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Abstract. We introduce and study a notion of Asymptotic Preserving schemes, related to
convergence in distribution, for a class of slow-fast Stochastic Differential Equations. In some ex-
amples, crude schemes fail to capture the correct limiting equation resulting from averaging and
diffusion approximation procedures. We propose examples of Asymptotic Preserving schemes: when
the time-scale separation vanishes, one obtains a limiting scheme, which is shown to be consistent in
distribution with the limiting Stochastic Differential Equation. Numerical experiments illustrate the
importance of the proposed Asymptotic Preserving schemes for several examples. In addition, in the
averaging regime, error estimates are obtained and the proposed scheme is proved to be uniformly
accurate.
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1. Introduction. Deterministic and stochastic systems are ubiquitous in science
and engineering. Traditional modelling and numerical methods become ineffective
when systems evolve at different time scales: see for instance the monographs [11, 24]
for comprehensive treatment of multiscale dynamics. Averaging and homogeniza-
tion [29] are two popular techniques which are employed to rigorously derive macro-
scopic limiting equations, starting from (stochastic) slow-fast systems with separated
time-scales.

In the last two decades, constructing efficient numerical methods for multiscale
stochastic systems has been a very active research area: let us mention the Heteroge-
neous Multiscale Method (see [1, 4, 12]), projective integration (see [15]), equation-free
coarse-graining (see [22]), spectral methods (see [2]), micro-macro acceleration meth-
ods (see [35]), parareal algorithms (see [26]). In the methods mentioned above, the
objective is to approximate the limiting model for the slow variables of interest, and
only partial but relevant information coming from the fast dynamics is taken into
account. As a consequence, these methods may not be appropriate if one wants to
approximate simultaneously the original multiscale model and its limit. In this arti-
cle, we focus on the notion of asymptotic preserving schemes, in order to overcome
this issue.

To motivate and illustrate our work, let us introduce simplified versions of the
systems of Stochastic Differential Equations (SDE) considered in this article. The
time-scale separation parameter is denoted by ε ∈ (0, 1]. On the one hand, in the
averaging regime (see Equation (2.1) in Section 2.1 for the more general version), we
consider systems of the type

(1.1)


dXε

t = b(Xε
t ,m

ε
t)dt,

dmε
t = −m

ε
t

ε
dt+

√
2√
ε
dβt.
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When ε→ 0, the averaging principle (see [29, Chapter 10]) states that Xε converges
(at least in distribution) to the solution X of the Ordinary Differential Equation
Ẋ = b(X) where b(x) =

∫
b(x,m)dν(m) and ν = N (0, 1) is the standard Gaussian

random variable. On the other hand, in the diffusion approximation regime (see
Equation (2.12) in Section 2.2 for the more general version), we consider systems of
the type

(1.2)


dXε

t =
σ(Xε

t )m
ε
t

ε
dt,

dmε
t = −m

ε
t

ε2
dt+

1

ε
dβt.

When ε→ 0, the diffusion approximation result (see [29, Chapter 11]) states that Xε

converges (in distribution) to the solution X of the SDE

dXt = σ(Xt) ◦ dβt,

where the noise is interpreted in the Stratonovich sense. This type of results is related
to results known as Wong-Zakai approximation and Smoluchowski-Kramers limits in
the literature. In the two SDE systems (1.1) and (1.2), the fast component is an
Ornstein-Uhlenbeck process.

In this article, we are interested in the behavior when ε→ 0 of numerical schemes
for the SDEs (1.1) and (1.2). To explain the challenge faced and the solutions proposed
in this article, we consider the following schemes, which are both consistent for any
fixed value of ε > 0. On the one hand, in the averaging regime one defines

(1.3)


Xε
n+1 = Xε

n + ∆tb(Xε
n,m

ε
n+1),

mε
n+1 = mε

n −
∆t

ε
mε
n+1 +

√
2∆t

ε
γn.

On the other hand, in the diffusion approximation regime one defines

(1.4)


Xε
n+1 = Xε

n + σ(Xε
n)

∆tmε
n+1

ε
,

mε
n+1 = mε

n −
∆t

ε2
mε
n+1 +

√
∆t

ε
γn,

In the schemes (1.3) and (1.4),
(
γn
)
n≥0

is a sequence of independent standard Gauss-

ian random variables. One may check that Xε
n → Xn for all n ≥ 0, in probability,

when ε→ 0, where the limiting schemes are given by

Xn+1 = Xn + ∆tb(Xn, 0)

in the averaging regime, and

Xn+1 = Xn +
√

∆tσ(Xn)γn,

in the diffusion approximation regime. Note that, in the second case, the limiting
scheme is consistent with the Itô interpretation of the noise, instead of the correct
Stratonovich one. In the two cases, the limiting scheme is in general not consistent
with the limiting equation, and using such a scheme in practice may lead to drawing
false conclusions about the limiting system from numerical experiments. We refer
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to [14, 27] for other examples of situations where numerical schemes perform badly
when applied to multiscale SDE systems.

The objective of this article is to design and study Asymptotic Preserving (AP)
schemes, such that the following diagram commutes (where convergence is understood
in distribution): if T = N∆t, one has

Xε
N

∆t→0−−−−→ Xε(T )yε→0

yε→0

XN
∆t→0−−−−→ X(T )

The two schemes (1.3) and (1.4) described above are not AP. The notion of AP
schemes has been introduced in [18], for applications to multiscale kinetic Partial Dif-
ferential Equations (PDEs), which converge to parabolic diffusion PDEs. We refer
to[8, Section 7], [17], [19] and [31, Section 4] for recent reviews on AP schemes for
this type of models. To the best of our knowledge, the design and analysis of Asymp-
totic Preserving schemes for slow-fast SDEs of the type (1.1) and (1.2) has not been
considered so far in the literature. Note that a specific feature (compared with the
deterministic case) is the need to consider convergence in distribution. Let us mention
related works for Stochastic Partial Differential Equations (SPDEs), in the diffusion
approximation regime. First, in [10, 28], the authors consider Schrödinger equations
and study an abstract asymptotic preserving property. However, they do not pro-
pose implementable schemes. In [3], the authors deal with some multiscale stochastic
kinetic PDEs, driven by a Wiener process. However, the structure of the model is
different from the one of (1.2). In a future work [6], we plan to apply the findings
of this article to the SPDE models considered in [3]. The works mentioned above
concerning SPDE models are limited to diffusion coefficients of the type σ(x) = x, for
which specific arguments may give a straightforward construction of AP schemes, for
appropriate discretization of the fast component. An AP scheme in the case σ(x) = 1
for (1.2) is proposed in [30], however the subtlety of the interpretation of the noise at
the limit is not relevant in that case. Finally, let us also mention that AP schemes
have also been studied for PDEs with random coefficients, see [16, 20, 21] or in the
context of Monte-Carlo methods for deterministic problems, see [9, 33].

We are now in position to describe the contributions of this article. In Section 3.1,
we define the appropriate notion of AP schemes for SDE systems, related to conver-
gence in distribution, and study several general properties.

Our first main result is Theorem 3.7, which exhibits an example of AP scheme in
the averaging regime: for the simplified version (1.1), the scheme is given by

(1.5)

X
ε
n+1 = Xε

n + ∆tb(Xε
n,m

ε
n+1),

mε
n+1 = e−

∆t
ε mε

n +

√
1− e− 2∆t

ε γn.

The fast component in the scheme above is discretized using a scheme which is exact
in distribution.

Our second main result is Theorem 3.8, which states error estimates of the type

sup
ε∈(0,1]

∣∣E[ϕ(Xε
N )− E[ϕ(Xε(T ))]

∣∣ = O
(√

∆t
)
,

for sufficiently smooth real-valued mappings ϕ. This error estimate means that the
scheme is Uniformly Accurate.
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Finally, our third main result is Theorem 3.9, which exhibits an example of AP
scheme in the diffusion approximation regime: for the simplified version (1.2) (see
Corollary 3.11), the scheme is given by

(1.6)



mε
n+1 = mε

n −
∆t

ε2
mε
n+1 +

√
∆t

ε
γn,

Y εn+1 = Xε
n + σ(Xε

n)
∆tmε

n+1

ε
,

Xε
n+1 = Xε

n +
σ(Xε

n) + σ(Y εn+1)

2

∆tmε
n+1

ε
.

A prediction-correction method is employed to retrieve the correct interpretation of
the noise for the limiting equation: the scheme (1.2) is indeed consistent with the
Stratonovich interpretation of the noise.

Let us also mention that another situation is considered in Corollary 3.12: for
the model (2.22) taken from [25] (with an application in astrophysics), the limiting
equation (2.23) contains a so-called noise-induced drift-term, which is captured only
for well-designed AP schemes.

Some numerical experiments (see Section 4) show that the AP schemes (1.5)
and (1.6) are effective in all regimes ε > 0 and ε → 0, contrary to the schemes (1.3)
and (1.4) which fail to capture the correct limiting behavior when ε→ 0.

The article is organized as follows. The general SDE models in the averaging
and diffusion approximation regimes are presented in Sections 2.1 and 2.2. The main
results of this article are stated in Section 3: the general theory of AP schemes is pre-
sented in Section 3.1, and it is applied in the averaging and diffusion approximation
regimes in Section 3.2 and 3.3 respectively. Numerical experiments are reported in
Section 4. Section 5 is devoted to the proof of the error estimates stated in Theo-
rem 3.8. Finally, Section 6 gives some conclusions and perspectives.

2. Slow-fast SDE models and their limits. Without loss of generality, the
time-scale separation parameter ε satisfies ε ∈ (0, 1]. The time-step size of the in-
tegrators studied in this work is denoted by ∆t. It is assumed that ∆t = T

N where
T ∈ (0,∞) is a fixed time and N ∈ N. Without loss of generality, it is assumed that
∆t ∈ (0, 1].

In the slow-fast systems considered in this work, the slow component Xε takes
values in the d-dimensional flat torus Td, where d ∈ N is an arbitrary integer, whereas
the fast component mε takes values in R. The framework and the models considered
in this work may be generalized in many ways to more complex situations, however
the arguments and results below are sufficient to illustrate the difficulties of designing
asymptotic preserving schemes for stochastic equations.

Let
(
βt
)
t≥0

and
(
Bt
)
t≥0

be two independent standard Wiener processes, with

values in R and RD respectively, where D ∈ N, defined on a probability space (Ω,F ,P)
which satisfies the usual conditions.

The following notation for derivatives is used below: ∇x =
(
∂xi
)

1≤i≤d ∈ Rd and

∂m are the partial gradient and derivative operators with respect to x and m respec-
tively. If σ is a mapping with values inMd,D(R) (the space of d×D matrices with real

entries), let σ? denote the transpose of σ, and set σσ? : ∇2
x =

∑d
i,j=1

(
σσ?)i,j∂xi∂xj .

If b is a Rd-valued mapping, let b · ∇x =
∑d
i=1 bi∂xi .

Assumption 2.1. The initial conditions Xε
0 ∈ Td and mε

0 ∈ R of the processes
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are deterministic quantities and they satisfy

Xε
0 = xε0 −−−→

ε→0
x0 , sup

ε∈(0,1]

|mε
0| <∞.

2.1. The averaging regime. In the so-called averaging regime, we consider
slow-fast SDE systems of the type

(2.1)


dXε

t = b(Xε
t ,m

ε
t)dt+ σ(Xε

t ,m
ε
t)dBt,

dmε
t = −m

ε
t

ε
dt+

√
2h(Xε

t )√
ε

dβt.

The coefficients appearing in (2.1) are assumed to satisfy the following conditions.

Assumption 2.2. The functions b : Td×R→ Rd and σ : Td×R→Md,D(R) are
assumed to be of class C4, and h : Td → R is assumed to be of class C1. Moreover,
they are all assumed to be bounded and to have bounded derivatives.

Owing to Assumption 2.2, for all initial conditions Xε
0 ∈ Td and mε

0 ∈ R, and for
every ε ∈ (0, 1], there exists a unique global solution

(
Xε(t),mε(t)

)
t≥0

of the SDE

system (2.1). Since h is bounded, it is straightforward to check that

(2.2) sup
ε∈(0,1]

sup
t≥0

E[|mε(t)|2]

1 + |mε
0|2

<∞.

This estimate will prove useful to prove Proposition 2.4.
The infinitesimal generator Lε associated with the SDE (2.1) has the following

expression:

(2.3) Lε =
1

ε
LOU + L0,

where

(2.4)
L0 = b(x) · ∇x +

1

2
σσ? : ∇2

x,

LOU = −m∂m + h(x)2∂2
m,

Observe that for fixed x ∈ Td, LOU is the generator of an ergodic Ornstein-Uhlenbeck
process. The associated invariant distribution is νx = N (0, h(x)2).

Define averaged coefficients as follows: for all x ∈ Td

(2.5) b(x) =

∫
b(x,m)dνx(m) , a(x) =

∫
σ(x,m)σ(x,m)?dνx(m).

Note that b : Td → Rd is of class C4. The averaging principle result stated below
requires the following condition to be satisfied.

Assumption 2.3. There exists an integer D ∈ N and a function σ : Td →
Md,D(R) of class C4 such that for all x ∈ Td

(2.6) a(x) = σ(x)σ(x)?.

Assumption 2.3 holds if there exists c ∈ (0,∞) such that a(x) ≥ cI for all x ∈ Td
(as symmetric matrices). This condition is satisfied when σ only depends on the slow
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variable x (∂mσ(x,m) = 0 for all (x,m) ∈ Td×R), or when σ(x,m)σ(x,m)? ≥ cI for
all (x,m) ∈ Td × R. In that case, one can choose D = d. If the diffusion coefficient
is of the type σ(x,m) = σ](m)σ†(x), with σ†(x) ∈ Rd and σ](m) ∈ R, then one can

choose D = D and σ(x) = σ†(x)
√∫

σ](m)2dνx(m) for all x ∈ Td.
We are now in position to state the averaging principle result and to define the

limiting process X obtained when ε→ 0.

Proposition 2.4. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. Let T ∈ (0,∞).
When ε → 0, the C([0, T ],Td)-valued process

(
Xε(t)

)
0≤t≤T converges in distribution

to the solution
(
X(t)

)
0≤t≤T of the limiting SDE

(2.7) dXt = b(Xt)dt+ σ(Xt)dBt,

with initial condition X(0) = x0, where the coefficients b and σ are defined by (2.5)–

(2.6), and where
(
Bt
)
t≥0

is a standard RD-valued Wiener process.

