
Computer Model Calibration with Time Series Data
using Deep Learning and Quantile Regression

Saumya Bhatnagar
Division of Statistics and Data Science,

University of Cincinnati, Cincinnati, OH 45221-0025

Won Chang ∗

Division of Statistics and Data Science,
University of Cincinnati, Cincinnati, OH 45221-0025

Seonjim Kim
Department of Statistics,

Miami University, Oxford, OH 45056

Jiali Wang
Division of Environmental Science

Argonne National Laboratory, Lemont, IL 60439

September 9, 2020

∗Saumya Bhatnagar is Doctoral Candidate, Division of Statistics and Data Science, University of
Cincinnati, OH 45221 (E-mail: bhatnasa@mail.uc.edu). Won Chang is Assistant Professor, Division
of Statistics and Data Science, University of Cincinnati, OH 45236 (E-mail: changwn@ucmail.uc.edu).
Seonjin Kim is Associate Professor, Department of Statistics, Miami University, OH 45056 (E-mail:
kims20@miamioh.edu). Jiali Wang is Assistant Atmospheric Scientist, Argonne National Laboratory, IL
60439.

1

ar
X

iv
:2

00
8.

13
06

6v
2 

 [
st

at
.M

L
] 

 8
 S

ep
 2

02
0



Abstract

Computer models play a key role in many scientific and engineering problems.
One major source of uncertainty in computer model experiment is input parameter
uncertainty. Computer model calibration is a formal statistical procedure to in-
fer input parameters by combining information from model runs and observational
data. The existing standard calibration framework suffers from inferential issues
when the model output and observational data are high-dimensional dependent data
such as large time series due to the difficulty in building an emulator and the non-
identifiability between effects from input parameters and data-model discrepancy. To
overcome these challenges we propose a new calibration framework based on a deep
neural network (DNN) with long-short term memory layers that directly emulates
the inverse relationship between the model output and input parameters. Adopting
the learning with noise idea we train our DNN model to filter out the effects from
data model discrepancy on input parameter inference. We also formulate a new way
to construct interval predictions for DNN using quantile regression to quantify the
uncertainty in input parameter estimates. Through a simulation study and real data
application with WRF-hydro model we show that our approach can yield accurate
point estimates and well calibrated interval estimates for input parameters.

Keywords: Computer Model Calibration, Deep Learning, Long-Short Term Memory Net-
work, Data-Model Discrepancy

1 Introduction

Computer models play an important role in almost every field of science and engineering.

These models are typically a collection of a large number of partial differential equations

designed to capture the behavior of a real world process. These models typically have a

set of uncertain input parameters that need to be properly calibrated using real data to

generate realistic simulation. Since the seminal paper by Kennedy and O’Hagan (2001)

there has been a considerable growth in the literature of compute model calibration (e.g.

Bayarri et al., 2007; Higdon et al., 2008; Wong et al., 2017; Tuo and Wu, 2015; Chang

et al., 2016; Wong et al., 2017; Salter et al., 2019; Sung et al., 2020).

2



The methodological challenges in this area can be summarized into two aspects. The

first aspect stems from the fact that computer model runs are often available only at a

limited number of design points. This leads to the need of a statistical surrogate (“em-

ulator”) for the computer model in question, typically done by constructing a Gaussian

process (GP) model that interpolates computer model outputs at input parameter set-

tings for which the model runs are not obtained (Sacks et al., 1989). This issue is further

complicated by the fact that modern computer model outputs are usually in the form of

high-dimensional data with a complicated dependence structure such as large time series

or spatial data. Building a GP emulator for such data poses considerable statistical and

inferential challenges (Higdon et al., 2008; Chang et al., 2014; Gu et al., 2016; Salter et al.,

2019) and the amount of effort to address these challenges often exceeds that to solve the

calibration problem itself.

The second aspect comes from the fact that most computer models are imperfect in

representing the reality and hence one can reasonably expect that there is considerable

discrepancy between the computer model output and the corresponding real world obser-

vation. When the model output is in the form of complicated dependent data such as time

series the corresponding data-model discrepancy also likely has a complex dependent struc-

ture. If not handled properly this problem can cause significant bias in input parameter

estimation. The existing methods rely on problem specific solutions such as assuming a

prior distribution (Brynjarsdóttir and O’Hagan, 2014) or regularizing the complexity of the

discrepancy term (Chang et al., 2014; Tuo and Wu, 2015). However such solutions require

substantial knowledge or specific assumption about the form of discrepancy, which are not

always available or justifiable.

In this paper we propose an alternative framework to the existing calibration approach

that takes an advantage of the recent development in deep neural network (DNN) method-

3



ologies. Our focus is on calibration using time series data, which are one of the most

common form of computer model output (Bayarri et al., 2007; Higdon et al., 2008), but

the basic framework can be easily modified to other types of data such as spatial data.

The main idea is to build a DNN model that can “predict” the optimal input parameter

values for a given observational data by emulating the inverse relationship between the

model output and input parameter values. To effectively filter out the effect of possible

data-model discrepancy without imposing a strong assumption on the discrepancy term we

adopt the idea of ‘learning with noise’ (Koistinen and Holmström, 1992; Holmstrom and

Koistinen, 1992; Bishop, 1995; An, 1996; Vincent et al., 2010). In combination with the

feature extraction capability of the modern DNN architecture this approach allows us to

train a DNN model that can focus on the features that are relevant to parameter estimation

while negating the effect of discrepancies.

In addition to the new calibration framework we propose a new way to quantify uncer-

tainty in prediction using DNN. Computer model calibration requires not only estimating

the optimal values for the input parameters but also quantifying the surrounding uncer-

tainties. Uncertainty quantification for DNN predictions is in general challenging because

a DNN typically contains a large number of model parameters and it has been unclear how

to reflect uncertainties in those parameters when constructing interval predictions without

relying on some variational approximation to the likelihood function (Gal and Ghahramani,

2016). We propose a quantile regression approach based on the observation that a DNN

can be viewed as a linear regression with basis functions that are created by hidden layers.

Our simulation study shows that this approach provides a better way to quantify the un-

certainty as it is not prone to overconfidence issues that variational approximation-based

approaches typically suffer from. To demonstrate that our method can efficiently esti-

mate input parameters in a complicated modern computer model we apply our method to

4



WRF-Hydro, a recently developed hydrologic module for the weather research and forecast

(WRF) model (Gochis et al., 2015).

The remainder of the paper is organized as follows: Section 2 describes the existing

standard calibration framework and explains the common inferential challenges faced by

the approach. Section 3 introduces our new inverse model-based framework using DNN

that can overcome the challenges described in Section 2. Section 4 describes the details

of inference procedure for our calibration method including regularized optimization and

uncertainty quantification with quantile regression. Section 5 describes simulation study

and Section 6 shows an example application of our approach to WRF-Hydro model. Section

7 summarizes the findings from our work and discusses future research directions.

