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A Characteristic Function-Based Algorithm for Geodesic Active Contours\ast 

Jun Ma\dagger , Dong Wang\ddagger , Xiao-Ping Wang\S , and Xiaoping Yang\P 

Abstract. Active contour models have been widely used in image segmentation, and the level set method
(LSM) is the most popular approach for solving the models, via implicitly representing the contour
by a level set function. However, the LSM suffers from high computational burden and numerical
instability, requiring additional regularization terms or reinitialization techniques. In this paper,
we use characteristic functions to implicitly represent the contours, propose a new representation
to the geodesic active contours, and derive an efficient algorithm termed the iterative convolution-
thresholding method (ICTM). Compared to the LSM, the ICTM is simpler and much more efficient.
In addition, the ICTM enjoys most desired features of the level set–based methods. Extensive
experiments, on two-dimensional (2D) synthetic, 2D ultrasound, 3D computed tomography, and
3D magnetic resonance images for nodule, organ, and lesion segmentation demonstrate that the
proposed method not only obtains comparable or even better segmentation results (compared to the
LSM) but also achieves significant acceleration.
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1. Introduction. Active contours have been widely used in various segmentation tasks
[59] and image modalities [55], such as organs [56] in magnetic resonance (MR) scans, tumors
in computed tomography (CT) scans [16, 58], and ultrasound images [17, 42]. Basically, there
are mainly two types of active contour models: edge-based active contours (e.g., [6, 31, 25])
and region-based active contours (e.g., [8, 3, 30, 28]). Edge-based active contours are driven
by edge indicator functions that are commonly defined by image gradients. The contour
evolution is expected to stop on boundaries with high gradient magnitude. Region-based
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A CHARACTERISTIC FUNCTION-BASED ALGORITHM FOR GAC 1185

active contours are driven by regional information that can be defined by intensity statistical
information inside and outside of the contour. The contour is expected to evolve to a position
where the regional information inside and outside of the contour reaches a balance.

Edge-based active contours were first proposed by Kass, Witkin, and Terzopoulos [24]
in 1988 (also termed the snake model). The contour (explicitly represented by a parametric
curve) evolves by the image gradient to the boundary of the desired object. When one only
tracks the explicit curve, the snake model is very efficient and requires low memory, allowing
a fast evolution of an accurate boundary. However, the snake model suffers from numerical
instabilities, and it is difficult to automatically handle topological changes of the curve during
the evolution (typically, it works only for a single closed curve) [10, 31].

To improve the evolution of the contour of the snake model, Caselles, Kimmel, and Sapiro
proposed geodesic active contours [6] in 1997. The contour is implicitly represented by a level
set function that automatically allows topological changes including splitting and merging
and simultaneous segmentation of single or multiple objects. The key idea of the level set
method (LSM), introduced by Osher and Sethian [51], is to represent a curve as the zero level
set of a graph function defined in a higher dimensional space. Nowadays, the LSM has been
widely used in many applications including computer vision, computational geometry, fluid
dynamics, material science, and so on (see [50] and references therein for more details). In
particular, using the LSM to implicitly represent the contour and approximately solve the
active contour models becomes the most popular choice [48].

Even though the geodesic active contour model (GAC) allows us to change the topology
of the curve during evolution, it still suffers from numerical instability. In fact, even if the
analytical model could generate a correct contour for all times, it might happen, for either
an analytical or a numerical reason, that the gradient of the level set function would become
“too small” or “too large” on the contour (i.e., the zero level set). The gradient of a level
set function being too small will result in the location of the zero level set (the interface)
being sensitive to perturbation. If the gradient is too large, one loses accuracy in the contour
representation. To avoid this problem, the level set function is periodically reinitialized as a
distance function from the interface, allowing us to keep the norm of the gradient close to the
unity and avoiding ill-conditioning. However, the reinitialization procedure usually involves
many tricks, for example, it is hard to decide when it should be applied. Li et al. [31] proposed
a penalty term to keep the regularity of the level set function during evolution. The core idea
is to use the intrinsic property of the signed distance function: the magnitude of the gradient
of the signed distance function equals one. A penalty term is then introduced to penalize this
constraint. In addition, they proposed to keep the magnitude of the gradient of the level set
function to be 1 in a neighborhood of the zero level set and the value of the level set function
to be a constant at locations far away from the zero level set, to accelerate the algorithm
in practical implementation. Compared to the classical snake model, GAC has achieved
significant improvements by using the level set function to represent the contour. However, it is
still inefficient because the level set evolution is evolved by a time-dependent partial differential
equation that has a large computational burden to obtain a solution. Several acceleration
algorithms have been designed for the GAC [15, 2, 5], but solutions are usually obtained by
explicit schemes that may have stability issues regarding the choice of the time step.

Moreover, geodesic active contours should couple with an area term to speed up the curve
motion when the initial contour is far away from the desired object boundaries. However, the

D
o
w

n
lo

ad
ed

 0
5
/0

4
/2

2
 t

o
 1

7
5
.4

5
.3

8
.9

8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1186 J. MA, D. WANG, X.-P. WANG, AND X. YANG

sign of the area term weight is required to be manually determined. For example, when the
level set function takes negative values inside the zero contour and positive values outside, the
area weight should be positive if the initial contour is placed outside the object. By contrast,
the area weight should be negative if the initial contour is placed inside the object. To ease this
problem, hybrid active contours [79, 74, 36, 78, 77] introduce region descriptors [8, 30] that can
allow the contour to adaptively evolve to the object boundary without manually specifying
the sign of the weight. This is because the region descriptors are derived from image features
(e.g., intensities). For example, the region term in the Chan–Vese model [8] assumes the image
has piecewise constant intensities. The region term in [29] aims to find the multiplicative
components of a give image: a smooth bias filed function and a piecewise constant function.
Hybrid active contours have wide applications, such as retinal images [80], liver vessel [76],
myocardium images [21], and so on, but they still suffer from low computational efficiency
and and usually have many hyperparameters.

