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Abstract. We propose local space-time approximation spaces for parabolic prob-

lems that are optimal in the sense of Kolmogorov and may be employed in mul-
tiscale and domain decomposition methods. The diffusion coefficient can be ar-

bitrarily rough in space and time. To construct local approximation spaces we

consider a compact transfer operator that acts on the space of local solutions and
covers the full time dimension. The optimal local spaces are then given by the left

singular vectors of the transfer operator. To prove compactness of the latter we

combine a suitable parabolic Caccioppoli inequality with the compactness theo-
rem of Aubin-Lions. In contrast to the elliptic setting [I. Babuška and R. Lipton,

Multiscale Model. Simul., 9 (2011), pp. 373-406] we need an additional regularity

result to combine the two results. Furthermore, we employ the generalized finite
element method to couple local spaces and construct an approximation of the

global solution. Since our approach yields reduced space-time bases, the compu-
tation of the global approximation does not require a time stepping method and

is thus computationally efficient. Moreover, we derive rigorous local and global

a priori error bounds. In detail, we bound the global approximation error in a
graph norm by the local errors in the L2(H1)-norm, noting that the space the

transfer operator maps to is equipped with this norm. Numerical experiments

demonstrate an exponential decay of the singular values of the transfer operator
and the local and global approximation errors for problems with high contrast or

multiscale structure regarding space and time.

1. Introduction

In certain industrial applications and environmental sciences, modeling and simu-
lating phenomena such as the transport of pollutants in the groundwater is of great
interest. These problems exhibit highly varying and heterogeneous multiscale features
since both local fine-scale effects such as capillary pressures and the coarse-scale flow
behavior have a significant influence on the overall concentration and distribution of
the pollutant. In addition, the respective coefficient functions can be rough in space
and time. Therefore, a numerical simulation using standard techniques such as the
finite element (FE) or the finite volume method can be prohibitively expensive. In
fact, the FE method based on classical polynomials can perform arbitrarily bad for
heterogeneous problems with rough coefficients [5]. Well-known strategies to address
these problems are domain decomposition [30, 37, 45, 68] and multiscale methods
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[8, 24, 25, 28, 33, 38, 39, 53, 55, 58, 59, 60]. The latter are based on ansatz functions
which incorporate the local behavior of the (numerical) solution of the PDE.

Localizable multiscale methods that allow controlling both the error due to localiza-
tion and the global approximation error at a certain rate, but do not rely on structural
assumptions such as periodicity or scale separation, have been developed in the last
decade. So far, such type of multiscale methods have been proposed for problems with
coefficients that are rough in space and include optimal local approximation spaces
[8, 19, 25], localized bases based on the flux transfer property [58], adaptive local
finite elements (AL basis) [33], the local orthogonal decomposition [52, 53], rough
polyharmonic splines [60], and gamblets [59].

In this paper, we propose optimal local approximation spaces, and, to the best
of our knowledge, for the first time such type of multiscale methods for parabolic
problems with coefficients that are rough in both space and time. We conjecture that
the concepts developed in this paper and the corresponding numerical analysis are
relevant for all these methods to address coefficients that are rough in space and time.

To construct ansatz functions that incorporate the local behavior of the global so-
lution, we consider the space of all local solutions of the PDE on a target subdomain.
To localize the computations, we introduce a strictly larger oversampling subdomain
and then restrict the local solutions to the target subdomain. The key observation
motivating our approach is the very rapid, exponential decay of the solutions from
the boundary of the oversampling domain to the inner target domain which reveals
that the solution space of the PDE is locally low-dimensional. To detect the functions
that still persist on the target subdomain and are thus relevant for approximation, we
use a transfer operator that maps boundary data in space and time on the boundary
of the oversampling domain to the respective solution on the target subdomain over
the whole time interval. Compactness of the transfer operator facilitates its singular
value decomposition via the Hilbert-Schmidt theorem [62, Theorem 8.94] and thus en-
ables the approximation of its range using only few modes if the singular values decay
fast. As the exponential decay of the solutions in the interior yields a fast decay of
energy, the singular values indeed decay fast. Spanning the local space by the leading
left singular vectors of the transfer operator results in an approximation space that
is optimal in the sense of Kolmogorov [47] and hence minimizes the approximation
error among all spaces of the same dimension. To prove compactness of the transfer
operator, we combine a parabolic Caccioppoli inequality with the compact embedding
of suitable Sobolev spaces in L2(L2). The Caccioppoli inequality represents the ex-
ponential decay behavior of higher frequencies in an analytic fashion and allows to
bound the L2(H1)-norm of local solutions on the target subdomain in terms of their
L2(L2)-norm on the oversampling subdomain. It can therefore be seen as an inverse
Poincaré inequality. In contrast to the elliptic setting [8] the regularities do not match
a priori and we therefore exploit an additional regularity result for the weak solutions
to combine the two results.

