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Abstract

In this work, we propose a Crank-Nicolson-type scheme with variable steps for the time
fractional Allen-Cahn equation. The proposed scheme is shown to be unconditionally stable
(in a variational energy sense), and is maximum bound preserving. Interestingly, the discrete
energy stability result obtained in this paper can recover the classical energy dissipation law
when the fractional order α→ 1. That is, our scheme can asymptotically preserve the energy
dissipation law in the α→ 1 limit. This seems to be the first work on variable time-stepping
scheme that can preserve both the energy stability and the maximum bound principle.

Our Crank-Nicolson scheme is build upon a reformulated problem associated with the
Riemann-Liouville derivative. As a by product, we build up a reversible transformation be-
tween the L1-type formula of the Riemann-Liouville derivative and a new L1-type formula
of the Caputo derivative, with the help of a class of discrete orthogonal convolution ker-
nels. This is the first time such a discrete transformation is established between two discrete
fractional derivatives. We finally present several numerical examples with an adaptive time-
stepping strategy to show the effectiveness of the proposed scheme.

Keywords: Time-fractional Allen-Cahn equation, asymptotic preserving, energy sta-
bility, maximum principle, adaptive time-stepping

1 Introduction

In this work, we are concerned with numerical methods for the following time fractional Allen-
Cahn (TFAC) equation,

∂αt u = ε2∆u− f(u) for x ∈ Ω and t > 0. (1.1)
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Here Ω = (0, L)2, and ∂αt := C
0 Dαt is the Caputo derivative of order α,

∂αt v = C
0 Dαt v := I1−α

t v′ for 0 < α < 1, (1.2)

where Iµt is the Riemann-Liouville fractional integration operator of order µ > 0

(Iµt v) (t) :=

∫ t

0
ωµ(t− s)v(s) ds, with ωµ(t) := tµ−1/Γ(µ). (1.3)

The nonlinear bulk force f = F ′(u) is given by

F (u) =
1

4
(1− u2)2. (1.4)

For simplicity, we consider periodic solution u along the boundary.
The above time fractional Allen-Cahn equation has been studied both theoretically and

numerically in recent years [3, 6, 8, 9, 16, 22–24]. When α → 1, the TFAC equation recovers the
classical Allen-Cahn equation [1]:

∂tu = ε2∆u− f(u). (1.5)

Note that equation (1.5) is an L2 gradient flow of a free energy, i.e.,

∂tu := −δE
δu

where the energy E[u](t) =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx. (1.6)

In this sense, one may view the TFAC equation as a fractional gradient flow:

∂αt u := −δE
δu
. (1.7)

It is well known that for the classical AC equation (1.5), there holds the energy dissipation law

dE

dt
+
∥∥ δE
δu

∥∥2
= 0, or E[u](t) ≤ E[u](s), ∀t > s, (1.8)

and the maximum bound principle

|u(x, t)| ≤ 1 if |u(x, 0)| ≤ 1. (1.9)

Thus it is natural to ask whether the TFAC equation (1.1) also preserves these two properties.
In [23], it was shown that the TFAC equation also admits the maximum bound principle (1.9).
However, one can only obtain the following energy stability [23]:

E[u](t) ≤ E[u](0). (1.10)

Notice that this is different from the energy dissipation law (1.8).
While it may be interesting to further check whether (1.8) holds for TFAC equation, however,

as a new fractional gradient flow, we shall investigate in this work a new (yet natural) energy
law for the TFAC equation.
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1.1 A variational energy dissipation law

The first aim of this work is to define a new variational energy dissipation law. To this end, we
first rewrite the TFAC into an equivalent form that involves the Riemann-Liouville derivative.

Recall the Riemann-Liouville derivative R∂αt := RL
0Dαt defined by

R∂αt v := ∂tI1−α
t v, for 0 < α < 1. (1.11)

Due to the semigroup property of the fractional integral we have

R∂1−α
t (∂αt v) = ∂tI1

t v
′ = v′ for 0 < α < 1, (1.12)

Thus, one can reformulate the TFAC equation (1.1) into the following form

∂tu = −R∂1−α
t

(
δE
δu

)
. (1.13)

Moreover, for the Riemann-Liouville derivative of order 1− α there holds [2]

v(t)
(
R∂1−α
t v

)
(t) ≥ 1

2

(
R∂1−α
t v2

)
(t) +

1

2
ωα(t)v2(t), ∀v ∈ C[0, T ]. (1.14)

Now, we take the inner product of (1.13) by δE
δu to obtain

dE

dt
=
(
∂tu,−ε2∆u+ f(u)

)
= −

(
δE
δu ,

R∂1−α
t

δE
δu

)
, (1.15)

where (·, ·) denotes the L2 inner product. The above discussions motivate us to define the
following variational energy functional Eα:

Eα[u] := E[u] +
1

2
Iαt
∥∥ δE
δu

∥∥2
. (1.16)

Then, by (1.14) and (1.15) it is easy to show that for Eα it holds

dEα
dt

+
1

2
ωα(t)

∥∥ δE
δu

∥∥2 ≤ 0, ∀t > 0. (1.17)

That is, the functional Eα seems to be a naturally defined variational energy that admits the
dissipation law. More importantly, when the fractional order α → 1, the above energy law
recovers the classical energy dissipation law of AC equation, i.e.,

dE

dt
+
∥∥ δE
δu

∥∥2 ≤ 0, ∀t > 0.

In this sense, definition (1.16) is asymptotically energy dissipation preserving in the α→ 1 limit.
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1.2 Summary of main contributions

Our main contribution is two folds:

• We design a Crank-Nicolson-type scheme with variable steps for the TFAC equation that
can preserve the new variational energy law (1.17). The proposed scheme is also shown to
preserve the maximum bound (1.9). Moreover, the discrete variational energy stability can
also recover the classical discrete energy dissipation law when the fractional order α→ 1.
In other words, at the discrete level our scheme can asymptotically preserve the energy
dissipation law. This seems to be the first work on variable time-stepping scheme that can
preserve both the energy stability and the maximum bound principle.

• The proposed Crank-Nicolson scheme is build upon the reformulated problem (1.13) that
involves the Riemann-Liouville derivative (1.11). As a by product, we build up a reversible
transformation between the L1-type formula of the Riemann-Liouville derivative (1.11) and
a new L1-type formula of the Caputo derivative (1.2), with the help of a class of discrete
orthogonal convolution kernels. This is the first time such a discrete transformation is
established between the two discrete fractional derivatives.

Finally, we present several numerical examples with an adaptive time-stepping strategy to show
the effectiveness of the proposed scheme.

The rest of the paper is organized as follows. In Section 2, we present our numerical scheme
and show the discrete variational energy dissipation law. Section 3 is devoted to the unique
solvability of our scheme and discrete maximum bound principle. This is followed by some
numerical examples in Section 4. We finally give some concluding remarks in Section 5.

2 Numerical schemes

This section will be devoted to the design of our structure preserving Crank-Nicolson type
scheme. All our discussions will be emphasized on nonuniform time grids, and this is motivated
by the fact that nonuniform grids are powerful in capturing the multi-scale behaviors (including
the singular behavior near the initial time) for time-fractional Allen-Cahn equation.

