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Abstract

We investigate several important issues regarding the Random Batch Method (RBM)
for second order interacting particle systems. We first show the uniform-in-time strong
convergence for second order systems under suitable contraction conditions. Secondly,
we propose the application of RBM for singular interaction kernels via kernel splitting
strategy, and investigate numerically the application to molecular dynamics.

1 Introduction

A significant number of important phenomena in physical, social, and biological sciences are
described at the microscopic level by interacting particle systems, which exhibit interesting
features. Examples include fluids and plasma [21, 6], swarming [51, 11, 10, 17], chemotaxis
[28, 3], flocking [16, 25, 1], synchronization [14, 24] and consensus [45], to name a few. These
interacting particle systems can be described in general by the first order systems

dX' =b(X")dt+ay Y K(X'=XI)dt+odW’, i=1,2,--- N, (1.1)
i
or the second order systems
dXt=Vvidt,

avi = [b(X") +ay Y K(X' = X7) = V'] dt + o dW'. (1.2)
J:jF#L

Here, X* € R? are the labels for the particles, and b(-) is some given external field. The
stochastic processes {W?}¥ | arei.i.d. Wiener processes, or the standard Brownian motions.
We will loosely call X? the “locations” or “positions”, and V' the velocities of the particles,
though the specific meaning can be different in different situations. The function K(-) :
R? — R? is the interaction kernel. If ¥ = ¢ = 0 and b = —VU for some potential U,
one has a Hamiltonian system like the one for electrons in plasma [53]. For the molecules
in the heat bath [35, 9], X and V* are the physical positions and velocities, described
by the underdamped Langevin equations, where ¢ and + satisfy the so-called “fluctuation-

dissipation relation”
o =1/2v/0, (1.3)
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where (3 is the inverse of the temperature (we assume all the quantities are scaled and hence
dimensionless so that the Boltzmann constant is absent). The first order system (1.1) can
be viewed as the overdamped limit of the second order systems (1.2).

If one directly discretizes (1.1) or (1.2), the computational cost per time step is O(N?).
This is undesired for large N. The Fast Multipole Method (FMM) [48] is able to reduce the
complexity to O(N) for fast enough decaying interactions. However, the implementation
of FMM is quite involved. A simple random algorithm, called the Random Batch Method
(RBM), has been proposed in [31] to reduce the computation cost per time step from O(N?)
to O(N), based on the simple “mini-batch” idea. The “random mini-batch” idea is famous
for its application in the so-called stochastic gradient descent (SGD) [47, 7, 8] for machine
learning problems. The idea was also used for Markov Chain Monte Carlo methods like the
stochastic gradient Langevin dynamics (SGLD) by Welling and Teh [54] and the Random
Batch Monte Carlo methods [42], and also for the computation of the mean-field flocking
model [1, 11] motivated by Nanbu’s algorithm of the Direct Simulation Monte Carlo method
[5, 46, 2]. The key behind the “mini-batch” idea is to find some cheap unbiased random
estimator for the original quantity with the variance being controlled. Depending on the
specific applications, the design can be different. For interacting particle systems in [31],
this is realized by random grouping and then interacting the particles only within the groups
for each small time subinterval. Compared with FMM, the accuracy of RBM is lower, but
RBM is much simpler and is valid for more general potentials (e.g. the SVGD ODE [40]).
The method converges due to the time average in time, and thus the convergence is like that
in the Law of Large Number, but in time (see [31] for more detailed explanation). Hence,
one may understand such methods as certain Monte Carlo methods. If there is mixing and
ergodicity for the systems, the simulation can converge well.

RBM for interacting particle systems has been used or extended in various directions,
from sampling [40, 42, 33] to molecular dynamics [32, 41], and control of synchronization
[4, 36]. RBM has been shown to converge for finite time interval if the interaction kernels
are good enough [40, 31], and in particular an error analysis for deterministic Newton type
second order systems is obtained in the Appendix of [31]. Moreover, a convergence result of
RBM for N-body Schrédinger equation is also obtained in [23]. For long time behaviors, it is
expected that the method works for systems that own ergodicity and mixing properties, like
systems in contact with heat bath and converge to equilibria. Previous rigorous studies of
such type mainly focus on first order systems due to good contraction and mixing properties
[31, 30]. Second order systems are however more common in nature, especially systems in
contact with heat bath that are very important for molecular dynamics [21]. Whether RBM
can be applied directly to obtain good results for direct molecular dynamics simulation needs
careful study both in theory and in practice. For closed systems that are Hamiltonian, like
the particle systems for the Vlasov-Poisson equations (in this case v = ¢ = 0), RBM may
be applied to get correct simulation for finite time, but the long time behavior is not clear
for these systems. Hence, in this work we mainly focus on systems that are in contact with
heat bath.

In this work, our goal is two-folded. Firstly, we aim to prove rigorously that RBM
converges for large times with certain contraction conditions for second order systems (1.2).
Secondly, we aim to combine the random grouping strategy with the kernel strategy as in
[43, 26, 42] so that RBM could be practically applied for molecular dynamical simulations.

Now let us remark the regimes to consider. In the mean field limit regime ([49, 22, 37]),
one chooses

1
I (1.4)
so that as N — oo the empirical distribution u®™) := N=1SN §(z — X7) @ d(v — V)
converges almost surely under the weak topology to the solutions of the limiting PDE

0uf =~V (wf) = Vo (b(a) + K w0 f —70)f) + 20%Auf. (15)

The particle system (1.2) can also be regarded as a numerical particle method for solving
these mean field PDE (1.5). Examples of such PDEs include the granular media equations



[12] and the Vlasov equations for which v = ¢ = 0 [53]. In [31], it has been shown that RBM
is asymptotic-preserving for first order systems regarding the mean-field limit, which means
the algorithm can approximate the one-marginal distribution with error bound independent
of N. Below, we show in section 3 that RBM is also asymptotic-preserving regarding the
mean-field limit for second order systems under suitable conditions.

In the molecular dynamics simulations, one chooses ay = 1, and the equations are
basically given by

dXt=Vidt,
avi=[= 3 Vo(x' - x7)| dt +dg’, (1.6)
Jig#i

Here, ¢(-) is the interaction potential and d¢? means the interaction with the environment
that changes the momentum, which we will discuss in section 4.1. Depending on how
to model the coupling to heat batch, one may choose different thermostats like the An-
dersen thermostat, the Langevin dynamics or the Nosé-Hoover thermostat etc so different
expressions for dé? can be used (see section 4.1). Though ay = 1 is often chosen for molec-
ular dynamics, one may do time and spatial rescalings to match the mean field regime
ay = 1/(N — 1) factor. However, the scaling is not crucial for simulation of molecular
dynamics (see the discussion in section 4.2), hence, in this molecular dynamics regime with
ay = 1, we will apply RBM directly when it has benefits without scaling it to the mean-field
regime.