2 Standard Calibration Framework and its Challenges

We first define notation for the model output, input parameters and observational data to

facilitate our discussion on the methodological development. Let Y(θ) be a p-dimensional

model output at an input parameter setting θ ∈ Rdθ . The output Y(θ) is typically in

the form of spatial or temporal or spatio-temporal data. We also let Z = [Z1, . . . , Zp]
T

be the p-dimensional observational data that have the same format as the model output

Y(θ). Throughout the rest of this paper we focus on the situation where both Y(θ) and

Z are temporal data. Since in most scientific applications obtaining the model output

Y(θ) at each input parameter setting θ is computationally expensive, model outputs are

obtained at a limited number of design points θ1, . . . ,θn with n being typically hundreds

or thousands. The resulting collection of model outputs Y(θ1), . . . ,Y(θn) is often called a

‘perturbed physics ensemble.’

The objective of statistical computer model calibration is to infer the realistic value for

5



the input parameter θ∗ given the observational data Z and the model outputs Y(θ1), . . . ,

Y(θn). In other words, our objective is to find the best input parameter setting θ∗ for Z

given the observed relationship between θ and Y(θ) from the perturbed physics ensemble.

This problem therefore can be viewed as a classification problem with ‘continuous labels’ θ.

For our scientific problem described in Section 6 the number of model runs is 400 (n = 400),

the size of each model run and observational data is 480 (p = 480), and the dimensionality

of individual input parameter setting dθ is 5 (dθ = 5).

2.1 Existing Forward Model-based Approach

In this section we describe the existing standard computer model calibration framework

that is currently widely used in the statistical literature. The standard computer model

calibration model described in Kennedy and O’Hagan (2001) can be written as

Z = Y(θ∗) + δ, (1)

where δ represents the data-model discrepancy often modeled by a p-dimensional Gaussian

process (GP). The discrepancy includes both the structural error in the computer model

(i.e. misrepresentation of the reality by the computer model) and the measurement error

in observational data. The data type for Z and Y(θ) determines the form of covariance

function for δ. Here we assume that Z and Y(θ) are time series and hence the discrepancy

term is also a time series that can be denoted as δ = [δ1, δ2, . . . , δt, . . . , δp]. In this case a

1-dimensional Matérn class or an autoregessive model can be used as a model for δ. The

likelihood function based on (1) can be used for inferring θ∗, while accounting for possible

data-model discrepancies and observational errors. Evaluating the likelihood function based

on the model in (1) requires running the forward model Y(·) for the given value of θ∗ and

hence we call this method a ‘forward model-based calibration’. If the forward model Y(·)

6



is computationally expensive and the evaluated model output Y(θ) is available at only a

limited number of input parameter settings, which is the case for most scientific problems

including the problem described in Section 6, an emulator η(θ) that approximates the

forward model Y(θ) is used instead. The emulator is typically constructed based on model

runs Y(θ1), . . . ,Y(θn) obtained at pre-specified design points θ1, . . . ,θn using a GP model

(Sacks et al., 1989).

2.2 Challenges in Existing Framework

The forward model-based calibration framework described above often faces two important

inferential and computational challenges: First, in most calibration problems we need to

construct an emulator η(θ) that can accurately predict the model output Y(θ) at any given

new θ that is not tried in the existing ensemble Y(θ1), . . . ,Y(θn). This is often challenging

especially when the model output Y(θ) exhibits a complicated dependence structure. Such

problem is often further complicated by the usual ‘big’ data issues for GP-based methods,

i.e. the likelihood evaluation becomes computationally slow or even infeasible due to the

difficulty in taking a cholesky decomposition of a large covariance matrix (Higdon et al.,

2008; Chang et al., 2014, 2015) when the model output is in the form of high-dimensional

dependent data such as large time series. The computational complexity for each likelihood

evaluation scales as O(p3).

Second, the effects from the input parameter θ∗ and the effects from the data-model

discrepancy δ cannot be identifiable in general and hence lead to biased or overly uncertain

estimates for θ∗ (Brynjarsdóttir and O’Hagan, 2014; Tuo and Wu, 2015; Salter et al., 2019).

In particular, if the observational data appear to be quite different from any of the model

runs due to data model discrepancy, parameter estimation results can be severely biased

(mentioned as ‘terminal case’ in Salter et al., 2019) as a zero-mean discrepancy term δ

7



cannot easily capture such a trend. This also often leads to incorrect uncertainty quan-

tification with poorly calibrated interval estimates for target input parameters, potentially

resulting in a severe undercoverage of interval estimates.

3 Inverse Model-Based Calibration using DNN

3.1 Inverse Model-Based Calibration Framework

In this section we propose our new inverse model-based calibration method using a deep

neural network that can overcome the aforementioned challenges in the existing forward

model-based calibration method. The main idea is to find the inverse function g that

provides the best input parameter setting θ∗ when the observational data Z is given, i.e.,

θ∗ = g(Z) + ε, (2)

with some d-dimensional prediction error term ε. Finding such function g can be thought

as finding a function that satisfies

θ = g(Y(θ) + δ) + ε, (3)

for any θ ∈ Θ where Θ is the possible range for θ∗. In other words our objective is to find

a function g that can filter out the discrepancy δ and accurately estimate θ that originally

generated Y(θ) in any given observation Y(θ) + δ. Given the estimated function ĝ based

on the model in (3), the best predicted parameter setting θ∗ can be simply computed by

θ̂
∗

= ĝ(Z).

The approximation function ĝ has to possess the following properties: First of all, ĝ

needs to be able to capture a highly nonlinear relationship, which is almost always expected

8



in computer model calibration problems. In addition ĝ needs to be able to handle high-

dimensional predictor variables with a complicated dependence structure such as long time

series or large spatial data (see, e.g., Higdon et al., 2008; Chang et al., 2014, 2016; Bayarri

et al., 2007; Gu et al., 2016; Guan et al., 2019; Sung et al., 2020) because modern computer

models commonly generate such type of data as their output. Another consideration is

noise filtering: the function ĝ needs to be able to recover θ from a noisy model output

Y(θ) + δ by filtering out the effects from the discrepancy δ.

In this paper we use a DNN to find the approximation function ĝ. This choice is natural

because DNN models possess all three required characteristics above. The main feature of

DNN is its ability to approximate highly complicated non-linear functions, which has been

proven in a wide range of applications and also discussed in some approximation theory

point of view (e.g., Poggio et al., 2017; Chen et al., 2019; Schmidt-Hieber, 2017). More-

over the recently developed architectures in DNN such as long-short term memory (LSTM)

network (e.g., Huang et al., 2015) can provide well-proven recipe for extracting important

features from large time series data. The recently developed computational machineries

including back-propagation and stochastic gradient descent algorithms facilitate easy im-

plementation of DNN with a highly complicated structure. In the following subsections we

explain the details of our DNN-based method for computer model calibration.