To begin, we consider the following nonuniform time grids:

0 = t0 < t1 < · · · < tk−1 < tk < · · · < tN = T

with the step sizes τk := tk − tk−1 for 1 ≤ k ≤ N . Let the maximum time-step size τ :=
max1≤k≤N τk and the adjoint time-step ratios rn := τn/τn−1 for n ≥ 2. Always, we assume the

summation
∑j

k=i · = 0 and the product
∏j
k=i · = 1 for index i > j.

2.1 Discrete Riemann-Liouville derivative

Our scheme will be designed upon the equivalent form (1.13). Consider a mesh function vk =
v(tk), we set (for k ≥ 1)

Oτv
k := vk − vk−1, ∂τv

k− 1
2 := Oτv

k/τk, vk−
1
2 := (vk + vk−1)/2.
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Let (Π0,kv)(t) be the constant interplant of a function v(t) at tk−1 and tk, then a piecewise
constant approximation is defined as

Π0v := Π0,kv so that (Π0,kv)(t) = vk−
1
2 for tk−1 < t ≤ tk and k ≥ 1. (2.1)

For any fixed n ≥ 1, we consider the following discrete Riemann-Liouville derivative for (1.11),

(R∂1−α
τ v)n−

1
2 :=

1

τn

∫ tn

tn−1

∂

∂t

∫ t

0
ωα(t− s)(Π0v)(s) dsdt ,

1

τn

n∑
k=1

a
(n)
n−kv

k− 1
2 (2.2)

for n ≥ 1. The associated discrete convolution kernels a
(n)
n−k are defined as follows

a
(n)
0 := q

(n)
0 > 0 for n ≥ 1 and a

(n)
n−k := q

(n)
n−k − q

(n−1)
n−k−1 < 0 for n ≥ k + 1 ≥ 2, (2.3)

where we have used the following auxiliary sequence

q
(n)
n−k :=

∫ tk

tk−1

ωα(tn − s) ds =

n∑
j=k

a
(j)
j−k > 0 for 1 ≤ k ≤ n. (2.4)

The numerical approximation formula (2.2) has been investigated in [17,18] for linear subd-
iffusion problems, and the approximation order is shown to be 1 + α. Notice that this formula
was originally called the L1 formula of the Riemann-Liouville derivative (1.11). However, to
avoid possible confuses, we call it here L1R formula to distinguish it from another well-known
L1 formula [11,12] of the Caputo derivative (1.2).

As shown in [19, Section 2], the kernel of the the Riemann-Liouville derivative R∂1−α
t is

positive semi-definite, i.e.,∫ T

0
v(t)

(
R∂1−α
t v

)
(t) dt =

∫ T

0
v(t)

∂

∂t

∫ t

0
ωα(t− s)v(s) dsdt ≥ 0 for v ∈ L2[0, T ]. (2.5)

The above L1R formula (2.2) is designed in a structure preserving way, more precisely, we have

n∑
j=1

τjv
j− 1

2 (R∂1−α
τ v)j−

1
2 =

n∑
j=1

τj
(
Π0,jv

)
(R∂1−α

τ v)j−
1
2

=

∫ tn

t0

(Π0v)(t)
∂

∂t

∫ t

0
ωα(t− s)(Π0v)(s) dsdt ≥ 0 for n ≥ 1.

The arbitrariness of function v implies that the discrete L1R kernels a
(n)
n−k in (2.3) are positive

semi-definite. As shown in [17, 18], this property implies the L2 norm stability of numerical
scheme when the L1R formula is applied to linear diffusion ∂tu = R∂1−α

t ∆u + f . Nevertheless,
we remark that the numerical analysis in this work is new and quite different from those in [17,18]
as we have to deal with the nonlinear term.

In the next, we show that the discrete kernels a
(n)
n−k are positive definite without using the

continuous property (2.5). This result will be used to establish the discrete variational energy
dissipation law in the forthcoming sections.
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Lemma 2.1. For any real sequence {wk}nk=1, the discrete convolution kernels a
(n)
n−k and q

(n)
n−k

defined in (2.3)-(2.4) satisfy

2wk

k∑
j=1

a
(k)
k−jwj ≥ w

2
k

k∑
j=1

a
(k)
k−j +

k∑
j=1

q
(k)
k−jw

2
j −

k−1∑
j=1

q
(k−1)
k−j−1w

2
j for k ≥ 1

so that the discrete kernels a
(n)
n−k are positive definite in the sense that

2

n∑
k=1

wk

k∑
j=1

a
(k)
k−jwj ≥

n∑
k=1

(
q

(n)
n−k +

k∑
j=1

a
(k)
k−j

)
w2
k > 0 for n ≥ 1 if wk 6≡ 0.

Proof. The definition (2.4) implies

q
(k−1)
k−j−1 − q

(k)
k−j =

∫ tj

tj−1

[ωα(tk−1 − s)− ωα(tk − s)] ds > 0, k ≥ 2,

and

k∑
j=1

a
(k)
k−j =

k∑
j=1

q
(k)
k−j −

k−1∑
j=1

q
(k−1)
k−j−1 =

∫ tk

tk−1

ωα(s) ds > 0 for k ≥ 1. (2.6)

Thus we apply the definition (2.3) to derive that

2wk

k∑
j=1

a
(k)
k−jwj =2q

(k)
0 w2

k − 2
k−1∑
j=1

(
q

(k−1)
k−j−1 − q

(k)
k−j
)
wkwj

≥2q
(k)
0 w2

k −
k−1∑
j=1

(
q

(k−1)
k−j−1 − q

(k)
k−j
) (
w2
k + w2

j

)
=w2

k

k∑
j=1

a
(k)
k−j +

k∑
j=1

q
(k)
k−jw

2
j −

k−1∑
j=1

q
(k−1)
k−j−1w

2
j for k ≥ 1.

This completes the proof.

2.2 A Crank-Nicolson type scheme

We are now ready to propose our numerical scheme. By setting v := − δE
δu , one can write the

problem (1.13) into a couple of system

∂tu = R∂1−α
t v, (2.7)

v = ε2∆u− f(u). (2.8)

We consider a finite difference approximation in physical domain. For a positive integer M1, we
set the spatial length as h := L/M1 so that Ω̄h :=

{
xh = (ih, jh) | 0 ≤ i, j ≤ M1}. For any grid

function {vh |xh ∈ Ω̄h}, we denote

Vh :=
{
v | v = (vj)

T for 1 ≤ j ≤M1, with vj = (vi,j)
T for 1 ≤ i ≤M1

}
,
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where vT is the transpose of the vector v. The maximum norm ‖v‖∞ := maxxh∈Ω̄h
|vh|. Let

M := M2
1 , we denote by Dh the M × M matrix of Laplace operator ∆ subject to periodic

boundary conditions.
Now, by applying the L1R approximation (2.2) in the time domain and a second-order

approximation for the nonlinear term ( see Appendix A for details), we obtain a Crank-Nicolson
type scheme in the vector form:

∂τu
n− 1

2 =
(
R∂1−α
τ v

)n− 1
2 for 1 ≤ n ≤ N, (2.9)

vn−
1
2 = ε2Dhu

n− 1
2 −H(un, un−1) for 1 ≤ n ≤ N, (2.10)

where the vector H(un, un−1) is defined in the element-wise with the Hadamard product “◦”,

H(un, un−1) :=
1

3
(un).3 +

1

2
(un−1).2 ◦ un +

1

6
(un−1).3 − 1

2

(
un + un−1

)
. (2.11)

The constructing procedure of H(un, un−1) and its properties are presented in Appendix A, and
the associated properties of the constructing procedure will be useful for our analysis in later
sections.

