemmas 3.6

and 3.7 that the sequence Lεk is increasing, and bounded uniformly with respect to k
and ε ∈ (0, ε0/2), so there are Qε, uniformly bounded in ε, such that

lim
k→∞

Lεk = Qε.

Noticing that Φ(·) is continuous in the set of all positive definite d× d matrices, the
above relation along with (3.23) implies

Qε = Φ(Qε)− εId. (3.28)

Moreover, Qε ≥ E[N ]−εId ≥ 1
2ε0Id. So by means of the Bolzano–Weierstrass theorem

and the continuity of Φ(·), there is a subsequence ofQε converging to a positive definite
matrix, denoted by Q0, that satisfies

Q0 = Φ(Q0) = E[N + ΛTΠ(Q0)Λ].

Applying Π(·) on both sides, one obtains that K = Π(Q0) satisfies ARE (1.7). This
also means that Q0 obtained here, as the fixed point of Φ(·), is exactly Q∗ defined in
(3.11).

Remark 3.8. The condition E[N ] > O can be weakened to Φ(E[N ]) > O. Tech-
nically, this condition is only used to prove K > O (or equivalently, Q∗ > O) in
(3.12), and to prove Lemma 3.7; actually, the condition Φ(E[N ]) > O can also en-
sure these two results. The first one is straightforward: Q∗ = Φ(Q∗) ≥ E[N ] implies

16



Q∗ ≥ Φ(E[N ]) > O due to the monotonicity of Φ(·). To obtain a similar result as
Lemma 3.7, we define a new lower bound sequence for each ε ∈ (0, 1):

Lε0 = (1− ε)E[N ], Lεk+1 = (1− ε)Φ(Lk).

One can prove by induction that Lεk is an increasing sequence and

Φ(Lεk) ≥ Φ(Lε0) = Φ((1− ε)E[N ]) ≥ (1− ε)Φ(E[N ]) > O.

Then one can also obtain the conclusion of Lemma 3.7 by repeating its proof with two
slight changes: i) Lε0 ≤ Qt a.s. for t ≥ t0 with some random time t0, and ii) (3.26)
and (3.27) replaced by

Yt ≥ Φ(Lεk)− 1

2
εΦ(Lεk) ∀t ≥ t′k+1,

−1

2
εΦ(Lεk) ≤Wt(ω) ≤ 1

2
εΦ(Lεk) ∀t ≥ t′′k+1.

To see the existence of t0, one can introduce a sequence Mt with M0 = O and Mt+1 =
(1 − αt)Mt + αtNt+1. It is easily seen that Mt ≤ Qt for all t and Mt → E[N ] a.s.;
since E[N ] ≥ O, this implies that there is a time t0(ω) for almost every ω such that
Mt(ω) ≥ (1− ε)E[N ] for all t ≥ t0(ω), so Qt(ω) ≥ Lε0 a.s. for all t ≥ t0(ω).

3.5. From ARE to convergence of Qt. Assume that ARE (1.7) has a solution
K. In Subsection 3.3 we have constructed a convergent sequence Pt that dominates
the sequence Q̃t = CTQtC, which means

Qt ≤ (C−1)TPtC
−1 =: P̄t

a.s.−−→ (C−1)TIdC
−1 = Q∗,

whereQ∗ is defined in (3.11). So the sequenceQt is bounded a.s., and from Lemma 3.7,
there is a sequence of increasing random times tk such that

Lεk ≤ Qt a.s., ∀t ≥ tk,

where Lεk is defined in (3.23) with ε ∈ (0, ε0/2). Now for any z ∈ Rd and all k ≥ 0, it
holds a.s. that

lim sup
t→∞

zTQtz ≤ lim
t→∞

zTP̄tz = zTQ∗z,

lim inf
t→∞

zTQtz ≥ lim
k→∞

zTLεkz = zTQεz,

where Qε is the limit of Lεk and satisfies (3.28). Moreover, it has been proved in the
last subsection that there is a subsequence of Qε converging to Q∗. Therefore,

lim
t→∞

zTQtz = zTQ∗z a.s.