3.2 DNN for Nonlinear Regression with Feature Extraction

The most commonly used DNN architecture consists of two components: feature extraction

layers and non-linear regression layers. The feature extraction layers apply a series of trans-

formation to the input data set to find the ‘features’ that are most relevant to predicting

the response variables. For our calibration problem, the ‘features’ found by the feature ex-

traction layers can be interpreted as transformed data that are most relevant to estimating

9



the input parameter setting. The non-linear regression layers create a non-linear function

that links the extracted features to the response variables. In our calibration problem the

non-linear regression layers estimate the best input parameter setting given the extracted

features from data.

The form of feature extraction layers is determined by the data type of the model output

Y(θ) and the observational data Z. Since our focus here is on time series data the suitable

feature extraction model will be a bidirectional LSTM network (Huang et al., 2015). This

structure combines information from the ‘forward’ and ‘backward’ LSTM units, where

forward LSTM units model the information flow in time order and backward LSTM units

model the information flow in reverse time order. This structure has been proven to be

useful in capturing important features for sequence classification. The overall structure of

the DNN structure described in this section is illustrated in Figure S1. (Note that sections,

figures and tables referred with prefix S henceforth can be found in the Supplementary

Document.)

One important advantage of this approach is computational complexity, which is scaled

as O(p2) (Sak et al., 2014). The difference in computing time between the DNN based

method with LSTM and the GP-based method described in Section 2.1 grows exponentially

as the size of model output p grows, because the computational complexity of the GP-Fwd

method scales as O(p3) as discussed in Section 2.2.

3.2.1 Long-short Term Memory for Feature Extraction

Recurrent neural networks (RNN) are neural networks specialized in handling sequential

data. The hidden layers in Recurrent neural network (RNN) are connected in a cyclic

pattern or self-connected loop. The LSTM (Hochreiter and Schmidhuber, 1997; Gers et

al.,2000) network is currently the most widely used recurrent neural network for various

10



applications including speech recognition, natural language processing, and sentiment anal-

ysis (e.g., Graves and Schmidhuber, 2005; Sak et al., 2014; Wang et al., 2016). The main

advantage of LSTM network is its ability to handle both short-range and long-range depen-

dence in a computationally efficient manner. Moreover, the ‘gated’ structure of LSTM that

regulates the information flow within the network is helpful for avoiding computational

issues (see Section S2 for further discussion)

An LSTM takes a sequence as input and pass it through connected hidden layers to

yield estimated values as output at each time point. To be more specific for a given dx

dimensional input vector xt at each time point t the dc-dimensional ‘cell’ vector −→c t and its

corresponding dc-dimensional output vector
−→
h t are computed as

−→c t =−→u (f)
t ∗ −→c t−1 +−→u (i)

t ∗ f (c)
(−→
W(c)

x xt +
−→
W

(c)
h

−→
h t−1 +−→a (c)

)
,

−→
h t =−→u (o)

t ∗ f (h)(−→c t),
(4)

where
−→
W

(c)
x and

−→
W

(c)
h are respectively dc× dx and dc× dc weight matrices for input xt and

output from previous time step
−→
h t−1;

−→a (c) is a dc-dimensional intercept vector (often called

‘bias’ in the deep learning literature); f (c)|Rdc → Rdc and f (h)|Rdc → Rdc are ‘activation’

functions for nonlinear transformation. Here the arrow −→· is used to emphasize that the

matrices and vectors are for a network that models information flow going forward in time.

(Below a network for backward flow will be introduced as well.) The initial values −→c0 and
−→
h0 are set to be zeros. The operator ∗ denotes element-wise multiplication and −→u (f)

t , −→u (i)
t ,

and −→u (o)
t are respectively the forget, input and output ‘gate’ vectors (thereafter shortened

11



as ‘gate’). The gates are defined in a similar fashion as a usual neural network node:

−→u (f)
t =f (f)

(−→
W(f)

x xt +
−→
W

(f)
h

−→
h t−1 +−→a (f)

)
,

−→u (i)
t =f (i)

(−→
W(i)

x xt +
−→
W

(i)
h

−→
h t−1 +−→a (i)

)
,

−→u (o)
t =f (o)

(−→
W(o)

x xt +
−→
W

(o)
h

−→
h t−1 +−→a (o)

)
,

(5)

where matrices denoted as
−→
W

(.)
x and

−→
W

(.)
h are respectively dc×dx and dc×dc weight matrices

that link input variables xt and previous output
−→
h t−1 to each gate vector; vectors denoted as

−→a (.) are dc-dimensional intercept vectors for each gate; functions denoted as f (.)|Rdc → Rdc

are activation functions for each gate. These gates control how the information flows within

the LSTM network and including them improves numerical stability as well as prediction

accuracy (Gers and Schmidhuber, 2001). The input vector xt is defined as the current and

lagged variables of observed sequence, i.e. xt = [Zt−dt , . . . , Zt]
T , which supplies information

from short range time dependence (or ‘short term memory’) to the network. The sequential

cells−→c 1, . . . ,
−→c p are designed to capture the long range dependence (or ‘long term memory’)

in the modeled time sequence.

If our goal was to make predictions on the observed sequence Zt, the models described

in (4) and (5) would be enough. However, since our goal here is to extract features from

the observed sequence and use it for finding the best value for θ, a bidirectional LSTM

network is more suitable (Huang et al., 2015). In addition to the forward LSTM layers

described in (4) and (5) we have the following backward LSTM layers at each time step t:

←−c t =←−u (f)
t ∗←−c t+1 +←−u (i)

t ∗ f (c)
(←−
W(c)

x xt +
←−
W

(c)
h

←−
h t+1 +←−a (c)

)
,

←−
h t =←−u (o)

t ∗ f (h)(←−c t),
(6)

12



with the following gate structure that has the same form as the forward LSTM units:

←−u (f)
t =f (f)

(←−
W(f)

x xt +
←−
W

(f)
h

←−
h t+1 +←−a (f)

)
,

←−u (i)
t =f (i)

(←−
W(i)

x xt +
←−
W

(i)
h

←−
h t+1 +←−a (i)

)
,

←−u (o)
t =f (o)

(←−
W(o)

x xt +
←−
W

(o)
h

←−
h t+1 +←−a (o)

)
,

(7)

where the vectors and matrices in (6) and (7) with the backward arrow ←−· have the same

dimensionalities as their counterparts in (4) and (5) with the forward arrow −→· . Again, the

initial values −−→cT+1 and
−−→
hT+1 are set to be zeroes. The output vectors from the backward

and forward LSTM units at each time step t are summed into one output vector ht,

ht =
−→
h t +

←−
h t, (8)

which will be passed to the non-linear regression layers. Figure S1 illustrates the resulting

LSTM structure.

The activation functions f (·) are defined as a collection of 1-dimensional functions

f
(·)
i |R→ R (i = 1, . . . , dc) as follows:

f (·)(·) =
[
f
(·)
1 (·), f (·)

2 (·), . . . , f (·)
dc

(·)
]T
.