We close this section by listing some simple properties of the matrix Dh in the following
lemma (whose proof is similar as in [5]).

Lemma 2.2. The discrete matrix Dh admits the following properties

(a) The discrete matrix Dh is symmetric.

(b) For any nonzero v ∈ Vh, vTDhv ≤ 0, i.e., the matrix Dh is negative semi-definite.

(c) The elements of Dh = (dij) satisfy dii = −maxi
∑

j 6=i |dij | for each i.

2.3 Discrete variational energy dissipation law

In this section, we shall establish the discrete variational energy dissipation law for our numerical
scheme. To this end, we first define the discrete version of the variational energy. Consider the
midpoint rule of the fractional Riemann-Liouville integral operator Iαt defined by (1.3),

(Iαt v)(tn) ≈
n∑
k=1

∫ tk

tk−1

ωα(tn − s)(Π0,kv)(s) ds =
n∑
k=1

q
(n)
n−kv

k− 1
2 , (Iατ v)n (2.12)

for n ≥ 0. Namely, the auxiliary kernels q
(n)
n−k in (2.4) define a numerical fractional integral

(Iατ v)n. Notice that the L1R formula (2.2) yields an alternative formula for (1.11), i.e.,

(R∂1−α
τ v)n−

1
2 = ∂τ (Iατ v)n−

1
2 :=

1

τn

[
(Iατ v)n − (Iατ v)n−1

]
for n ≥ 1. (2.13)

We now define the discrete version of our variational energy:

Eα[un] :=E[un] +
1

2
h2

M1∑
i,j=1

(Iατ v2
ij)

n = E[un] +
1

2
h2

M1∑
i,j=1

n∑
k=1

q
(n)
n−k
(
v
k− 1

2
ij

)2
,
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where vk−
1
2 represents a numerical approximation at tk− 1

2
of the energy variation δE

δu , and E[un]

is the discrete counterpart of the free energy (1.6)

E[un] :=h2
M1∑
i,j=1

F (unij)−
1

2
ε2h2

(
un
)T
Dhu

n for n ≥ 0.

We are now ready to present the discrete variational energy dissipation law for our Crank-
Nicolson type scheme (2.9)-(2.10).

Theorem 2.1. The Crank-Nicolson scheme (2.9)-(2.10) admits the variational energy dissipa-
tion law unconditionally at the discrete levels, i.e.,

∂τ
(
Eα[u]

)n− 1
2 +

1

2τn

∫ tn

tn−1

ωα(s) ds

M1∑
i,j=1

h2
(
v
n− 1

2
ij

)2 ≤ 0 for n ≥ 1.

Proof. Taking the L2 inner products of (2.9)-(2.10) with τn(vn−
1
2 )T and −(Oτun)T , respectively,

and adding up the two resulting equalities, we obtain

M1∑
i,j=1

h2v
n− 1

2
ij

n∑
k=1

a
(n)
n−kv

k− 1
2

ij − ε2h2
(
Oτu

n
)T
Dhu

n− 1
2

+

M1∑
i,j=1

h2H(unij , u
n−1
ij )

(
Oτu

n
ij

)
= 0 for n ≥ 1. (2.14)

With the help of Lemma 2.2 (a)-(b), it is easy to show that(
Oτu

n
)T
Dhu

n− 1
2 =

1

2

(
Oτu

n
)T
Dh(un + un−1)

=
1

2

(
un
)T
Dhu

n − 1

2

(
un−1

)T
Dhu

n−1 for n ≥ 1. (2.15)

Moreover, by taking a = unij and b = un−1
ij in the equality (A.2) one has

H(unij , u
n−1
ij )

(
Oτu

n
ij

)
≥ F (unij)− F (un−1

ij ) for n ≥ 1. (2.16)

By using Lemma 2.1 and the formulas (2.12)-(2.13), one has

v
n− 1

2
ij

n∑
k=1

a
(n)
n−kv

k− 1
2

ij ≥ 1

2
(Iατ v2

ij)
n − 1

2
(Iατ v2

ij)
n−1 +

1

2

(
v
n− 1

2
ij

)2 n∑
k=1

a
(n)
n−k

=
1

2
(Iατ v2

ij)
n − 1

2
(Iατ v2

ij)
n−1 +

1

2

∫ tn

tn−1

ωα(s) ds ·
(
v
n− 1

2
ij

)2
, (2.17)

where (2.6) was used. Thus the claimed result follows from (2.14)-(2.17) immediately.

Notice that as the fractional order α → 1, the definition (2.4) yields q
(n)
n−k → τk. Moreover,

the numerical fractional integral and the L1R formula yield

(Iατ v)n →
n∑
k=1

τkv
k− 1

2 ,
(
R∂1−α
τ v

)n− 1
2 → vn−

1
2 .
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Consequently, the discrete variational energy dissipation law in Theorem 2.1 becomes

∂τ
(
E[u]

)n− 1
2 +

M1∑
i,j=1

h2
(
v
n− 1

2
ij

)2 ≤ 0 as α→ 1.

This recovers the standard discrete energy dissipation law of the classical Allen-Cahn equation.
Thus, the discrete variational energy stability (Theorem 2.1) is asymptotically preserving in the
α→ 1 limit.

3 Unique solvability and discrete maximum bound principle

This section will be devoted to the unique solvability and discrete maximum bound principle of
our scheme. To this end, we shall first introduce some analysis tools including the discrete or-
thogonal convolution (DOC) kernels and discrete complementary-to-orthogonal (DCO) kernels.

3.1 DOC and DCO kernels

We first introduce a class of discrete orthogonal convolution (DOC) kernels θ
(n)
n−j via the following

discrete orthogonal identity (with respect to the discrete kernels a
(n)
n−k in (2.3))

n∑
j=k

θ
(n)
n−ja

(j)
j−k ≡ δnk for ∀ 1 ≤ k ≤ n, (3.1)

where δnk is the Kronecker delta symbol. Notice that the DOC kernels can be defined via a
recursive procedure

θ
(n)
0 :=

1

a
(n)
0

and θ
(n)
n−k := − 1

a
(k)
0

n∑
j=k+1

θ
(n)
n−ja

(j)
j−k for 1 ≤ k ≤ n− 1. (3.2)

This type of discrete kernels has been used in [15] for analyzing the nonuniform BDF2 scheme

for linear diffusion problems. Here we consider the DOC kernels θ
(n)
n−j of the L1R discrete kernels

(2.3) that satisfy

a
(n)
0 > 0 and a

(n)
j < 0 for 1 ≤ j ≤ n− 1.