The rest of the paper is organized as follows. In section 2, we give a brief introduction
to RBM and introduce the potential splitting so that RBM can be applied for systems with
singular interaction kernels. In section 3, we establish the long time strong error estimate
for regular kernels under certain contraction conditions. We provide some discussions on
the details on applying RBM with kernel splitting to simulations of molecular dynamics in
section 4. Some numerical experiments are performed in section 5 to verify the claims and
validate the methods.

2 The algorithms

In this section, we give a detailed explanation of RBM for interacting particle systems and
then propose the application of RBM for singular interaction kernels via a kernel splitting
strategy.

Let us briefly explain the random grouping strategy for RBM in [31] that realizes the
mini-batch idea for interacting particle systems. Let T' > 0 be the simulation time, and
choose a time step 7 > 0. Pick a batch size p < N, p > 2 that divides N (RBM can also be
applied if p does not divide N; we assume this only for convenience). Consider the discrete
time grids ¢y, := k7, k € N. For each subinterval [t;_1,?;), the method has two substeps:
(1) at tg—1, divide the N particles into n := N/p groups (batches) randomly; (2) let the
particles evolve with interaction only inside the batches.

2.1 RBM for regular kernels

Applying the above strategy to the second order system (1.2) with interacting forces that
do not have singularity yields the method as shown in Algorithm 1.



Algorithm 1 (RBM for (1.2))
1: for min 1:[T/7] do
2: Divide {1,2,..., N = pn} into n batches randomly.
3: for each batch C, do

4: Update X%’s (i € C,) by solving for ¢ € [t;,—1,tm) the following
dX'=Vidt,
. . N_1 . . . _
dvi = [b(X’) ¥ Ll) S KX XI) = V] dt+ o dW. (2.1)
p jECq i
5: end for
6: end for

The method shown in Algorithm 1 shares some similarity with the Stochastic Gradient

Hamiltonian Monte Carlo (SGHMC) with friction proposed in [13, sections 3.2-3.3], which
is a Markov Chain Monte Carlo method for Bayesian inference and machine learning. The
difference is that the method shown in Algorithm 1 uses random grouping for interacting
particles, while SGHMC uses random samples to compute the approximating gradients; i.e.,
the ways to implement mini-batch are different. The SGHMC in [13] is a sampling method
and the momentum will be resampled occasionally. Since the underdamped Langevin system
does not satisfy the detailed balance so using it as a block for the Markov chain may yield
in some systematic error. The method shown in Algorithm 1 is a direct simulation approach
for the underdamped Langevin equation so it can be used both for dynamical simulation to
capture the transition behaviors approximately, and can also be used for sampling from the
equilibrium.
Remark 2.1. Despite the difference mentioned above, we remark that the random grouping
strategy can be viewed as a particular stochastic gradient as in [47, 54] when K(z) =
—V¢(x). In fact, for this case, we introduce the Nd-dimensional vector X := (X1!,..., X)
and consider the full interacting energy corresponding to ay = 1/(N — 1)

1 i xi
E(X) = mzqs(x - X7). (2.2)
i#]
In [47, 54], the stochastic gradient can be computed by choosing any subset of terms in the
sum (2.2). For random grouping in [31], one is only allowed to choose the summands in
a particular way. For a given set of random batches C = {Cy,---,C,}, one may use the
following random variable

B(%) = ﬁ 3% xt - x4 (2.3)

q=1k,leC,

to approximate E(X) and using its gradient for the dynamics leads to the random grouping
in [31] in the case K = —V¢, though RBM in [31] applies to more general kernels.

2.2 RBM with kernel splitting

If the interaction kernel K is singular at = 0 which is often the case in applications, direct
discretization of the equations in Algorithm 1 can lead to numerical instability. For first
order systems, in the case p = 2, one may take advantage of the time-splitting method to
accurately solve the singular part to eliminate the instability [31, 41]. For second order
systems or first order systems with p > 3, the time splitting trick does not apply any more,
and applying RBM directly leads to poor results. To resolve this issue, we adopt the splitting
strategy in [43, 26, 42].
In fact, one decomposes the interacting force K into two parts:

K(x) = K1 (2) + Ko (). (2.4)



Here, K has short range that vanishes for |z| > ro where g is a certain cutoff chosen to be
comparable with the mean distance of the particles. The part Ks(x) is a bounded smooth
function. With this decomposition, we then apply RBM to the K5 part only. The resulted
method is shown in Algorithm 2. Now, the summing in K; can be done in O(1) time for
given ¢ due to the short range. This can be implemented using data structures like Cell-List
[21, Appendix F]. Hence, the cost per time step is again O(N). Since K3 is bounded, RBM
can be applied well due to the boundedness of variance, without introducing too much error.
For practical applications, K is a repulsive force so that computing the K7 part accurately
will forbid the particles getting too close so that the system is not stiff. Then, numerical
simulations can be performed well. We show some numerical results in section 5.2.

Algorithm 2 RBM with splitting for (1.1) and (1.2)
1: Split K =: K1 + K5, where K7 has short range, while K5 has long range but is smooth.
2: for min 1:[T/7] do
3: Divide {1,2,..., N = pn} into n batches randomly.

4: for each batch C,; do
5: Update X%’s (i € C4) by solving for ¢t € [ty—1,tm)
AXt =(b(X7) + an 30 Ky (X - X7)
J:j#i (2 5)
N -1 ) . ) :
+ Ll) S KX - XJ)) dt + o dW?,
P= JECq.G#i
or
dx' =V'dt,
dvi = [b(Xi) tay 3 Ki(X' - X) - Wi] dt
i (2.6)
N -1 X ) )
+ Ll) N (X' - XY)dt+ o dW
P J€Cq i
6: end for
7. end for

3 A strong convergence analysis

In this section, we perform a strong convergence analysis of RBM for the second order
systems (1.2) in the mean field regime ( i.e., ay = 1/(N —1)). The proof largely makes use
of the underlying contraction property for the underdamped Langevin equations ([44, 20]).
Note that due to the degeneracy of the noise terms, the contraction should be proved by
suitably chosen variables and Lyapunov functions.