Following a typical choice in the literature we use the ‘hard sigmoid’ function for the

activation functions f (f), f (i), f (o) for the gate variables, i.e.

f
(.)
i (x) = max(0,min(1, x))

for f
(f)
i , f

(i)
i , and f

(o)
i (i = 1, . . . , dc). This choice sets a large number of values in the gate

vectors in both forward and backword LSTM layers (−→u (f)
t , −→u (i)

t , −→u (o)
t ,←−u (f)

t ,←−u (i)
t and←−u (o)

t )

to be zeros, and hence imposes a strong regularization through sparsity. For the remaining

13



activation functions f (c) and f (h) we use the rectified linear unit (ReLU, see e.g. Goodfellow

et al., 2016, Ch. 6):

f
(.)
i (x) = max(0, x) (9)

for individual f
(c)
i and f

(h)
i (i = 1, . . . , Jc). It is well known that using ReLU as activa-

tion functions greatly increases numerical stability in likelihood estimation for deep neural

networks. We discuss the rationale behind this choice in detail in Section S2.

3.2.2 Fully-Connected Layers for Nonlinear Regression

The final outputs from the feature extraction layers are vectorized (often referred to as

‘flattening’ in the deep learning literature) as λ(0) = [hT1 , . . . ,h
T
p ]T and supplied to the

nonlinear regression layers. We use a fully connected network with L layers as our nonlinear

regression layers. The model structure for the fully connected layers can be written as

λ(1) = f (1)
(
W(0)λ(0) + a(0)

)
,

λ(2) = f (2)
(
W(1)λ(1) + a(1)

)
,

. . .

λ(L) = f (L)
(
W(L−1)λ(L−1) + a(L−1)

)
,

θ̂
∗

= W(L)λ(L) + a(L),

(10)

where λ(l) is the vector for the d(l) different nodes in the lth layer; f (l)|Rd(l) → Rd(l) is a

vector-valued activation function for the lth layer; W(l) is a d(l+1)× d(l) weight matrix; a(l)

is a d(l+1)-dimensional intercept matrix (which is often called ‘bias’ in the deep learning

literature). The length of λ(0) (i.e., d(0)) is determined as Tdc because the length of each ht

is dc. The sizes of subsequent layers, d(1), . . . , d(L), which are often referred to as the widths

of layers, need to be determined by the user. The width of the last layer d(L+1) is dθ (the

14



dimensionality of θ̂
∗
) and hence W(L) is a dθ × d(L) matrix and a(L) is a dθ-dimensional

vector.

The recent development in approximation theories (e.g., Poggio et al., 2017; Chen et al.,

2019; Schmidt-Hieber, 2017) suggest that having multiple hidden layers (i.e., L � 1) to

build a ‘deep’ network leads to a better prediction performance for the response variable

than having a shallow network, coining the term ‘deep learning’. Having a deep network

however poses a danger of ‘saturation’ or ‘vanishing gradient’, meaning that the gradient

of the resulting likelihood function becomes zero for a wide range of predictor variables

and hence gradient-based optimization methods such as gradient descent search become

computationally infeasible. (see Section 4.1 below for further discussion). This issue can

be avoided by choosing a proper activation function: for the lth layer activation function

f (l)(·) =
[
f
(l)
1 (·), f (l)

2 (·), . . . , f (l)
d(l)

(·)
]T

we define the activation function as ReLU defined in

(9). This choice of activation function also imposes certain level of ‘sparsity’ to the network

by making a large portion of λ(l) become zeros.

3.3 Handling Data-Model Discrepancy

In our calibration approach the main goal of statistical inference is to build an inverse

function ĝ that can efficiently estimate θ from Y(θ) + δ even under the presence of data-

model discrepancy δ. This problem resembles the problem of noisy sequence classification

except that the response variable is a continuous variable in our case. Inspired by the idea

of ‘learning with noise’ in the neural network literature (Koistinen and Holmström, 1992;

Holmstrom and Koistinen, 1992; Bishop, 1995; An, 1996; Vincent et al., 2010) we propose

to train the inverse emulator ĝ using ‘contaminated’ model outputs instead of the original

model outputs. In this way the resulting neural network model ĝ can automatically extract

the features λ(0) from a noisy model output Y(θ) + δ that is most relevant to recovering

15



the input parameter setting θ.

To this end we generate nd different realizations of δ from an assumed discrepancy

distribution for each input parameter setting θi (i = 1, . . . , n) to have generated discrepancy

terms {δij} (i = 1, . . . , n and j = 1, . . . , nd). We then create contaminated model outputs

Ỹ1, . . . , ỸN with N = n × nd by superimposing the generated discrepancy terms on the

original model outputs as follows:

Ỹk = Y(θi) + δij

for i = 1, . . . , n and j = 1, . . . , nd, where k = nd(i − 1) + j. We let θ̃1, . . . , θ̃N denote the

input parameter settings used for creating Ỹ1, . . . , ỸN (i.e., θ̃k = θdk/nde). This ‘learning

with error’ approach aims to train the DNN model with various types of data-model dis-

crepancy patterns so that it can handle discrepancies varying in a wide range of magnitudes

and time scales.

For the discrepancy model for δ we use a zero mean Gaussian process model with the

following squared exponential covariance function for generating δij:

Cov(δt1 , δt2) = ζ1(t1 = t2) + κ exp

(
−|δt1 − δt2|

2

φ

)
,

where t1, t2 ∈ {1, . . . , T}, 1(·) is an indicator function for the condition in (·); ζ > 0, κ > 0,

and φ > 0 are respectively the nugget, partial sill, and the range parameters. To avoid

imposing a too strong assumption on the discrepancy term we allow these parameters to

vary across different realizations of δij so that the resulting inverse function ĝ can handle

various types of δ patterns. We generate a sample of size N for these parameter values

based on a Latin hypercube design. Ranges for the parameters (preferably broad) are the

only required input. The ranges for ζ and κ reflect model user’s guess on the magnitudes of

independent and time-dependent components in the data-model discrepancy. (See Section

16



S8.2 for the specific parameter ranges used in our application problem.) As per the range

of φ, one rule that can be used for a wide range of problems is to use a value between

1% and 10% of the time interval lengths (p) as the lower limit and a value between 60%

and 70% of the length as the upper limit so that the generated discrepancy patterns cover

various types of structured errors including errors with short range dependence (when φ

is near its lower limit) and overall mean shift (when φ is near its upper limit). One can

choose a more informative sampling scheme that puts more emphasis on certain parts of

the discrepancy parameter space if some prior knowledge that justifies such choice exists

for the problem at hand.

4 Statistical Inference for DNN Calibration

We now describe the details of inference for the calibration model proposed in Section

3. We illustrate how the model is fitted with a proper regularization and how the input

parameters are predicted along with their uncertainty intervals.