We shall show that, by using the DOC kernels θ
(n)
n−j , the Crank-Nicolson scheme (2.9)-(2.10)

in the Riemann-Liouville form can be reformulated into an equivalent form in the Caputo form,
see (3.7) below. Then, the unique solvability and discrete maximum principle of Crank-Nicolson
scheme can be performed via the equivalent form (3.7).

Furthermore, the original discrete form (2.9)-(2.10) can also be recovered from (3.7) by using

the L1R discrete kernels a
(n)
n−j . This seems to be the first discrete transformation between two

discrete fractional derivatives, and the discrete duality between the transform and the inverse
transform relies on the following mutual orthogonality.

Lemma 3.1. [14, Lemma 2.1] The discrete convolution kernels a
(n)
n−j and the corresponding

DOC kernels θ
(n)
n−j are mutually orthogonal, that is,

n∑
j=k

a
(n)
n−jθ

(j)
j−k ≡ δnk and

n∑
j=k

θ
(n)
n−ja

(j)
j−k ≡ δnk for 1 ≤ k ≤ n. (3.3)
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We now list some useful properties of the DOC kernels θ
(n)
n−j .

Lemma 3.2. For fixed n ≥ 1, the DOC kernels θ
(n)
n−j are positive and satisfy

θ
(n)
0 =

1

ω1+α(τn)
and θ

(n)
0 − θ(n)

1 >
ωα(rn + 1)

ω1+α(τn)ω1+α(1)
. (3.4)

Proof. By the definitions (2.3)-(2.4), we have a
(n)
0 = q

(n)
0 = ω1+α(τn) so that the procedure (3.2)

yields

θ
(n)
0 =

1

a
(n)
0

=
1

ω1+α(τn)
> 0 for n ≥ 1.

The positivity of DOC kernels θ
(n)
j can be verified by a simple induction argument. Assume

that θ
(n)
j > 0 for 0 ≤ j ≤ m− 1 (m ≥ 1). By the definition (2.3), one has

a
(j)
j−k =

∫ tj

tj−1

dt

∫ tk

tk−1

ωα−1(t− s) ds < 0 for j ≥ k + 1 ≥ 2.

Then the recursive procedure (3.2) gives

θ(n)
m = − 1

a
(n−m)
0

m−1∑
`=0

θ
(n)
` a

(n−`)
m−` > 0 for 1 ≤ m ≤ n− 1.

This confirms that θ
(n)
j > 0 for 0 ≤ j ≤ n− 1.

Moreover, we have θ
(n)
1 = −θ(n)

0 a
(n)
1 /a

(n−1)
0 so that the definition (2.4) yields

θ
(n)
0 − θ(n)

1 = θ
(n)
0 + θ

(n)
0

a
(n)
1

a
(n−1)
0

=
q

(n)
1

q
(n)
0 q

(n−1)
0

=
ω1+α(τn + τn−1)− ω1+α(τn)

ω1+α(τn)ω1+α(τn−1)
=
ω1+α(rn + 1)− ω1+α(rn)

ω1+α(τn)ω1+α(1)
.

This yields the claimed lower bound (3.4), and the proof is completed.

Lemma 3.3. For any fixed n ≥ 2, the DOC kernels θ
(n)
n−j are monotonously decreasing, that is,

θ
(n)
0 > θ

(n)
1 > · · · > θ

(n)
n−1 > 0.

Proof. Applying the definitions (2.3) and (3.2), one has θ
(n)
0 q

(n)
0 = 1 and

θ
(n)
n−kq

(k)
0 = −

n∑
j=k+1

θ
(n)
n−j
(
q

(j)
j−k − q

(j−1)
j−k−1

)
= −

n∑
j=k+1

θ
(n)
n−jq

(j)
j−k +

n−1∑
j=k

θ
(n)
n−j−1q

(j)
j−k for 1 ≤ k ≤ n− 1,

10



or

θ
(n)
0 q

(n)
n−k = −

n−1∑
j=k

(
θ

(n)
n−j − θ

(n)
n−j−1

)
q

(j)
j−k for 1 ≤ k ≤ n− 1.

Consider an auxiliary class of discrete kernels ζ
(n)
n−j defined by

ζ
(n)
0 := θ

(n)
0 and ζ

(n)
n−j := θ

(n)
n−j − θ

(n)
n−j−1 for 1 ≤ j ≤ n− 1.

Then it is easy to find that

n∑
j=k

ζ
(n)
n−jq

(j)
j−k = δnk for 1 ≤ k ≤ n,

that is, the kernels ζ
(n)
n−j are orthogonal to q

(n)
n−k =

∫ tk
tk−1

ωα(tn − s) ds. By following the proof

of [14, Proposition 4.1], it is easy to check that

q
(n)
j > 0, q

(n−1)
j−1 > q

(n)
j and q

(n−1)
j−1 q

(n)
j+1 > q

(n−1)
j q

(n)
j .

Then [14, Lemma 2.3] implies that the corresponding orthogonal kernels ζ
(n)
n−j satisfy

ζ
(n)
n−j = θ

(n)
n−j − θ

(n)
n−j−1 < 0 for 1 ≤ j ≤ n− 1 and θ

(n)
n−1 =

n∑
j=1

ζ
(n)
n−j > 0.

They implies the claimed property and complete the proof.

Lemma 3.4. The discrete convolution kernels q
(n)
n−j in (2.4) are complementary to the DOC

kernels θ
(n)
n−j in (3.2) in the sense that

n∑
j=k

q
(n)
n−jθ

(j)
j−k ≡ 1 for 1 ≤ k ≤ n.

Proof. Inserting the definition (2.3) into the first identity of (3.3) arrives

q
(n)
0 θ

(n)
n−k +

n−1∑
j=k

(
q

(n)
n−j − q

(n−1)
n−j−1

)
θ

(j)
j−k ≡ δnk for 1 ≤ k ≤ n, (3.5)

which implies

n∑
j=k

q
(n)
n−jθ

(j)
j−k ≡

n−1∑
j=k

q
(n−1)
n−j−1θ

(j)
j−k + δnk for 1 ≤ k ≤ n.

Let Ξ
(n)
k :=

∑n
j=k q

(n)
n−jθ

(j)
j−k for 1 ≤ k ≤ n. One has

Ξ(n)
n = 1 and Ξ

(n)
k = Ξ

(n−1)
k for 1 ≤ k ≤ n− 1.

A simple induction yields Ξ
(n)
k ≡ 1 for 1 ≤ k ≤ n and completes the proof.
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Figure 1: The relationship diagram between different classes of discrete kernels.

Since the kernels q
(n)
n−j are complementary to the DOC kernels θ

(n)
n−j , we call q

(n)
n−j as the

discrete complementary-to-orthogonal (DCO) kernels. This terminology is used to distinguish

it from the discrete complementary convolution (DCC) kernels p
(n)
n−j which are complementary

to the original discrete kernels a
(n)
n−j , i.e.,

n∑
j=k

p
(n)
n−ja

(j)
j−k ≡ 1 for 1 ≤ k ≤ n. (3.6)

We present in Figure 1 the relationships between the mentioned discrete convolution kernels. We

notice that the DCC kernels p
(n)
n−j were originally introduced in [10, 11] for analyzing the direct

approximations of Caputo derivative. Here, we shall use the newly introduced DCO kernels q
(n)
n−j

to analyze the direct approximations of the Riemann-Liouville derivative (1.11).