To construct an approximation of the global solution, we employ the generalized
finite element method (GFEM) [6, 10] as one example for coupling the local spaces
since it allows to bound the global approximation error in terms of the local error
contributions. In contrast to existing approaches [35] we propose, to the best of our
knowledge, for the first time a space-time GFEM based on local space-time ansatz
functions, as for certain problems a reduction only with respect to the spatial vari-
able can become expensive if the time discretization involves many time steps. Such
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problems comprise, for instance, multiscale diffusion coefficients that are varying non-
periodically in time. In those cases either the reduced spatial bases would become very
large since snapshots for many time points have to be included or one would have to
use an adaptive-in-time procedure based on smaller time intervals. The computation
of the global approximation for the space-time GFEM we propose here does not re-
quire a time stepping method. As several numerical experiments demonstrate a very
rapid and exponential decay of the approximation errors for an increasing number of
basis functions, the solution of the global system is computationally very efficient.

As one key contribution of this paper we prove a rigorous a priori error bound
for the local approximation error in the L2(H1)-seminorm. We highlight that the
proofs in the elliptic setting crucially rely on the fact that the solution of the PDE
also minimizes an energy functional, which is not true for the solution of the parabolic
PDE. We show that as a consequence additional data terms have to be included in the
a priori error bound and that the bound generally does not hold without these extra
terms. Moreover, as one major contribution of this paper, we prove that the global
approximation error in a suitable graph norm can be controlled only by the local errors
in the L2(H1)-seminorm. The key argument to additionally control the time derivative
of the global error in a certain reduced dual norm is a (Petrov-)Galerkin orthogonality
of the approximation error and the reduced test space. Exploiting the global a priori
error result we propose an adaptive algorithm for the localized construction of the
local ansatz spaces such that the global GFEM approximation satisfies a prescribed
global error tolerance. Finally, as another contribution of this paper, we also show
how to deal with non-homogeneous boundary conditions.

Localizable multiscale methods for parabolic problems with coefficients that are
rough in space can, for instance, be found in [19, 52, 58, 59, 60].

The local orthogonal decomposition (LOD) has been introduced in [53] for elliptic
multiscale problems and generalized to parabolic multiscale problems with highly
varying spatial diffusion coefficients in [52]. The key idea of the LOD is to express
the space H1

0 as a direct sum of a fine-scale space, which is the kernel of an H1-stable
interpolation operator on a coarse mesh, and a multiscale space that is defined as the
difference of the coarse finite element space and its orthogonal projection onto the fine-
scale space. In this way, the decomposition is orthogonal with respect to the energy
inner product. Exploiting the Caccioppoli inequality an exponential decay of the basis
functions is shown [53] and consequently the ansatz functions can be approximated on
local subdomains. In the parabolic setting the multiscale basis functions are combined
with a backward Euler time stepping scheme.

In [60] rough polyharmonic splines are introduced as the solutions of constrained
minimization problems that have a built-in decay behavior. This justifies their approx-
imation by localized interpolation functions that are computed on local subdomains.
The resulting approximation error is bounded using a certain Caccioppoli inequality.
Concerning parabolic problems an implicit time discretization is proposed.

A probabilistic methodology motivated by game theory is introduced in [57]. The
so-called gamblets are locally computed in a hierarchic fine-to-coarse fashion, decay
exponentially, and induce an orthogonal multiresolution decomposition of the solution
space. The approach is generalized to parabolic (and hyperbolic) problems in [59],
where an implicit Euler time discretization is used.

In [58] localized bases for (elliptic, hyperbolic, and) parabolic problems with spatial
L∞-diffusion coefficients are introduced. The approach is based on the flux transfer
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property and compactness properties due to source terms of sufficient regularity. In
particular, local spatial approximation spaces are constructed by solving elliptic PDEs
on local subdomains and an implicit time discretization is used.