The infinitesimal generator L associated with the limiting SDE (2.7) is given by

(2.8) L = b(x) · ∇x +
1

2
σ σ? : ∇2

x,

and is such that the following property holds: let ϕ ∈ C4(Td), then there exists a
function ϕ1 : Td × R→ R such that

ϕε = ϕ+ εϕ1,(2.9)

Lεϕε −−−→
ε→0

Lϕ.(2.10)

Finally, let ϕ ∈ C4(Td), then there exists C(T, ϕ) ∈ (0,∞) such that

(2.11)
∣∣E[ϕ(Xε(T ))]− E[ϕ(X(T ))]

∣∣ ≤ C(T, ϕ)ε.

The averaging principle stated in Proposition 2.4 is a standard result, see for in-
stance [29, Chapter 16]. In general the convergence stated in Proposition 2.4 only
holds in distribution, however it holds in stronger sense (for instance in mean-square
sense) if σ only depends on x.

We refer to Appendix A.1 for a sketch of the construction of the perturbed test
function ϕε which satisfies (2.9)–(2.10) (see [13, Chapter 6] for a detailed description
of the perturbed test function method). Note that the perturbed test function appears
in Proposition 3.5 below. For the error estimate (2.11), see Lemma 5.2 and its proof
below.

2.2. The diffusion approximation regime.

2.2.1. General model. In the so-called diffusion approximation regime, we con-
sider slow-fast SDE systems of the type

(2.12)


dXε

t = b(Xε
t )dt+

σ(Xε
t )m

ε
t

ε
dt,

dmε
t = f(Xε

t )
(
−m

ε
t

ε2
dt+

g(Xε
t )

ε
dt+

h(Xε
t )

ε
dβt

)
.

The coefficients appearing in (2.12) are assumed to satisfy the following condi-
tions.
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Assumption 2.5. The functions b : Td → Rd and g, h : Td → R are assumed to
be of class C1. The functions σ : Td → Rd and f : Td → R are assumed to be of class
C2. Moreover, f takes values in (0,∞): we assume that min

x∈Td
f(x) > 0.

Owing to Assumption 2.5, for all initial conditions Xε
0 ∈ Td and mε

0 ∈ R, and for
every ε ∈ (0, 1], there exists a unique global solution

(
Xε(t),mε(t)

)
t≥0

of the SDE

system (2.12). The infinitesimal generator Lε associated with the SDE (2.12) has the
following expression:

(2.13) Lε =
1

ε2
LOU +

1

ε
L1 + L0,

where

(2.14)

L0 = b(x) · ∇x,
L1 = mσ(x) · ∇x + f(x)g(x)∂m,

LOU = −f(x)m∂m +
1

2
f(x)2h(x)2∂2

m.

Observe that for fixed x ∈ Td, LOU is the generator of an ergodic Ornstein-Uhlenbeck

process. The associated invariant distribution is νx = N (0, f(x)h(x)2

2 ).
We are now in position to state the diffusion approximation result and to define

the limiting process X obtained when ε→ 0.

Proposition 2.6. Let Assumptions 2.1 and 2.5 be satisfied. Let T ∈ (0,∞).
When ε → 0, the C([0, T ],Td)-valued process

(
Xε(t)

)
0≤t≤T converges in distribution

to the solution
(
X(t)

)
0≤t≤T of the limiting SDE

(2.15) dXt =

(
b+ gσ +

h2

2
(σ · ∇x)σ − h2

2f
σ · ∇xfσ

)
(Xt)dt+ h(Xt)σ(Xt)dWt,

driven by a standard one-dimensional Wiener process
(
W (t)

)
t≥0

, with initial condi-

tion X(0) = x0.
The infinitesimal generator L associated with the limiting SDE (2.15) is given by

Lϕ = (b+ gσ) · ∇xϕ+
h2fσ

2
· ∇x

(
σ

f
· ∇xϕ

)
(2.16)

= (b+ gσ) · ∇xϕ+
h2

2
σσ? : ∇2

xϕ

+
h2

2
(σ · ∇x)σ · ∇xϕ−

h2

2f
σ · ∇xfσ · ∇xϕ,

and is such that the following property holds: let ϕ ∈ C3(Td), then one constructs two
functions ϕ1, ϕ2 : Td × R→ R, such that

ϕε = ϕ+ εϕ1 + ε2ϕ2,(2.17)

Lεϕε −−−→
ε→0

Lϕ.(2.18)

Finally, let ϕ ∈ C3(Td), then there exists C(T, ϕ) ∈ (0,∞) such that

(2.19)
∣∣E[ϕ(Xε(T ))]− E[ϕ(X(T ))]

∣∣ ≤ C(T, ϕ)ε.
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The diffusion approximation stated in Proposition 2.6 is a standard result, see for
instance [29, Chapter 18]. We refer to Appendix A.2 for a sketch of the construction
of the perturbed test function ϕε which satisfies (2.17)–(2.18) (see [13, Chapter 6]
for a detailed description of the perturbed test function method). Since the error
estimate (2.19) plays no role in the sequel, the proof is omitted. We refer to [23] for
arguments using asymptotic expansions of solutions of Kolmogorov equations leading
to (2.19), (see also [25] for related computations).

2.2.2. Two examples in the approximation-diffusion regime. The setting
described above encompasses several interesting examples of SDE systems. In order
to focus on the different possible issues which need to be overcome when constructing
asymptotic preserving numerical schemes in the regime ε → 0, we deal with two
examples described below. In addition, the asymptotic preserving numerical schemes
will have simpler formulations for these examples than in the general case. In both
examples, dimension is set equal to d = 1 to simplify the presentation, and b = 0.

Let us present the first example: consider the system

(2.20)


dXε

t =
σ(Xε

t )m
ε
t

ε
dt,

dmε
t = −m

ε
t

ε2
dt+

1

ε
dβt,

where the coefficients in the fast equation are constant: f(x) = h(x) = 1 and g(x) = 0
for all x ∈ T. Applying Proposition 2.6 in this example yields the following limiting
equation

(2.21) dXt = σ(Xt) ◦ dWt,

where the noise is interpreted using the Stratonovich convention. With the Itô con-
vention, the equation is written as

dXt =
1

2
σ(Xt)σ

′(Xt)dt+ σ(Xt)dWt.

Note that the diffusion approximation result (Proposition 2.6) may be obtained by
straightforward arguments in two cases, which will be repeated at the discrete-time
levels. Let ζε(t) = 1

ε

∫ t
0
mε(s)ds for all t ≥ 0. First, if σ(x) = 1 for all x ∈ T, then one

has dXε
t = dζεt . Therefore passing to the limit yields

Xε(t) = Xε
0 + ζε(t) −−−→

ε→0
x0 +W (t),

and the limiting equation is dXt = dWt. Second, assume that x, Xε(t) and X(t) take
values in the real line R (instead of the torus T) and that σ(x) = x for all x ∈ R.
Then (2.21) is written as dXε

t = Xε
t dζ

ε
t . Computing the solution and passing to the

limit then yields

Xε(t) = Xε
0 exp

(
ζε(t)

)
−−−→
ε→0

x0 exp(W (t)) = X(t),

and the limiting equation is dXt = Xt ◦ dWt.
Note that when the function σ is not constant, the Itô and Stratonovich in-

terpretations differ. Constructing an asymptotic preserving requires to capture the
correction term in a limiting scheme (which will naturally be associated with an Itô
interpretation of the noise).
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Let us now present the second example, taken from [25]. The coefficients f, g, h
are allowed to depend on the slow component x, whereas it is assumed that σ(x) = 1
for all x ∈ T. Therefore, the system in the second example has the following expression

(2.22)


dXε

t =
mε
t

ε
dt,

dmε
t = f(Xε

t )
(
−m

ε
t

ε2
dt+

g(Xε
t )

ε
dt+

h(Xε
t )

ε
dβt

)
,

Applying Proposition 2.6 in this example yields the following limiting equation

(2.23) dXt = g(Xt)dt−
h(Xt)

2f ′(Xt)

2f(Xt)
dt+ h(Xt)dWt.

The noise is interpreted in the Itô sense. Observe that when f is not constant, the

noise-induced drift term h2f ′

2f appears. The construction of asymptotic preserving
schemes for this problem requires to be careful in order to capture this additional
drift term in the limiting scheme.

3. Numerical discretization and asymptotic preserving schemes. The
objective of this section is to study the notion of Asymptotic Preserving (AP) schemes
for the slow-fast SDE system (2.1) (averaging regime) or (2.12) (diffusion approxima-
tion regime) when ε → 0. The fundamental requirements to have an AP scheme are
the following ones: given a consistent discretization scheme for the SDE system,

• for any fixed time-step size ∆t > 0, there exists a limiting scheme when ε→ 0,
• this limiting scheme is consistent with the limiting equation (2.7) given by

Proposition 2.4 (averaging regime), or the limiting equation (2.15) given by
Proposition 2.6 (diffusion approximation regime).

For the SDE considered in this article, consistency is understood in the sense of
convergence in distribution. As will be clear below, caution is needed in order to
satisfy the second requirement, indeed some standard but naive schemes converge to
a limiting scheme which is not consistent with the correct limiting equation. Using
such schemes would be dangerous since it could lead to wrong conclusions about the
behavior of the SDE system when ε → 0, hence the need to develop simultaneously
the theoretical and numerical analysis.

After discussing general properties of AP schemes, we will provide example of
such schemes both for the system (2.1) (averaging regime) and for the system (2.12)
(diffusion approximation regime) . We will also study how this scheme applies to the
two examples (2.20) and (2.22) described above, and provide a few examples of non
AP schemes.

3.1. Asymptotic Preserving schemes: definition and properties. Let
T ∈ (0,∞), and let N ∈ N and ∆t = T

N denote the time-step size. Let
(
Γn
)

0≤n≤N−1

and
(
γn
)

0≤n≤N−1
be two independent families of independent standard RD and R-

valued Gaussian random variables. The initial conditions Xε
0 and mε

0 are assumed to
satisfy Assumption 2.1.

On the one hand, a discretization scheme for the SDE (2.1) is defined as

(3.1) (Xε
n+1,m

ε
n+1) = Φε∆t(X

ε
n,m

ε
n,Γn, γn), n = 0, . . . , N − 1.

On the other hand, a discretization scheme for the SDE (2.12) is defined as

(3.2) (Xε
n+1,m

ε
n+1) = Φε∆t(X

ε
n,m

ε
n, γn), n = 0, . . . , N − 1.
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The presentation is slightly different in the averaging and diffusion approximation
regimes. In the remaining of Section 3.1, only the case of schemes of the type (3.1)
is considered. This means that if one considers the SDE (2.12) and the scheme (3.2)
(approximation diffusion regime) the variable Γn needs to be omitted – this is also
the case if σ = 0 in the SDE (2.1) (averaging regime).

The mapping Φε∆t appearing in the schemes (3.1) and (3.2) is referred to as the
integrator in the sequel.

Let us first discuss stability issues. Due to the presence of factors 1
ε and 1

ε2 in
the SDE (2.1) and (2.12), using the standard Euler-Maruyama scheme would impose
strong stability conditions, of the type ∆t ≤ ∆t0(ε) with ∆t0(ε)→ 0 when ε→ 0. In
order to study the behavior of the scheme when ε → 0 for any fixed time-step size
∆t, it is necessary to avoid such conditions, and we impose the following assumption
(which is generally satisfied for some implicit or implicit-explicit methods).

Assumption 3.1. The integrator Φε∆t is defined for all ε ∈ (0, 1] and ∆t ∈
(0,∆t0], where ∆t0 > 0 is independent of ε.

We are now in position to study the consistency of the scheme. First, it is assumed that
for all ε ∈ (0, 1], the scheme (3.1) (resp. (3.2)) is consistent with the SDE system (2.1)
(resp. (2.12)). When dealing with numerical methods for SDEs, there exist several
notions of convergence: in almost sure sense, in probability, in mean-square sense, or in
distribution. Since Propositions 2.4 and 2.6 state that Xε converges in distribution to
X when ε, the relevant notion is consistency in the weak sense, related to convergence
in distribution.

Assumption 3.2. For all ε ∈ (0, 1], the numerical scheme (3.1) (resp. (3.2)) is
consistent in the weak sense with the SDE system (2.1) (resp. (2.12)): for all bounded
continuous functions ϕ : Td × R,

E[ϕ(Xε
N ,m

ε
N )] −−−−→

N→∞
E[ϕ(Xε(T ),mε(T ))],

where the time-step size is given by ∆t = T
N , for an arbitrary T ∈ (0,∞).

Recall that the consistency in the weak sense of the scheme can be verified using
the following equivalent criterion, expressed in terms of the integrator and of the
infinitesimal generator: for all ϕ ∈ C2

b (Td × R),

lim
∆t→0

E[ϕ(Φε∆t(x,m,Γ, γ))]− ϕ(x,m)

∆t
= Lεϕ(x,m),

for all (x,m) ∈ Td×R, where Γ and γ are two independent standard RD and R-valued
Gaussian random variables.

The requirements above (Assumptions 3.1 and 3.2) only depend on the behavior
of the scheme for fixed ε ∈ (0, 1]. We are now in position to study the asymptotic
behavior as ε→ 0, with fixed time-step size ∆t ∈ (0,∆t0]. To introduce the notion of
Asymptotic Preserving scheme, one first needs to assume the existence of a limiting
scheme, as follows.

Assumption 3.3. For every ∆t ∈ (0,∆t0], there exists a mapping Φ∆t : Td ×
R2 → Td, such that for every (x,m) ∈ Td×R, and every bounded continuous function
ϕ : Td → R,

E[ϕ(Φε∆t(x,m,Γ, γ))] −−−→
ε→0

E[ϕ(Φ∆t(x,Γ, γ))]

where Γ and γ are two independent standard RD and R valued Gaussian random
variables.
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Let
(
Xn

)
0≤n≤N be defined by

(3.3)
Xn+1 = Φ∆t(Xn,Γn, γn),

X0 = x0 = lim
ε→0

xε0.

where
(
Γn
)

0≤n≤N−1
and

(
γn
)

0≤n≤N−1
are two independent families of independent

standard RD and R valued Gaussian random variables. By a recursion argument,
it is straightforward to check that if Assumptions 2.1 and 3.3 are satisfied, then
Xε
n converges in distribution to Xn, when ε → 0, for any fixed ∆t ∈ (0,∆t0], and

0 ≤ n ≤ N .
We are now in position to introduce the notion of Asymptotic Preserving schemes.