In addition to level set–based curve evolution, a characteristic function can also be used for
curve representation and evolution. The idea was first introduced by Merriman, Bence, and
Osher (MBO) [44, 45] for the modeling and simulation of motion by mean curvature, which
iteratively diffuses the characteristic function of the interior region of the curve followed by
thresholding. The MBO scheme has been adapted for piecewise constant “Mumford–Shah”
style image segmentation [60, 12] and segmentation problems on general weighted graphs (see
[43, 4, 64] for examples). More recently, Esedoglu and Otto [13] proposed a new formulation
to interpret the MBO scheme as a minimizing movement scheme of a Lyapunov functional
of characteristic functions, which can be directly generalized to multiphase mean curvature
motions with arbitrary surface tensions. The method has attracted much attention due to its
simplicity and unconditional stability. It has subsequently been extended to many problems,
including the problem of area or volume preserving interface motion [57, 22], wetting dynamics
[75, 71, 66, 23], target-valued harmonic maps [52, 69, 68, 53], high-order geometric motions
[14], and so on.

Characteristic function-related length regularizers have been widely used in existing seg-
mentation models. In [54], Pham proposed to add a membership function–based spatial pen-
alty term to the fuzzy C-means objective function, which can introduce spatial smoothness.
Moreover, a centroidal Voronoi tessellation (CVT) model [11] was also proposed for image
segmentation where its basic form is known as the K-means clustering. Furthermore, the
basic CVT model was extended to edge-weighted centroidal Voronoi tessellation (EWCVT)
clustering [72], where the pixels with its neighbors belonging to different clusters are penal-
ized and the approximate length regularization term is the same as that in [54]. The EWCVT
model was further improved by introducing image edge information and local variations of
intensities, which can deal with inhomogeneous image segmentation [33, 73]. In [7, 32], the
Chan–Vese model was formulated in terms of binary characteristic functions and the curve
length was expressed as the total variation of the characteristic function. The resulting op-
timizing algorithm [7] can find a global minimizer for fixed values of the intensity cluster
means. In addition, the characteristic function-based regularizer can also be coupled with
Gaussian mixture model (GMM), which can add spatial smoothness constraint to the classi-
cal GMM [35].
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A CHARACTERISTIC FUNCTION-BASED ALGORITHM FOR GAC 1187

Recently, motivated by Esedoglu and Otto’s new formulation [13], Wang et al. [67, 70] pro-
posed to use a characteristic function to represent the contour in region-based active contour
models, where the perimeter of the contour is approximated by a heat kernel convolution with
a characteristic function. Furthermore, they derived an iterative convolution-thresholding
method (ICTM) to minimize a general energy functional with general fidelity terms, which
enjoys the unconditionally energy-decaying property. Numerical experiments in [67, 70] have
shown that the ICTM is simple, efficient, and applicable to a wide range of region-based seg-
mentation models. Furthermore, the iteration algorithm can be unfolded as part of the deep
neural network [34], which can impose spatial regularization in an end-to-end way.

Most of the above segmentation methods focus on obtaining a global minimizer under
various situations, especially for the images with noise and inhomogeneous intensities, and the
energy functionals of the length regularizers are often spatially inhomogeneous. However, for
the geodesic active contour, a local minimizer is desired rather than a global minimizer, which
is common in many segmentation applications. Moreover, its energy functional is spatially
inhomogeneous because the edge indicator function in this functional is inhomogeneous in the
image domain. Motivated by the MBO scheme [44, 43] and the new perimeter approximation
formulation [13] and its wide extensions [67, 70, 65, 34], in this paper, we propose to use a
characteristic function to implicitly represent the evolving contour, approximate the geodesic
active contour energy functional, and derive an efficient algorithm to minimize the energy.
The main contributions are summarized as follows:

(1) An ICTM is developed to solve the GAC. Experiments on synthetic, ultrasound, CT,
and MR images demonstrate that the ICTM is more efficient than the classical LSM,
which is the most popular algorithm in this area.

(2) The energy-decaying property of the proposed algorithm is theoretically proved.
The paper is organized as follows. In section 3 we introduce the characteristic function-

based representation of the contour, give an approximation of the energy functional, and derive
an efficient algorithm to minimize the energy. In section 4 extensive experiments are performed
to verify the efficiency of the proposed method. We discuss the intuitive understanding of the
ICTM and other potential applications in section 5 and draw some conclusions in section 6.

2. Preliminaries. For an image I on a domain Ω, there are usually three methods to
represent the evolution of object boundary curves in it: (1) parametric curves, (2) level set
functions, and (3) characteristic functions. Table 1 presents the main features of the above
three representation methods. In the following, we first review the parametric curve- and level
set–based approaches.

Table 1
Features of three contour representation methods. ⊗ means that this feature requires a special design for

the method (e.g., additional penalty term).