So we can conclude that Qt converges a.s. to a positive definite matrix Q? which
coincides Q∗ = E[N + ΛTKΛ].

Remark 3.9. Although Q? and Q∗ are eventually the same, they do come from
different sources: Q? emerges as the limit of Qt, while Q∗ is defined via the solution
of ARE, or equivalently, as the fixed point of Φ(·).

To conclude the whole proof of Theorem 1.1, it remains to verify properties (2)–
(4). If Qt converges a.s. to Q?, then Q? = Q∗ is the (unique) fixed point of Φ(·),
and K = Π(Q?) is the unique solution of ARE (1.7), so properties (2) and (4) is
proved. In view of Remark 3.2, one knows that the optimal control has a feedback
form ut = Γ(Q?)xt, which proves property (3).
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4. Proof of Theorem 1.3. It has been proved that if LQ problem (1.1)–(1.2)
is well-posed, then ARE (1.7) has a unique solution K and the Q-learning process Qt
converges to Q? a.s. By means of the transformation introduced in Subsection 3.3,
we can reformulate the LQ problem into an equivalent form, for which the solution of
ARE and the limit of Q-learning are both identity matrices. For this reason, we may
directly assume, without loss of generality, that K = In and Q? = Id. In this case,
the coefficient of optimal feedback control is Γ(Id) = O (see (1.6) for the definition of
Γ(·)), and λ := ‖E[ΛTΛ]‖2 < 1.

Fix a number γ ∈ (λ, 1). Using the notation (3.2), the system under adaptive
feedback control ua

t = Γtxt = Γ(Qt)xt evolves as

xa
t+1 = (At+1 +Bt+1Γt)x

a
t =: Āt+1x

a
t .

Since |xa
t |2 may not be integrable, we let Ξt ⊂ Ω be an Ft-measurable set such that

E[1Ξt |xa
t |2] <∞, and compute

E[1Ξt |xa
t+1|2|Ft] = E[1Ξt |Āt+1x

a
t |2|Ft]

= E[1Ξt(x
a
t )

TĀT
t+1Āt+1x

a
t |Ft]

= (xa
t )

TE[1ΞtĀ
T
t+1Āt+1|Ft]xa

t

≤ 1Ξt‖E[1ΞtĀ
T
t+1Āt+1|Ft]‖2|xa

t |2.

Denote Ψt := E[1ΞtĀ
T
t+1Āt+1|Ft]; as At+1, Bt+1 are independent of Ft, one has

Ψt ≤ E[AT
t+1At+1] + 1Ξt(Γ

T
t E[BT

t+1At+1] + E[AT
t+1Bt+1]Γt + ΓT

t E[BT
t+1Bt+1]Γt).

From the continuity of Γ(·) around the identity matrix, there is a constant δ > 0,
independent of t, such that, as long as ‖Qt − Id‖2 < δ, one has that

‖Γt‖2 < (γ − λ)(1 + ‖E[BT
t+1At+1]‖2 + ‖E[AT

t+1Bt+1]‖2 + ‖E[BT
t+1Bt+1]‖2)−1,

and so ‖Ψt‖2 < γ. Defining, for any t, s with s > t,

Θt := {ω : ‖Qt(ω)− Id‖2 ≥ δ}, Θs
t := ∪sr=tΘr,

we have

E[1Ξt\Θt |x
a
t+1|2|Ft] ≤ γ1Ξt\Θt |x

a
t |2,

and inductively,

E[1Ξt\Θt |x
a
t |2] ≥ γ−1E[1Ξt\Θt |x

a
t+1|2]

≥ γ−1E[1Ξt\Θt+1
t
|xa
t+1|2] ≥ γ−2E[1Ξt\Θt+1

t
|xa
t+2|2]

≥ · · · ≥ γt−sE[1Ξt\Θs−1
t
|xa
s|2]

≥ γt−sE[1Ξt\Θ∞t |x
a
s|2].