As for Assumptions 3.2 and 3.3 above, the consistency is understood in the sense of
convergence in distribution.

Definition 3.4. Let Assumptions 3.1, 3.2 and 3.3 be satisfied. The scheme (3.1)
(resp. (3.2)) is said to be Asymptotic Preserving (AP) if the limiting scheme given by
Assumption 3.3 and (3.3) is consistent, in the weak sense, with the limiting equation
given by Proposition 2.4 (resp. Proposition 2.6): for every continuous function ϕ :
Td → R, one has

E[ϕ(XN )] −−−−→
N→∞

E[ϕ(X(T ))],

where ∆t = T
N , with an arbitrary T ∈ (0,∞).

One of the main contributions of this article is the design of AP schemes in
the averaging and in the diffusion approximation regimes, see Sections 3.2 and 3.3
respectively.

To conclude this section, Proposition 3.5 and Corollary 3.6 below are general
formulations of the AP property in terms of interverting the limits ε→ 0 and ∆t→ 0.
As explained above, the result is stated only in the averaging regime to simplify the
presentation, however the same result holds also in the diffusion approximation regime
with straightforward modifications.

Proposition 3.5. Let the setting of Definition 3.4 be satistied. The following
statements are equivalent.

(i) The scheme (3.1) is Asymptotic Preserving.
(ii) For any continuous function ϕ : Td → R, one has

lim
∆t→0

lim
ε→0

E[ϕ(Xε
N )] = lim

ε→0
lim

∆t→0
E[ϕ(Xε

N )],

where T = N∆t.
(iii) For any ϕ ∈ C3(Td), for all (x,m) ∈ Td × R, one has

lim
∆t→0

lim
ε→0

E[ϕε(Φε∆t(x,m,Γ, γ))]− ϕ(x)

∆t

= lim
ε→0

lim
∆t→0

E[ϕε(Φε∆t(x,m,Γ, γ))]− ϕ(x)

∆t
,

where ϕε = ϕ + εϕ1 is the function introduced by the perturbed test function
approach (see (2.9), Proposition 2.4 or (2.17), Proposition 2.6), and Γ and
γ are independent RD and R valued standard Gaussian random variables.

Note that using the perturbed test function approach (see Propositions 2.4 and 2.6)
is the relevant point of view for the statement (iii) above.
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Proof of Proposition 3.5. The equivalence of (i) and (ii) is straightforward. In-
deed

lim
∆t→0

lim
ε→0

E[ϕ(Xε
N )] = lim

∆t→0
E[ϕ(XN )],

lim
ε→0

lim
∆t→0

E[ϕ(Xε
N )] = lim

ε→0
E[ϕ(Xε(T ))] = E[ϕ(X(T ))],

using Assumptions 3.2 and 3.3 and Proposition 2.4. The two quantities coincide if
and only if the limiting scheme is consistent with the limiting equation.

It remains to prove that (i) and (iii) are equivalent. On the one hand, note that

lim
∆t→0

lim
ε→0

E[ϕε(Φε∆t(x,m,Γ, γ))]− ϕ(x)

∆t
= lim

∆t→0

E[ϕ(Φ∆t(x,Γ, γ))]− ϕ(x)

∆t
,

using the fact that ϕε − ϕ = O(ε) and the definition of the limiting scheme from
Assumption 3.3.

On the other hand, one has

lim
ε→0

lim
∆t→0

E[ϕε(Φε∆t(x,m,Γ, γ))]− ϕ(x)

∆t
= lim
ε→0
Lεϕε(x,m) = Lϕ(x),

using the consistency of the scheme for fixed ε (Assumption 3.2), and the prop-
erty (2.10), by construction of the perturbed test function ϕε.

Then (iii) is equivalent to having

lim
∆t→0

E[ϕ(Φ∆t(x, γ))]− ϕ(x)

∆t
= Lϕ(x),

which means consistency in the weak sense of the limiting scheme with the limiting
equation (2.7).

This concludes the proof of Proposition 3.5.

The following result is a simple criterion to check whether a scheme satisfies the
asymptotic preserving property.

Corollary 3.6. Assume that for all ϕ ∈ C2(Td), one has

L̃ϕ(x) = lim
∆t→0

E[ϕ(Φ∆t(x, γ))]− ϕ(x)

∆t

where L̃ is a second-order differential operator.
Then the scheme is AP if and only if the property stated in (iii) in Proposition 3.5

holds with ϕ(x) = xi and ϕ(x) = xixj, with 1 ≤ i, j ≤ d.

The proof of Corollary 3.6 is straightforward and is thus omitted.

3.2. An example of AP scheme in the averaging regime. The objective of
this section is to propose an example of AP for the SDE model (2.1), see Theorem 3.7,
in the averaging regime. The challenge is to capture the averaged coefficients b and
σ, given by (2.5) and (2.6).

Theorem 3.7. Introduce the following numerical scheme:

(3.4)

X
ε
n+1 = Xε

n + ∆tb(Xε
n,m

ε
n+1) +

√
∆tσ(Xε

n,m
ε
n+1)Γn

mε
n+1 = e−

∆t
ε mε

n +

√
1− e− 2∆t

ε h(Xε
n)γn.
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This scheme satisfies Assumptions 3.1, 3.2 and 3.3 and is Asymptotic Preserving in
the sense of Definition 3.4. Moreover the limiting scheme is given by

(3.5) Xn+1 = Xn + ∆tb(Xn, h(Xn)γn) +
√

∆tσ(Xn, h(Xn)γn)Γn,

Let us discuss some properties of the AP scheme (3.4) and of the limiting scheme (3.5).
To simplify the discussion, assume that h(x) = 1. First, assume that σ = 0. Note
that even if the limiting equation (2.7) is a deterministic ordinary differential equation,
the scheme (3.5) is random. However, in that case, the convergence of XN to X(T )
when ∆t → 0 holds in probability, instead of only in distribution; in that case, the
averaging principle result stated in Proposition 2.4 also holds in probability (and even
in mean-square sense). The fundamental property to obtain the AP property is that
the random quantity appearing in the limiting scheme (3.5) satisfies the property

(3.6) E[b(Xn, h(Xn)γn)|Xn] = b(Xn).

In the AP scheme (3.4), the fast component is discretized exactly in distribution
(when h(x) = 1): for all n ≥ 0, the Gaussian random variables mε

n and mε(n∆t) are
equal in distribution. The fundamental property written above cannot be satisfied if
one uses for instance the implicit Euler scheme to discretize the fast component: the
scheme defined by

(3.7)


Xε
n+1 = Xε

n + ∆tb(Xε
n,m

ε
n+1)

mε
n+1 = mε

n −
∆t

ε
mε
n+1 +

√
2

∆t

ε
γn,

is not asymptotic preserving, since the associated limiting scheme is

Xn+1 = Xn + ∆tb(Xn, 0).

using the identity

mε
n+1 =

1

1 + ∆t
ε

mε
n +

√
2∆t
ε

1 + ∆t
ε

γn →
ε→0

0,

to pass to the limit.
Second, assume that σ is not equal to 0. Then the convergence of Xε

n to Xn only
holds in distribution in general. It does not hold in mean-square sense in the following
case: assume that d = 1, and that b(x) = 0 and σ(x,m) = m (in that example, the
convergence in Proposition 2.4 also does not hold in the mean-square sense). Assume
also for simplicity that xε0 = 0, and that mε

0 = m0 ∼ N (0, 1) (and is independent of
the Wiener processes β and B). Then one has σ(x) = 1, thus

Xn =

n−1∑
k=0

√
∆tΓk , Xε

n =

n−1∑
k=0

√
∆tmε

k+1Γk,

and one obtains

E|Xε
n −Xn|2 = ∆t

n−1∑
k=0

E|mε
k+1 − 1|2 = n∆tE|m0 − 1|2,

and the right-hand side does not depend on ε. It is thus natural to consider conver-
gence in distribution in the notion of asymptotic preserving schemes for SDEs.
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Finally, note also that, as above, the scheme
Xε
n+1 = Xε

n +
√

∆tσ(Xε
n,m

ε
n+1)Γn

mε
n+1 = mε

n −
∆t

ε
mε
n+1 +

√
2

∆t

ε
γn,

is not asymptotic preserving, since the associated limiting scheme is

Xn+1 = Xn +
√

∆tσ(Xn, 0)Γn.

We are now in position to prove Theorem 3.7.

Proof of Theorem 3.7. It is straightforward to check that Assumption 3.1 is sat-
isfied. Let us prove that Assumption 3.3 holds. We have

Φε∆t(x,m,Γ, γ) = x+ ∆tb(x,m′) +
√

∆tσ(x,m′)Γ

Φ∆t(x,Γ, γ) = x+ ∆tb(x, h(x)γ) +
√

∆tσ(x, h(x)γ)Γ,

with m′ = e−
∆t
ε m +

√
1− e− 2∆t

ε h(x)γ. When ε → 0, m′ converges almost surely
to h(x)γ, thus Φε∆t(x,m,Γ, γ) converges in distribution to Φ∆t(x,Γ, γ), and Assump-
tion 3.3 is satisfied.

It remains to prove that the scheme satisfies Assumption 3.2 and is asymptotic
preserving in the sense of Definition 3.4, namely that the schemes (3.4) and (3.5) are
consistent (in the weak sense), with (2.1) and (2.7) respectively.

Let ε > 0 be fixed. Since h is bounded, it is straightforward to check that

(3.8) sup
ε∈(0,1]

sup
n≥0

E[
∣∣mε

n

∣∣2]

1 +
∣∣mε

0

∣∣2 <∞.
This estimate will prove useful to prove Lemma 5.4 of Theorem 3.8. Since b and σ
are also bounded, we get, in L1(Ω), when ∆t→ 0

mε
n+1 −mε

n = −∆t

ε
mε
n +

√
2∆t

ε
h(Xε

n)γn + o(∆t),

Xε
n+1 −Xε

n = ∆tb(Xε
n) +

√
∆tσ(Xε

n)Γn + o(∆t).

Thus, using that Γn, γn and Xε
n are independent, we get the second order Taylor

expansion of ϕ ∈ C2
b (Td × R),

E[ϕ(Xε
n+1,m

ε
n+1)]− E[ϕ(Xε

n,m
ε
n)]

= ∆tE[b(Xε
n,m

ε
n+1) · ∇xϕ(Xε

n,m
ε
n)] +

1

2
∆tE[σσ∗(Xε

n,m
ε
n+1) : ∇2

xϕ(Xε
n,m

ε
n)]

− ∆t

ε
E[mε

n∂mϕ(Xε
n,m

ε
n)] +

∆t

ε
E[h(Xε

n)2∂2
mϕ(Xε

n,m
ε
n)] + o(∆t)

= ∆tE[Lεϕ(Xε
n,m

ε
n)] + o(∆t).

From there, it is straightforward to check that Assumption 3.2 is satisfied.
Similarly, to prove the consistency of the limiting scheme (3.5) with (2.7), for

ϕ ∈ C2(Td), when ∆t→ 0, observe that one has

E[ϕ(Xn+1)]− E[ϕ(Xn)] = ∆tE[b(Xn, h(Xn)γn) · ∇xϕ(Xn)]

+
1

2
∆tE[σσ∗(Xn, h(Xn)γn) : ∇2

xϕ(Xn)] + o(∆t).
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The key argument of this proof is the following: by conditioning with respect to
Xn and the definitions (2.5)–(2.6) of the averaged coefficients, using the fundamental
property (3.6) for b and σ σ∗ = σσ∗, yields

E[ϕ(Xn+1)] = E[ϕ(Xn)] + ∆tE[Lϕ(Xn)] + o(∆t).

The limiting scheme is thus consistent with the limiting equation. This concludes the
proof of Theorem 3.7.

Beyond the asymptotic preserving property, it is possible to obtain error estimate,
and to prove that the scheme (3.4) given in Theorem 3.7 is uniformly accurate (in
distribution).

Theorem 3.8. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. For any T ∈ (0,∞)
and any function ϕ : Td → R of class C4, there exists C(T, ϕ) ∈ (0,∞) such that for
all ∆t ∈ (0,∆t0] and ε ∈ (0, 1] one has

(3.9)
∣∣E[ϕ(Xε

N )− E[ϕ(Xε(T ))]
∣∣ ≤ C(T, ϕ) min

(∆t

ε
,∆t+ ε

)
,

and the scheme (3.4) is uniformly accurate with the following error estimate: for all
∆t ∈ (0,∆t0], one has

(3.10) sup
ε∈(0,1]

∣∣E[ϕ(Xε
N )− E[ϕ(Xε(T ))]

∣∣ ≤ C(T, ϕ)
√

∆t.

The error estimate (3.10) implies that the error
∣∣E[ϕ(Xε

N ) − E[ϕ(Xε(T ))]
∣∣ goes to 0

when ∆t→ 0 uniformly with respect to ε→ 0. Note that (3.10) is a straightforward
consequence of (3.9), considering the cases

√
∆t ≤ ε and ε ≤

√
∆t separately. This

argument implies a reduction in the order of convergence appearing in (3.10): it is
equal to 1

2 whereas for fixed ε > 0 (in (3.9)) or when ε = 0 the order of convergence
is equal to 1.

The proof of Theorem 3.8 is long, technical and requires several auxiliary results,
it is thus postponed to Section 5.

3.3. An example of AP scheme in the diffusion approximation regime.
The objective of this section is to propose an example of AP scheme for the SDE
model (2.12), see Theorem 3.9, in the diffusion approximation regime. The challenge
is to let the limiting scheme capture the additional drift term appearing in the limiting
equation (2.15) when σ or f is not constant.

Theorem 3.9. Let θ ∈ [ 1
2 , 1]. Introduce the following numerical scheme:

(3.11)

m̂ε
n+1 = mε

n −
∆tf(Xε

n)m̂ε
n+θ

ε2
+

∆tf(Xε
n)g(Xε

n)

ε
+
f(Xε

n)h(Xε
n)
√

∆tγn
ε

,

X̂ε
n+1 = Xε

n + ∆tb(Xε
n) + σ(Xε

n)
∆tm̂ε

n+θ

ε
,

mε
n+1 = mε

n −
∆tf(X̂ε

n+1)mε
n+θ

ε2
+

∆tf(X̂ε
n+1)g(Xε

n)

ε
+
f(Xε

n)h(Xε
n)
√

∆tγn
ε

,

Y εn+1 = Xε
n + ∆tb(Xε

n) + σ(Xε
n)

∆tmε
n+θ

ε
,

Xε
n+1 = Xε

n + ∆tb(Xε
n) +

σ(Xε
n) + σ(Y εn+1)

2

∆t

ε

m̂ε
n+θ +mε

n+θ

2
,
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where

m̂ε
n+θ = (1− θ)mε

n + θm̂ε
n+1

mε
n+θ = (1− θ)mε

n + θmε
n+1.