For the notational convenience, we denote (X, V;) to be the solutions given by (1.2). We
denote (X;,V;) the solutions given by the RBM process (2.1). We again use the synchro-
nization coupling as in [31, 30]:

X0) = XU(0) ~ po, W' =W" (3.1)
Let C(f,’“) be the batches at t; where 1 < g <n. Define
c® = e, ... ey, (3.2)

to be the random division of batches at t;. By the Kolmogorov extension theorem [19],
there exists a probability space (Q,F,P) such that the random variables {X§, w,ck) .
1 <i < N,k > 0} are all defined on this probability space and are independent. Then, E



corresponds to the integration on 2 with respect to the probability measure P. Introduce

the L?(-) norm
[0l = \/E[v[?. (3-3)
Introduce the filtration {Fj}r>0 by
Fior = o(X5, W'(1),CDt <tyy,j <k —1). (3.4)

Thus, Fi_; is the o-algebra generated by the initial values X&, W(t), and CY) for all
1=1,...,N,t <ty_1and j < k—1. Clearly, Fx_1 contains the information on how batches
are constructed for ¢ € [tg_1,tx).

For finite time interval, the convergence of RBM is straightforward, as shown below in
Proposition 3.1. The proof is similar to that of the results in [31, 30], and we omit.

Proposition 3.1. Let b(-) be Lipschitz continuous, and |b|,|Vb| have polynomial growth.
The interaction kernel K is Lipschitz continuous. Then,

sup VE|X! — X122+ E[V! — V1|2 < O(T)y/ —— + 72, (3.5)
te[0,T] p—1

where C(T') is independent of N.

Below, we consider the error estimate for long time. This is important if one uses RBM
as a sampling method for the invariant measure of (1.2). To establish the error estimate, we
need some technical assumptions that may seem restrictive for practical use. The following
conditions will give certain contraction property for the second order systems.

Assumption 3.1. Suppose b = —VU for some U that is bounded below inf, U(z) > —oo,
and there exist Ay; > A, > 0 such that the eigenvalues of H := V2U satisfy
A < Ni(x) < Ay, V1<i<dzeRL

The interaction kernel K is bounded and Lipschitz continuous. Moreover, the friction v and
the Lipschitz constant L of K (-) satisfy

v > Au + 2L, A > 2L. (3.6)

Remark 3.1. The assumptions here are a little different from those for first order systems
([31, 30]): (1) b is assumed to be Lipschitz instead of one-sided Lipschitz; (2) we are not
assuming the second derivatives of K to be bounded, as there is no white noise in the
equations for X; so trajectories of X;’s are much smoother.

Under the assumptions above, we are able to establish the following uniform strong
convergence estimate.

Theorem 3.1. Under Assumption 3.1 and the coupling (3.1), the solutions to (1.2) and

(2.1) satisfy
sup VEIX1(t) - X1(8)2 + E|V(1) — V1(1)[2 < C /p%l 72, (3.7)

t>0

where the constant C' does not depend on p and N.
We give some useful lemmas for our use later. Denote
X=X XN, x= (X1 XY, (3.8)
and introduce the random variables I;; to indicate whether the two particles are in the same

batch or not

1 3C,,1,5€C .
Z.j_{ oSt < i< N. (3.9)

0 otherwise

Lemma 3.1-Lemma 3.3 below are in [30], and we omit their proofs.



Lemma 3.1. For i # j, it holds that

p—1

El; = ——, 3.10
and for distinct i, 3, £, it holds that
r-DP—2)
P(l;ilyy=1)=ElLl;y= ————. A1
( jtie ) gt (N—l)(N—Q) (3 )
For given x := (z',...,2") € RV we introduce the error of the interacting force for
the ¢th particle.
yil®) = —— S K (@t —29) - 3 K@ — o). (3.12)
' p—1+4 N -1 4~
jec JigFi
Here, C is the random batch that contains ¢ in a random division of the batches.
Lemma 3.2. It holds that
Exi(x) = 0. (3.13)
Moreover, the second moment is given by
Ehi(ol? = (-7 — o7 ) M) (3.14)
XilX = p_1 N_1 i\X), .
where
M) = 3 K (2~ 7) - LS k- xf)f (3.15)
SN -2 N-1 '

jij#i Ll

Lemma 3.3. Fizi € {1,...,N}. Let Cy be the random batch of size p that contains i in
the random division. LetY; (1 < j < N) be N random variables (or random vectors) that
are independent of Cyg. Then, for p > 2,

1/2

1 1
o1 Y Y< ﬁZHYHF : (3.16)

J€Co,jFi J:gFi

Below, we establish some moment estimates so that we can establish the stability for the
Random Batch Method and thus prove convergence.

Lemma 3.4. Under Assumption 3.1, it holds for ¢ > 1 that

sup (E(IXi(t)lq + V()9 + E(X ()] + If/i(t)lq)) < Cq (3.17)

Besides, for any k >0 and q¢ > 2,

sup (E(IX(6)|7 + V()| Fe-1)| < OO+ X (tr-a)|? + [V (tx-1)[7) (3.18)

tE[tr—1,tk)

holds almost surely.

Proof. Here, we show the moment bounds for (X, V%) only, as the estimates for the moments
of (X*, V") are similar (and easier).
Following [44, section 3], we consider the Lyapunov function

-~ 1 - g - -
(X5 V) = 5(|X1|2 + | X" 4 aV?) + 2U(XY).



By Assumption 3.1, we can assume without loss of generality that

infU(z) = 0.