3.2 An equivalent formula and unique solvability

We now derive an equivalent formula for our scheme (2.9)-(2.10). By using the definition (2.2)
of L1R formula, we can write the equation (2.9) as

Oτu
j = τj(

R∂1−α
τ v)j−

1
2 =

j∑
k=1

a
(j)
j−kv

k− 1
2 for 1 ≤ j ≤ N .

Multiplying both sides of the above equation by the DOC kernels θ
(n)
n−j , and summing j from

j = 1 to n, we obtain

n∑
j=1

θ
(n)
n−jOτu

j =

n∑
j=1

θ
(n)
n−j

j∑
k=1

a
(j)
j−kv

k− 1
2 =

n∑
k=1

vk−
1
2

n∑
j=k

θ
(n)
n−ja

(j)
j−k

=
n∑
k=1

vk−
1
2 δnk = vn−

1
2 for 1 ≤ n ≤ N ,
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where the summation order was exchanged in the second equality and the discrete orthogonal
identity (3.1) was used in the third equality. Then the equation (2.10) gives an equivalent form
of the Crank-Nicolson scheme

n∑
j=1

θ
(n)
n−jOτu

j = ε2Dhu
n− 1

2 −H(un, un−1) for 1 ≤ n ≤ N, (3.7)

where the vector H(un, un−1) is defined by (2.11).
The formulation (3.7) looks like a direct approximation of the original equation (1.1) by

approximating the Caputo derivative ∂αt u with

(∂αt u)(tn− 1
2
) ≈

n∑
j=1

θ
(n)
n−jOτu

j . (3.8)

In this sense, the DOC kernels θ
(n)
n−j define a “new” discrete Caputo derivative. According to

Lemma 3.3, the corresponding discrete kernels θ
(n)
n−j are positive and monotonously decreasing

on nonuniform time meshes, as the case of L1 formula [10–12]. Nonetheless, we view the formula
(3.8) as an indirect approximation that admits different approximation accuracy compared to
the original L1 formula with the approximation error of 2− α.

Next, we shall proof the solvability and discrete maximum bound principle via the new form
(3.7). To this end, we shall also need the following lemma for which the proof is similar as
in [5, Lemma 3.2].

Lemma 3.5. Let the elements of a real matrix B = (bij)M×M fulfill bii = −maxi
∑

j 6=i |bij | .
For any parameters a, c > 0 and U, V ∈ RM , it holds that∥∥ (aI −B)V

∥∥
∞ ≥ a

∥∥V ∥∥∞
and ∥∥ (aI −B)V + U .2 ◦ V + cV .3

∥∥
∞ ≥ a

∥∥V ∥∥∞ +
∥∥U∥∥2

∞
∥∥V ∥∥∞ + c

∥∥V ∥∥3

∞.

Now we are ready to present the unique solvability of our scheme.

Theorem 3.1. The nonlinear Crank-Nicolson scheme (3.7) or (2.9)-(2.10) is uniquely solvable
if the time-step size satisfies

τ < α
√

2Γ(1 + α).

Proof. We rewrite the nonlinear scheme (3.7) into

Ghu
n +

1

3
(un).3 = G0(un−1), n ≥ 1,

where

Gh :=
(
θ

(n)
0 − 1

2
+

1

2
(un−1).2

)
I − ε2

2
Dh

and

G0(un−1) :=
1

2
(I + ε2Dh)un−1 − 1

6
(un−1).3 +

n−1∑
k=1

(
θ

(n)
n−k−1 − θ

(n)
n−k
)
uk + θ

(n)
n−1u

0 for n ≥ 1.

13



If the maximum step size τ < α
√

2Γ(1 + α), Lemma 3.2 shows that

θ
(n)
0 = Γ(1 + α)τ−αn > 1/2.

Then by Lemma 2.2 (b), the symmetric matrix Gh is positive definite. Thus, the solution of
nonlinear equations solves

un = arg min
w∈Vh

{
1

2
wTGhw +

1

12

M∑
k=1

w4
k − wTG0(un−1)

}
for n ≥ 1.

The strict convexity of objective function implies the unique solvability of (3.7).

3.3 Discrete maximum bound principle

We next show that our scheme admits the discrete maximum bound principle.

Theorem 3.2. Assume that the time-step size satisfies

τn ≤ α

√
min

{1

2
,
h2

2ε2

} αΓ(1 + α)

(1 + rn)1−α . (3.9)

Then, the Crank-Nicolson scheme (3.7) or (2.9)-(2.10) preserves the maximum bound principle
at the discrete levels, that is,∥∥uk∥∥∞ ≤ 1 for 1 ≤ k ≤ N if

∥∥u0
∥∥
∞ ≤ 1.

Proof. According to Theorem 3.1, the time-step restriction (3.9) ensures the solvability of (3.7)
since (1+rn)α−1 < 1. Now we consider a mathematical induction proof. Obviously, the claimed
inequality holds for n = 0. For 1 ≤ n ≤ N , assume that∥∥uk∥∥∞ ≤ 1 for 0 ≤ k ≤ n− 1. (3.10)

It remains to verify that
∥∥un∥∥∞ ≤ 1. Note that

n∑
j=1

θ
(n)
n−jOτu

j = θ
(n)
0 un −

(
θ

(n)
0 − θ(n)

1

)
un−1 − Ln−2(u),

where Ln−2(u) is given by

Ln−2(u) :=

n−2∑
k=1

(
θ

(n)
n−k−1 − θ

(n)
n−k
)
uk + θ

(n)
n−1u

0. (3.11)

Then the scheme (3.7) can be formulated as follows(
θ

(n)
0 − 1

2
+

1

2
(un−1).2 − ε2

2
Dh

)
un +

1

3
(un).3

=
(
θ

(n)
0 − θ(n)

1

)
un−1 +

ε2

2
Dhu

n−1 +
1

2
un−1 − 1

6
(un−1).3 + Ln−2(u)

= Mhu
n−1 +

1

6

[
3un−1 − (un−1).3

]
+ Ln−2(u), (3.12)
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where the matrix Mh is defined by

Mh :=
(
θ

(n)
0 − θ(n)

1

)
I +

ε2

2
Dh. (3.13)

For the first term of the right hand side of (3.12), it is easy to check that the matrix
Mh = (mij) satisfies mij ≥ 0 for i 6= j,

mii = θ
(n)
0 − θ(n)

1 − 2ε2

h2
and max

i

∑
j

mij ≤ θ(n)
0 − θ(n)

1 .