This scheme satisfies Assumptions 3.1, 3.2 and 3.3 and is Asymptotic Preserving in
the sense of Definition 3.4. Moreover the limiting scheme is given by

(3.12)



X̂n+1 = Xn + ∆t (b(Xn) + g(Xn)σ(Xn)) + σ(Xn)h(Xn)
√

∆tγn,

Yn+1 = Xn + ∆t
(
b(Xn) + g(Xn)σ(Xn)

)
+ σ(Xn)h(Xn)

f(Xn)

f(X̂n+1)

√
∆tγn,

Xn+1 = Xn + ∆t

(
b(Xn) + g(Xn)

σ(Xn) + σ(Yn+1)

2

)

+
σ(Xn) + σ(Yn+1)

2

1 + f(Xn)

f(X̂n+1)

2
h(Xn)

√
∆tγn.

The design of the scheme 3.11 is based on a carefully chosen prediction-correction
procedure. The limiting scheme (3.12) then also contains prediction steps which are
the key elements to satisfy the consistency with the limiting SDE (2.15). The choice of
the prediction-correction procedure is made clearer looking at the two examples (2.20)
and (2.22), see below Corollaries 3.11 and 3.12 respectively. The prediction-correction
procedure is crucial to obtain the AP property for the scheme: the following simpler
scheme (with θ = 1 to simplify the presentation)

(3.13)


Xε
n+1 = Xn + ∆tb(Xε

n) + σ(Xε
n)

∆t

ε
mε
n+1,

mε
n+1 = mε

n −
f(Xε

n)∆t

ε2
mε
n+1 +

f(Xε
n)g(Xε

n)∆t

ε
+
f(Xε

n)h(Xε
n)
√

∆t

ε
γn,

is not asymptotic preserving, since the associated limiting scheme (see the proof of
Theorem 3.9 for the derivation of the limiting scheme) is

Xn+1 = Xn + ∆t
(
b(Xn) + g(Xn)σ(Xn)

)
+ h(Xn)σ(Xn)

√
∆tγn.

This limiting scheme is consistent with the SDE dXt =
(
b(Xt) + g(Xt)σ(Xt)

)
dt +

h(Xt)σ(Xt)dWt, which differs in general – when σ or f is non constant – from the
correct limiting equation (2.15).

Observe that in the AP scheme (3.11) the fast component mε is discretized us-
ing the θ-method. Choosing θ ∈ [ 1

2 , 1] ensures the mean-square stability of the
scheme (Assumption 3.1), uniformly with respect to ε. Note that the same quan-
tity (1 − θ)mε

n + θm̂ε
n+1 appears in the expressions of m̂ε

n+1 and X̂ε
n+1 in (3.11).

Similarly, the same quantity (1− θ)mε
n + θmε

n+1 appears in the expressions of mε
n+1

and Y εn+1 in (3.11): this highlights the fact that in order to get a limiting scheme, it
is fundamental to choose the quadrature rules in this consistent way.

Remark 3.10. There would be no loss of generality to assume that b = 0. Another
example of AP scheme would be obtained in the case b 6= 0, using a splitting technique:
combining the scheme (3.11) with b = 0, with a standard explicit Euler scheme to
treat the contribution of b. Writing the expression of the resulting scheme is left to
the reader.
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Proof of Theorem 3.9. It is straightforward to check that Assumption 3.1 is sat-
isfied.

Let us prove that Assumption 3.3 holds, namely that (3.11) converges to (3.12)
when ε→ 0. Note that for fixed ∆t > 0 and 0 ≤ n ≤ N , one has

(3.14) sup
ε>0

E[|mε
n|+ |m̂ε

n|] < +∞.

This is proved by a straightforward recursion argument. As a consequence, one obtains
convergence of the quantity,

∆tm̂ε
n+θ

ε
= ∆tg(Xε

n) + h(Xε
n)
√

∆tγn −
ε

f(Xε
n)

(
m̂ε
n+1 −mε

n

)
.

Thus one has Y εn+1 −−−→
ε→0

Yn+1 and X̂ε
n+1 −−−→

ε→0
X̂n+1. Similarly, one obtains the

convergence of
∆tmεn+θ

ε , which yields Y εn+1 −−−→
ε→0

Yn+1 and Xε
n+1 −−−→

ε→0
Xn+1.

It remains to prove that the scheme satisfies Assumption 3.2 and is asymptotic
preserving in the sense of Definition 3.4, namely that the schemes (3.11) and (3.12)
are consistent (in the weak sense), with (2.12) and (2.15) respectively.

On the one hand, let ε > 0 be fixed. To prove that (3.11) is consistent with (2.12),
it is sufficient to prove that, for ϕ ∈ C2

b (Td × R), when ∆t→ 0,

(3.15) E[ϕ(Xε
n+1,m

ε
n+1)] = E[ϕ(Xε

n,m
ε
n)] + ∆tE[Lεϕ(Xε

n,m
ε
n)] + o(∆t).

It is straightforward to check that, in L1(Ω),(
m̂ε
n+1, X̂

ε
n+1,m

ε
n+1, Y

ε
n+1

)
= (m̂ε

n, X
ε
n,m

ε
n, X

ε
n) + o(1),

hence

mε
n+1 = mε

n +
√

∆t
f(Xε

n)h(Xε
n)γn

ε
+ ∆t

(
−f(Xε

n)mε
n

ε2
+
f(Xε

n)g(Xε
n)

ε

)
+ o(∆t),

Xε
n+1 = Xε

n + ∆t

(
b(Xε

n) +
σ(Xε

n)mε
n

ε

)
+ o(∆t).

Since γn ∼ N (0, 1) and the random variables γn and Xn are independent, one ob-
tains (3.15).

On the other hand, it remains to prove that the limiting scheme (3.12) is consistent
with (2.15), i.e. that, for ϕ ∈ C2(Td), when ∆t→ 0,

(3.16) E[ϕ(Xn+1)] = E[ϕ(Xn)] + ∆tE[Lϕ(Xn)] + o(∆t).

To simplify the presentation, for any function ψ, the following notation is used below:

ψn
.
= ψ(Xn), ∇ψn

.
= ∇ψ(Xn)

The key argument of this proof is the analysis of the asymptotic behavior of the

quantity σ(Xn)+σ(Yn+1)
2

1+
f(Xn)

f(X̂n+1)

2 , which appears in the scheme in order to capture
the drift terms in the limiting equation (2.15).

First, performing expansions at order
√

∆t for X̂n+1 and Yn+1 yields

X̂n+1 = Xn +
√

∆thnγnσn + o(
√

∆t), Yn+1 = Xn +
√

∆thnγnσn + o(
√

∆t).
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Second, writing σn+σ(Yn+1)
2 = σn + σ(Yn+1)−σn

2 and fn
f(X̂n+1)

= 1

1+
f(X̂n+1)−fn

fn

, one

obtains the following expansion at order
√

∆t for the quantity:

σn + σ(Yn+1)

2

1 + fn
f(X̂n+1)

2

=

(
σn +

1

2

√
∆thnγn(σn · ∇)σn + o(

√
∆t)

)(
1− 1

2fn

√
∆thnγnσn · ∇fn + o(

√
∆t)

)
= σn +

√
∆t

(
− 1

2fn
hnγnσn · ∇fnσn +

1

2
hnγn(σn · ∇)σn

)
+ o(
√

∆t).

Finally, one obtains the following asymptotic expansion of Xn+1

Xn+1 = Xn +
√

∆thnγnσn

+ ∆t

(
bn + gnσn −

1

2fn
h2
nγ

2
nσn · ∇fnσn +

1

2
h2
nγ

2
n(σn · ∇)σn

)
+ o(∆t).

Since γn is centered and γn and Xn are independent random variables, one obtains
the first order expansion (3.16).

This concludes the proof of Theorem 3.9.

The proposed AP scheme given by Theorem 3.9 can be simplified when it is
applied to one of the two examples of SDE models introduced in Section 2.2.2. These
two examples are employed in the numerical experiments below. To simplify the
presentation, we only consider the case θ = 1.

Corollary 3.11. Consider the SDE (2.20). The AP scheme (3.11) given by
Theorem 3.9 is written as follows:

(3.17)



mε
n+1 = mε

n −
∆t

ε2
mε
n+1 +

√
∆t

ε
γn,

Y εn+1 = Xε
n + σ(Xε

n)
∆tmε

n+1

ε
,

Xε
n+1 = Xε

n +
σ(Xε

n) + σ(Y εn+1)

2

∆tmε
n+1

ε
.

The scheme (3.17) is Asymptotic Preserving, and the limiting scheme (3.12) is written
as

(3.18)

 Yn+1 = Xn +
√

∆tσ(Xn)γn,

Xn+1 = Xn +
√

∆t
σ(Xn) + σ(Yn+1)

2
γn.

The limiting scheme (3.18) is consistent with the limiting SDE (2.21).

The prediction-correction procedure appearing in the limiting scheme (3.18) allows to
recover the Stratonovich interpretation of the noise in the limiting SDE (2.21).

Corollary 3.12. Consider the SDE (2.22). The AP scheme (3.11) given by
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Theorem 3.9 is written as follows:
(3.19)

m̂ε
n+1 = mε

n −
∆tf(Xε

n)

ε2
m̂ε
n+1 +

∆tf(Xε
n)g(Xε

n)

ε
+
f(Xε

n)h(Xε
n)
√

∆tγn
ε

X̂ε
n+1 = Xn +

∆tm̂ε
n+1

ε

mε
n+1 = mε

n −
∆tf(X̂ε

n+1)

ε2
mε
n+1 +

∆tf(X̂ε
n+1)g(Xε

n)

ε
+
f(Xε

n)h(Xε
n)
√

∆tγn
ε

Xε
n+1 = Xε

n +
∆t

ε

m̂ε
n+1 +mε

n+1

2

The scheme (3.19) is Asymptotic Preserving, and the limiting scheme (3.12) is written
as

(3.20)


X̂n+1 = Xn + ∆tg(Xn) + h(Xn)

√
∆tγn,

Xn+1 = Xn + ∆tg(Xn) +
1 + f(Xn)

f(X̂n+1)

2
h(Xn)

√
∆tγn.

The limiting scheme (3.20) is consistent with the limiting SDE (2.23).

The prediction-correction procedure appearing in the limiting scheme (3.18) allows to
recover the noise-induced drift term appearing in the limiting SDE (2.23).

Remark 3.13. Consider the first example (2.20), with σ(x) = x and assume that
x takes values in the real line R (instead of the torus T). The following scheme

(3.21)


Xε
n+1 = Xε

n exp
(∆t

ε
[(1− θ)mε

n + θmε
n+1]

)
mε
n+1 = mε

n −
∆t

ε2
[
(1− θ)mε

n + θmε
n+1

]
+

√
∆t

ε
γn,

where θ ∈ [ 1
2 , 1], is another example of AP scheme for this problem. The limiting

scheme is given by

(3.22) Xn+1 = Xn exp(
√

∆tγn)

which is consistent with the limiting equation dXt = Xt ◦ dWt.
However, the construction is more subtle if the fast component is discretized using

an exponential method: let

mε
n+1 = e−

∆t
ε2 mε

n +

√
1− e−2 ∆t

ε2

2
γn,

then mε
n+1 →

ε→0

1√
2
γn, and defining

Xε
n+1 = Xε

n exp
(∆t

ε
mε
n+1

)
does not provide an AP scheme, since there exists no limiting scheme when ε→ 0.

Inspired by the identity 1
ε

∫ t
0
mε(s)ds = ε(mε

0 −mε(t)) + βt for all t ≥ 0, one may
set

Xε
n+1 = Xε

n exp
(
ε(mε

n −mε
n+1) +

√
∆tγn

)
,
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so that one has

Xε
N = xε0 exp

(
ε(mε

0 −mε
N ) +

√
∆t

N−1∑
n=0

γn
)
.

When ε → 0, one obtains the limiting scheme (3.22) again. However, the general-
ization of this construction to the case σ(x) 6= x is not straightforward, whereas the
scheme proposed in Theorem 3.9 applies directly to the general case.

4. Numerical experiments. To simplify the discussion, the dimension d is set
equal to 1.

4.1. Illustration in the averaging regime. The objective of this section is to
illustrate qualitatively the superiority of the AP scheme (3.4) proposed in Section 3.2,
when the parameter ε is small, compared with the use of crude integrators which
are not AP. In particular, the numerical experiments below confirm that the limiting
scheme (3.5) is consistent with the limiting equation (2.7).

We consider the equation (2.1) with a drift given by b(x,m) = cos(2πx)e−
m2

2 ,
and diffusion coefficient σ(x,m) = 0. Let T = 1, xε0 = 1 and mε

0 = 0.
Recall that the AP scheme is given by (3.4), the limiting scheme is given by (3.5)

and the limiting equation is given by (2.7), with b(x) = 1√
2

cos(2πx) and σ = 0. Let

us define Xref
n using the standard Euler scheme applied to this limiting equation:

(4.1) Xref
n+1 = Xref

n + b(Xref
n )∆t.

The scheme (4.1) plays the role of a reference scheme to illustrate the consistency
of the limiting scheme (3.5) with the limiting equation, and to illustrate the fact that
the crude scheme defined by (3.7) fails to capture the correct limit and is not AP.

In Figure 1, we represent the evolution of Xε
n, Xn and Xref

n as time tn = n∆t
evolves, with ∆t = 0.004 and for different values of ε. In Figure 1(a), Xε

n and Xn are
computed using the AP scheme (3.4) and the limit scheme (3.5), while in Figure 1(b),
Xε
n is computed using the crude scheme (3.7). Observe that, in both case, the scheme

converges when ε→ 0 and that the AP scheme (3.4) does capture the correct limiting
equation only with AP scheme (3.4), as opposed to the crude scheme (3.7).

(a) AP scheme (3.4) and its limit (3.5) (b) Crude scheme (3.7)

Fig. 1. Evolution of the AP scheme (3.4) (left), the crude scheme (3.7) (right), and the
reference scheme (4.1) (averaging regime), with ∆t = 0.004.