Due to Assumption 3.1, the second moments of X and V? can be controlled easily by this
Lyapunov function.
Then, by 1t6’s formula, for any r > 1, and ¢ € [tg—1, tx),

%E (X7, VO Fieea | = BIC[XE, VO | Fial,

where L is the generator for the SDE (2.1) given by
N o N . 1 , . ,
L= Zvl Vi —i—Z —VU(z") + 1 Z 'K(:,CZ —a?) =y | -V
i=1 i=1 J€Co,jFi
L N
2
+3 ;a A, (3.19)

Note that ' € R? and v* € R?%. Direct computation reveals that

Lz, o))" = rle(z, v)]" "1 Le(x?, v") + %r(r — D[z, v)]" 72|V

Clearly, |V,i¢|?> < x(a)l(x?,v") for some number y depending on a. That means

2

T (e — 1)e(at, )] 2|Vl

5 2 < C[g(xi7vi)}r—1_

The power r — 1 indicates that this term can be controlled without difficulty. Moreover,

Lozt vh) =0 - (:cl + (2° + av®) + a2VU)

i i 1 i j i iy L2 9
+ | =VU(z") =y —&—j Z K(z'—a7)| oz +av)+§ao¢d

J€Co,j#i
=—ax"-VU(") + (o — 290" * + (2 — ay)z’ - v
Y Y K@ o) 4t S K - a9) 4 Lotala
x" - ' —x v’ -z —oa’d.
p—1 1 27

JEC,j#i JeC,j#i

Taking oo = 2/7, one finds that
i 2 i2 2 i i
EE(J;,U)S—;)\m|a:| —;\v\ +C(j2"| + ' +1) < =Bt +C,

for some g > 0. Hence,

d o o L

TE (X V| Fia | < —rBE [[((X7, V][ Fioa | + CE [[((X7, V)" Fra |-

Using the fact that U(z') < C(1 + |2%]?) (since |[V2U|2 < Aar), (3.18) then follows easily.
Similarly, taking full expectation leads to

d

—E (X, V"] < —rBE [[((X7, V"] + CE [[o(X7, V)]

The moments control (3.17) then follows. O



Next, we introduce some notations for better presentation. First of all, due to the de-
generacy of the white noise in the equations for X;’s, the generator of the underdamped
Langevin does not have the ellipticity. The proof of the ergodicity for the corresponding
Fokker-Planck equation relies on the hypocoercivity [52, 18] and one needs to use the trans-
port term to compensate the degeneracy. In terms of particle formulation (SDEs), one may
consider the following variables to compensate the degeneracy (see [44, section 3] or [20]):

Zi=X'— X', 2V =X - X'+ a(VI - V). (3.20)
Moreover, we denote
OKi;(t) == K(X'(t) — XI(t)) — K(X'(t) — X (t)). (3.21)

Using this notation, we can conveniently write

1 A 1 : . 1 3
JECojFi J#i J#i (3.22)
1 .
=1 Z OKij + xi(X).
p J€Cy,j#i

By the definition of Z¢,

d 4 ~ , - - 1
22 = (1= aN(V'(1) = V'() — a(VU(X) = VUX)) + —= D Ky + (%),
P J€ECo,jF#t
Lemma 3.5. Suppose Assumption 3.1 holds. Fort € [ti_1,t),
1Z(t) = Z' (te-0) | + 127(t) = Z*(t—1)]| < O (3.23)
Also, almost surely, it holds that for 7 <1,
\ZE ()] + |27 ()] < (127 (tr—1)| + |2 (tr1))(1 + CT) + O (3.24)

Proof. The first part is an easy consequence of the moment control in (3.17). Direct com-
putation shows that

d _. 1,4, ,
771 -2,
%|Z"| < |8z O‘V)ézz =2 4 o = VU + VU(X') + %1 DD Ky xi(®) |
Jj€Cq,jF#1
Hence, one has
L2 +12) < (7| + 12 + O
The claim then follows. O

Proof of Theorem 3.1. We aim to estimate how the quantity evolves

1 N

u(t) =+ > (EBIXT - X +EV V)
=1

=EX! - X2+ E[V! - V]2

(3.25)

Direct estimation of this quantity is not easy. As mentioned above already, we consider the
following motivated by [20]:

1 N
J(t) = 5 (EIZ']* + E[Z[?)

oo ~ ] (3.26)
= [EIX' - X'+ E|X - X' + oV - VY],

where « is to be determined later. Then, J is equivalent to u but it can be treated more
easily as we shall see below.



Step 1. Contraction

Recall

vl _ i 1 - 1 _
1 K Xl 7Xj - Xr 4 K Xl 7X‘7 = — 5K .
p—l.Z ( ) N—IZ ( ) N—1§_ : 15+ x1(X),
J€Co,j#1 J#1 i

where Cy again is the random batch that contains particle 1 and define

B(X', X1 = /1 VAU (sX' + (1 —s)X") ds. (3.27)
0

Direct computation yields

d . . .
—J=a 'EZ' - (Z' - ZY 4 aEZ" - <a2(Z1 -zY-B-7¢

dt
S oKy ) - L2 - 7).
N —14% J «
J#1

By symmetry, || Z7|| = || Z']], and thus

N 1 ~ N )

Ly Sk < LUZ 2N+ S22 < 2L 0)

J#1 J#1

—1 1 1
. L AT a g 3(@B — 1) } { z D
J < E<[Z 2] { s(aB—qly)  v—a 'y z!

+2aLJ(t) + aEZ' - x1(X). (3.28)

Let the eigenvalues of B be S\i, which are bounded below and above by A, Ay respec-
tively. The eigenvalues of the matrix in (3.28) are given by

1 =
pie = 5(7 £V +4a7 (@7t =) + (ki —7)?).
- - d
Choosing o = 2/, so that all the eigenvalues are {)\i/'y, v — /\Z-/fy} - Hence,

J< —% [min(A,, — 2L,7* — (Aa +2L))] J(t) + %IEZ x1(%).

Under Assumption 3.1, the coefficient of J(t) on the right hand side is negative so that the
Langevin dynamics has contraction property.

Step 2. The local error estimate.

We now estimate the local error term EZ' - x; (%(t)), which we decompose as

EZ' - x1(X(t)) = EZ' (tp—1) - x1(X(2) + E[Z"(t) — 2" (tr—1)] - x1 (X(2))

Substep 2.1. Estimation of I;

Using the consistency result Lemma 3.2,

EZ"(tr—1) - x1(X(th-1)) =0,

10



one has
I =EZ"(te1) - D (B(®) — xa(X(te-1))]
=E (2" (te-1) - Epa (X(1) — xa (R(te-1)) | Fi])
< 12" (-0 || Bba () = xa Geltoa)IFea]
Introducing
OKY = K(XY(t) — X7(t)) — K(X (tp—1) — X (tx_1)),
6X7 = XI(t) — X (th_),

one has

t

IE[x1 (X (8) — x1(X (te—1))| Fr—1]]
= % > |]E(5[~(1j(t)|}_k—1)‘+ﬁZ|E(5I~(U(t)|]:k_1)|. (3.29)

JECo,j#1 J#1
Now, we estimate
1

" > E@EKY ()| Faer)l|| < LIEQGX | Fror)| +

LS EexEo)

J€Co,j#1 J€Co,g#1

Since 6 X7 = fttk,l Vi (s)ds, we find easily that

E(6X7|F1)| < / E(|V9 (5)| Foy) ds

tp—1

S/j VE(VI (5)2| Fe_r) ds

<C (\/1 X9t 2 + |f/j(tk,1)|2) T

Now, since \/1 + | X7 (tp_1)|2 + |[VI(t_1)|? is independent of Cy, applying Lemma 3.3, one
has

L

p—1 > \/1+IXj(tk_l)\2+|17j(tk_1)|2 <C.