Representation type Formulation Computational efficiency Adaptively topological change Stability

Parametric curve C(s, t) : [0, 1)× [0, inf) → R2
√ × ×

Level set {x ∈ Ω ⊂ R2|φ(x, t) = 0} × √ ⊗

Characteristic function u(x) =

\Biggl\{ 

1 if x ∈ Ω

0 otherwise

√ √ √
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1188 J. MA, D. WANG, X.-P. WANG, AND X. YANG

2.1. Parametric curve representation. Let C(q) : [0, 1] \rightarrow R2 be a parametric curve. To
find the object boundary, the classical snakes model [24] defines the following energy functional
associated with the curve C:

(2.1)

E(C) =Einternal + Eexternal

=\alpha 

\int 1

0
| C \prime (q)| 2dq + \beta 

\int 1

0
| C \prime \prime (q)| 2 dq  - \lambda 

\int 1

0
| \nabla I(C(q))| dq,

where \alpha , \beta , and \lambda are real positive constants. The first two terms belong to the internal energy
that controls the smoothness of the contours, while the third term is the external energy that
drives the contours toward the boundary of the object.

The snakes model is a pioneer that formulates the image segmentation problem as an
energy functional minimization problem. Using a parametrized planar curve to represent an
object contour allows a fast evolution with a spline function method [10]. However, it suffers
from the fixed topological property. For example, if there are more than one objects in a
given image and the initial segmentation contour surrounds the objects, the snake model can
not detect all objects. In other words, the classical snakes model cannot directly deal with
topological changes.

2.2. Level set representation. To address the drawback of the snakes model, Caselles,
Kimmel, and Sapiro [6] proposed the well-known GAC that is a geodesic computational prob-
lem in a Riemannian space whose metric is defined by the image information. The energy
functional is represented by embedding the dynamic contour C(s, t) as the zero level set of a
time-dependent level set function \phi : Ω\times [0,\infty ] \rightarrow R

(2.2) min
\phi 

\int 

Ω
g\delta (\phi )| \nabla \phi | dx,

where \delta is the Dirac delta function on the set \phi = 0, and g : [0,+\infty ) \rightarrow R+ is an edge indicator
function. In general, g is defined by

(2.3) g :=
1

1 + | \nabla G\sigma \ast I| 2 ,

where G\sigma is a Gaussian kernel with a standard deviation \sigma that is used to smooth the image. It
is easy to see that g takes smaller values on the object boundary where the gradient magnitude
is larger.

One of the most significant advantages of level set–based contour representation is that
it can handle topological changes (e.g., merging and splitting) in a natural way, which is
not allowed in parametric-based contour representation. In practice, an area term is usually
introduced to speed up the motion of the zero level set during the evolution, which is important
when the initial contour is far away from the desired object boundaries. The Dirac delta
function \delta is approximated by \delta \epsilon , which is defined by

(2.4) \delta \epsilon (x) =

\Biggl\{ 

1
2\epsilon [1 + cos(\pi x\epsilon )], | x| \leq \epsilon ,

0, | x| > \epsilon ,D
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A CHARACTERISTIC FUNCTION-BASED ALGORITHM FOR GAC 1189

and \epsilon > 0 is a hyperparameter that controls the bandwidth of the nonzero region. The energy
functional is then defined by

(2.5) E(\phi ) = \alpha 

\int 

Ω
g\delta \epsilon (\phi )| \nabla \phi | dx+ \lambda 

\int 

Ω
gH\epsilon ( - \phi )dx,

where H\epsilon is the smoothed Heaviside function.
Although the LSMs have the desired property on handling topology changes, their appli-

cations suffer from issues on numerical instability. To be specific, a level set function is usually
defined as a signed distance function and typically develops irregularities due to numerical
errors during evolution, which could destroy the stability of the level set evolution.

2.3. Distance regularized level set. To address the numerical instability problem, reini-
tialization was periodically used in earlier LSMs [8] to force the level set to be a signed distance
function during the contour evolution. To avoid the above problem, Li et al. [31] proposed
the following distance regularized level set evolution (DRLSE) method

(2.6) E(\phi ) =\alpha 

\int 

Ω
g\delta (\phi )| \nabla \phi | dx+ \lambda 

\int 

Ω
gH( - \phi )dx+ \mu 

\int 

Ω
p(| \nabla \phi | ) dx,

where \mu > 0 is a weight hyperparameter and p(x) is a potential function that is used to keep
the signed distance regularity of the level set function. Typically, the potential function p(x)
can be defined as a single-well potential

(2.7) p(x) :=
1

2
(x - 1)2

or a double-well potential

(2.8) p(x) :=

\Biggl\{ 

1
(2\pi )2

(1 - cos(2\pi x)) if x \leq 1,
1
2(x - 1)2 if x > 1.

In general, double-well potential is the default setting because it is more robust than single-
well potential. With the smoothed Dirac delta function \delta \epsilon and Heaviside function H\epsilon , one can
derive the gradient flow of the energy functional (2.6) as

(2.9)
\partial \phi 

\partial t
= \alpha \delta \epsilon (\phi )div

\biggl( 

g
\nabla \phi 

| \nabla \phi | 

\biggr) 

+ \lambda g\delta \epsilon (\phi ) + \mu div(dp(| \nabla \phi | )\nabla \phi ),

where dp(x) =
p\prime (x)
x .

Although the LSM has more advantages than the classical parametric curve-based meth-
ods and the distance regularization approach and hybrid active contour model make the LSM
more stable, they still have two main drawbacks—many hyperparameters and low compu-
tational efficiency—because solving the level set–based GAC needs to update the level set
function according to a partial differential equation (2.9), which has large computational bur-
den. In the next section, we will present a characteristic function-based method for GAC,
which significantly reduces the number of hyperparameters and improves the computational
efficiency.D
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3. Proposed method.