In Figure 2, we represent the evolution of Xε
n and Xref

n as time tn = n∆t evolves,
with ∆t = 0.004 and ε = 0.001, when Xn is computed using the AP scheme (3.4) or
the crude scheme (3.7). It illustrates the superiority of the AP scheme over the crude
scheme for a small ε.
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Fig. 2. Evolution of the AP scheme (3.4), the crude scheme (3.7) and the reference scheme (4.1)
(averaging regime), with ∆t = 0.004 and ε = 0.001.

4.2. Illustration in the diffusion approximation regime. As in the previ-
ous section, the objective of this section is to illustrate qualitatively the superiority
of the AP scheme (3.11) proposed in Section 3.3, when the parameter ε is small,
compared a not AP scheme.

The two examples described in Sections 2.2.2 are considered below.

4.2.1. First example. Let us consider the first example, see Equation (2.20).
The diffusion coefficient is given by σ(x) = cos(2πx). Let T = 1, xε0 = 1 and mε

0 = 0.
Recall that the AP scheme derived from the general case (3.11) in this case is given

by (3.17), the limiting scheme is given by (3.18) and the limiting equation is given
by (2.21). Let us define Xref

n using the standard Euler-Maruyama scheme applied to
this limiting equation (rewritten in Itô form):

(4.2) Xref
n+1 = Xref

n +
1

2
σ(Xref

n )σ′(Xref
n )∆t+ σ(Xref

n )
√

∆tγn.

The scheme (4.2) plays the role of a reference scheme to illustrate the consistency
of the limiting scheme (3.18) with the limiting equation, and to illustrate the fact that
the crude scheme defined by (3.13) fails to capture the correct limit and is not AP.

In Figure 3, we represent the evolution of Xε
n and Xref

n as time tn = n∆t evolves,
with ∆t = 0.004 and for different values of ε. The discretization Xε

n is computed
using the AP scheme (3.17) in Figure 3(a) and the crude scheme (3.13) in Figure 3(b).
Observe that, in both case, the scheme seem to converge when ε → 0 but only the
AP scheme (3.17) captures the correct limiting.

(a) AP scheme (3.17) (b) Crude scheme (3.13)

Fig. 3. Evolution of the AP scheme (3.17) (left), the crude scheme (3.13) (right), and the
reference scheme (4.2) (diffusion approximation regime regime, first example), with ∆t = 0.004.
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In Figure 4, we represent the evolution of Xε
n and Xref

n as time tn = n∆t evolves,
with ∆t = 0.004 and ε = 0.01, when Xε

n is computed using the AP scheme (3.17) or
the crude scheme (3.13). Note how the behavior of the crude scheme differs from the
reference. It reveals the superiority of the AP scheme for a small ε.

Fig. 4. Evolution of the AP scheme (3.17), the crude scheme (3.13) and the reference
scheme (4.2) (diffusion approximation regime, first example), with ∆t = 0.004 and ε = 0.01.

4.2.2. First example with σ(x) = x. In this section, we illustrate the perfor-
mance of the AP scheme presented in Remark 3.13, and an important feature of all
the AP schemes presented in this article, concerning the consistency of quadrature
rules for discretizations of the fast component.

As explained in Remark 3.13, when σ(x) = x, where x ∈ R belongs to the real
line instead of imposing periodic conditions, another type of AP scheme (3.21) can
be designed. The limiting equation is dXt = Xt ◦ dWt or, with an Itô convention,
dXt = 1

2Xtdt+XtdWt, and the Euler-Maruyama scheme (used as a reference scheme)
for this limiting equation is written as

(4.3) Xref
n+1 = Xref

n +
1

2
Xref
n ∆t+Xref

n

√
∆tγn.

Recall that in (3.21), the quadrature rule used to discretize the integral in the
exponential is closely related to the choice of the scheme for the discretization of the
fast component. Let us introduce the following scheme where the consistency is not
satisfied (scheme (3.21) corresponds to θ = θ′ below):

(4.4)


Xε
n+1 = Xε

n exp
(∆t

ε
[(1− θ)mε

n + θmε
n+1]

)
mε
n+1 = mε

n −
∆t

ε2
[
(1− θ′)mε

n + θ′mε
n+1

]
+

√
∆t

ε
γn,

with θ, θ′ ∈ [ 1
2 , 1].

In Figure 5, we represent the evolution of Xε
n and Xref

n as time evolves, with
∆t = 0.004 and ε = 0.01. In Figure 5(a) Xε

n is computed either the specific AP
scheme (3.21) or the general AP scheme (3.11), while in Figure 5(b), it is computed
using the scheme (4.4) above with θ = 1 6= θ′ = 0.5. It illustrates the AP property of
both schemes (3.21) and (3.17) and the non convergence when the quadrature rules
are not chosen consistently.

4.2.3. Second example. Let us now consider the second example described in
Section 2.2.2, see Equation (2.22). The coefficients are given by f(x) = cos(2πx)+1.5,
g(x) = 0 and h(x) = 1. Let T = 1, xε0 = 1 and mε

0 = 0.
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(a) AP schemes (3.21) and (3.17) (b) Scheme (4.4) with θ = 1 6= θ′ = 0.5

Fig. 5. Evolution of the AP schemes (3.21) and (3.17) (left), the crude scheme (4.4) with
θ 6= θ′ (right), and the reference scheme (4.3) (diffusion approximation regime, first example with
σ(x) = x), ∆t = 0.004 and ε = 0.01.

The general case (3.11) gives in this case the AP scheme (3.19) and the limiting
scheme (3.20), whereas the limiting equation is given by (2.23). The reference scheme
is obtained by using the standard Euler-Maruyama scheme applied to the limiting
equation:

(4.5) Xref
n+1 = Xref

n −∆t
h(Xref

n )2f ′(Xref
n )

2f(Xref
n )

+
√

∆tγn.

We represent in Figure 6 the evolution of Xε
n and Xref

n as time evolves, with
∆t = 0.004 and ε = 0.01, where Xε

n is computed using the AP scheme (3.19) (left)
and the crude scheme (3.13) (right). Observe that the AP scheme captures the correct
limiting equation when ε→ 0, whereas the crude scheme does not.

Fig. 6. Evolution of the AP scheme (3.19), the crude scheme (3.13), and the reference
scheme (4.5) for the second example (2.22) (diffusion approximation regime, second example), with
∆t = 0.004 and ε = 0.01.

5. Proof of Theorem 3.8. The objective of this section is to prove the error
estimate (3.9). The proof follows from proving the following four auxiliary lemmas.
In their statements, let Assumptions 2.1, 2.2 and 2.3 be satisfied. Let T ∈ (0,∞) be
fixed and assume that ϕ : Td → R is of class C4. Recall that the identity T = N∆t is
assumed to hold. In addition, recall that

(
X(t)

)
t≥0

and
(
Xn

)
n≥0

are defined by the

limiting equation (2.7) and the limiting scheme (3.5) respectively.



24 C.-E. BRÉHIER, S. RAKOTONIRINA-RICQUEBOURG

Lemma 5.1. There exists C(T, ϕ) ∈ (0,∞) such that for all ∆t ∈ (0,∆t0] and
ε ∈ (0, 1] one has

(5.1)
∣∣E[ϕ(Xε

N )]− E[ϕ(Xε(T ))]
∣∣ ≤ C(T, ϕ)

∆t

ε
.

Lemma 5.2. There exists C(T, ϕ) ∈ (0,∞) such that for all ε ∈ (0, 1] one has

(5.2)
∣∣E[ϕ(X(T ))]− E[ϕ(Xε(T ))]

∣∣ ≤ C(T, ϕ)ε.

Lemma 5.3. There exists C(T, ϕ) ∈ (0,∞) such that for all ∆t ∈ (0,∆t0] one has

(5.3)
∣∣E[ϕ(XN )]− E[ϕ(X(T ))]

∣∣ ≤ C(T, ϕ)∆t.

Lemma 5.4. There exists C(T, ϕ) ∈ (0,∞) such that for all ∆t ∈ (0,∆t0] and
ε ∈ (0, 1] one has

(5.4)
∣∣E[ϕ(Xε

N )]− E[ϕ(XN )]
∣∣ ≤ C(T, ϕ) max(∆t, ε).

The first auxiliary result (Lemma 5.1) states a weak error estimate for the nu-
merical scheme (3.4) for fixed ε ∈ (0, 1]. Due to the stiffness of the fast component
mε
n, the right-hand side is not uniform with respect to ε, and it is natural to expect

that the upper bound depends on τ = ∆t
ε .

The second auxiliary result (Lemma 5.2) gives an error estimate in the averaging
principle (see (2.11) in Proposition 2.4), in the weak sense. This is a standard result
in the literature, see for instance [23] for an approach using asymptotic expansions for
solutions of Kolmogorov equations. The strategy of the proof provided in Section A.1
is based on the introduction of the solutions of relevant Poisson equations, in the
spirit of [29, Chapter 17] where strong convergence is studied, see [5] and [34] for the
weak convergence case.

The two remaining auxiliary lemmas and their proofs are more original than the
first two. Lemmas 5.3 and 5.4 are quantitative statements concerning two fundamental
requirements in the notion of AP scheme (see Definition 3.4). On the one hand,
Lemma 5.3 is a quantitative statement of the consistency of the limiting scheme (3.5)
with the limiting equation (2.7), since it provides a weak error when ∆t → 0. Since
the scheme is not classical (it is not a standard Euler-Maruyama type method, in
particular recall that the scheme is random even if X(T ) is deterministic, when σ = 0),
a proof is required. On the other hand, Lemma 5.4 is a quantitative statement about
the convergence to the limiting scheme, for fixed ∆t ∈ (0,∆t0] (see Assumption 3.3).
In fact, the left-hand side of (5.4) goes to 0 when ε → 0, however in the right-hand
side of (5.4) an additional error term ∆t appears. Proving Lemma 5.4 is the most
challenging step towards the proof of Theorem 3.8, whereas a key argument will be
identified in the proof of Lemma 5.3 related to the consistency of the limiting scheme
with the limiting equation.

The following auxiliary results concerning solutions of Kolmogorov equations are
required in order do prove the four auxiliary results stated above.

Lemma 5.5. Define uε(t, x) = Ex,m[ϕ(Xε(t))], for all t ≥ 0, x ∈ Td and m ∈ R,
where

(
Xε(t),mε(t)

)
t≥0

is the solution of the SDE system (2.1), and Ex,m means that

Xε(0) = x and mε(0) = m. For all ε ∈ (0, 1], one has uε ∈ C([0, T ], C3
b (Td × R,R)).

In addition, there exists C(T, ϕ) ∈ (0,∞) such that for all j ∈ {1, 2, 3}, one has

(5.5) sup
ε∈(0,1]

sup
(t,x,m)∈[0,T ]×Td×R

‖Dj
xu

ε(t, x,m)‖ ≤ C(T, ϕ).
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Lemma 5.6. Define u(t, x) = Ex[ϕ(X(t))], for all t ≥ 0 and x ∈ Td, where(
X(t)

)
t≥0

is the solution of the SDE (2.7) and Ex means that X(0) = x. One has

u ∈ C([0, T ], C4
b (Td,R)). In addition, there exists C(T, ϕ) ∈ (0,∞) such that for all

j ∈ {1, 2, 3, 4}, one has

(5.6) sup
(t,x)∈[0,T ]×Td

‖Dj
xu(t, x)‖ ≤ C(T, ϕ).

Lemma 5.7. Let ∆t ∈ (0,∆t0].
Define un(x) = Ex[ϕ(Xn)], for all n ∈ N and x ∈ Td, where

(
Xn

)
n≥0

is defined

by the limiting scheme (3.5) (see Theorem 3.7), and Ex means that X0 = x. For all
n ≥ 0, one has un ∈ C2(Td). In addition, there exists C(T, ϕ) ∈ (0,∞) such that for
all j ∈ {1, 2}, one has

(5.7) sup
0≤n≤N

sup
x∈Td

‖Dj
xun(x)‖ ≤ C(T, ϕ)

and, for all ∆t ∈ (0,∆t0], one has

(5.8) sup
0≤n≤N−1

sup
x∈Td

‖Dj
xun+1(x)−Dj

xun(x)‖ ≤ C(T, ϕ)∆t.

Based on the auxiliary results stated above, the proof of Theorem 3.8 is straight-
forward.

Proof of Theorem 3.8. Note that∣∣E[ϕ(Xε
N )− E[ϕ(Xε(T ))]

∣∣ ≤ ∣∣E[ϕ(X(T ))− E[ϕ(Xε(T ))]
∣∣

+
∣∣E[ϕ(XN )− E[ϕ(X(T ))]

∣∣
+
∣∣E[ϕ(Xε

N )− E[ϕ(XN )]
∣∣,

thus combining (5.2), (5.3) and (5.4) (with max(∆t, ε) ≤ ∆t+ ε) yields∣∣E[ϕ(Xε
N )− E[ϕ(Xε(T ))]

∣∣ ≤ C(T, ϕ)
(
∆t+ ε

)
.

Combining that error estimate with (5.1) then concludes the proof of the error esti-
mate (3.9). As already explained above, the error estimate (3.10) is a straightforward
consequence of (3.9) (considering the cases

√
∆t ≤ ε and

√
∆t ≥ ε).

This concludes the proof of Theorem 3.8.

Let us now give proofs of the auxiliary lemmas 5.1, 5.2, 5.3 and 5.4, employing
the results of Lemmas 5.5, 5.6 and 5.7 (proofs are given below).

The following notation is used below in the proofs of the auxiliary results: for
all λ, µ ≥ 0, λ . µ means that there exists C(T, ϕ) ∈ (0,+∞), independent of ∆t,
ε and n, such that λ ≤ C(T, ϕ)µ. In addition, the following notation is used for the
infinitesimal generator of the Ornstein-Uhlenbeck process:

LxOU = −m∂m + h(x)2∂2
m,

in order to let the dependence with respect to x be clear.

Proof of Lemma 5.1. Let us introduce auxiliary continuous-time processes X̃ε

and m̃ε , such that, for all n ∈ {0, . . . , N}, one has Xε
n = X̃ε(tn) and mε

n = m̃ε(tn)
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(recall the definition (3.4) of the scheme): for tn ≤ t ≤ tn+1

X̃ε(t) = Xε
n + (t− tn)b(Xε

n, m̃
ε(t)) + σ(Xε

n, m̃
ε(t)) (B(t)−B(tn))

dm̃ε
t = −m̃

ε
t

ε
dt+

√
2h(Xε

n)√
ε

dβt.