4.1 Minimizing the Stochastic Loss Function with Dropout

In this section we use ĝ(·) to exclusively denote the approximation function constructed

by the deep network explained in Sections 3.2.1 and 3.2.2. We also let w = [w1, . . . , wnw ]T

denote a vector of all parameters contained in weight matrices and intercept vectors defined

in (4), (5), (6), (7), and (10) where nw is the total number of parameters in the deep network

model. The inference problem here is to estimate quantities in w based on Ỹ1, . . . , ỸN .

The standard ‘cost’ function used in the deep learning literature for continuous response

17



variables is the squared loss function given as

L(w) =
N∑
i=1

(θ̂
∗
i − θ̃i)T (θ̂

∗
i − θ̃i),

where θ̂
∗
i = ĝ(Ỹi). Minimizing this cost function is equivalent to maximizing the log-

likelihood function for the model in (2) with an assumption ε ∼ N(0, σ2Idθ) with σ2 > 0

(i.e., assuming equal variance for ε). Here the equal variance assumption for the dθ different

input parameters can be justified by rescaling the input parameters so that they have the

same range (typically [0,1]) and hence operate in the same scale.

The deep network model described in Sections 3.2.1 and 3.2.2 is apparently over-

parametrized and it is often helpful to impose some regularization for a better prediction

performance (Goodfellow et al., 2016, Chapter 7). We implement two approaches simul-

taneously that are frequently used in the deep learning literature: dropout and penalized

likelihood.

Dropout is a way to create a stochastic likelihood function by introducing some ran-

domness in the structure of our deep network (Goodfellow et al., 2016, Chapter 7.12). To

be more specific we re-define the fully connected layers in (10) as

λ(1) = f (1)
(
W(0)λ(0) + a(0)

)
,

λ(2) = f (2)
(
W(1)λ(1) ∗ r(1) + a(1)

)
,

. . .

λ(L) = f (L)
(
W(L−1)λ(L−1) ∗ r(L−1) + a(L−1)

)
,

θ̂
∗

= W(L)λ(L) ∗ r(L) + a(L),

(11)

where r(l) for l = 1, 2, . . . , L is defined as d(l)-dimensional vectors whose elements are

identically and independently distributed Bernoulli random variables with a pre-specified

18



success probability pkeep. We let r denote a collection of all r(l)’s, i.e., r =
[
r(1)

T
, r(2)

T
, . . . ,

r(L)
T
]T

. The operator ∗ denotes element-wise multiplication. This leads to a stochastic

loss function since new values of r are drawn for every evaluation of the function. The loss

function with dropout Lr(w) can be redefined as

Lr(w) =
N∑
i=1

(θ̂
∗
r,i − θ̃i)T (θ̂

∗
r,i − θ̃i). (12)

where θ̂
∗
r,i = ĝr

(
Ỹi

)
and ĝr is the deep learning-based approximation function constructed

based on (11) instead of (10). The subscript r is used to emphasize the dependence of the

predicted values on the random vector r.

For penalization we can choose any commonly used form including lasso, ridge, and

elastic net as the penalty function, which we will denote as P(w) henceforth. The resulting

penalized loss function is given as

`r(w) ∝ Lr(w) + P(w). (13)

One notable choice for P(w) in the literature (Gal and Ghahramani, 2016) is a ridge penalty

term defined in (S3) in Section S3. When combined with dropout the resulting penalized

likelihood function (i.e., the negative penalized loss function -`r(w)) can be thought as

a variational approximation to the posterior of the deep Gaussian process model corre-

sponding to our DNN model. (See Section S4 and Gal and Ghahramani (2016) for further

details.)

Note that dropout is applied only for parameter estimation, not prediction. In other

words, once the parameter ŵ is estimated by minimizing the loss function in (13) the

predictor θ̂
∗

is computed by the original model in (10) not (11). An exception for this rule

is when the MC dropout approach is applied (Gal and Ghahramani, 2016, see Section S4

19



for details). Model fitting using the penalized loss function in (13) can be done through a

gradient descent algorithm, which is described in Section S2.

4.2 Uncertainty Quantification Using Quantile Regression

The formulation in (2) suggests that uncertainty quantification for the estimated input pa-

rameter θ∗ can be essentially boiled down to the problem of finding the prediction interval

for the fitted DNN emulator ĝ. However, the highly complicated structure of ĝ and a large

number of parameters in w make classic approaches to finding a prediction interval for θ∗

computationally prohibitive. For example, the asymptotic variance based on information

matrix (White, 1989) cannot be computed because it requires inverting an nw × nw ma-

trix and the total number of parameters nw is typically hundreds of thousands or more.

Similarly, a fully Bayesian inference (as mentioned in Polson et al., 2017) is not applicable

either because it is not possible to fully explore the nw-dimensional parameter space using

Markov Chain Monte Carlo (MCMC).

To overcome the computational limitation we propose a quantile regression-based ap-

proach. Quantile regression has been used to construct prediction intervals for highly

complex prediction models such as the random forest (e.g., Meinshausen, 2006; Zhang

et al., 2019). The last equation in (10) suggests that the last layer of our DNN model

can be viewed as a linear mean regression model between the response variable θ∗ and the

extracted feature λ(L) up to the Lth layer and consequently the predicted mean of θ∗ is

θ̂
∗

= W(L)λ(L) + a(L).

A similar observation on DNN as a linear model with basis functions can be also found in

McDermott and Wikle (2019) and Wikle (2019). Instead, a predicted τth quantile of θ∗,

20



denoted by θ̂
∗
τ , can be obtained by quantile regression:

θ̂
∗
τ = W(L)

τ λ(L) + a(L)
τ ,

where W
(L)
τ and a

(L)
τ are the regression quantiles for a pre-specified target quantile 0 < τ <

1. The prediction limits are given as lower and upper tail quantiles such as the 0.025th

(τ = 0.025) and the 0.975th (τ = 0.975) quantiles, that is
[
θ̂
∗
0.025, θ̂

∗
0.975

]
. Since the overall

sample size N is typically thousands or larger (see Sections 5 and 6 below), these tail

quantiles are reliably estimable. As noted at the end of Section 4.1 the upper and lower

limits are computed without applying dropout. In addition to the interval estimates we

can also find the median estimate θ̂
∗
0.5, a more robust estimate for θ∗ than the mean and

use it as the point prediction.