(4.1)

Let ε be an arbitrary positive number. As Qt converges to Id, there is a random
time τ such that P(Θ∞τ ) < ε/2. As xa

τ is finite, there is a set Ξτ ∈ Fτ with P(Ξτ ) >
1− ε/2 such that E[1Ξτ |xa

τ |2] <∞. From (4.1) one has

E[1Ξτ\Θ∞τ |x
a
t |2] ≤ E[1Ξτ\Θtτ |x

a
t |2] ≤ γt−τE[1Ξτ\Θτ |x

a
τ |2] ∀ t > τ. (4.2)
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Set Ωε = Ξτ\Θ∞τ and cε = E[1Ωε |xa
τ |2] <∞; clearly,

P(Ωε) ≥ P(Ξτ )− P(Θ∞τ ) > 1− ε.

Sum up (4.2) with respect to t:

E
∞∑
t=τ

1Ξτ\Θtτ |x
a
t |2 < cε

∞∑
t=τ

γt−τ =
cε

1− γ
<∞. (4.3)

As c̃ := supt≥τ 1Ωε‖Γt‖2 is bounded, one has

E
∞∑
t=τ

1Ξτ\Θtτ |u
a
t |2 = E

∞∑
t=τ

1Ξτ\Θtτ |Γtx
a
t |2 ≤ c̃E

∞∑
t=τ

1Ξτ\Θtτ |x
a
t |2 <∞. (4.4)

Moreover, for t ≥ τ one obtains

E
{
1Ξτ\Θtτ

[
xa
t

ua
t

]T
Nt+1

[
xa
t

ua
t

]}
≤ ‖E[N ]‖2E[1Ξτ\Θtτ (|xa

t |2 + |ua
t |2)],

which along with (4.3) and (4.4) implies that

E
∞∑
t=τ

1Ξτ\Θtτ

[
xa
t

ua
t

]T
Nt+1

[
xa
t

ua
t

]
<∞.

Noticing that Ωε ⊂ Ξτ\Θt
τ , one can obtain from the above argument that

E
{
1Ωε

∞∑
t=τ

(
|xa
t |2 + |ua

t |2 +

[
xa
t

ua
t

]T
Nt+1

[
xa
t

ua
t

])}
<∞,

and consequently,

J(x, ua
· ) +

∞∑
t=0

(
|xa
t |2 + |ua

t |2
)
<∞ on Ωε a.s.

This concludes the proof of Theorem 1.3 due to the arbitrariness of ε.

5. Numerical experiments and discussion. In this section we illustrate our
main results with some examples.

5.1. Learning rates. The learning rates αt in Algorithm 1 are superparameters,
of which the choice heavily depends on the specific problem and may affect the speed
and accuracy of the algorithm dramatically.

As an example, let us consider LQ problem (1.1)–(1.2) with n = 2, m = 1, and

Λt = Λ(0) + w
(1)
t Λ(1) + w

(2)
t Λ(2), Nt = N, (5.1)

where w
(1)
t , w

(2)
t ∼ N (0, 1) are independent random variables, and

Λ(0) =

[
−1 −0.1 −0.2
2.6 0.5 0.5

]
, Λ(1) =

[
0.6 0.075 0.125
−0.8 0.1 −0.375

]
,

Λ(2) =

[
−0.06 −0.06 0.02

0.2 0.23 −0.09

]
, N =

 3.11 1.5626 −0.2798
1.5626 1.816175 −1.021425
−0.2798 −1.021425 0.91585

 .
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Fig. 5.1. Performance comparison with different learning rates.

In this case, the fixed point of the mapping

Φ(Q) = E[N + ΛT
t Π(Q)Λt] = N +

2∑
i=0

(Λ(i))TΠ(Q)Λ(i)

can be solved out explicitly, i.e., Q∗ = Φ(Q∗) with

Q∗ =

5 2 0
2 2 −1
0 −1 1

 .
We apply Algorithm 1 to this problem with various choices of the learning rates:

α
(1)
t =

1

t+ 1
, α

(2)
t =

2

t+ 2
, α

(3)
t =

10

t+ 10
,

and compare the errors ‖Qt −Q∗‖1 within 2000 time steps. Here we use the 1-norm
rather than the 2-norm for reducing the computational cost.