Note that m̃ε does satisfy mε
n = m̃ε(tn), since mε

n is exact in distribution and m̃ε

is an Ornstein-Uhlenbeck process with variance
2h(Xεn)2

ε . The process X̃ε satisfies
on each subinterval [tn, tn+1] the following stochastic differential equation: for all
t ∈ [tn, tn+1], one has

dX̃ε
t = b(Xε

n, m̃
ε
t)dt+ σ(Xε

n, m̃
ε
t)dBt + (t− tn)∂mb(X

ε
n, m̃

ε
t)dm̃

ε
t

+ ∂mσ(Xε
n, m̃

ε
t)(Bt −Btn)dm̃ε

t +
h(Xε

n)2

ε
(t− tn)∂2

mb(X
ε
n, m̃

ε
t)dt

+
h(Xε

n)2

ε
∂2
mσ(Xε

n, m̃
ε
t)(Bt −Btn)dt.

The expressions for X̃ε are complicated due to the fact that in the scheme (3.4), b
and σ are evaluated with m = mε

n+1, which is required to satisfy the AP property.
Owing to Lemma 5.5, the auxiliary function uε is of class C2 and is solution of

the Kolmogorov equation ∂tu
ε = Lεuε. Using a telescoping sum argument and the

definition of the auxiliary processes X̃ε and m̃ε, the application of Itô’s formula yields
the following standard expression for the weak error:

E[ϕ(Xε
N )]−E[ϕ(Xε(T ))] = E[uε(0, Xε

N , m̃
ε(tN ))]− E[uε(T,Xε

0, m̃
ε(0))]

=

N−1∑
n=0

E[uε(T − tn+1, X̃
ε(tn+1), m̃ε(tn+1))− uε(T − tn, X̃ε(tn), m̃ε(tn))]

=

N−1∑
n=0

∫ tn+1

tn

E[(−∂t + L̃εn)uε(T − t, X̃ε(t), m̃ε(t))]dt

=

N−1∑
n=0

∫ tn+1

tn

E[(L̃εn − Lε)uε(T − t, X̃ε(t), m̃ε(t))]dt,

where the auxiliary differential operator L̃εn is such that

L̃εnuε(T − t, X̃ε(t), m̃ε(t)) = b(Xε
n, m̃

ε(t)) · ∇xuε(T − t, X̃ε(t), m̃ε(t))

+
1

2
σσ∗(Xε

n, m̃
ε(t)) : ∇2

xu
ε(T − t, X̃ε(t), m̃ε(t))

+
1

ε
LX

ε
n

OUu
ε(T − t, X̃ε(t), m̃ε(t)) + rεn(t),

and where the remainder term rεn(t) is given by

rεn(t) =
1

ε
(t− tn)LX

ε
n

OUb(X
ε
n, m̃

ε(t)) · ∇xuε

+
1

ε
LX

ε
n

OUσ(Xε
n, m̃

ε(t))(B(t)−B(tn)) · ∇xuε

+
1

2
D2
xu

ε · ((t− tn)∂mb(X
ε
n, m̃

ε(t)) + ∂mσ(Xε
n, m̃

ε(t))(B(t)−B(tn)))
2
,
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where uε and its derivatives are evaluated at (T − t, X̃ε(t), m̃ε(t)), and where we used
the notation D2φ(x) · (y)2 = yy∗ : ∇2

xφ(x) to simplify the presentation.
Let us first deal with the remainder term rεn(t). Observe that the processes(

B(t) − B(tn)
)
t∈[tn,tn+1]

and
{
Xε
n,
(
m̃ε(t)

)
t∈[tn,tn+1]

}
are independent, thus using a

conditioning argument and the regularity estimates from Lemma 5.5, one has for all
t ∈ [tn, tn+1] ∣∣E[rεn(t)]

∣∣ . t− tn
ε

.

It remains to deal with

(5.9)

(L̃εn−Lε)uε(T − t, X̃ε(t), m̃ε(t))− rεn(t)

=
(
b(Xε

n, m̃
ε(t))− b(X̃ε(t), m̃ε(t))

)
· ∇xuε(T − t, X̃ε(t), m̃ε(t))

+
1

2

(
σσ∗(Xε

n, m̃
ε(t))− σσ∗(X̃ε(t), m̃ε(t))

)
: ∇2

xu
ε(T − t, X̃ε(t), m̃ε(t))

+
(
h(Xε

n)2 − h(X̃ε(t))2
)
∂2
mu

ε(T − t, X̃ε(t), m̃ε(t)),

where the expressions (2.3) and (2.4) for the infinitesimal generator Lε have been
used. The three quantities appearing in the right-hand side of (5.9) above are of the
type (

V (X̃ε(t), m̃ε(t))− V (Xε
n, m̃

ε(t))
)
U ε(X̃ε(t), m̃ε(t)),

for V = b, σσ∗ or h2 and U ε = ∇xuε(T − t), ∇2
xu

ε(T − t) or ∂2
mu

ε(T − t). Using
again the independence of (B(t) − B(tn))tn≤t≤tn+1

and
{
Xε
n,
(
m̃ε(t)

)
t∈[tn,tn+1]

}
and

regularity properties of uε given in Lemma 5.5, applying Itô’s formula and conditioning
with respect to (Xε

n, (m̃
ε(t))tn≤t≤tn+1

), one obtains∣∣E [(V (X̃ε(t), m̃ε(t))− V (Xε
n, m̃

ε(t))
)
U ε(Xε

n, m̃
ε(t))

] ∣∣ . t− tn.

Moreover,
∥∥V ∥∥C1(Td,C(R))

. 1 and, owing to Lemma 5.5,
∥∥U ε∥∥C1(Td,C(R))

. 1. There-

fore, we have

E
[∣∣ (V (X̃ε(t), m̃ε(t))− V (Xε

n, m̃
ε(t))

)(
U ε(X̃ε(t), m̃ε(t))− U ε(Xε

n, m̃
ε(t))

) ∣∣]
≤
∥∥V (·, m̃ε(t))

∥∥
C1(Td)

E
[∥∥U ε(·, m̃ε(t))

∥∥
C1(Td)

∥∥X̃ε(t)−Xε
n

∥∥2
]

. E
[∥∥X̃ε(t)−Xε

n

∥∥2
]
. t− tn,

where the last inequality comes from the definition of X̃ε(t). Gathering the two
estimates above gives, for all t ∈ [tn, tn+1],∣∣E [(V (X̃ε(t), m̃ε(t))− V (Xε

n, m̃
ε(t))

)
U ε(X̃ε(t), m̃ε(t))

] ∣∣ . t− tn,

and using (5.9) finally yields, for all t ∈ [tn, tn+1],

E
[∣∣(L̃εn − Lε)uε(T − t, X̃ε(t),mε(t))

∣∣] . t− tn +
t− tn
ε

.
∆t

ε
.
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One then obtains

∣∣N−1∑
n=0

∫ tn+1

tn

E[(L̃εn − Lε)uε(T − t, X̃ε(t), m̃ε(t))]dt
∣∣ . ∆t

ε
,

which concludes the proof of (5.1) and of Lemma 5.1.

Proof of Lemma 5.2. For all x ∈ Td, introduce the auxiliary Ornstein-Uhlenbeck
process mx solving the SDE

dmx
t = −mx

t dt+
√

2h(x)dβt

Let mx(t,m) denote the solution at time t, if the initial condition is given by mx(0,m).
The invariant distribution of the process mx is equal to νx. Note that for m and
m′ ∈ R, one has mx(t,m) −mx(t,m′) = (m −m′)e−t. Consider V = b or V = σσ?,
and let

δ(t, x,m) = E[V (x,mε(t,m))− V (x)].

Note that for m and m′ ∈ R, one has mx(t,m) − mx(t,m′) = (m − m′)e−t. As a
consequence, we have ∥∥δ(t, x,m)− δ(t, x,m′)

∥∥ .
∣∣m−m′∣∣e−t.

By integrating with respect to m′ and using the equality V (x) =
∫
V (x,m′)dνx(m′),

one obtains

(5.10)
∥∥δ(t, x,m)

∥∥ . (1 +
∣∣m∣∣)e−t.

Using the fact that δ and its derivatives satisfy (5.10) with V = b, one is able to check
that the function ψb given by, for all x ∈ Td and m ∈ R,

ψb(x,m) = −
∫ ∞

0

E[b(x,mx(t,m))− b(x)]dt

is well-defined (by definition of b, see (2.5)) and is of class C2(Td × R). Moreover,
ψb and its derivative have at most linear growth in m. In addition, ψb(x, ·) solves
the Poisson equation LxOUψb(x,m) = b(x,m) − b(x), for all x ∈ Td (indeed νx is the
invariant distribution associated with the generator LxOU of the Ornstein-Uhlenbeck
process mx).

Similarly, define, for all x ∈ Td and m ∈ R,

ψσ(x,m) = −
∫ ∞

0

E[σσ∗(x,mx(t,m))− σ σ∗(x)]dt.

The function ψσ is well-defined: owing to (2.6) (Assumption 2.2) one has the equality∫
σσ∗(x,m)dνx(m) = σ σ∗(x) for all x ∈ Td, and using the same arguments as above,

ψσ(x, ·) solves the Poisson equation LxOUψσ(x,m) = σσ∗(x,m)− σ σ∗(x), for all x ∈
Td.

Now, for all t ∈ [0, T ], x ∈ Td and m ∈ R, let

Φ(t, x,m) = ψb(x,m) · ∇xu(T − t, x) + ψσ(x,m) : ∇2
xu(T − t, x),
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where u is given by Lemma 5.6 and solves the Kolmogorov equation ∂tu = Lu.
On the one hand, applying Itô’s formula yields the following expression for the

error term:

E[ϕ(Xε(T ))]−E[ϕ(X(T ))] = E[u(0, Xε(T ))− u(T,Xε(0))]

=

∫ T

0

E[
(
b(Xε(t),mε(t))− b(Xε(t))

)
· ∇xu(T − t,Xε(t))]dt

+
1

2

∫ T

0

E[(σσ∗(Xε(t),mε(t))− σ σ∗(Xε(t))) : ∇2
xu(T − t,Xε(t))]dt

=

∫ T

0

E[LxOUΦ(t,Xε(t),mε(t))]dt,

by definition of the auxiliary function Φ, since ψb and ψσ are solutions of Poisson
equations.

On the other hand, applying Itô’s formula also gives the identity

E[Φ(T,Xε(T ),mε(T ))]− E[Φ(0, Xε(0),mε(0))]

=

∫ T

0

E[(∂t + b · ∇x +
1

2
σσ∗ : ∇2

x +
1

ε
LxOU )Φ(t,Xε(t),mε(t))]dt.

Combining the two expressions then gives

E[ϕ(Xε(T ))]−E[ϕ(X(T ))] =

∫ T

0

E[LxOUΦ(t,Xε(t),mε(t))]dt

= ε (E[Φ(T,Xε(T ),mε(T ))]− E[Φ(0, Xε(0),mε(0))])

− ε
∫ T

0

E[(∂t + b · ∇x +
1

2
σσ∗ : ∇2

x)Φ(t,Xε(t),mε(t))]dt.

Using the regularity estimates from Lemma 5.6 and the identity

∂tu = b · ∇xu+ σ σ∗ : ∇2
xu,

it is then straightforward to obtain (5.2). This concludes the proof of Lemma 5.2.

Proof of Lemma 5.3. Let us introduce the continuous-time auxiliary process X̃,
such that, for t ∈ [tn, tn+1], one has

X̃(t) = Xn + (t− tn)b(Xn, h(Xn)γn) + σ(Xn, h(Xn)γn)(B(t)−B(tn)).

Introduce also the second-order differential operator L̃n = b(Xn, h(Xn)γn) · ∇ +
1
2σσ

∗(Xn, h(Xn)γn) : ∇2. With this notation, for any function φ ∈ C2(Td), Itô’s
formula gives, for all t ∈ [tn, tn+1],

(5.11) φ(X̃(t))− φ(Xn) =

∫ t

tn

L̃nφ(X̃(s))ds+

∫ t

tn

∇φ(X̃(s)) · σ(Xn, h(Xn)γn)dBs.

Using the same (standard) arguments as in the proof of Lemma 5.1, one obtains the
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following decomposition of the error:

E[ϕ(XN )]− E[ϕ(X(T ))] = E[u(0, XN )]− E[ϕ(T,X0)]

=

N−1∑
n=0

∫ tn+1

tn

E[u(T − tn+1, Xn+1)− u(T − tn, Xn)]

=

N−1∑
n=0

∫ tn+1

tn

E[(−∂t + L̃n)u(T − t, X̃(t))]dt

=

N−1∑
n=0

∫ tn+1

tn

E
[(
b(Xn, h(Xn)γn)− b(X̃(t))

)
· ∇xu(T − t, X̃(t))

]
dt

+
1

2

N−1∑
n=0

∫ tn+1

tn

E
[(
σσ∗(Xn, h(Xn)γn)− σ σ∗(X̃(t))

)
: ∇2

xu(T − t, X̃(t))
]
dt.

The error term E
[(
b(Xn, h(Xn)γn)− b(X̃(t))

)
· ∇xu(T − t, X̃(t))

]
(with V = b and

U = ∇xu) and E
[(
σσ∗(Xn, h(Xn)γn)− σ σ∗(X̃(t))

)
: ∇2

xu(T − t, X̃(t))
]

(with V =

σσ∗ and U = ∇2
xu) are written as(

V (Xn, h(Xn)γn)− V (X̃(t))
)
U(T − t, X̃(t)).

Note that X̃(tn) = Xn. As a consequence,

E
[(
V (Xn, h(Xn)γn)− V (X̃(t))

)
U(T − t, X̃(t))

]
= δ1

n(t) + δ2
n(t) + δ3

n(t) + δ4
n(t),

where

δ1
n(t) = E

[(
V (Xn, h(Xn)γn)− V (Xn)

)
U(T − t,Xn)

]
δ2
n(t) = E

[(
V (Xn)− V (X̃(t))

)
U(T − t,Xn)

]
δ3
n(t) = E

[(
V (Xn, h(Xn)γn)− V (Xn)

) (
U(T − t, X̃(t))− U(T − t,Xn)

)]
δ4
n(t) = E

[(
V (Xn)− V (X̃(t))

)(
U(T − t, X̃(t))− U(T − t,Xn)

)]
.