Similar to our approach, the methods discussed above are based on compactness
properties of certain operators and exploit Caccioppoli-type inequalities. We empha-
size that, in contrast to existing approaches, our approach is not restricted to parabolic
problems with diffusion coefficients that only vary rapidly in space, but is able to deal
with coefficients that are arbitrarily rough in both space and time. Furthermore, we
do not construct reduced spaces only with respect to the spatial variable and conse-
quently no time stepping procedure is required to compute the global approximation.

In [7, 8] optimal local approximation spaces for elliptic PDEs with rough coefficient
functions are introduced via a compact restriction operator that acts on the space of
local solutions. The local spaces are then coupled using the GFEM [6, 10]. Further-
more, optimal interface spaces for (parametrized) elliptic problems are introduced in
[67], generalized to geometry changes in [66], and also proposed in [17]. Concern-
ing (real-world) applications the optimal local approximation spaces are employed,
for instance, for the construction of digital twins [42, 46] and in the context of data
assimilation [71]. Other options for approximating the optimal local reduced spaces
besides the random sampling technique [15] employed here, are proposed in [9, 16].

Finally, there has recently been a growing number of contributions concerning local-
ized model order reduction for parametrized problems [1, 26, 40, 41, 50, 51, 54]. Local
ansatz spaces are generated either via snapshots that are precomputed on local refer-
ence domains and reused for geometrically similar subdomains [26, 40, 41, 50, 51], a
combination of greedy-type reduced basis (RB) approximations and liftings of (eigen-
function or snapshot) interface modes [26, 40, 54], or greedy RB approximations with
a principal component analysis compression [1]. We refer to [14] for an overview on
localized model order reduction procedures for parametrized problems. In the time-
dependent setting localized approaches addressing flow simulations can, for instance,
be found in [29, 31, 43]. Here, the local ansatz spaces are build using proper orthog-
onal decomposition [29, 31], discrete empirical interpolation [31], or greedy-type RB
approximations [43].

The remainder of this paper is organized as follows. In section 2 we introduce
the parabolic model problem. Subsequently, the main contributions of this paper
are developed in sections 3 and 5. We propose optimal local approximation spaces
in section 3 and discuss their computational realization in section 4. Moreover, in
section 5 we address the construction of a global approximation via GFEM and provide
local and global a priori error bounds. Finally, we present numerical experiments in
section 6 to demonstrate the approximation properties of our local and global reduced
spaces and draw some conclusions in section 7.

2. Model problem: the linear heat equation

In this section we introduce the linear heat equation as a representative model
problem for parabolic problems. To that end, let Ω ⊆ Rn denote a large, bounded
Lipschitz domain of dimension n ∈ {1, 2, 3} with ∂Ω = ΣD∪ΣN , where ΣD denotes the
Dirichlet and ΣN the Neumann boundary, respectively. Furthermore, let I = (0, T ) ⊆
R denote a time interval for an arbitrary 0 < T < ∞. We consider the following
initial boundary value problem for the linear heat equation: Find the temperature
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u : I × Ω→ R such that

ut(t, x)− div(α(t, x)∇u(t, x)) = f(t, x) for every (t, x) ∈ I × Ω,
u(t, x) = gD(t, x) for every (t, x) ∈ I × ΣD,

α∇u(t, x) · n(x) = gN (t, x) for every (t, x) ∈ I × ΣN ,
u(0, x) = u0(x) for every x ∈ Ω.

(2.1)

Here, α ∈ L∞(I × Ω)n×n denotes the heat conductivity coefficient that satisfies
α0(t, x) |v|2 ≤ vTα(t, x) v ≤ α1(t, x) |v|2 for every v ∈ Rn and 0 < α0 < α0(t, x) <
α1(t, x) < α1 < ∞ for almost every (t, x) ∈ I × Ω and α0, α1 ∈ R. Moreover, the
function f ∈ L2(I, V ∗) represents a heat source, u0 ∈ L2(Ω) denotes the initial tem-

perature, gD ∈ L2(I,H
1
2 (ΣD)) and gN ∈ L2(I,H−

1
2 (ΣN )) denote the Dirichlet and

Neumann boundary data, and n is the outer unit normal. The spatial test space is
given by V := {w ∈ H1(Ω) | w = 0 on ΣD} and V ∗ denotes its dual space, where