We formulate the cost function to optimize based on (11) instead of (10) to apply

dropout to this procedure. We propose to estimate the τth regression quantiles W
(L)
τ and

a
(L)
τ by conducting quantile regression only in the last layer of the DNN model in (11),

θ̂
∗
τ = W(L)

τ λ(L) ∗ r(L) + a(L)
τ (14)

while fixing the rest of the estimated parameters in the model at their optimal values

obtained by minimizing the cost function (12). Therefore, the proposed quantile regression-

based approach can be viewed as adding one more step in the end after completing the

analysis in Section 4.1 to construct a prediction interval of θ∗. (See Section S7 for rationale

behind this.) Following the standard quantile regression procedure, we obtain the τth

regression quantile estimate for W
(L)
τ and a

(L)
τ by minimizing the following cost function:

Lr(W
(L)
τ , a(L)

τ ) =
N∑
i=1

(
θ̂
∗
τ,r,i − θ̃i

)T [
τ1dθ − I

(
θ̂
∗
τ,r,i − θ̃i < 0

)]
(15)

where 1dθ is a dθ-dimensional vector of 1’s and I
(
θ̂
∗
τ,r,i − θ̃i < 0

)
is a multivariate indicator

function whose jth element is 1 if the jth element of θ̂
∗
τ,r,i− θ̃i is less than 0 or 0 otherwise

21



for j = 1, . . . , dθ. The estimated quantile θ̂
∗
τ,r,i is defined as

θ̂
∗
τ,r,i = ĝτ,r

(
Ỹi

)
and ĝτ,r is the deep learning-based approximation function constructed by replacing the

mean regression θ̂
∗

= W(L)λ(L) ∗ r(L) + a(L) with the quantile regression (14).

5 Simulation Study

In this section we verify the performance of our proposed DNN and quantile regression-

based method (DNN-Q henceforth) and compare it with three other approaches through a

simulation study using a synthetic computer model output and observational data.

The first method to be compared is a DNN-based method that shares the framework

introduced in Sections 3 and 4 except for the uncertainty quantification method described

in Section 4.2. For uncertainty quantification this method employs MC dropout, an existing

standard uncertainty quantification method for DNN (Gal and Ghahramani, 2016) based on

variational Bayes approximation. We call this method DNN-MC henceforth. (See Section

S4 for details.)

The second method to be compared is an inverse model-based approach that shares

the same framework in Section 3.1 but finds the estimated inverse function ĝ(·) using the

random forest. The random forest-based calibration approach has not been introduced in

the literature before, but we compare our method to this approach to demonstrate that

DNN provides a better way to build ĝ(·) than the random forest, which is also widely used

as a general purpose function approximator. We call this method RF-Inv henceforth. (See

Section S5 for details.)

The third method to be compared is the standard forward model-based calibration

method explained in Section 2.1. The method employs a Gaussian process emulator (Sacks

22



et al., 1989) to approximate the forward model Y(θ) and Bayesian inference to infer the

best parameters θ∗ (Kennedy and O’Hagan, 2001). We call this method ‘GP-Fwd’ for the

rest of the manuscript. (See Section S6 for details.)

5.1 Synthetic Model Outputs and Observational Data

By following the usual way of conducting simulation studies in the calibration method

literature (see., e.g., Higdon et al., 2008; Chang et al., 2016) we generate synthetic model

runs and observational data and try to learn the true input parameter settings for the

synthetic observations using the synthetic model runs. To this end we first train the

statistical emulators (either for the forward or inverse relationship) using the synthetic

model runs and apply it to recover the parameter values for the synthetic observations.

We compare the performance of all four methods in recovering the true input parameter

settings for synthetic observations.

We generate synthetic model outputs that have similar characteristics as the model

outputs in Section 6. For p = 480 time points t = 1, . . . , 480 the model output Y (θ, t) is

defined as follows:

Y (θ, t) = 0.3 +
θ1 + 0.3√

2π(θ3 + 0.1)
exp

[
−(ut − θ2 + 0.5)2

θ3 + 0.1

]
where u1, . . . , u480 are equally spaced points starting from -2 to 2, θ = [θ1, θ2, θ3]

T is a

vector of the input parameters that governs how the synthetic model output behaves. The

whole model output at a given input parameter setting θ can be denoted as Y(θ) =

[Y (θ, 1), . . . , Y (θ, 480)]T . As shown in Figure S3, the synthetic model outputs are smooth

curves on the interval [0, 480] with a single peak. The first parameter θ1 controls the

overall scale of the output, the second parameter θ2 controls the location of the peak, and

the third parameter θ3 controls the overall dispersion of the the curve. Based on this model

23



we generate n = 200 synthetic model runs that are used to build the inverse emulator ĝ(·)

in the DNN-Q, DNN-MC, and RF-Inv methods or the forward emulator η(·) in GP-Fwd

method. We also generate 1,500 different scenarios for synthetic observations Z, which

serve as test data for model performance evaluation in Section 5.2 below. (See Section S8.1

for details)

5.2 Results

We implement the four compared methods DNN-Q, DNN-MC, RF-Inv, and GP-Fwd based

on the generated synthetic model runs and observational data. The implementation de-

tails are described in S8.2. We use four different metrics to compare the performance of

different methods: the bias, the root mean square error (RMSE), the average length and

the empirical coverage of the 95% interval estimates for θ∗. The comparison results for the

four methods are summarized in Tables 1 and 2.

In Table 1 we compare the performance of the three inverse model-based approaches,

DNN-Q, DNN-MC, and RF-Inv for the 1,500 test cases. The results show that all three

methods provide decent point predictions with small biases and RMSEs for the test data

set. Both DNN-based approaches have comparable RMSEs, lower than that of RF-Inv

for all three parameters. In terms of uncertainty quantification through interval estimates

DNN-Q yields empirical coverages that are close to the nominal confidence level for all

three parameters for the test cases. DNN-MC yields much shorter prediction intervals

than the other two methods but has notable undercoverage issues for the first (0.803) and

second parameters (0.893), which is often expected for a variational Bayes approximation.

RF-Inv method shows notable undercoverage (0.823) for the first parameter. Moreover for

all three parameters RF-Inv method leads to much wider average interval lengths for all

three parameters compared to DNN-Q. Overall DNN-Q shows the most stable performance

24



without showing any notable undercoverages and with notably shorter prediction intervals

than RF-Inv.

Table 1: Simulation Study Results for all Test Cases

Parameter Method Bias RMSE PI Length† PI Coverage‡

θ1

DNN-Q -0.002 0.056 0.204 0.923

DNN-MC 0.000 0.053 0.116 0.803

RF-Inv 0.018 0.094 0.260 0.823

θ2

DNN-Q -0.005 0.043 0.131 0.933

DNN-MC -0.002 0.042 0.106 0.893

RF-Inv -0.007 0.051 0.218 0.948

θ3

DNN-Q -0.001 0.034 0.106 0.931

DNN-MC 0.002 0.030 0.108 0.954

RF-Inv -0.001 0.048 0.194 0.957

†: Average Length of 95% Prediction Interval.

‡: Empirical Coverage of 95% Prediction Interval.