3.1. Geodesic active contours with the characteristic function. A characteristic func-
tion can be used to represent the contour, which is defined by

(3.1) u(x) =

\Biggl\{ 

1 if x \in ΩΓ,

0 otherwise,

where Γ is the object boundary and ΩΓ denotes the region inside Γ. It provides an alternative
way to implicitly represent a curve, which not only owns the adaptively topological change
property of the LSM but also is more computationally efficient and stable. In this paper,
we propose to formulate the energy functional of GAC beyond existing LSMs. In particular,
a characteristic function is introduced to approximate the energy (2.5), which allows us to
design a more efficient algorithm for GAC.

As shown in [47], a general boundary integral can be approximated using the characteristic
functions u by

(3.2)

\int 

Γ
g ds \approx lim

\tau \rightarrow 0

\sqrt{} 

\pi 

\tau 

\int 

\BbbR n

guG\tau \ast (1 - u) dx

or

(3.3)

\int 

Γ
g ds \approx lim

\tau \rightarrow 0

\sqrt{} 

\pi 

\tau 

\int 

\BbbR n

g(1 - u)G\tau \ast u dx,

where \tau is a free parameter, \ast represents convolution between two functions, and

G\tau (x) =
1

(4\pi \tau )n/2
exp

\biggl( 

 - | x| 2
4\tau 

\biggr) 

.

Here n is the dimension of the Euclidean space and Γ could be an interface when n = 2 or a
surface when n = 3. Esedoglu and Otto [13] established a novel framework on modeling and
simulating the multiphase mean curvature flow with arbitrary surface tensions based on this
approximation, via a relaxation and linearization procedure.

To keep the symmetry of the formulation with respect to u and 1 - u, combining with the
area term, the geodesic active contour energy functional (2.5) is approximated by1

(3.4) E\tau (u) :=

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
guG\tau \ast (

\surd 
g(1 - u)) + \lambda gu dx.

The convergence of (3.4) as \tau \searrow 0 is referred to in [19]. One can also use the above
formula to design efficient algorithms for surface reconstruction from point clouds [65].

Then, the original GAC is approximated by the following energy functional minimization
problem:

(3.5) u\ast = argmin
u\in B

E\tau (u),

1λ in (3.4) is the same as λ/α in (2.5).D
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where

B := \{ u \in BV (Ω, R)| u = \{ 0, 1\} \} 

and BV (Ω, R) denotes the space of functions with bounded variation.

3.2. Algorithm for problem (3.5). It is easy to see that the feasible set B of the energy
functional minimization problem (3.5) is nonconvex. To address this problem, we relax B to
its convex hull

K := \{ u \in BV (Ω, R)| u \in [0, 1]\} 

and derive the following relaxed minimization problem:

(3.6) u\ast = argmin
u\in K

E\tau (u).

Furthermore, we prove the equivalence between (3.5) and (3.6) in the following lemma.

Lemma 3.1. The original problem (3.5) is equivalent to the relaxed problem (3.6) in the

sense that if u\ast is a solution of (3.5), then it is also a solution of (3.6) and vice versa.

Proof. On the one hand, letting û = argminu\in B E\tau (u), we have

(3.7) E\tau (û) = min
u\in B

E\tau (u).

Then, it is obvious that

argmin
u\in B

E\tau (u) \in K

and

(3.8) E\tau (û) \geq min
u\in K

E\tau (u),

because B \subsetneqq K.
On the other hand, letting ũ = argminu\in K E\tau (u), we can use reduction to absurdity to

prove

ũ = argmin
u\in K

E\tau (u) \in B.

Assume it is not true; then there exists a set A \subseteq Ω with nonzero measure and a > 0 such
that the minimizer u\ast satisfies

u\ast (x) \in (a, 1 - a) \forall x \in A.

Letting ut = u\ast + t\chi A where \chi A is the characteristic function of A, we have ut \in K for any
| t| < a. Directly computing the first and second derivatives of

E\tau (ut) =

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
g(u\ast + t\chi A)G\tau \ast (

\surd 
g(1 - u\ast  - t\chi A)) + \lambda g(u\ast + t\chi A)dxD
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with respect to t, we have

dE\tau (ut)

dt
=

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
g\chi AG\tau \ast (

\surd 
g(1 - u\ast  - t\chi A)) +

\surd 
g(u\ast + t\chi A)G\tau \ast ( - 

\surd 
g\chi A) + \lambda g\chi A dx

and

d2E\tau (ut)

dt2
=  - 2

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
g\chi AG\tau \ast (

\surd 
g\chi A) dx.

Due to
\surd 
g \geq 0 and

\surd 
g = 0 only on a set with zero measure, we have d2Eτ (ut)

dt2
< 0 especially

at t = 0 (i.e., u\ast ). However, this result contradicts the assumption that u\ast is a minimizer

(d
2Eτ (ut)
dt2

\geq 0 at u\ast ).
Thus, we have ũ \in B, and then

(3.9) E\tau (ũ) = min
u\in K

E\tau (u) \geq E\tau (û).

Finally, based on (3.7)–(3.9), we obtain

(3.10) E\tau (û) = min
u\in B

E\tau (u) = min
u\in K

E\tau (u) = E\tau (ũ).