J€Cq,j#1
The other term in (3.29) is similar, but much simpler.
Hence, we find . A
I <C|ZYt_1)|IT < Cl|Z@)||T + CT2.
Substep 2.2. Estimate of I
Now, we estimate I.
I =E[Z'(t) = 2" (te-1)] - xa ()
=E[Z'(t) = Z' (t-1)] - xa(X) + E[Z'(t) = Z" (t5-1)] - Dxa (%) — xa ()]
=: I + 2.

For I51, we recall the matrix B defined in (3.27) and its spectral radius by Assumption
3.1 is controlled by R
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Then, one has

20 - 2 = [ o (2 2ds—a / L2 B (5), X (9))ds

th—1 tr—1

—|—/tt b Z 6K1jds—|—/t Y1(X(s)) ds.

-1
w1 P8 Gecy i b1

(3.30)

Noting Lemma 3.5, a1 — v = —y/2, and that ||xi||c < 2||K]| 0, one has
toq t ~
E - Zl—Zlds—a/ Z' - B(XY, XYds | - x1(X(t) < Cy/J(t)T + CT2,
(/t“ﬂ( s —a [ 70 BR, XNds ) o (X0) < YT

where we used EZ' - B(X'(s), X1(s)) - x1(X(t)) < CAu || Z2(s)|| < C||Z1(t)|| + Cr.
For the third term in (3.30) dotted with x;, one has

t 1 )
2 (/ 1 Z 6K1j dS) 'Xl(x(t)) < ||X1||OO sup _1 Z 5K1j(8) T.
b1 p J€Cy,j#1 Se[tk—lvtk‘] p jE€Cy,j#1
Clearly,
1 1 1 ,
pre D DL HO] B9 WEACTRY S S AO] B (3.31)
Jj€Co,j#1 J€Co,j#1

By Lemma 3.5, one has almost surely that
|27 (s)] <127 (tk-1)| + C,

and thus
1

=5 ¥ 1zel <) ¥ 1z o

P= 2 ety 41 jeCog#1

Since {|Z7(t;_1)|}’s are independent of Cy, Lemma 3.3 then gives

LS 1zl < (g D2 a0 R)

J€Cq,j#1 J#i
= 12" (tx-1) -
Hence, one in fact has
1
3 8Ky <22 ()] + O -
P jecoir (3.32)

< 2L Z* ()| + CT.
The fourth term can be easily controlled using Lemma 3.2 so that

¢ 1 1
E : ) ds < (7 _ 7) Aot
| ) o < (1 - ) Il
Now, we move to the estimate of I35 term, which is much easier. In fact,

Ip =EB[Z'(t) = Z* (tr-1)] - (%) — x2(X)] < C7llx1(X) — xa (X)),

where || Z1(t) — Z'(t)_1)|| < C7 by Lemma 3.5.

12



Now, by the definition of y;,
x 1 1
a(®) =@ < |— Y 0Kys)| + || D 9Ki(s)
p—1. =~ N-1 &
J€Co,j#1 J:j#1

The first term has been estimated in (3.32). The second term is easily bounded with the
same bound as in (3.32). Hence, I is controlled as

1
I, < C\JJ(t)r +Cr% + FH/MHOOT.

Step 3: final error estimate

Combining all the estimates above, one has

. 2 . 2 C 2 1
J < > [min(A,, — 2L,v* — (Ay +2L))] J(t) + 5 <m7+7 + b 17'> . (3.33)

Gronwall’s inequality then gives the desired result.

4 Applications to molecular dynamics simulations

In this section, we discuss possible applications of RBM with splitting to molecular dynamics
simulations.

Molecular dynamics refers to computer simulation of atoms and molecules to compute
the statistics of the distribution and investigate the properties of solids and fluids [15, 21].
Consider N “molecules” (each might be a model for a real molecule or a numerical molecule
that is a packet of many real molecules) that interact with each other:

dX'=Vidt,
dvi = [— 3 ve(x —Xﬂ')} dt + dei. (4.1)
G

Here, ¢(-) is the interaction potential and d¢* means some other possible terms that change
the momentum, which we will discuss below. Typical examples include the Coulomb poten-

tials G4
o) = 24,

where ¢; is the charge for the ith particle and r = |z|, and the Lennard-Jones potential

wo=1(-2),

Between ions, both types of potential exist and between charge-neutral molecules, the
Lennard-Jones potential might be the main force (the Lennard-Jones interaction intrin-
sically also arises from the interactions between charges, so these two types are in fact both
electromagnetic forces). To model the solids or fluids with large volume, one often uses a
box with length L, equipped with the periodic conditions for the simulations.

4.1 Coupling with the heat bath

To model the interaction between the molecules with the heat bath, one may consider
some thermostats so that the temperature of the system can be controlled at a given value.
Typical thermostats include the Andersen thermostat, the Langevin thermostat and the
Nosé-Hoover thermostat [21].

13



In the Andersen thermostat [21, section 6.1.1], one does the simulation for

but a particle can collide with the heat bath each time. In particular, assume the collision
frequency is v, so in a duration of time ¢ < 1 the chance that a collision has happened is
given by the exponential distribution

1 —exp(—vt) = vt, t < 1.

If a collision happens, the new velocity is then sampled from the Maxwellian distribution
with temperature T' (i.e., the normal distribution N (0,T)).

Since the potential ¢(z) is often singular at 2 = 0, we need to split the interaction kernel
(or the potential) for the simulation and apply RBM for the long-range but smooth part.
Hence, Algorithm 2 can be applied when evolving the dynamics. Here is some subtlety. If
we discretize (2.6) using some second order integration methods like the Verlet method [21,
section 4.3.1], we need to evaluate the forces at ¢,” and t,:'. The force at ¢, corresponds to the
batches for [t;_1,%;) while the force at t; corresponds to batches for [ty,t511). This is not
quite efficient as one needs to evaluate the force at t; twice, so for practical implementation,
we evaluate the forces only at t:. Then, in Verlet, the velocity is updated using

i i 1 7 %
Vk+1 = Vk + i[Fk+ + F(k+1)+]7—' (42)

This of course is not a discretization of (2.6) any more. However, it is expected that there
is no significant difference. In fact, it is known that the Verlet scheme is equivalent to the
leapfrog scheme (eqns (4.3.1)—(4.3.2) in [21, section 4.3.1]) and (4.2) corresponds to applying
RBM to the leapfrog scheme. We will call the corresponding algorithm “Andersen-RBM”,
which is shown in Algorithm 3.