In Table 2 we compare the performance of DNN-Q and GP-Fwd based on 50 selected

cases out of the 1,500 test cases, since applying GP-Fwd to all 1,500 test cases is computa-

tionally too expensive due to the need of running a long MCMC chain for each case. The

details on how these 50 cases are selected is described in Section S8.1. As we have seen in

Table 1 DNN-Q method provides accurate point estimates and sound uncertainty quantifi-

cation for all three input parameters. On the contrary GP-Fwd results in overly dispersed

prediction intervals for the first parameter (that cover almost the entire parameter range

[0, 1]) and severe biases and undercoverage of the prediction intervals for the second and

25



Table 2: Simulation Study Results for Selected Cases for GP-Fwd

Data Set Method Bias RMSE PI Length† PI Coverage‡

θ1
DNN-Q 0.005 0.041 0.208 0.980

GP-Fwd -0.013 0.248 0.936 1.000

θ2
DNN-Q 0.002 0.037 0.128 0.940

GP-Fwd -0.079 0.205 0.071 0.280

θ3
DNN-Q -0.000 0.027 0.109 0.980

GP-Fwd 0.114 0.233 0.098 0.300

†: Average Length of 95% Prediction Interval.

‡: Empirical Coverage of 95% Prediction Interval.

third parameters. If we know the discrepancy parameters with a high confidence and impose

strong priors accordingly GP-Fwd may suffer less from inferential issues but assuming that

the form of discrepancy is exactly known is highly unrealistic in practice. Another impor-

tant limitation of GP-Fwd is the difficulty of building an accurate emulator. The emulation

performance evaluation described in Section S6.1 shows that the Gaussian process emulator

does not provide a satisfactory prediction accuracy in this emulation problem. One might

be able to improve the emulation performance by incorporating a more complicated (and

potentially non-stationary) dependence structure in the Gaussian process emulator model,

but such added complexity may cause computational and inferential challenges.

6 Application to WRF-Hydro Model

In this section we apply our proposed DNN-Q method to the problem of calibrating WRF-

Hydro (Gochis et al., 2018), the hydrologic extension of WRF model to demonstrate that

26



our method can be used to calibrate a highly complicated computer model and provide

useful information about the input parameter uncertainty and the data-model discrepancy.

The WRF-Hydro model provides an innovative way to simulate the entire water cycle (sur-

face and sub-surface runoff, and channel routing) by coupling a land surface component and

high-resolution hydrologic components. It contains a large number of uncertain parameters

that need to be properly tuned for realistic simulations (Wang et al., 2019).

The observational data are collected by the United States Geological Survey (USGS).

The objective is to find the best input parameter setting for simulating the streamflow

at Iowa River at Wapello, IA (USGS ID#05465500), and the relevant model output and

observational data are time series for the same time period. The model ensemble has

400 members with 14 varied parameters but we calibrate only five of them as the other

parameters are not relevant to the terrain types of the target site. We provide more

detailed description about the input parameters in Section S10. The simulated and observed

time series are the average water volume (feet3/sec) of streamflow for 15 minutes intervals

recorded from April 9th to 28th in 2013, having 480 time steps in total. This period had

a major precipitation event in the area and hence provides useful information on input

parameters relevant to modeling streamflows. The model runs and observational data are

shown in Figure 1.

As shown in Figure 1 the observational data do not resemble any of the model runs,

suggesting that there are some notable data-model discrepancies. This suggests that our

inverse model-based approach is useful to properly estimate the parameter values while

accounting for the data-model discrepancy in this problem. The range, partial sill, and

nugget parameters for the discrepancy term δ are sampled from an improved Latin hy-

percube design. The sampling range for the discrepancy range parameter (φ) is set to be

[10,300] as in the simulation study in Section 5 to train our DNN model based on discrep-

27



Figure 1: WRF-hydro model outputs and observational data for Iowa River at Wapello,

IA (USGS ID#05465500)

ancy patterns with various time scales. The range for the nugget parameter (ζ) set to be

[1,10] to reflect the fact that both the model output and the observational data show very

smooth trends. To determine the range for the partial sill (κ) we have conducted some

exploratory data analysis and found that the interquartile range for the mean squared error

between the model output and the observational data range from 10,292 (ft3/sec) to 21,670

(ft3/sec). Loosely based on this observation we set the range for the partial sill parameter

to be [50002, 150002] so that the lower bound is well less than 10,292 and 2×(the upper

bound)=30,000 well exceeds 21,670.

The estimated parameter values based on the observational data are summarized in

Table S1. Using the median estimates for the parameter we run WRF-Hydro model and

compared the simulated streamflow with the observational data from USGS (Figure 2).

28



Compared to the all model runs in the ensemble shown in Figure 1 the parametric uncer-

tainty in simulation is significantly reduced. The calibrated run have accurately captured

two important hydrologic quantities, the timing and the magnitude of the peak stream flow

discharge (with a slight overestimation for the magnitude, though). Note however there are

notable discrepancies before and after the peak surges, which may be due to WRF-Hydro

model deficiencies in capturing certain hydrological processes that need to be improved or

taken into account.

Figure 2: WRF model runs at the estimated parameter settings by DDN-Q (blue) compared

to the observations from USGS (black)

7 Summary and Future Directions

In this paper we have proposed a new computer model calibration method using deep

learning. The framework focuses on the case where the model output and observational

29



data are in the form of time series but the basic framework can be easily modified for

other types of data such as spatial data or spatio-temporal data by substituting the LSTM

feature extraction layers with convolutional layers (e.g. Goodfellow et al., 2016, Chapter

9) or convolutional LSTM layers (Xingjian et al., 2015). Utilizing the feature extraction

capacity of LSTM layers and the flexibility of fully-connected layers our DNN-based method

provides an accurate way to capture the inverse relationship between the model output and

the input parameters. Using ‘learning with noise’ idea we train a DNN emulator for inverse

relationship that can efficiently filter out the effects from data-model discrepancy on input

parameter estimation. This provides a viable solution to one of the long-standing issues

in computer model calibration literature, non-identifiablity between the effects of input

parameters and data-model discrepancy. Our framework also provides a way to quantify

the uncertainty in parameter estimation in the form of interval estimates using quantile

regression. This approach can be used to quantify the uncertainty in any DNN-based

modeling problems and hence has an implication beyond the problem of computer model

calibration.

As per possible future extensions one possible direction is to modify our framework

so that it can handle non-continuous data such as binary or count data. This requires

generating non-continuous contaminated model outputs and hence some generalized linear

model-type approach is needed. Another possible extension is to formulate a DNN-based

calibration method for temporally or spatially varying input parameters, which will require

handling of high-dimensional response variables with complicated dependence structures

in DNN modeling. All of these possible future developments have to be accompanied with

development of a proper uncertainty quantification method through a statistical inference

procedure that is specifically designed for particular distributional assumptions and variable

types at hand.

30



Acknowledgment

This research is partially supported by the University of Cincinnati Charles Phelps Taft

Research Center and the Ohio Super Computing Center (OSC).

References

An, G. (1996). The effects of adding noise during backpropagation training on a general-

ization performance. Neural Computation 8 (3), 643–674.