It remains to treat the four error terms δjn(t), j = 1, 2, 3, 4.
Let us start with the most important observation: by definition of V (x) =∫

V (x,m)dνx(m), the independence of the random variables Xn and γn yields the
identity

E
[(
V (Xn, h(Xn)γn)− V (Xn)

)
U(T − t,Xn)

]
= E

[
E
[(
V (Xn, h(Xn)γn)− V (Xn)

)
U(T − t,Xn) | Xn

]]
= 0.

The fact that this term vanishes is fundamental since it justifies the consistency of the
scheme (3.5) with the limiting equation (2.7) (see also Theorem 3.7 and its proof),
and the AP property.

To treat the second term, observe that Xn and (X̃(s), B(s))s>tn are indepen-
dent random variables, thus conditioning with respect to Xn and applying Itô’s for-
mula (5.11) gives

E
[(
V (Xn)− V (X̃(t))

)
U(T − t,Xn)

]
= E

[∫ t

tn

L̃nV (X̃(s))dsU(T − t,Xn)

]
.
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Since U is bounded (owing to the regularity estimates from Lemma 5.6) and since
V ∈ C2(Td) (by assumptions on the coefficients b and σ, see Assumption 2.2), one
obtains ∣∣E [(V (Xn)− V (X̃(t))

)
U(T − t,Xn)

] ∣∣ . t− tn.

The treatment of the third term uses a conditioning argument, and Itô’s for-
mula (5.11): one has

E
[(
V (Xn, h(Xn)γn)− V (Xn)

) (
U(T − t, X̃(t))− U(T − t,Xn)

)
| Xn, γn

]
= E

[(
V (Xn, h(Xn)γn)− V (Xn)

) ∫ t

tn

L̃nU(T − t, X̃(s))ds | Xn, γn

]
.

Using the regularity properties from Lemma 5.6, one obtains∣∣E [(V (Xn, h(Xn)γn)− V (Xn)
) (
U(T − t, X̃(t))− U(T − t,Xn)

)] ∣∣ . t− tn.

The treatment of the fourth error term is straightforward: since U and V are
Lipschitz continuous (owing to Lemma 5.6), one has∣∣E [(U(T − t, X̃(t))− U(T − t,Xn)

)(
V (Xn)− V (X̃(t))

)] ∣∣ . E
[∥∥X̃(t)−Xn

∥∥2
]

. t− tn.

The estimates above are of the type∣∣δjn(t)
∣∣ . t− tn,

for all t ∈ [tn, tn+1] and j = 1, 2, 3, 4. Finally, one obtains

∣∣E[ϕ(XN )]− ϕ(X(T ))
∣∣ . N−1∑

n=0

∫ tn+1

tn

(t− tn)dt . ∆t,

which concludes the proof of Lemma 5.3.

Proof of Lemma 5.4. The idea is to adapt the proof of Lemma 5.2 (see Sec-
tion A.1) to the discrete-time situation. Let us start with preparatory computations.
A telescoping sum argument yields the equality

E[ϕ(Xε
N )]− E[ϕ(XN )] = E[u0(Xε

N )]− uN (Xε
0)

=

N−1∑
n=0

(
E[uN−n−1(Xε

n+1)]− E[uN−n(Xε
n)]
)
,(5.12)

where the auxiliary function un is defined in Lemma 5.7. Using the definition of
the scheme (3.4), and Markov property combined with the expression of the limiting
scheme (3.5), one obtains

uN−n−1(Xε
n+1) = uN−n−1

(
Xε
n + ∆tb(Xε

n,m
ε
n+1) +

√
∆tσ(Xε

n,m
ε
n+1)Γn

)
,

E[uN−n(Xε
n)] = E

[
uN−n−1

(
Xε
n + ∆tb(Xε

n, h(Xε
n)γn) +

√
∆tσ(Xε

n, h(Xε
n)γn)Γn

)]
.
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A second order Taylor expansion then gives

E[uN−n−1(Xε
n+1)]− E[uN−n(Xε

n)]

= ∆tE
[(
b(Xε

n,m
ε
n+1)− b(Xε

n, h(Xε
n)γn)

)
· ∇xuN−n−1(Xε

n)
]

+
∆t

2
E
[(
σΓnΓ∗nσ

∗(Xε
n,m

ε
n+1)− σΓnΓ∗nσ

∗(Xε
n, h(Xε

n)γn)
)

: ∇2
xuN−n−1(Xε

n)
]

+
√

∆tE
[(
σ(Xε

n,m
ε
n+1)− σ(Xε

n, h(Xε
n)γn)

)
Γn · ∇xuN−n−1(Xε

n)
]

+ ∆t3/2E
[(
σΓnb

∗(Xε
n,m

ε
n+1)− σΓnb

∗(Xε
n, h(Xε

n)γn)
)

: ∇2
xuN−n−1(Xε

n)
]

+ ∆t2E[Rn(∆t)].

Using the regularity estimates from Lemma 5.7, one has
∣∣Rn(∆t)

∣∣ . 1. Note that

the terms of the orders ∆t
1
2 and ∆t

3
2 in the right-hand side above vanish, since the

random variables Γn and (Xε
n,m

ε
n+1, γn) are independent, and E[Γn] = 0. In addition,

since E[ΓnΓ∗n] = I, a conditioning argument yields
(5.13)

E[uN−n−1(Xε
n+1)− uN−n(Xε

n)]

= ∆tE
[(
b(Xε

n,m
ε
n+1)− b(Xε

n, h(Xε
n)γn)

)
· ∇xuN−n−1(Xε

n)
]

+ ∆tE
[(
σσ∗(Xε

n,m
ε
n+1)− σσ∗(Xε

n, h(Xε
n)γn)

)
: ∇2

xuN−n−1(Xε
n)
]

+ ∆t2E[Rn(∆t)].

Like in the proofs of Theorem 3.7 and of Lemma 5.3, a conditioning argument allows
us to rewrite the expressions above in terms of the functions b and σ: one has

E[
(
b(Xε

n,m
ε
n+1)− b(Xε

n, h(Xε
n)γn

)
· ∇xuN−n−1(Xε

n)]

= E[
(
b(Xε

n,m
ε
n+1)− b(Xε

n

)
· ∇xuN−n−1(Xε

n)],

and

E[
(
σσ∗(Xε

n,m
ε
n+1)− σσ∗(Xε

n, h(Xε
n)γn

)
: ∇2

xuN−n−1(Xε
n)]

= E[
(
σσ∗(Xε

n,m
ε
n+1)− σ σ∗(Xε

n

)
: ∇2

xuN−n−1(Xε
n)],

We are now in position to employ similar arguments as in the proof of Lemma 5.2 (see
Section A.1), with important modifications due to the discrete-time setting. Introduce
the auxiliary parameter τ = ∆t

ε . Instead of studying Poisson equations associated
with the infinitesimal generator LxOU , one needs to consider the generator Lxτ and the
transition semigroup of a Markov chain: let

Lxτ =
P xτ − I
τ

where P xτ φ(m)
.
= Eγ∼N (0,1)[φ(e−τm+

√
1− e−2τh(x)γ)].

We claim that the function ψτb defined by

ψτb (x,m) = −τ
+∞∑
n=0

((P xτ )
n
b(x,m)− b(x)).

is well-defined and solves the Poisson equation Lxτψ
τ
b (x, ·) = b(x, ·)− b(x). Indeed, let

(mx
n(m))n be defined by

mx
n+1(m) = e−τmx

n(m) +
√

1− e−2τh(x)γn, mx
0(m) = m.
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Then, for all m and m′ ∈ R, and all n ∈ N, one has

mx
n(m)−mx

n(m′) = e−nτ (m−m′).

Observe that since b is a Lipschitz continuous function, standard arguments give the
following upper bound: for all n ∈ N, x ∈ Td and all m,m′ ∈ R, if δn(x,m) =
(P xτ )

n
b(x,m)− b(x), then one has

∣∣δn(x,m)
∣∣ =

∣∣ (P xτ )
n
b(x,m)−

∫
(P xτ )

n
b(x,m′)dνx(m′)

∣∣
≤
∫ ∣∣Eb(x,mx

n(m))− Eb(x,mx
n(m′)

∣∣dνx(m′)

. e−nτ (1 + |m|).

Similarly, since the derivatives of mx
n with respect to x do not depend on m, one can

check that the inequality above holds for Dxδ and D2
xδ then concludes the proof of

the claim. Since τ
∑∞
n=0 e

−nτ = τ
1−e−τ ≤ max(τ, 1), for all τ ∈ (0,∞), one obtains

inequalities of the type

(5.14)
‖ψ(x,m)‖

1 + |m|
. max(τ, 1),

for ψτb , and its derivatives Dxψ
τ
b and D2

xψ
τ
b .

Similarly, define for all x ∈ Td and m ∈ R,

ψτσ(x,m) = −τ
+∞∑
n=0

((P xτ )
n
σσ∗(x,m)− σ σ∗(x)).

Then ψτσ is well-defined and solves the Poisson equation Lxτψσ(x, ·) = σσ?(x, ·) −
σ(x)σ?(x), by definition of σ(x), see Assumption 2.3. In addition, ψτσ and its deriva-
tives satisfy upper bound of the type (5.14).

Like in the proof of Lemma 5.2 (see Section A.1), introduce the auxiliary function
defined by

Φn(x,m) = ψτb (x,m) · ∇xuN−n−1(x) + ψτσ(x,m) : ∇2
xuN−n−1(x),

for all n ∈ {0, . . . , N − 1}, x ∈ Td and m ∈ R, where un is defined in Lemma 5.7.
Combining the decomposition of the error (5.12) and the identity (5.13), one then
obtains the following new expression for the error:

E[ϕ(Xε
N )]− E[ϕ(XN )] = ∆t2

N−1∑
n=0

E[Rn(∆t)] + ∆t

N−1∑
n=0

L
Xεn
τ Φn(Xε

n,m
ε
n+1).(5.15)
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On the one hand, a telescoping sum argument yields the following expression:

E
[
P
XεN
τ ΦN (Xε

N ,m
ε
N )− PX

ε
0

τ Φ0(Xε
0,m

ε
0)
]

=

N−1∑
n=0

E
[
P
Xεn+1
τ Φn+1(Xε

n+1,m
ε
n+1)− PX

ε
n

τ Φn(Xε
n,m

ε
n)
]

=

N−1∑
n=0

E
[
P
Xεn+1
τ Φn+1(Xε

n+1,m
ε
n+1)− PX

ε
n+1

τ Φn(Xε
n+1,m

ε
n+1)

]
+

N−1∑
n=0

E
[
P
Xεn+1
τ Φn(Xε

n+1,m
ε
n+1)− PX

ε
n

τ Φn(Xε
n,m

ε
n+1)

]
+

N−1∑
n=0

E
[
P
Xεn
τ Φn(Xε

n,m
ε
n+1)− PX

ε
n

τ Φn(Xε
n,m

ε
n)
]
.

Note that using Markov property, the first sum on the right-hand side above can be
written as

∑N−1
n=0 E

[
Φn+1(Xε

n+1,m
ε
n+2)− Φn(Xε

n+1,m
ε
n+2)

]
.

On the other hand, by definition of the operator Lxτ with the parameter τ = ∆t
ε ,

one obtains

∆tE[L
Xεn
τ Φn(Xε

n,m
ε
n+1)] = εE[P

Xεn
τ Φn(Xε

n,m
ε
n+1)− Φn(Xε

n,m
ε
n+1)]

= εE[P
Xεn
τ Φn(Xε

n,m
ε
n+1)− PX

ε
n

τ Φn(Xε
n,m

ε
n)].

Finally, combining the two identities above, one obtains the following expression for
the error:

E[ϕ(Xε
N )]− E[ϕ(XN )] = ∆t2

N−1∑
n=0

E[Rn]

+ ε
(
E
[
ΦN (Xε

N ,m
ε
N+1)− Φ0(Xε

0,m
ε
1)
])

− ε
N−1∑
n=0

E
[
Φn+1(Xε

n+1,m
ε
n+2)− Φn(Xε

n+1,m
ε
n+2)

]
− ε

N−1∑
n=0

E
[
P
Xεn+1
τ Φn(Xε

n+1,m
ε
n+1)− PX

ε
n

τ Φn(Xε
n,m

ε
n+1)

]
.

It then remains to use auxiliary upper bounds to deduce the result, in particular
using (5.14). Note that εmax(τ, 1) = max(∆t, ε).

• as explained above, E[
∣∣Rn(∆t)

∣∣] . 1, thus the first term satisfies

E[
∣∣∆t2 N−1∑

n=0

Rn
∣∣] . ∆t.

• Using the upper bound (5.7) from Lemma 5.7 and (5.14) with ψ = ψτb and
ψ = ψτσ, the second term satisfies

ε
(
E
[
ΦN (Xε

N ,m
ε
N+1)− Φ0(Xε

0,m
ε
1)
])

. max(∆t, ε).

• Observe that one has for all x ∈ Td and x ∈ R,

Φn+1(x,m)− Φn(x,m) = ψτb (x,m) · (∇xuN−n(x)−∇xuN−n−1(x))

+ ψτσ(x,m) :
(
∇2
xuN−n(x)−∇2

xuN−n−1(x)
)
.
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Using the upper bound (5.8) from Lemma 5.7 and (5.14), one has∣∣Φn+1(x,m)− Φn(x,m)
∣∣ . ∆tmax(τ, 1)(1 + |m|).

As a consequence, owing to (3.8) and Assumption 2.1, the third term satisfies

ε

N−1∑
n=0

E
[
Φn+1(Xε

n+1,m
ε
n+2)− Φn(Xε

n+1,m
ε
n+2)

]
. ε

N−1∑
n=0

∆tmax(τ, 1)

. max(∆t, ε).

• Note that Φn and its derivatives satisfy the upper bound (5.14), owing to (5.7)
from Lemma 5.7. Let

fτn(x,m) = P xτ Φn(x,m) = Eγ∼N (0,1)[Φn(x, e−τm+
√

1− e−2τh(x)γ)].

It is straightforward to check that fτn is twice differentiable. In addition, fτn
and its derivatives satisfy (5.14). Using a second order Taylor expansion, one
obtains ∣∣PXεn+1

τ Φn(Xε
n+1,m

ε
n+1)− PX

ε
n

τ Φn(Xε
n,m

ε
n+1)

∣∣
=
∣∣fτn(Xε

n+1,m
ε
n+1)− fτn(Xε

n,m
ε
n)
∣∣

. ∆tmax(τ, 1)(1 +
∣∣m∣∣).