Algorithm 3 Andersen-RBM
1: Split K =: K1 4+ K5: K; has short range, while K5 has long range but is regular.
2: Sample X, V? for all i.
3: Obtain a set of random batches. For each i, find the batch C where i lives, and compute:

i i o, N1 i j
Fi= ZlKl(X —)(J)erf1 | Z 4K2(X — X7). (4.3)
JijFi JEC,j#i
4: formin 1:[T/7] do
5: For each i, generate ¢; ~ U(0,1). If {; <1 — exp(—vAt), sample V; ~ N(0,T).

=

Update the positions:
_ _ _ 1.
X' X"+ Vir+ §F’7-2. (4.4)

7 Set Fi « F' for all i.

Obtain a new set of random batches, and compute the forces for all particles i €
{1,---,N} as in (4.3).
9: Update the velocities for all i:

i

) ) 1 ) )
Vi Vi S [F 4 P

10: end for

In the underdamped Langevin dynamics, one chooses

. . 2 .
gt = —yVidt + /%dW",
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so that the “fluctuation-dissipation relation” is satisfied and the system will evolve to the
equilibrium with the correct temperature. It is well-known that the invariant measure of
such systems is given by the Gibbs distribution

1
7(x,v) o exp (—6(2 oI+ E<x>>> ,

where x = (2!,--- ,2") € R¥? and v = (v!,--- ,o") € RN Algorithm 2 can be applied
directly for Langevin dynamics and one possible way to discretize (2.6) is the “BAOAB”
splitting scheme proposed in [39, 38]:

X@%=w+%ﬂﬂ(m

Xpy1 =Xp + %Vméﬂ (4)

Vier = Vi1 + coRipa, (0) (4.5)
Xpp1 = Xpp 1 + %VH%ﬂ (4)

Vig1 = VkJr% + %FkHT, (B)

where F} means the force computed at time ¢, = k7. The coefficients ¢; = e™77, ¢y =

(1 — %)/, where 7 is the friction coefficient. Clearly, for second order schemes like this
“BAOAB?” splitting scheme, the forces Fj should be computed by applying RBM on the
K5 part. Again, there can be two possible forces at t; depending on whether using the
batches for [tx—1,tx) or the batches for [tg,tr4+1). Similar as in Algorithm 3, we use the
forces at t;‘ uniformly. The resulted algorithm is similar to Algorithm 3 so we omit it. The
resulted discretized scheme will be called “Langevin-RBM”, which does not correspond to
the discretization of (2.6) directly, but we believe there is no significant difference.

The Nosé-Hoover thermostat ([21, section 6.1.2]) is better behaved for keeping the tem-
perature around the desired value. This is even more desirable when we apply RBM, because
RBM can potentially increase temperature of the system by ~ 7/p due to the variance in
the force computation. This numerical heating is not good if one wants to obtain some
accurate results. In this work, our goal is to validate RBM without asking for very high
accuracy, so we only investigate the Andersen thermostat and the underdamped Langevin
thermostat later in section 5 below. We try to keep the temperature correct by adjusting
the friction coefficient and by using decreasing step sizes. In fact, our results in section
5 are acceptable using these simple strategies. If more accurate simulation is needed, the
Nosé-Hoover thermostat can be considered and will be done in future work.

4.2 Discussion

Below, we first discuss the benefits of RBM in the molecular regime and the choice of the
splitting K = K7 + K». Suppose that rg is the effective range of Ky (i.e., when |x| > g,
the effects of K; can be neglected). Hence, to enjoy the benefits of RBM, we may desire to
choose 1 so that there are only O(1) particles in the ball B(X;, 7o) centered at a typical
particle X;.

e For kernels whose range cover effectively only a few particles (like Lennard-Jones fluid
with low density), one can pick 7o large enough. In this case, by the fast decay of the
potential, Zj:j# K5 is negligible. Using the random approximation % Zje% K, is
not quite necessary. For short-range potentials with O(1) density, though one may
make use of the rapid decay of the potential to make the full simulation cheaper, RBM
with splitting can still speed up the simulation for such cases as the batch size p can
be smaller than the effective number of neighbors (see Remark 5.1 for Lennard-Jones
potentials).
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e If the range of K is comparable to the size of the simulation domain (like the Lennard-
Jones fluid with period box length I = 1 and long range interactions like the Coulomb
potentials) or the density is not low, then each particle can feel the effects from a
significant number of other particles. In this case, we pick rg small so that B(X;,ro)
contains O(1) particles. RBM can speed up computation per iteration. Moreover, we
also expect that Zj:j# K> and % Zjecg’j# K5 will be comparable. The time step
needed for RBM will be comparable to the time step for the full simulation. RBM will
indeed save computational cost for these cases.

e Compared with the mean-field regime where RBM is asymptotic-preserving and the
variance is controlled uniformly in N, the variance scales like O(N?) in the molec-
ular regime. In fact, the factor (N — 1)/(p — 1) could make the random variable
% jee K2 differ a lot in magnitude if K3 changes a lot in magnitude. For exam-
ple, if one applies RBM to Lennard-Jones fluid with high density where one chooses
ro very small, then |Ky| changes from a large value to a small value from rq to L/2.
Then, applying RBM with small batch size like p = 2 could result in noticeable effects
like the numerical heating in molecular dynamics simulations. One has to take some
actions like increasing p, decreasing 7 or other advanced techniques to reduce such
effects (see section 5.2).