Assuming that τn ≤ α

√
h2

2ε2
Γ2(1 + α)ωα(1 + rn), we apply Lemma 3.2 to find

θ
(n)
0 − θ(n)

1 > Γ2(1 + α)ωα(1 + rn)τ−αn ≥ 2ε2

h2

or mii ≥ 0. Thus all elements of Mh are nonnegative and∥∥Mh

∥∥
∞ = max

i

∑
j

|mij | = max
i

∑
j

mij ≤ θ(n)
0 − θ(n)

1 . (3.14)

Consequently, the induction hypothesis (3.10) yields∥∥Mhu
n−1
∥∥
∞ ≤

∥∥Mh

∥∥
∞
∥∥un−1

∥∥
∞ ≤

1

2

(
θ

(n)
0 − θ(n)

1

) (
1 +

∥∥un−1
∥∥
∞
)
. (3.15)

Since
∣∣3z − z3

∣∣ ≤ 2 for any z ∈ [−1, 1], the induction hypothesis (3.10) yields

1

6

∥∥3un−1 − (un−1).3
∥∥
∞ ≤

1

3
. (3.16)

For the last term Ln−2(u) in (3.12), the decreasing property in Lemma 3.3 and the induction
hypothesis (3.10) lead to

∥∥Ln−2(u)
∥∥
∞ ≤

n−2∑
k=1

(
θ

(n)
n−k−1 − θ

(n)
n−k
)∥∥uk∥∥∞ + θ

(n)
n−1

∥∥u0
∥∥
∞ ≤ θ

(n)
1 . (3.17)

Moreover, the time-step restriction (3.9) implies τn <
α
√

Γ(1 + α)/2 and Lemma 3.2 gives

θ
(n)
0 > 2. Then by using Lemmas 2.2 and 3.5, one can bound the left hand side of (3.12) by∥∥∥(θ(n)

0 − 1

2
− ε2

2
Dh

)
un +

1

2
(un−1).2 ◦ un +

1

3
(un).3

∥∥∥
∞

≥
(
θ

(n)
0 − 1

2

)∥∥un∥∥∞ +
1

2

∥∥un−1
∥∥2

∞
∥∥un∥∥∞ +

1

3

∥∥un∥∥3

∞.

Consequently, by collecting the estimates (3.15)–(3.17), it follows from (3.12) that(
θ

(n)
0 − 1

2

) ∥∥un∥∥∞ +
1

2

∥∥un−1
∥∥2

∞
∥∥un∥∥∞ +

1

3

∥∥un∥∥3

∞

≤
∥∥Mhu

n−1 +
1

2

(
θ

(n)
0 − θ(n)

1

)
un−1 +

1

6

[
3un−1 − (un−1).3

]
+ Ln−2(u)

∥∥
∞

≤
∥∥Mhu

n−1
∥∥
∞ +

1

6

∥∥3un−1 − (un−1).3
∥∥
∞ +

∥∥Ln−2(u)
∥∥
∞

≤ 1

2

(
θ

(n)
0 − θ(n)

1

) (
1 +

∥∥un−1
∥∥
∞
)

+
1

3
+ θ

(n)
1 . (3.18)
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Assuming that τn ≤ α

√
1
2Γ2(1 + α)ωα(1 + rn) such that θ

(n)
0 − θ(n)

1 > 2, we prove
∥∥un∥∥∞ ≤ 1

by contradiction. If
∥∥un∥∥∞ > 1, the above inequality (3.18) requires

θ
(n)
0 − 1

2
+

1

2

∥∥un−1
∥∥2

∞ +
1

3
<

1

2

(
θ

(n)
0 − θ(n)

1

) (
1 +

∥∥un−1
∥∥
∞
)

+
1

3
+ θ

(n)
1

because the following function

g(z) :=
(
θ

(n)
0 − 1

2
+

1

2

∥∥un−1
∥∥2

∞
)
z +

1

3
z3 for z > 0

is monotonically increasing. It follows that

1

2

(
1−

∥∥un−1
∥∥
∞
)2
<

1

2

(
θ

(n)
0 − θ(n)

1 − 1−
∥∥un−1

∥∥
∞
) (

1−
∥∥un−1

∥∥
∞
)
< 0,

which yields a contradiction. Thus, the assumption
∥∥un∥∥∞ > 1 is invalid and the claimed result

holds for k = n. This completes the proof.

Note that, the maximum time-step restriction (3.9) is only a sufficient condition to ensure the
discrete maximum principle, see Example 2. In the time-fractional Allen-Cahn equation (1.1),
the coefficient ε � 1 represents the width of diffusive interface. Always, we should choose a
small space length h = O(ε) to track the moving interface. So, in most situations, the restriction
(3.9) is practically reasonable because it is approximately equivalent to

τn ≤ α

√
αΓ(1 + α)

2(1 + rn)1−α →
1

2
as α→ 1.

As expected, this restriction (3.9) requires small time steps for large step ratios rn or small
fractional orders α, see similar conditions in [13]. On the other hand, this time-step condition is
sharp in the sense that it is compatible with the previous restriction [5, Theorem 1] ensuring the
discrete maximum principle of Crank-Nicolson scheme for the classical Allen-Cahn equation.

4 Numerical experiments

In this section, we shall present several numerical examples to support our theoretical findings.
To speed up our numerical computations, we shall use the fast L1R algorithm described in
Appendix B, with an absolute tolerance error ε = 10−12 and a cut-off time ∆t = 10−12.

4.1 Accuracy verification

We first show the accuracy of our scheme. Notice that it was shown that the L1R formula (2.2)
has been investigated in [17, 18] for linear subdiffusion problems, and the approximation order
is shown to be 1 + α. Thus, we also expect a (1 + α)-order rate of convergence.

Example 1. Consider the exterior-forced model

∂tu = −R∂1−α
t

(δE
δu

)
+ g(x, t)

on the space-time domain (0, 1)2 × (0, 1] with an interfacial coefficient ε = 0.1. We choose
a exterior force g(x, t) and a parameter σ ∈ (0, 1) such that the model has an exact solution
u = ω1+σ(t) sin(2πx) sin(2πy).
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Table 1: Time accuracy for α = 0.6, σ = 0.4.

N τ
γ = 2

τ
γ = 4 = γopt τ

γ = 5
e(N) Order e(N) Order e(N) Order

200 1.39e-02 8.33e-03 − 1.76e-02 7.05e-04 − 1.68e-02 3.82e-04 −
400 7.26e-03 4.81e-03 0.84 9.24e-03 2.47e-04 1.63 8.62e-03 1.13e-04 1.83
800 3.66e-03 2.77e-03 0.81 4.33e-03 8.44e-05 1.41 4.54e-03 3.24e-05 1.95
1600 1.94e-03 1.59e-03 0.87 2.15e-03 2.87e-05 1.55 2.20e-03 9.12e-06 1.75
3200 9.19e-04 9.13e-04 0.74 1.10e-03 9.61e-06 1.63 1.13e-03 2.99e-06 1.68

min{1 + α, γσ} 0.80 1.60 1.60

Table 2: Time accuracy for α = 0.8, σ = 0.6.