Next, we derive an iterative method to solve the relaxed problem (3.6). It is easy to verify
that E\tau (u) is a concave functional. Using the fact that the graph of the functional E\tau (u) is
always below its linear approximation, we minimize the linearized functional of E\tau (u) based
on sequential linear programming because the minimizer of the linearized functional can give
a smaller value in E\tau (u). A similar idea can also be found in the well-known difference of
convex algorithm [61, 62]. Specifically, at the kth iteration uk, we compute the linearization
(the first-order Taylor expansion) of E\tau (u) at uk as

(3.11) L\tau (u, uk) =

\sqrt{} 

\pi 

\tau 

\int 

Ω
u\varphi kdx,

where

(3.12) \varphi k =
\surd 
gG\tau \ast (

\surd 
g(1 - 2uk)) + \lambda g.

Then, one obtains the k + 1-th iteration uk+1 by solving the linearized problem

(3.13) uk+1 = argmin
u\in K

L\tau (u, uk),

which can be solved in a pointwise manner. That is, \forall x \in Ω, we solve

(3.14) uk+1(x) = arg min
u(x)\in [0,1])

u(x)\varphi k(x).

Because of the fact that the minimizer of a linear functional over a convex set must be reached
at the boundary, we get

(3.15) uk+1(x) =

\Biggl\{ 

1 if \varphi (x) \leq 0,

0 otherwise.

We summarize the proposed ICTM in Algorithm 3.1.D
o
w

n
lo

ad
ed

 0
5
/0

4
/2

2
 t

o
 1

7
5
.4

5
.3

8
.9

8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A CHARACTERISTIC FUNCTION-BASED ALGORITHM FOR GAC 1193

Algorithm 3.1 The ICTM for geodesic active contours

Input: Image edge indicator function g, \tau > 0, \lambda , and initialization u0 \in B.
Output: Segmentation results u\ast \in B;
while not converged do

(1) Convolution. Fix uk, compute

\varphi k(x) =
\surd 
gG\tau \ast (

\surd 
g(1 - 2uk)) + \lambda g.

(2) Thresholding. Set

uk+1(x) =

\Biggl\{ 

1 if \varphi (x) \leq 0,

0 otherwise.

end while

Remark 3.1. For the convergence criteria, we stop the iteration if

(3.16)

\int 

Ω
| uk+1  - uk| dx < tol

where tol is a given error tolerance (1\times 10 - 5 in this paper).

Remark 3.2. Compared to the LSM, the ICTM enjoys the following advantages:
(1) No requirement for the additional regularization term: The LSM in (2.6) needs an

auxiliary regularization term to maintain the numerical stability, while our algorithm
is intrinsic stable during iterations as demonstrated in the following section.

(2) Fewer hyperparameters: The LSM has three model hyperparameters,2 \alpha , \lambda , and \mu (can
be reduced to two by some normalizations), and two algorithm hyperparameters, time
step and bandwidth \epsilon in \delta \epsilon and H\epsilon , while our method reduces the number of hyper-
parameters to one model parameter \lambda and one joint model algorithm hyperparameter
\tau .

(3) Less computational burden: The LSM needs to solve a partial differential equation for
the evolution of the contour as shown in the gradient flow (2.9), while our algorithm
only alternates simple convolution and thresholding operations.

Remark 3.3. The GAC model can only deal with images whose contours are clear. One
can also combine the ICTM for the GAC and the ICTM for other region-based models (as
those in [70]) for general images.

3.3. Stability analysis. In this section, we prove that Algorithm 3.1 is unconditionally
stable for any \tau > 0, which means the total energy E\tau (u) is decreasing during the iteration.
Thus, the proposed method can always converge to a stationary configuration.

2The standard deviation σ in the Gaussian kernel of edge indicator function (equation (2.3)) is excluded
because this hyperparameter is not always necessary. For example, if an input image is clean, we do not need
to use a Gaussian filter to smooth the image.D
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Theorem 3.4. Let uk (k = 0, 1, 2, . . .) be the kth iteration derived in Algorithm 3.1. We

have

E\tau (uk+1) \leq E\tau (uk)

for any \tau > 0.

Proof. As for E\tau (u) defined in (3.4), the linearization of E\tau (u) at uk is defined by

L\tau (u, uk) =

\sqrt{} 

\pi 

\tau 

\int 

\BbbR n

\surd 
guG\tau \ast (

\surd 
g(1 - 2uk)) + \lambda ug dx.

Direct calculation yields that

E\tau (uk) =

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
gukG\tau \ast 

\Bigl( \surd 
g(1 - uk)

\Bigr) 

+ \lambda gukdx

= L\tau (uk, uk) +

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
gukG\tau \ast 

\Bigl( \surd 
guk

\Bigr) 

dx

and

E\tau (uk+1) =

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
guk+1G\tau \ast 

\Bigl( \surd 
g(1 - uk+1)

\Bigr) 

+ \lambda guk+1dx

= L\tau (uk+1, uk) + 2

\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
guk+1G\tau \ast 

\Bigl( \surd 
guk

\Bigr) 

dx - 
\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
guk+1G\tau \ast 

\Bigl( \surd 
guk+1

\Bigr) 

dx

Because uk+1 is the solution from the sequential linear programming, we have L\tau (uk+1, uk) \leq 
L\tau (uk, uk). Then, we compute

E\tau (uk+1) - E\tau (uk) = L\tau (uk+1, uk) - L\tau (uk, uk) + \scrL ,

where

\scrL = - 
\sqrt{} 

\pi 

\tau 

\int 

Ω

\surd 
g(uk+1  - uk)G\tau \ast 

\Bigl( \surd 
g(uk+1  - uk)

\Bigr) 

dx.