Since RBM is asymptotic-preserving and the variance is controlled uniformly in IV, one
may be curious whether we should switch to the mean-field regime and then do the molecular
dynamics simulation using RBM. A direct way to obtain the 1/(IN — 1) factor is to do the
time scaling £ = (N — 1)¢, however this corresponds to zooming in time so it is not quite
the mean-field limit where one should look at the dynamics in a larger scale. In fact, if
the interacting forces are homogeneous (like the Coulomb interaction) in space, one should
zoom out in both time and space so that the prefactor 1/(N — 1) can appear. Though
with 1/(N — 1) factor RBM can work reasonably well for step size not being small, there
is no intrinsic change in the physics due to the scaling so applying RBM in the original
regime (like molecular regime) does the same thing. Scaling can however change the step
sizes allowed. For example, if one does the time scaling { = (N — 1)t, one takes O(1) step
size for the new time variable £ while one has to take 7 = O(1/N) time step in the original
molecular regime. This small step size restriction is not due to RBM. In fact, for the full
simulation, the step size also has to be small due to the summation of N — 1 terms. Hence,
we will apply RBM directly in the molecular regime when it has benefits, as discussed.

5 Numerical experiments

In this section, we perform some numerical experiments to verify the theoretic claims in sec-
tion 3 and validate RBM with kernel splitting (in particular, Andersen-RBM and Langevin-
RBM) via the molecular dynamics simulations for Lennard-Jones fluids. All the numerical
experiments in this section are performed via MATLAB R2020a on a Mac Pro laptop with
Intel i5-6360U CPU @ 2GHz and 8 GB memory.

5.1 A simple illustrative example

In this example, we consider an underdamped Langevin equation for (X*, V) € R x R. This
example is mainly designed to verify that Algorithm 1 works for regular kernels and confirm
the theoretical results in section 3. In particular, we consider the following interacting
particle system on R for i =1,--- | N:

dX'=Vidt,
Xi_— X

J p (5.1)
1+ [Xi— X312

t— A Vidt +\/2v/BdW",

V= AXdt g D
JijFi
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The kernel

satisfies |K| < 1 and |K'| < 1.

0.6

== Ref.
= RBM
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-3 -2 -1 0 1 2 3

Figure 1: The equilibrium density distribution by RBM (red dashed line) for (5.1) with
N =500, p =2, and 7 = 0.02. The blue solid line is the reference distribution by the full
simulation without RBM with step size 7 = 1073,

Below in the simulations we take
A=vy=25

so that the conditions in Theorem 3.1 hold, and the temperature is taken as S~ = 1.
The discretization will be the BAOAB scheme (4.5). The initial positions X}’s are sampled
iid. from U[—0.5,0.5] (the uniform distribution on [—0.5,0.5]), while the initial velocities
are also sampled from U[—0.5,0.5] but with the empirical mean subtracted Vi « Vi — Vj
and then the magnitude rescaled such that the average of (V{)? is the temperature (i.e.
N=15.(V§)? = B~1). For RBM simulations in this example, we always take batch size

p=2.

To verify the effectiveness of RBM, we first do the simulation for N = 500 particles, and
check the computed equilibrium distribution. The system after time ¢ = 50 is regarded to
be in the equilibrium. Hence, we collect the {X*}’s from many iterations after t = 50 as
the samples. In Figure 1, we show the results by RBM where the Langevin equations are
discretized by the “BAOAB” with step size 7 = 0.02. We collect the N = 500 particles as
some samples every At = 0.5 time (or 25 iterations for this step size) up to ¢t = 300. Hence,
there are 500% (300 —50)/0.5 = 2.5 x 10° sample points. The reference distribution is plotted
using samples at the same time points in the full simulation (i.e. running the Langevin
dynamics (5.1) using “BAOAB” scheme without RBM) with a step size 7 = 0.001. Clearly,
the equilibrium distribution density is recovered by RBM with good accuracy.

r=1]7r=27"T =272 T=273

2w 0.1098 | 0.0785 0.0337 9.229 x 1075

x2 0.0256 | 0.0252 0.0051 2.7128 x 10~ 4
m 0.0046 | 0.0016 0.0152 0.0014
T 0.0045 | 0.0049 | 6.5742 x 10~* 0.0016
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Table 1: The weak errors using RBM for equilibrium distribution of (5.1) with N = 500.




To confirm the sampling correctness quantitatively, we compute the relative weak errors:

| Zpxh s
N N

erry,

S (XD
/==5

for various test functions f. Here, N, and N, are the numbers of samples for RBM and
reference respectively. In particular, we again run the simulation for N = 500 with step
sizes taken as 7 = 1,27!,...,273. The samples are again taken every At = 0.5 from ¢ = 50
to t = 300. The samples for the reference are computed using the full simulation with
“BAOAB” scheme and step size 7 = 2710, The results are listed in Table 1, where we take
f(z) = e*® 22, 1/((x — 0.1)% + 0.001),1/(1 + 2?). Clearly, the weak error in fact tends to
zero as we decrease 7 which means RBM indeed can recover the equilibrium distribution.
Due to the Monte Carlo fluctuation, the weak convergence order (which should be order 1
or the weak error scales like O(7) motivated by the results in [30]) is not quite evident in
Table 1.

-G N=100
-& N=500
|- N=2000 .
107" || —ref. line e

Figure 2: The strong errors erry at time 7' = 2 v.s. time step size 7 of RBM for (5.1) with
different system sizes. The black solid line is E = 0.27'/2 for reference.

To verify the strong convergence order claimed in Theorem 3.1, we consider the relative
strong errors:

b

erry, = \/sz\;l(XZ XZ)Q/Zivzl(XZ)Q
5 N N

where X%’s are numerical solutions by RBM at T' = 2 and X s are the reference solutions.
The results are shown in Figure 2 for sizes N = 50, 500,2000. The reference solution is
obtained using the full batch (the original particle system) using “BAOAB” with step size
7 = 2718, The same Brownian motions are used for the reference solution and RBM solution
(i.e., the realizations of Brownian Motions used for the reference solution are stored and
then applied for the RBM simulation) for the strong solution. The simulation results above
indicate that RBM can indeed obtain the 1/2 strong order for the underdamped Langevin
equations with regular kernels, agreeing with our theory in Theorem 3.1 (in this example,
the strong order seems slightly better than 1/2 for the steps we consider). Moreover, the
weak error above indicate that the equilibrium can be correctly captured by RBM as well,
consistent with the claim in the theorem that the error control is uniform in time.

5.2 The Lennard-Jones fluid

In this section, we test RBM with splitting, especially the methods discussed in section 4, on
the Lennard-Jones fluids to validate these methods. In fact, our experience indicates that
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applying Algorithm 1 directly to such systems truly yields numerical instability, so RBM
with splitting is desired for such applications. The potential ¢ in (4.1) is then given by
(z € R3) in this setting

1 1
o) =45 - %), r=ll (5.2

As mentioned in section 4, the periodic boxes are used to approximate the fluids of large
extent. Let L be the length of the box. With periodic setting, a particle interacts with not
only another particle but also its periodic images. Thanks to the fast decaying properties
of the Lennard-Jones potential, one can pick a cutoff length r. so that the interaction
between two particles (including particle-image interaction) with distance larger than r,.
will be treated in a mean-field fashion (see [21, Chap. 3] for more details). Following [21,
Chap. 3], we choose

re=L/2.