N τ
γ = 2

τ
γ = 3 = γopt τ

γ = 4
e(N) Order e(N) Order e(N) Order

200 1.42e-02 6.97e-04 − 1.58e-02 1.31e-04 − 1.74e-02 6.44e-05 −
400 8.02e-03 3.07e-04 1.44 8.73e-03 4.07e-05 1.97 8.62e-03 1.71e-05 1.88
800 3.73e-03 1.34e-04 1.08 4.13e-03 1.25e-05 1.58 4.46e-03 4.39e-06 2.07
1600 1.93e-03 5.86e-05 1.26 2.07e-03 3.77e-06 1.73 2.10e-03 1.13e-06 1.80
3200 9.53e-04 2.55e-05 1.18 1.06e-03 1.13e-06 1.82 1.13e-03 4.15e-07 1.63

min{1 + α, γσ} 1.20 1.80 1.80

To resolve the initial singularity, we split the time interval [0, T ] into two parts [0, T0] and
[T0, T ] with total N subintervals. A graded mesh tk = T0(k/N0)γ is employed with T0 =
min{1/γ, T} and N0 = d N

T+1−γ−1 e in the first part [0, T0]. In the remainder interval [T0, T ], we
use random step sizes

τN0+k :=
(T − T0)εk∑N−N0

k=1 εk
for 1 ≤ k ≤ N −N0,

where εk are uniformly distributed random numbers inside (0, 1).
We focus on the time accuracy of the modified Crank-Nicolson scheme (2.9)-(2.10). Always,

the spatial domain Ω = (0, 1)2 is uniformly discretized by using 512 × 512 grids such that the
temporal error dominates. We record the maximum norm error e(N) := max1≤n≤N ‖u(tn) −
un‖∞ in each run and evaluate the convergence order by

Order ≈ log (e(N)/e(2N))

log (τ(N)/τ(2N))
,

where τ(N) denotes the maximum time-step size for total N subintervals. We run the new
scheme by considering the following two cases:

(a) The fractional order α = 0.6 and regularity parameter σ = 0.4 with mesh parameters
γ = 2, 4, 5, respectively (see Table 1);
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(b) The fractional order α = 0.8 and regularity parameter σ = 0.6 with mesh parameters
γ = 2, 3, 4, respectively (see Table 2).

From Tables 1 and 2, one can observe that an optimal rate O
(
τ{γσ,1+α}) is achieved when

the grading parameter γ ≥ γopt = max{1, (1 +α)/σ}. As noticed, the error analysis in [17,18] is
only suited for the graded meshes. Thus there is still a gap between the numerical evidences and
the theoretical verification of convergence rates on a general class of nonuniform time meshes.

4.2 Discrete maximum bound principle
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Figure 2: The maximum norm of discrete solutions for the fractional orders α = 0.7, 0.9 (from
top to bottom) with three different time-step sizes τ = 0.1, 0.8, 1.0 (from left to right).

We now verify the discrete maximum bound principle. For the fractional orders α = 0.7 and
0.9, we run the numerical scheme (2.9)-(2.10) with the random initial data u0(x) = rand(x)
until T = 40 on different uniform meshes. Figure 2 plots the maximum norm for two fractional
order α = 0.7, 0.9 with three different time-step size τ = 0.1, 0.8, 1.0. These results suggest that
the time-step restriction (3.9) is only sufficient to ensure the maximum maximum principle.
Actually, the step-size restriction (3.9) requires the maximal step size τ ≤ 0.14 for the fractional
order α = 0.7 and requires τ ≤ 0.36 as the fractional order α = 0.9.

4.3 Initial singularity and graded meshes

Example 2. Consider the time-fractional Allen-Cahn equation (1.1) on the physical domain
(0, 2π)2 with the model parameter ε = 0.05. The initial condition is taken as u0(x) = rand(x),
where rand(x) is uniformly distributed random number varying from −0.001 to 0.001 to each
grid points. Always, a 128× 128 uniform spatial mesh is used to cover the domain (0, 2π)2.

We run the scheme (2.9)-(2.10) with fractional order α = 0.7, T = 1/γ and u0(x) = rand(x).

Figure 3 depicts the discrete time derivative ∂τu
n− 1

2 near t = 0 on the graded mesh tn = T (n/N)γ
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Figure 3: The log-log plot of ∂τu
n− 1

2 versus time for (1.1) with α = 0.7 and grading parameters
γ = 1, 3 (from left to right). The legends refer to the spatial positions.

for two grading parameters γ = 1, 3. It is seen that

log |ut(x, t)| ≈ (α− 1) log(t) + C(x) such that ut = O(tα−1) as t→ 0,

and the initial singularity can be resolved by concentrating more grids near initial time.

4.4 Adaptive time stepping
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Figure 4: The energies E(t), Eα(t) and adaptive steps of Example 2.

Table 3: Comparisons of CPU time (in seconds) and time steps.

Adaptive parameter κ = 10 κ = 102 κ = 103 uniform mesh

CPU time 41.167 61.596 136.787 321.830
Time steps 507 769 1734 4000

In order to resolve the dynamic evolutions involving multiple time scales and reduce the
computation cost in long time simulations, we next present an adaptive time-stepping strategy
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[21] with the following adaptive step criterion based on the energy variation,

τada = max

{
τmin,

τmax√
1 + κ |E′α(t)|2

}
,

where Eα is the modified energy (1.16), τmax, τmin are the predetermined maximum and minimum
time steps, respectively. The parameter κ is chosen to adjust the level of adaptivity. In our
computations, the time interval [0, T ] is divided into [0, T0] and [T0, T ]. We choose the graded
mesh tk = T0(k/N0)γ with T0 = 0.01, N0 = 30 and γ = 3 in the starting cell [0, T0]. The
remainder [T0, T ] is tested by two types of time meshes:

(Graded-uniform mesh) Uniform step size τ = 0.01;

(Graded-adaptive mesh) Adaptive time-stepping with τmax = 10−1 and τmin = 10−3.
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Figure 5: The energies E(t), Eα(t) and adaptive steps of Example 2.

Table 4: Comparisons of CPU time (in seconds) and time steps.

Adaptive parameter κ = 10 κ = 102 κ = 103 uniform mesh

CPU time 41.167 61.596 136.787 321.830
Time steps 507 769 1734 4000

Figure 5 presents the discrete original energy E(t), the discrete modified energy Eα(t) and
different time steps for simulating Example 2 with u0(x) = rand(x) until T = 40. Table 4 lists
the CPU time and the corresponding number of time steps for different time-stepping strategies.
The two diagrams in Figure 5 show that the original and modified energies computed on the
graded-adaptive mesh coincide with those on the graded-uniform mesh. Table 4 indicates that
the graded-adaptive time-stepping strategy with appropriate parameter κ is computationally
more efficient than the graded-uniform mesh. Also, we see that the parameter κ affects the level
of adaptivity, i.e., the bigger the value of κ, the smaller the adaptive steps.

Now we use the graded-adaptive time-stepping strategy with κ = 103 to simulate the coars-
ening dynamics of Example 2 until T = 300. The time evolutions of the microstructure due to
phase separation is summarized in Figure 6. The time evolutions of discrete energies, E(t) and
Eα(t), the discrete maximum principle, and adaptive time steps are displayed in Figure 7. As
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Figure 6: Solution snapshots of Example 2 at t = 10, 50, 100, 300 (from left to right) for fractional
orders α = 0.4, 0.7 and 0.9 (from top to bottom), respectively.

seen, the coarsening dynamics for a big fractional order α is faster than that for a small one.
Correspondingly, the bigger the fractional order α, the faster the original energy E(t) dissipates.