Repeated simulations show that, although the process Qt is convergent in all
three cases, the choice α

(2)
t has the best overall performance among the three: the

learning process with the lower rate α
(1)
t is stable but converges slowly, and with the

higher rate α
(3)
t it is a bit too fluctuant and unstable; the moderate rate α

(2)
t makes

a satisfactory balance between speed and accuracy. Figure 5.1 gives a sample of the
comparative experiment.

5.2. Discounted problems. The LQ problem with discounting is very common
in applications, in which the cost function (1.2) is usually replaced by

J(x, u·) =

∞∑
t=0

ρ2t
[
xTt , u

T
t

]
Nt+1

[
xt
ut

]
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Fig. 5.2. Comparison of Q-learning processes for two discounted rates around the critical value.

with a discounted rate ρ > 0. With a transformation xt 7→ ρ−txt, the discounted
problem can reduced to our formulation with ρΛt instead of Λt, i.e.,

xt+1 = ρΛt+1

[
xt
ut

]
, t = 0, 1, 2, . . . , (5.2)

subject to the cost function (1.2).
Evidently, the well-posedness of the discounted problems depends on the value of

the discounted rate ρ. Kalman [19] indicated that there is a critical point ρmax > 0
such that the discounted problems is well-posedness if and only if ρ < ρmax. He
also mentioned that how to determine ρmax in a general problem seemed to be very
difficult.

To examine the performance of Algorithm 1 around the critical point, we consider
LQ problem (5.2)–(1.2) with Λt and Nt defined in (5.1). A direct computation gives
ρmax ≈ 2.31827 in this problem. We apply Algorithm 1 for two discounted rates,
ρ1 = 2.25 and ρ2 = 2.4, where are very close to ρmax. By means of Theorem 1.1, the
Q-learning process Qt converges a.s. for ρ1 = 2.25 and diverges a.s. for ρ2 = 2.4.
Numerical simulations have well demonstrated the theoretical result (see Figure 5.2).
The values closer to ρmax than ρ1 and ρ2 may also be tested for this purpose, but
when they are too near the critical point, the systematic computation errors would
affect the performance substantially.

5.3. Stabilization. As far as the stabilization problem is concerned, the cost
function is often set as

J(x, u·) =

∞∑
t=0

|xt|2. (5.3)

For discrete-time linear systems with random parameters, this problem was first
discussed by Kalman [19]. Embedded to our framework, the parameter Nt equals
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Fig. 5.3. Comparison of the state processes under adaptive feedback control and zero control.

diag(In, O) in this case, which is not positive definite. Nevertheless, in view of Re-
mark 3.8, Theorem 1.1 can still apply if Φ(E[N ]) is positive definite. For the system

xt+1 = At+1xt +Bt+1ut, (5.4)

one has that

Φ(E[N ]) = N + E
[
AT
t

BT
t

]
Π(N)[At, Bt] =

[
In + E[AT

t At] E[AT
t Bt]

E[BT
t At] E[BT

t Bt]

]
.

To check the condition we may need further information of the parameters.
Let us give a numerical example. Consider LQ problem (5.4)–(5.3) with n = 2,

m = 1, and

At = ew
(1)
t w

(2)
t A(1) − (sinw

(2)
t )A(2) −

√
w

(2)
t + w

(3)
t A(3),

Bt = (w
(4)
t − w

(5)
t )B

(1)
t + (cosw

(4)
t )B

(2)
t ,

where w
(1)
t , . . . , w

(5)
t ∼ U(0, 1) are independent, and

[A(1), A(2), A(3), B(1), B(2)] = ρ

[
−5 2 0 −1 −2 3 −1 1
2 3 −4 7 6 0 1 0

]
,

where ρ is the discounted rate. One can check that Φ(E[N ]) > O in this example, so
Theorems 1.1 and (1.3) can apply to this problem.

We set ρ = 0.25 with which the problem is demonstrated numerically to be
well-posedness. To verify the stabilization, we conduct two control policies: the zero
control ut = 0 and the adaptive feedback control ut = Γ(Qt)xt, and test three initial
state x0 = [1, 0]T, [0, 1]T, and [1, 1]T. Numerical simulations (see Figure 5.3) show
that the system is stable under the adaptive feedback control but unstable without
control (i.e., ut = 0).
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