With the cutoff mentioned here, the pressure formula is given approximately by ([21, section
3.4],[42, section 4.2]):

N 9 3
8 16 271 1
E=rT v 2~i12 a ~i6 3 "3 <7> B <7> '
P +VZ Z (273 i)+ 3P {3 o )| (5.3)

i=1 j:3>1,7; <Tc
where T is the scaled temperature, V = L? is the volume, and we have introduced
Fij = |Fij + AL

for some suitable three-dimensional integer vector @i so that |7i; + iL| is minimized. Note
that since r. = L/2, then for each j, there is then at most one image (including itself) that
falls into B(z;,r.). Hence, when implementing the methods, the forces between particles
are computed using the nearest image (see [21, sec. 4.2.2]).

To apply the methods in section 4, in all the simulations below, we take o = v/2 and
split the potential ¢

o(z) =: d1(z) + ¢2(2), (5.4)
where o
CJAEm -5+l 0<r< V2,
¢1(.’L') - {07 r> {3&7 (5'5)
and )
do(z) = {;(1; oy S i i/g vz, (5.6)

The force K = —V¢ is split correspondingly. That means the part of interaction force for
r < v/2 is regarded to have short range and the part for r > ry = v/2 is regarded to have
long range. The long range parts (—V¢2) will be computed using RBM. Note that the
threshold ro = /2 is different from the cutoff r, = L/2 above. The cutoff r, above means
that the molecular interactions are computed explicitly only for » < r. while the ones for
r > r. are treated in a mean-field fashion.

Remark 5.1. Using the cutoff r. = L/2 in simulation yields O(N?) complexity for direct
simulation. Since the potential decays very fast and the density considered in this section
is O(1), one may use smaller cutoff 7. and obtain roughly correct results, and this strategy
will reduce the complexity to roughly linear as well. However, our experience indicates that
applying RBM with 79 = v/2 still saves as the batch size p (which is 2 in the experiments
below) is much less than the effective number of particles that interact with one particular
particle. (In this paper, we mainly aim to validate the effectiveness of RBM so we did not
compare the computational time of RBM with those for some current methods for Lennard-
Jones fluids.)
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(a) N = 100. (b) N = 500.

Figure 3: The pressure computed by Andersen-RBM and Langevin-RBM for Lenard-Jones
fluid. The black solid line is the reference fitting curve in [34]. The blue circles are the
pressure computed by the Andersen-RBM and the red squares are by Langevin-RBM. v =
10; v = 10; the time is T" = 50; the step size is 7 = 0.001.

For the simulation, the temperature is taken to be 37! = 2 and the length of the box is
set as L = (N/p)'/3 for a given density p. The particles are initially put on the cubic lattice
with grid size L/N'/3. The initial velocities are randomly chosen from uniform distribution
U3[—0.5,0.5], and then shifted and rescaled so that the instantaneous temperature matches
desired value (i.e., N71 3. V{2 = 3871).

For the thermostats, we use both the Andersen thermostat and the underdamped Langevin
dynamics for simplicity as indicated in section 4.1, and the resulted schemes are the ” Andersen-
RBM” and ”Langevin-RBM” as already explained in section 4.1. The batch size is taken as
p = 2 for all the experiments here.

We first run the simulations with the collision coefficient ¥ = 10 for Andersen-RBM and
the friction coefficient v = 10 for Langevin-RBM. The simulation before time 7' = 50 is
regarded as the burn-in phase, and we compute the pressure using the viral formulation
(5.3) at a given time point (after T = 50). We compute 10° such pressures (each for one
iteration) and then take the average as the computed the value. The computed values using
N =100 and N = 500 are shown in Fig. 3 for various densities. The reference curve (black
solid line) is the fitting curves in [34]. The results show that RBM with splitting strategy
(5.4)-(5.5) can work reasonably well for the Lennard-Jones fluid in the considered regime.
Our experience indicates that direct application of RBM without splitting (Alg. 1) to the
Lennard-Jones potential (5.2) indeed results in numerical instability.

Another observation from Fig. 3 is that when N = 500 the extra variance brought by
RBM can result in noticeable numerical heating and thus bigger pressure (the variance
depends on N because we are working in the molecular regime, and see the discussion in
section 4.2). To reduce the numerical heating or increase the temperature control ability,
we try two strategies. The first strategy is to decrease the step size 7; as the iteration
goes on to decrease the numerical heating. This idea is similar to the one in simulated
annealing [50, 29]. The second strategy is to increase the friction coefficient (i.e., the v and
7 in Andersen thermostat and Langevin dynamics respectively). Increasing the collision or
friction coefficient clearly makes the system relax faster to the quasi-equilibrium, but it may
also bring in some unphysical effects [27, 21]. We show the numerical results in Figure 4.
Figure 4 (a) shows the results using the first strategy (i.e., decreasing step size), where we
take

7 = 0.001/ log(k + 1).

Figure 4 (b) shows the results using the second strategy (i.e., using larger friction coefficient
so that the temperature control is better) where we take v = v = 50. Clearly, after these
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Figure 4: The pressure obtained by Andersen-RBM and Langevin-RBM using two strategies
to reduce numerical heating for Lenard-Jones fluid with N = 500: the blue circles are those
by Andersen-RBM while the red squares are by Langevin-RBM.

two approaches are applied, the numerical heating effects are reduced significantly, and the
correct equation of states is obtained. As another possible thermostat for better temperature
control, one may consider Nosé-Hoover thermostat [21, Chap. 6].

4
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1 L
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Figure 5: The CPU time v.s. size of the system for RBM-Andersen (blue circles) and RBM-
Langevin (red diamonds). Clearly, the computational time scales linearly with the size of
the system for both methods

Lastly, we validate the claim that the complexity of our algorithm is O(N) in Figure 5,
where the CPU time is plotted versus the size of the Lennard-Jones system. The simulation
is performed up to time 30 with step size 7 = 2710 for systems with density p = 0.5. Clearly,
both Andersen-RBM and Langevin-RBM scale linearly with the size of the system, and this
result thus verified our claim.
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