Based on the semigroup property of the heat kernel convolution, i.e.,

\int 

\BbbR n

fG\tau \ast g dx =

\int 

\BbbR n

(G\tau /2 \ast f)(G\tau /2 \ast g) dx,

we have

\scrL = - 
\sqrt{} 

\pi 

\tau 

\int 

\BbbR n

\Bigl[ 

G\tau /2 \ast 
\Bigl( \surd 

g(uk+1  - uk)
\Bigr) \Bigr] 2

dx \leq 0.

Therefore, we are led that E\tau (uk+1) - E\tau (uk) \leq 0 because L\tau (uk+1, uk) - L\tau (uk, uk) \leq 0 from
the derivation of the algorithm.D
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Remark 3.5. The proposed ICTM is motivated by the general idea of the MBO scheme:
characteristic functions are introduced to implicitly describe the interface motion by mean
curvature, which can be used for the contour evolution in segmentation tasks. However,
different from MBO schemes [44, 13] or extensions on weighted graphs [43], we consider
the case involving a spatially inhomogeneous interface motion (i.e., iterations of the active
contour) where the inhomogeneity comes from the inhomogeneous edge indicator function g(x)
in the domain. To handle such inhomogeneity, we proposed a symmetric, quadratic, concave,
and inhomogeneous approximation approach (3.4) using Gaussian kernels. It then allows us to
design efficient iteration algorithm (i.e., Algorithm 3.1) and prove its unconditional stability
(i.e., Theorem 3.4).

4. Numerical experiments. In this section, we present four groups of image segmentation
experiments to demonstrate that compared with the LSM, the proposed ICTM can achieve
comparable or even better segmentation results but with significantly fewer iterations. Specif-
ically, we first evaluate the LSM and the ICTM on two synthetic images, which show that
the ICTM can also adaptively handle the topological changes, such as merging and splitting.
Then, we show the performance of Algorithm 3.1 on three different types of images, including
ultrasound (two-dimensional (2D)), CT (3D), and MR (3D) images, and compare with the
well-known LSM-based GAC [31] (DRLSE) to show the efficiency of the proposed method.
The software code for LSM is obtained from Chunming Li’s homepage.3

For a fair comparison, we also implement our algorithm with pure MATLAB code.4 All the
experiments are run on a Windows 10 laptop with an Intel Core i7-6700HQ CPU @ 2.60 GHz,
24 GM RAM. Our code will be publicly available upon acceptance. In all experiments, if not
specifically pointed out, we set \sigma in (2.3) to be 15 and \epsilon in (2.4) to be 1.5.

Remark 4.1. One can also use banded LSM or ICTM to reduce the computational com-
plexity at each iteration. For a fair comparison, we simply perform the LSM and the ICTM
in the whole computational domain.

4.1. Experiments on synthetic images. We first apply the proposed method on two
synthetic images to show that using the ICTM can automatically handle the topological
changes, such as merging and splitting, during evolution, which is the most important feature
in level set–based methods. The hyperparameters of the LSM follow the default setting in
Chunming Li’s code.3 As for Algorithm 3.1, we set \tau = 2 and choose the parameter \lambda as  - 0.3
and 0.3 for merging and splitting experiments, respectively.

Figure 1 displays the segmentation results of the proposed ICTM and the LSM on two
synthetic images. The first two rows show the merging process while the last two rows show the
splitting process, using selected snapshots during the iteration. The corresponding number of
iterations and running time are listed at the top of each image. Based on these segmentation
results, we observe that

(1) both the ICTM and the LSM can adaptively handle the topological changes; specifi-
cally, the contours can adaptively merge and split during iterations;

3http://www.imagecomputing.org/∼cmli/DRLSE/.
4https://www.mathworks.com/matlabcentral/fileexchange/91875-ictm-gac-segmentation.D
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Figure 1. Experimental results on two synthetic images. First two rows: selected snapshots of the merging
process. Last two rows: selected snapshots of the splitting process. The red rectangles in the first column are
the contour initialization. At the top of each image, the corresponding iteration number and running time are
listed. See section 4.1.

(2) both the ICTM and the LSM can achieve the same (or similar) segmentation results
on the two synthetic images because they are just different approximations to the same
model (i.e., GAC);

(3) compared to the LSM, the ICTM achieves the same segmentation results with many
fewer iterations and much less running time. In particular, ICTM is approximate 58
times and 27 times faster than the LSM on the contour merging and splitting results,
respectively.

4.2. Breast nodule segmentation in ultrasound images. To validate the performance
and efficiency of our method on real images, we apply it to breast nodule segmentation in
ultrasound images. In this experiment, we use the BUSI dataset [1] and select 100 random
benign breast ultrasound images to compare the efficiency between the LSM and the ICTM.
The same rectangle initialization is generated based on ground truth for images. The width
and height of each rectangle is half of the major axis and minor axis of the ground truth’s
bounding box, respectively. For a fair comparison, we apply grid search to each method to find
the best set of hyperparameters that can achieve the best average Dice similarity coefficient
(DSC) on this dataset. The main contribution in this work is a more efficient method. Thus
we try our best to achieve the best performance for both LSM and ICTM, and then compare
their running efficiency. Specifically, we set \alpha = 5, \lambda =  - 3, \mu = 0.2, and ∆t = 1 for the LSM,
respectively. For ICTM, we set \tau = 2 and \lambda =  - 0.2, respectively.