Due to the convolution term Iαt
∥∥ δE
δu

∥∥2
, the variational energy Eα(t) yields a sightly different be-

havior. The time-step curves show that small time steps are selected during the early separation
progress having a large variation of energy; large time-steps are chosen during the coarsening
progress having a small variation of energy. Moreover, the time evolution of coarsening dynamics
preserves the discrete maximum principle well.

5 Concluding remarks

We proposed a Crank-Nicolson scheme with variable steps for the time fractional Allen-Cahn
equation that can preserve both the energy stability and the maximum bound principle. More
importantly, the scheme is asymptotically energy stability preserving in the α → 1 limit. Our
scheme is build on a reformulated problem associated with the Riemann-Liouville derivative. In
this way, we build up for the first time a reversible discrete transformation between the L1-type
formula of Riemann-Liouville derivative and a new L1-type formula of Caputo derivative.

This work raises some open issues to be further studied:

• The numerical rate of convergence of our scheme is 1+α. Thus it is worth to design a second
order scheme that can preserve both the maximum bound principle and the variational
energy dissipation law. One possible way to do this is the recently suggested second-order
formula in [20] by replacing the piecewise constant approximation Π0v with the piecewise
linear polynomial Π1v in (2.2).
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Figure 7: Evolutions of energies E(t) , Eα(t), maximum norm and adaptive time steps (form
left to right) of Example 2 for three fractional orders α = 0.4, 0.7 and 0.9, respectively.

• By the DOC kernels (3.1), we build a connection between the discrete L1 Riemann-Liouville
derivative (2.2) and an indirect discrete Caputo derivative (3.8). How about other dis-
crete Riemann-Liouville derivatives, such as the variable-step second-order approximation
in [20]? Lemma 3.1 suggests that there exist (indirect) discrete Riemann-Liouville for-
mulas for any existing numerical Caupto derivatives, including the L1, Alikhanov (L2-1σ)
and L1+ formulas, then it would be interesting to investigate numerical approximation
properties for those associated discrete Riemann-Liouville approximations.
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A Approximation of the nonlinear bulk

We consider a second-order approximation of the nonlinear bulk force f(u) = u3 − u. It is easy
to check the following equalities

4f(a) (a− b) = (1− a2)2 − (1− b2)2 − 2(1− a2)(a− b)2 + (a2 − b2)2,

4f(b) (a− b) = (1− a2)2 − (1− b2)2 + 2(1− b2)(a− b)2 − (a2 − b2)2.
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Then one can obtain that

1

2
[f(a) + f(b)] (a− b) = F (a)− F (b) +

1

4
(a+ b)(a− b)3.

We consider a function H(a, b) with a real parameter ν,

H(a, b) :=
1

2
[f(a) + f(b)]− 1

4
[(2− ν)a+ νb] (a− b)2

such that

H(a, b)(a− b) = F (a)− F (b) +
ν − 1

4
(a− b)4 ≥ F (a)− F (b) if ν ≥ 1.

Moreover, the stabilized term in H(a, b) contains

[(2− ν)a+ νb] (a− b)2 = (2− ν)a3 + (3ν − 4)a2b+ (2− 3ν)ab2 + νb3.

One can choose ν = 4/3 to eliminate the term a2b so that H(a, b) contains only the terms a3,
ab2 and b3. Thus we have

H(a, b) =
1

2
[f(a) + f(b)]− 1

6
(a+ 2b)(a− b)2 =

1

3
a3 +

1

2
ab2 +

1

6
b3 − 1

2
(a+ b), (A.1)

H(a, b)(a− b) = F (a)− F (b) +
1

12
(a− b)4. (A.2)

The function H(a, b) in (A.1) will present a second-order approximation of the function f over
the interval [a, b]. Note that, the equality (A.2) is vital to the unconditional energy dissipation
of the suggested method, see Theorem 2.1. Furthermore, the following property

∂H

∂a
(a, b) = a2 +

1

2
(b2 − 1) (A.3)

is important to the unique solvability and maximum bound principle of our nonlinear scheme,
see Theorem 3.1 and Theorem 3.2.

B Fast computations of L1R formula

Always, the L1R fromula (2.2) needs huge storage and computational cost in long time simula-
tions due to the non-locality of Riemann-Liouville derivative (1.11). To reduce the computational
cost and memory requirements, the sum-of-exponentials technique [7, Theorem 2.1] is applied
here to speed up the evaluation of the L1R formula. A key result is to approximate the kernel
function ωα(t) efficiently inside the interval [∆t, T ].

Lemma B.1. For the given α ∈ (0, 1), an absolute tolerance error ε � 1, a cut-off time
∆t > 0 and a finial time T , there exists a positive integer Nq, positive quadrature nodes θ` and
corresponding positive weights $` (1 ≤ ` ≤ Nq) such that∣∣∣∣ωα(t)−

Nq∑
`=1

$`e−θ
`t

∣∣∣∣ ≤ ε, ∀ t ∈ [∆t, T ],

where the number Nq of quadrature nodes satisfies

Nq = O
(

log
1

ε

(
log log

1

ε
+ log

T

∆t

)
+ log

1

∆t

(
log log

1

ε
+ log

1

∆t

))
.
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The Riemann-Liouville derivative (1.11) is first split into a local part [tn−1, t] and a history
part [0, tn−1]. The local part is approximated by the constant interpolation (Π0,nv) (t) and the
history part is evaluated via the SOE technique, that is,(

R∂αt v
)

(tn− 1
2
) ≈ 1

τn

∫ tn

tn−1

∂

∂t

∫ t

tn−1

ωα(t− s)(Π0,nv)(s) dsdt

+
1

τn

∫ tn

tn−1

∂

∂t

∫ tn−1

0
v(s)

Nq∑
`=1

$`e−θ
`(t−s) dsdt

=
a

(n)
0

τn
vn−

1
2 +

1

τn

Nq∑
`=1

$`

∫ tn

tn−1

∂

∂t

∫ tn−1

0
v(s)e−θ

`(t−s) dsdt

=
a

(n)
0

τn
vn−

1
2 − 1

τn

Nq∑
`=1

$`
(
1− e−θ`τn

)
H`(tn−1) for n ≥ 1, (B.1)

in which H`(tk) is given by

H`(tk) :=

∫ tk

0
e−θ

`(tk−s)v(s) ds with H`(t0) = 0.

Applying the constant interpolation Π0,kv to approximate v in interval [tk−1, tk], one can find
the following recursive formula to update H`(tk),

H`(tk) ≈
∫ tk−1

0
e−θ

`(tk−s)v(s) ds+

∫ tk

tk−1

e−θ
`(tk−s)vk−

1
2 ds

= e−θ
`τkH`(tk−1) + vk−

1
2

∫ tk

tk−1

e−θ
`(tk−s) ds. (B.2)

Then the two approximations (B.1)-(B.2) gives a fast L1R formula,

(R∂αf v)n−
1
2 :=

1

τn
a

(n)
0 vn−

1
2 − 1

τn

Nq∑
`=1

$`
(
1− e−θ`τn

)
H`(tn−1), (B.3)

where the history H`(tk) will be updated by H`(t0) = 0 and

H`(tk) = e−θ
`τkH`(tk−1) + vk−

1
2

∫ tk

tk−1

e−θ
`(tk−s) ds for k ≥ 1.
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