‖ ·‖V := ‖α 1
2 · ‖L2(Ω) +‖α 1

2∇·‖L2(Ω). A corresponding weak formulation of (2.1) then

reads as follows: Find u ∈ L∞(I, L2(Ω)) ∩ L2(I, VΣD
) such that

−
∫
I

(u(t), v)L2(Ω) ϕt(t) dt +

∫
I

(α∇u(t),∇v)L2(Ω) ϕ(t) dt

=

∫
I

〈f(t), v〉V ϕ(t) dt+

∫
I

〈gN (t), v〉
H

1
2 (ΣN )

ϕ(t) dt ∀ v ∈ V, ϕ ∈ C∞0 (I)

(2.2)

and it holds u(0) = u0 in L2(Ω), where VΣD
:= {w ∈ H1(Ω) | w = gD on ΣD}.

3. Optimal local approximation spaces

In this section we propose local space-time approximation spaces, which are optimal
in the sense of Kolmogorov, for the linear heat equation with coefficients that are
rough in space and time, extending the approach from [8] for the elliptic setting. In
subsection 3.1 we start with a motivation before we describe the construction of local
ansatz spaces for local subdomains in the interior of the global domain in subsection 3.2
and subdomains located at the global boundary in subsection 3.3.

3.1. Motivation. To tackle heterogeneous problems with rough coefficients, we pro-
pose localizable multiscale methods based on ansatz functions which incorporate
the local behavior of the global solution of the PDE. To this end, we consider the
space of all local solutions of the PDE with arbitrary Dirichlet boundary values
on the boundary of the oversampling domain Ωout; see Fig. 1 for an illustration.
We showcase that the local solution space on the target subdomain Ωin can be
well approximated using only few functions via an example [67]: Consider −∆u =
0 in Ωout = (−2, 2) × (0, 1) with homogeneous Neumann boundary conditions on
(−2, 2)×{0, 1} and arbitrary Dirichlet boundary conditions on {−2, 2}× (0, 1). Using
separation of variables, we conclude that all solutions of this problem can be written
as u(x, y) = a0 + b0x+

∑∞
n=1 cos(nπy)[an cosh(nπx)+ bn sinh(nπy)], where an, bn ∈ R

are determined by the Dirichlet boundary values for n = 0, . . . ,∞. We observe in
Fig. 2 a very rapid decay of the higher frequencies of the solutions (cos(nπy) for
higher n) from the boundary into the interior of the domain Ωout, which implies that
the solution space of the PDE is locally low-dimensional. To detect the functions that
still persist on Ωin and are thus relevant for approximation purposes, we introduce a
transfer operator P whose range is the space of local solutions of the PDE on Ωin.

After discretization, say, with the FE method, the transfer operator can be rep-
resented by a matrix P. It is then well-known that the range of this matrix can be
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Figure 1. Local target domain Ωin and over-

sampling domain Ωout in the interior of Ω.

−2 −1 0 1 2
0

0.2

0.4 n = 1

n = 2

n = 4

n = 8

Figure 2. Solution u(x, 2/3) for Dirichlet

boundary conditions − cos(nπy) for n = 1, 2, 4, 8.

optimally approximated by its k leading left singular vectors and that the projection
error satisfies ‖P−UkU

>
k P‖2 = σh,k+1 (Eckart-Young theorem e.g. in [32]); here the

columns of Uk contain the k leading singular vectors and σh,k+1 denotes the k + 1st
singular value of P. While the discrete transfer operator is trivially compact be-
cause of its finite rank, in the continuous setting we need to prove compactness of the
transfer operator to facilitate its singular value decomposition via the Hilbert-Schmidt
theorem [62, Theorem 8.94]. Then, the space Λk spanned by the k leading left singu-
lar vectors is an optimal approximation space in the sense of Kolmogorov, meaning
that it minimizes the approximation error among all linear spaces of dimension k.
In addition, we have as in the discrete setting ‖P − projΛk

P‖ = σk+1, where projΛk

denotes the orthogonal projection onto Λk and σk+1 is the k + 1st singular value of
P . Thanks to the fast decay of the singular values, related to the exponential decay
of the solutions in the interior, very few left singular vectors suffice for an accurate
approximation.