Bayarri, M., J. Berger, J. Cafeo, G. Garcia-Donato, F. Liu, J. Palomo, R. Parthasarathy,

R. Paulo, J. Sacks, and D. Walsh (2007). Computer model validation with functional

output. The Annals of Statistics 35 (5), 1874–1906.

Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. Neural

Computation 7 (1), 108–116.

Brynjarsdóttir, J. and A. O’Hagan (2014). Learning about physical parameters: The

importance of model discrepancy. Inverse Problems 30 (11), 114007.

Chang, W., M. Haran, P. Applegate, and D. Pollard (2016). Calibrating an ice sheet

model using high-dimensional binary spatial data. Journal of the American Statistical

Association 111 (513), 57–72.

Chang, W., M. Haran, R. Olson, and K. Keller (2014). Fast dimension-reduced climate

model calibration and the effect of data aggregation. The Annals of Applied Statis-

tics 8 (2), 649–673.

31



Chang, W., M. Haran, R. Olson, and K. Keller (2015). A composite likelihood approach

to computer model calibration using high-dimensional spatial data. Statistica Sinica 25,

243–259.

Chen, M., H. Jiang, W. Liao, and T. Zhao (2019). Efficient approximation of deep relu

networks for functions on low dimensional manifolds. In Advances in Neural Information

Processing Systems, pp. 8172–8182.

Gal, Y. and Z. Ghahramani (2016). Dropout as a Bayesian approximation: Representing

model uncertainty in deep learning. In International Conference on Machine Learning,

pp. 1050–1059.

Gers, F. A. and E. Schmidhuber (2001). LSTM recurrent networks learn simple context-

free and context-sensitive languages. IEEE Transactions On Neural Networks 12 (6),

1333–1340.

Gochis, D., M. Barlage, A. Dugger, K. FitzGerald, L. Karsten, M. McAllister, J. McCreight,

J. Mills, A. RafieeiNasab, L. Read, K. Sampson, D. Yates, and W. Yu (2018). The WRF-

Hydro modeling system technical description, Version 5.0. NCAR Technical Note.

Gochis, D., W. Yu, and D. Yates (2015). The WRF-Hydro model technical description and

user’s guide, version 3.0. NCAR Technical Document. NCAR Technical Document .

Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio (2016). Deep Learning, Volume 1.

MIT Press, Cambridge.

Graves, A. and J. Schmidhuber (2005). Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. Neural Networks 18 (5-6), 602–610.

32



Gu, M., J. O. Berger, et al. (2016). Parallel partial Gaussian process emulation for computer

models with massive output. The Annals of Applied Statistics 10 (3), 1317–1347.

Guan, Y., C. Sampson, J. D. Tucker, W. Chang, A. Mondal, M. Haran, and D. Sulsky

(2019). Computer model calibration based on image warping metrics: an application

for sea ice deformation. Journal of Agricultural, Biological, and Environmental Statis-

tics 24 (3), 444–463.

Higdon, D., J. Gattiker, B. Williams, and M. Rightley (2008). Computer model calibration

using high-dimensional output. Journal of the American Statistical Association 103 (482),

570–583.

Holmstrom, L. and P. Koistinen (1992). Using additive noise in back-propagation training.

IEEE Transactions on Neural Networks 3 (1), 24–38.

Huang, Z., W. Xu, and K. Yu (2015). Bidirectional lstm-crf models for sequence tagging.

arXiv preprint arXiv:1508.01991 .

Kennedy, M. and A. O’Hagan (2001). Bayesian calibration of computer models. Journal

of the Royal Statistical Society. Series B (Statistical Methodology) 63 (3), 425–464.

Koistinen, P. and L. Holmström (1992). Kernel regression and backpropagation training

with noise. In Advances in Neural Information Processing Systems, pp. 1033–1039.

McDermott, P. L. and C. K. Wikle (2019). Deep echo state networks with uncertainty

quantification for spatio-temporal forecasting. Environmetrics 30 (3), e2553.

Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Re-

search 7 (Jun), 983–999.

33



Poggio, T., H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao (2017). Why and when can

deep-but not shallow-networks avoid the curse of dimensionality: a review. International

Journal of Automation and Computing 14 (5), 503–519.

Polson, N. G., V. Sokolov, et al. (2017). Deep learning: A bayesian perspective. Bayesian

Analysis 12 (4), 1275–1304.

Sacks, J., W. Welch, T. Mitchell, and H. Wynn (1989). Design and analysis of computer

experiments. Statistical Science 4 (4), 409–423.

Sak, H., A. Senior, and F. Beaufays (2014). Long short-term memory based recurrent

neural network architectures for large vocabulary speech recognition. arXiv preprint

arXiv:1402.1128 .

Salter, J. M., D. B. Williamson, J. Scinocca, and V. Kharin (2019). Uncertainty quantifi-

cation for computer models with spatial output using calibration-optimal bases. Journal

of the American Statistical Association 114 (528), 1800–1824.

Schmidt-Hieber, J. (2017). Nonparametric regression using deep neural networks with relu

activation function. arXiv preprint arXiv:1708.06633 .

Sung, C.-L., Y. Hung, W. Rittase, C. Zhu, and C. J. Wu (2020). A generalized gaussian

process model for computer experiments with binary time series. Journal of the American

Statistical Association 115 (530), 945–956.

Tuo, R. and C. J. Wu (2015). Efficient calibration for imperfect computer models. The

Annals of Statistics 43 (6), 2331–2352.

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010). Stacked

34



denoising autoencoders: Learning useful representations in a deep network with a local

denoising criterion. Journal of Machine Learning Research 11 (Dec), 3371–3408.

Wang, J., C. Wang, V. Rao, A. Orr, E. Yan, and R. Kotamarthi (2019). A parallel

workflow implementation for pest version 13.6 in high-performance computing for wrf-

hydro version 5.0: a case study over the midwestern united states. Geoscientific Model

Development 12 (8), 3523–3539.

Wang, Y., M. Huang, X. Zhu, and L. Zhao (2016). Attention-based lstm for aspect-level

sentiment classification. In Proceedings of the 2016 conference on empirical methods in

natural language processing, pp. 606–615.

White, H. (1989). Some asymptotic results for learning in single hidden-layer feedforward

network models. Journal of the American Statistical Association 84 (408), 1003–1013.

Wikle, C. K. (2019). Comparison of deep neural networks and deep hierarchical models

for spatio-temporal data. Journal of Agricultural, Biological, and Environmental Statis-

tics 24 (2), 175–203.

Wong, R., C. Storlie, and T. Lee (2017). A frequentist approach to computer model calibra-

tion. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 79 (2),

635–648.

Xingjian, S., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo (2015). Con-

volutional LSTM network: A machine learning approach for precipitation nowcasting.

In Advances in Neural Information Processing Systems, pp. 802–810.

Zhang, H., J. Zimmerman, D. Nettleton, and D. J. Nordman (2019). Random forest

prediction intervals. The American Statistician. in press.

35