Table 2 shows the quantitative results of breast ultrasound image segmentation. The pro-
posed ICTM method is slightly better than the LSM with 1.35% improvements in average
DSC. The number of average iterations of our ICTM is 58, which is 12.4 times fewer than
the LSM. For the average running time, the LSM takes about 74 seconds per image while theD
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Table 2
Quantitative results in different datasets in terms of average DSC, running time, and the number of iter-

ations (# of Iter.). The arrows indicate which direction is better. Bold numbers mean that the improvements
are statistically significant at p < 0.01. See sections 4.2, 4.3, and 4.4.

Dataset Method DSC (%) ↑ Time (s) ↓ # of Iter. ↓ Acceleration (in Iter.)

Breast Level set 87.75 ± 5.34 74.01 ± 44.18 719 ± 398 12.4 ×
Ultrasound ICTM (ours) 89.10 ± 3.99 0.66 ± 0.61 58 ± 48 faster

COVID-19 Level set 92.18 ± 2.35 1956.6 ± 550.2 7826 ± 2200 3.86 ×
CT ICTM (ours) 92.35 ± 3.21 69.2 ± 29.3 1384 ± 586 faster

Liver tumor Level set 85.79 ± 6.32 104.5 ± 83.2 475 ± 378 5.65 ×
MR ICTM (ours) 86.44 ± 6.61 1.52 ± 1.78 123 ± 145 faster
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31
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29

27

8

108

DSC Iter DSC Iter DSC Iter DSC Iter

Figure 2. Breast nodule ultrasound image segmentation results. Columns (a) and (d) are input images
and corresponding initialization (red rectangles). Columns (b) and (e) are segmentation results of the LSM.
Columns (c) and (f) are segmentation results of Algorithm 3.1. Green and red contours denote ground truths
and segmentation results, respectively. Yellow and white numbers at the top of images indicate segmentation
accuracy (Dice similarity coefficient (DSC)) and the number of iterations. See section 4.2.

proposed ICTM only needs 0.66 seconds per image, achieving more than 100 times accelera-
tion. Figure 2 displays 10 random selected images with segmentation results by the LSM and
our ICTM, with corresponding DSC (yellow) and running time (white) printed on. The two
methods start with the same initialization, and we observe that

\bullet the ICTM achieves similar or even better segmentation results than the LSM, indicat-
ing the feasibility of applying the ICTM into real image segmentation;

\bullet the ICTM requires much less running time than the LSM, implying high efficiency.D
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(a) 

Initialization

(b) 

Level set

(c) 

ICTM

Case 1 Case 2

DSC: 95.23

DSC: 95.31

Iter: 7762

Iter: 1438

DSC: 93.68

DSC: 93.75

Iter: 7392

Iter: 1241

Figure 3. Zoomed examples for lung CT segmentation results. Row (a) Input images and corresponding
initialization (red rectangles). Row (b) Segmentation results of the LSM. Row (c) Segmentation results of the
proposed ICTM. Green and red contours denote ground truths and segmentation results, respectively. Blue and
white numbers at the top of images point out segmentation accuracy (DSC) and the number of iterations. See
section 4.3.

4.3. Lung segmentation in COVID-19 CT. To validate the effectiveness of the ICTM on
3D organ segmentation tasks, we apply it to lung segmentation in COVID-19 CT scans. We
use the public COVID-19-CT-Seg dataset [40] and select 10 earlier COVID-19 lung CT scans
for segmentation experiments. The image size of each slice is 512 \times 512, and the number of
image slices ranges from 40 to 400. We set the same initialization for both the ICTM and
the LSM, which is generated by eroding the ground truth with a sphere structure element
(radius=10).

For fair comparison, we apply the grid search to tune the hyperparameters, which aims
to achieve the best performance for both LSM and ICTM. Quantitative and qualitative seg-
mentation results are displayed in Table 2 and Figure 3, respectively. We observe that both
methods achieve comparable average DSC without significant differences, which implies that
the ICTM can be an alternative choice (beyond the LSM) for the GAC. The average iterations
of ICTM are 1384, which is 3.86 times lower than the LSM. As for the efficiency, the LSM
spends an average 1956.6 seconds for each case while the ICTM only needs 69.2 seconds, which
achieves about 28.3 times acceleration.

4.4. Liver lesion segmentation in MR. To validate the effectiveness of our ICTM on 3D
lesion segmentation tasks, we apply it to liver lesion segmentation in liver MR scans. We
randomly collect 20 liver MR scans from a local hospital. Three experienced radiologists
manually annotate them, and majority vote is used to generate final labels. The image sizes
range from 256\times 256\times 105 to 400\times 400\times 120. The initialization of each MR scan is a cuboid
inside the tumor. Figure 4(a) shows some initialization results (red rectangle) in 2D slices. ItD
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(a) 

Initialization

(b) 

Level set

(c) 

ICTM

DSC: 83.76

Iter: 329

DSC: 82.56

Iter: 1433

DSC: 90.86

Iter: 2208

Iter: 414

DSC: 91.38

DSC: 84.78DSC: 90.89

DSC: 86.37
DSC: 91.44

Iter: 60 Iter: 81

Iter: 516 Iter: 770 

Figure 4. Zoomed examples of liver lesion MR image segmentation results. Green and red contours denote
ground truths and segmentation results, respectively. Blue and white numbers at the top of images point out
segmentation accuracy (DSC) and the number of iterations. Some images do not have initializations because the
segmentation method is applied in a 3D manner and not all tumor slices need initializations. See section 4.4.

should be noted that not all tumor slices have initializations such as the images in the first and
fourth columns in Figure 4(a) because the segmentation method is applied in a 3D manner.
Thus, we do not need to give initializations in each slice. In fact, only half of the tumor slices
have initializations.