Finally, using (3.8) and Assumption 2.1, one obtains

ε

N−1∑
n=0

E
[
P
Xεn+1
τ Φn(Xε

n+1,m
ε
n+1)− PX

ε
n

τ Φn(Xε
n,m

ε
n+1)

]
. max(∆t, ε).

Gathering the estimates then concludes the proof of Lemma 5.4.

We refer to [7, Theorem 1.3.6] for the proof of Lemma 5.6. It thus remains to
provide the arguments for the proofs of Lemmas 5.5 and 5.7. The strategy is standard
in the literature, see for instance [7]. As a consequence, in order to reduce the length
of the manuscript, below the details are only given for the proofs of the estimates for
first-order derivatives.

Proof of Lemma 5.5. Owing to [7, Proposition 1.3.5], for all k = (kx, km) ∈ Rd ×
R, one has

Dx,mu
ε(t, x,m) · k = EXε(0)=x,mε(0)=m[Dϕ(Xε(t)) · ηε,kx (t)],

where the process ηε,k = (η
ε,k
x , η

ε,k
m ) is the solution of the first variation equation

associated with (2.1): for all t ≥ 0,
dη
ε,k
x,t = Db(Xε

t ,m
ε
t) · η

ε,k
t dt+Dσ(Xε

t ,m
ε
t) · η

ε,k
t dBt

dη
ε,k
m,t = −

η
ε,k
m,t

ε
dt+

√
2Dh(Xε

t ) · η
ε,k
x,t√

ε
dβt,

with initial conditions η
ε,k
x (0) = kx and η

ε,k
m (0) = km.
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On the one hand, the component η
ε,k
m satisfies the following equality,

ηε,km (t) = e−
t
ε km +

1√
ε

∫ t

0

e−
t−s
ε

√
2Dh(Xε(s)) · ηε,kx (s)dBs,

and by means of Itô’s isometry formula, one has

E[
∥∥ηε,km (t)

∥∥2
] ≤ k2

m +
2
∥∥h∥∥C1(Td)

ε

∫ t

0

e−
2(t−s)
ε E[

∥∥ηε,kx (s)
∥∥2

]ds.

On the other hand, the functions b and σ are globally Lipschitz continuous (see

Assumption 2.2), and one has
∥∥ηε,k∥∥2

=
∥∥ηε,kx ∥∥2

+
∥∥ηε,km ∥∥2

; using Itô’s isometry
formula, and Minkowski’s and Young’s inequalities, one obtains

E[
∥∥ηε,kx (t)

∥∥2
] .

∥∥kx∥∥2
+

∫ t

0

(
E[
∥∥ηε,kx (s)

∥∥2
] + E[

∥∥ηε,km (s)
∥∥2

]
)
ds.

Combining the two estimates above then yields

sup
s∈[0,t]

E[
∥∥ηε,kx (s)

∥∥2
] .

∥∥k∥∥2
+

∫ t

0

(
E[
∥∥ηε,kx (s)

∥∥2
] +

1

ε

∫ s

0

e−2 s−rε E[
∥∥ηε,kx (r)

∥∥2
]dr

)
ds

.
∥∥k∥∥2

+

∫ t

0

sup
r∈[0,s]

E[
∥∥ηε,kx (r)

∥∥2
]ds,

where the inequality 1
ε

∫ s
0
e−2 s−rε dr ≤ 1

2 has been used. Applying Gronwall’s lemma,
then inserting the result in the estimate above, one obtains the upper bounds

sup
t∈[0,T ]

E[
∥∥ηε,kx (t)

∥∥2
] .

∥∥k∥∥2
, sup

t∈[0,T ]

E[
∥∥ηε,km (t)

∥∥2
] .

∥∥k∥∥2
.

Since ϕ is Lipschitz continuous, using the expression for Dx,mu
ε(t, x,m) stated above,

one finally obtains (5.5) for the first-order derivative: for all k ∈ Rd+1, one has

sup
(t,x,m)∈[0,T ]×Td×R

∣∣Dx,mu
ε(t, x,m) · k

∣∣ . ∥∥k∥∥.
The treatment of higher-order derivatives follows from similar arguments which are
omitted. This concludes the proof of Lemma 5.5.

Proof of Lemma 5.7. For all k ∈ Rd, one has

Dun(x) · k = Ex[Dϕ(Xn) · ηkn],

where ηh0 = h, and for all n ∈ {0, . . . , N − 1}, one has

ηkn+1 = ηkn + ∆tDxb(Xn, h(Xn)γn) · ηkn
+ ∆t∂mb(Xn, h(Xn)γn)Dh(Xn) · ηknγn
+
√

∆tDxσ(Xn, h(Xn)γn) · ηknΓn

+
√

∆t∂mσ(Xn, h(Xn)γn)Dh(Xn) · ηknΓnγn.

The functions b, h and σ are Lipschitz continuous (see Assumption 2.2). Since γn
and Γ are independent centered Gaussian random variables, it is straightforward to
obtain the upper bound

E[
∥∥ηkn+1

∥∥2
] . (1 + ∆t)E[

∥∥ηkn∥∥2
].
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A straightforward recursion argument then gives, for all n ∈ {0, . . . , N},

E[
∥∥ηkn∥∥2

] . ‖k‖2

and one obtains (5.7) for the first-order derivative: for all n ∈ {0, . . . , N},

|Dun(x) · k| . ‖k‖.

The treatment of higher-order derivatives would be similar and is omitted. It thus
remains to prove (5.8). On the one hand, by definition (3.5), a second order Taylor
expansion yields, for all x ∈ Td and n ∈ {0, . . . , N − 1},∣∣un+1(x)− un(x)

∣∣ =
∣∣Ex[ϕ(Xn+1)− ϕ(Xn)]

∣∣ . ∆t,

On the other hand, one has

Dun+1(x) · k −Dun(x) · k = Ex[Dϕ(Xn+1) · ηkn+1 −Dϕ(Xn) · ηkn]

= E[(Dϕ(Xn+1)−Dϕ(Xn)) · (ηkn+1 − ηkn)]

+ E[Dϕ(Xn) · (ηkn+1 − ηkn)]

+ E[(Dϕ(Xn+1)−Dϕ(Xn)) · ηkn].

It is straightforward to check that one has the inequalities E[‖Xn+1−Xn‖2] . ∆t and
E[‖ηkn+1 − ηkn‖2] . ∆t‖k‖2. Since ϕ is Lipschitz continuous, using Cauchy-Schwarz
inequality gives∣∣E[(Dϕ(Xn+1(x))−Dϕ(Xn(x))) · (DXn+1(x) · k −DXn(x) · k)]

∣∣ . ∆t‖k‖.

Using a conditional expectation argument, since γn,Γn, Xn are independent random
variables, one has∣∣E[Dϕ(Xn) · (ηkn+1 − ηkn)]

∣∣ = ∆t
∣∣E[Dϕ(Xn) ·Dxb(Xn, h(Xn)γn) · ηkn]

∣∣ . ∆t‖k‖.

Finally, using a second-order Taylor expansion and conditioning arguments, one ob-
tains ∣∣E[(Dϕ(Xn+1)−Dϕ(Xn)) · ηkn]

∣∣ . ∆t‖k‖.

As a consequence, one obtains (5.8) when j = 0 and j = 1.
This concludes the proof of Lemma 5.7.

6. Conclusion. In this article, we have studied a general notion of Asymptotic
Preserving schemes, related to convergence in distribution, for a class of SDE systems
in averaging and diffusion approximation regimes. Let us mention that some assump-
tions made to simplify the setting (the slow component takes values in a compact
set Td and the fast component is one-dimensional) may easily be relaxed. Note that
when the slow component takes values in Rd, it is necessary to also study the stability
of the numerical schemes, for instance in mean-square sense.

A limitation of our study is the fact that the fast component is an Ornstein-
Uhlenbeck process (when the slow component is frozen): even if the general theory of
AP schemes described in Section 3.1 holds in more general settings, the construction
of implementable AP schemes (such as the ones described in Sections 3.2 and 3.3) is
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not straightforward if for instance the fast component is solution of a general ergodic
SDE with nonlinear coefficients.

We have also left open the question of obtaining a version of the error estimates
stated in Theorem 3.8 in the diffusion approximation case. This question will be
studied in future works.

Finally, it would be natural to apply the recipes for the design of AP schemes
described in this article to SPDE models. For instance, in a future work [6], we plan to
design, analyze and test AP schemes for the stochastic kinetic PDE model considered
in [32].

Appendix A. Derivation of the limiting models.

A.1. Sketch of proof of Proposition 2.4 (averaging). Let us first give de-
tails concerning the construction of the perturbed test function ϕε given by (2.9),
such that (2.10) holds. Recall that this construction is used in the statement of
Proposition 3.5.

Owing to the multiscale expansions (2.4) and (2.9) of the generator Lε and of the
perturbed test function ϕε = ϕ+ εϕ1, one has

(A.1) Lεϕε = ε−1LOUϕ+ (L0ϕ+ LOUϕ1) + εL0ϕ1.

Since the test function ϕ does not depend on m, one has LOUϕ = 0, thus the
term of order ε−1 in (A.1) vanishes.

Define, for all x ∈ Td and m ∈ R,

Lϕ(x) =

∫
R
L0ϕ(x,m)dνx(m)

= b(x) · ∇xϕ(x) + σ σ∗(x) : ∇2
xϕ(x)

ϑ(x,m) = L0ϕ(x,m)− Lϕ(x)

=
(
b(x,m)− b(x)

)
· ∇xϕ(x) + (σσ∗(x,m)− σ σ∗(x)) : ∇2

xϕ(x),

where we recall that νx = N (0, h(x)2) is the invariant distribution of the ergodic
Ornstein-Uhlenbeck process mx associated to LOU on R, for any fixed x ∈ Td

dmx
t = −mx

t dt+
√

2h(x)dβt.

Let mx(t,m) denote the solution at time t, if the initial condition is given by mx(0,m).
Therefore, the centering condition

∫
ϑ(x,m)dνx(m) = 0 is satisfied and the Poisson

equation −LOUϕ1(x, ·) = ϑ(x, ·) admits a solution

ϕ1(x,m) =

∫ ∞
0

E[ϑ(x,mx(t,m))]dt.

The multiscale expansion (A.1) becomes

Lεϕε = Lϕ+ εL0ϕ1.

To prove (2.10), it only remains to get estimates on L0ϕ1 uniformly in ε. Consider
V = b or V = σσ∗ and let

δ(t, x,m)
.
= E[V (x,mx(t,m))− V (x)].
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Note that for m and m′ ∈ R, one has mx(t,m) − mx(t,m′) = (m − m′)e−t. As a
consequence, we have ∥∥δ(t, x,m)− δ(t, x,m′)

∥∥ .
∣∣m−m′∣∣e−t.

By integrating with respect to m′ and using the equality V (x) =
∫
V (x,m′)dνx(m′),

one obtains

(A.2)
∥∥δ(t, x,m)

∥∥ . (1 +
∣∣m∣∣)e−t.

Since V is of class C3 with bounded derivatives, and since the derivatives of mx(t,m)
with respect to x do not depend on m, it is straightforward to generalize A.2 to the
derivatives of δ. It gives that ϕ1 ∈ C2(Td × R) and that ϕ1 and its derivatives have
at most linear growth in m, hence L0ϕ1 also does. This leads to (2.10) using (2.2).
This concludes the identification of the limiting generator L using the perturbed test
function method. The remaining ingredients of this strategy to prove the convergence
in distribution of the process Xε to the solution X of the limiting equation associated
with the limiting generator L are standard and are thus omitted.

A.2. Sketch of proof of Proposition 2.6 (diffusion approximation). Let
us first give details concerning the construction of the perturbed test function ϕε

given by (2.17), such that (2.18) holds. Recall that this construction is used in the
statement of Proposition 3.5.

Owing to the multiscale expansions (2.14) and (2.17) of the generator Lε and of
the perturbed test function ϕε = ϕ+ εϕ1 + ε2ϕ2, one has

(A.3) Lεϕε = ε−2LOUϕ+ ε−1 (L1ϕ+ LOUϕ1) + (L0ϕ+ L1ϕ1 + LOUϕ2)

+ ε (L0ϕ1 + L1ϕ2) + ε2L0ϕ2.

Since the test function ϕ does not depend on m, one has LOUϕ = 0, thus the
term of order ε−2 in (A.3) vanishes. Define

(A.4) ϕ1(x,m)
.
= m

σ(x)

f(x)
· ∇xϕ(x).

Then it is straightforward to check that L1ϕ + LOUϕ1 = 0, thus the term of order
ε−1 in (A.3) vanishes.

It remains to construct the function ϕ2 such that the term of order 1 in (A.3) is
equal to Lϕ. Define, for all x ∈ Td and m ∈ R,

Lϕ(x) =

∫
R

(L0ϕ+ L1ϕ1)(x,m)dνx(m),

ϑ(x,m) = (L0ϕ+ L1ϕ1)(x,m)− Lϕ(x),

where we recall that νx = N (0, f(x)h(x)2

2 ) is the invariant distribution of the ergodic
Ornstein-Uhlenbeck process associated to LOU on R, for any fixed x ∈ Td.

Let x ∈ Td, then the Poisson equation −LOUϕ2(x, ·) = ϑ(x, ·) admits a solution
ϕ2, since the centering condition

∫
ϑ(x,m)dνx(m) = 0 is satisfied. Precisely, one has

the expressions

ϑ(x,m) = −
(
|m|2 − fh2

2

)
σ · ∇x

(
σ

f
· ∇xϕ

)
,

ϕ2(·,m)
.
=
|m|2

2

σ

f
· ∇x

(
σ

f
· ∇xϕ

)
.(A.5)
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With the functions ϕ1 and ϕ2 constructed above, the multiscale expansion (A.3) is
rewritten as

Lεϕε = Lϕ+ ε (L0ϕ1 + L1ϕ2) + ε2L0ϕ2,

which gives (2.18), more precisely

sup
x∈Td

|Lεϕε(x,m)− Lϕ(x)| ≤ Cϕ
(
ε|m|+ ε2|m|2

)
,

for some constant Cϕ depending only on ϕ and on the coefficients of the SDE.
It remains to check that Lϕ(x) =

∫
R(L0ϕ+L1ϕ1)(x,m)dνx(m) gives the expres-

sion (2.16). This concludes the identification of the limiting generator L using the
perturbed test function method. The remaining ingredients of this strategy to prove
the convergence in distribution of the process Xε to the solution X of the limiting
equation associated with the limiting generator L follows from standard arguments
which are omitted.
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