For fair comparison, we also apply the grid search to tune the hyperparameters. Quanti-
tative and qualitative segmentation results are displayed in Table 2 and Figure 4, respectively.
We observe that, again, both methods achieve similar average DSC without significant differ-
ences, indicating that the ICTM can obtain similar results to the LSM for the GAC. However,
the ICTM requires fewer iterations compared to the LSM, which is about 5.65 times acceler-
ation, implying the high efficiency of the ICTM.

5. Discussion. In section 4, we have applied the proposed ICTM on synthetic, ultrasound,
CT, and MR images to show its effectiveness on nodule, organ, and lesion segmentation.
Compared to the LSM, the ICTM obtains similar or even better results but achieves dozens or
hundreds of times faster execution times. Furthermore, we discuss the intuitive understanding
on the advantages of the ICTM (e.g., efficiency) and many potential applications especially
in the modern deep learning era.

5.1. Why is the proposed ICTM faster than the LSM?. This is attributed to the simple
and inherent features (Table 1) of using characteristic functions to implicitly represent a
contour. Specifically, there are several main reasons:

(1) Each iteration in the ICTM (Algorithm 3.1) is much simpler than each iteration in
the LSM as shown in (2.9).

(2) The ICTM directly minimizes the geodesic active contour energy functional, while the
LSM usually needs to minimize additional energy terms to stabilize the iteration.

(3) At each iteration, the ICTM can find the optimal minimizer of the linearized func-
tional. This is because the optimal minimizer of a linear functional over a convex set
can be reached at the boundary. Moreover, the minimizer can give a smaller value
in E\tau because the graph of the functional E\tau (concave) is always below its linear ap-
proximation. This accelerates the convergence of the ICTM. In the LSM, one needs
to solve the level set–based partial differential equation with a relatively small time
step. This step more or less restricts the decay of the energy (at least not optimal).
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Figure 5. Energy curves during iterations of the LSM and the ICTM in the synthetic image segmentation.
For better normalization, we apply max-min normalization to the energy values. We zoom in the energy curve
of the last 50 iterations to better show the difference between two methods. It can be found that ICTM converges
faster than the LSM. In particular, more oscillations occur in the energy curve for the LSM.

What’s worse, the reinitialization step (or adding penalty terms in the level set equa-
tion) usually increases the energy, which decreases the value of the energy minimized
at each iteration (increases the value of E\tau ). This makes the LSM converge slower. In
the ICTM, thanks to the concavity of E\tau , the minimizer at each iteration automati-
cally gives a new partition (i.e., the minimizer automatically remains at characteristic
functions). No reinitialization and related regularization techniques are needed in the
ICTM. We plot the energy curves of both methods during iterations for the synthetic
image segmentation (see Figure 1) and observe that ICTM converges faster than the
LSM. In particular, we observe more oscillations in the energy curve for the LSM.

5.2. What kind of images can the proposed ICTM work for?. The ICTM is a method for
approximately solving an image segmentation model (i.e., minimizing an objective functional).
On one hand, from extensive numerical experiments in this paper, we claim that the ICTM
is much more efficient than the LSM for various segmentation tasks. On the other hand, the
proposed ICTM may not be outside of the application scope of the LSM. This is because
both methods aim to approximately solve the same GAC (2.5), which mainly determines the
accuracy of the segmentation.

5.3. What is the role of the traditional model-based geodesic active contours in the
modern deep learning era?. Although deep learning–based segmentation methods have been
increasingly popular and dominate current segmentation tasks, these methods generally re-
quire much annotated training data that is difficult to obtain in medical images. Deep learning
techniques are still open for many mathematical explanations and theories, which may cause
incomprehensible segmentation results.D
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Model-based GAC has an interpretable nature and still plays important roles in the fol-
lowing three circumstances:

(1) Assisting radiologists to annotate medical images (e.g., tumor segmentation [63]).
(2) Serving as a postprocessing method to refine the segmentation results that are gener-

ated by deep learning–based approaches (e.g., breast tumor [20], liver [18], and dental
root [41] segmentation).

(3) Explicitly embedding shape information (e.g., a left ventricle shape model that is
learned by an auto-encoder network can be embedded into the GAC [49]).

(4) Reformulating the active contour model as a loss function [38] to guide convolutional
neural networks (CNNs) to learning richer features, such as Mumford–Shah loss [26],
level set loss [27], active contour loss [9], and geodesic active contour loss [39].

The proposed ICTM is expected to be applied to some of these situations directly, obtain-
ing a dramatic acceleration. We leave these applications as our future work to be reported
elsewhere.

6. Conclusion and future work. In this paper, we proposed an efficient ICTM to solve the
widely used geodesic active contours. The method mainly relies on a characteristic function-
based representation for the contour and an integral approximation of the energy functional. A
relaxation and linearization approach is used to derive the ICTMmethod. Extensive numerical
experiments on four different types of images are presented to show the performance of the
proposed method, indicating a dramatic improvement in the efficiency (compared to the level
set–based approaches).

In the future, we will create an image segmentation benchmark specialized for the model-
based segmentation community. Although deep learning has achieved the state of the art in
many image segmentation tasks [46, 37], it also provides new challenges and opportunities
for model-based segmentation methods. Specifically, given initial (inaccurate) segmentation
results generated by cutting-edge deep learning solutions, how or what kind of model-based
methods can consistently improve the segmentation accuracy? We will create an image seg-
mentation dataset with challenging images, especially for the images that deep learning fails
to segment, and include the popular segmentation models as baselines, which can enable fair
comparisons.
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