The key ingredients to show compactness of the transfer operator are a parabolic
Caccioppoli inequality and the compactness theorem of Aubin-Lions. The exponen-
tial decay of higher frequencies of the solutions from I × ∂Ωout to I × Ωin implies
that the integral over the (spatial) gradient of a local solution on I × Ωin can be
bounded in terms of the integral over the solution on I × Ωout. This decay of en-
ergy in the interior of I × Ωout is analytically captured by the Caccioppoli inequality
that allows to bound the L2(I,H1(Ωin))-norm of local solutions in terms of their
L2(I, L2(Ωout))-norm. Caccioppoli’s inequality, closely linked to the exponential de-
cay of the solutions in the interior, thus makes the local solution space amenable to
approximation and facilitates the design of localizable multiscale methods. Moreover,
the compactness theorem of Aubin-Lions is the parabolic analogon of the compact
embedding of H1(Ωout) in L2(Ωout) in the stationary setting, and states that the
space of functions in L2(I,H1(Ωout)) that have a time derivative in L2(I,H−1(Ωout))
is compactly embedded in L2(I, L2(Ωout)). In contrast to the elliptic setting [8] the
regularities do not match a priori and we therefore exploit an additional regularity
result for the weak solutions to combine the two results.

Based on the approximation properties of the local ansatz space, we can furthermore
show that the relative local approximation error is bounded by ‖P−projΛk

P‖ = σk+1.
Moreover, by employing a global coupling of the local ansatz spaces that allows to
bound the global approximation error in terms of the local error contributions, we can
achieve a global error that is decaying with the same rate. Therefore, our approach
allows for local and global error control, and the local reduced spaces can be chosen
such that a desired global error tolerance prescribed by the user is satisfied.

3.2. Optimal local approximation spaces in the interior. Let Ωin ⊆ Ωout⊆
Ω denote subdomains that are located in the interior of the computational domain
satisfying dist(∂Ωout, ∂Ω) > 0 and dist(∂Ωin, ∂Ωout) > δ > 0 as illustrated in Fig. 1.
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Since Ωin and Ωout lie in the interior of the spatial domain Ω, we do not know the
values of the global solution u on I×∂Ωin or I×∂Ωout. We only know that u solves the
linear heat equation locally in I × Ωin or I × Ωout with unknown Dirichlet boundary
conditions on I×∂Ωin or I×∂Ωout as discussed in subsection 3.1. As we do not want to
make any assumptions about the geometry of the global domain Ω when constructing
the local reduced models and want to choose the oversampling domain Ωout as small
as possible, we cannot make any assumptions on the values of u on I × ∂Ωout. Hence,
we are interested in approximating all functions w ∈ L∞(I, L2(Ωin))∩L2(I,H1(Ωin))
that satisfy w(0) = u0 in L2(Ωin) and solve

−
∫
I

(w(t), v)L2(Ωin) ϕt(t) dt+

∫
I

(α∇w(t),∇v)L2(Ωin) ϕ(t) dt

=

∫
I

〈f(t), v〉H1
0 (Ωin) ϕ(t) dt ∀ v ∈ H1

0 (Ωin), ϕ ∈ C∞0 (I).

(P in)

The analogous problem on I × Ωout will be denoted by (P out).
First, we address the case where f = 0 and u0 = 0 and discuss the general case at

the end of this subsection. We consider the following spaces of functions:

Hin :=
{
w ∈ L∞(I, L2(Ωin)) ∩ L2(I,H1(Ωin))

∣∣w solves (P in) for f = 0, u0 = 0
}
,

Hout :=
{
w ∈ L∞(I, L2(Ωout)) ∩ L2(I,H1(Ωout))

∣∣w solves (P out) for f = 0, u0 = 0
}
,

Bout :=
{
w|I×∂Ωout

∣∣w ∈ Hout} = L2(I,H1/2(∂Ωout)).

The trace theorem [49, Theorem 2.1] yields the existence of the traces in Bout.
We equip Hin with the inner product ((u, v))in :=

∫
I

∫
Ωin α∇u∇v and the induced

energy norm |||u|||in := ‖α 1
2∇u‖L2(I,L2(Ωin)). Analogously, we equip Hout with the

energy norm ‖α 1
2∇ · ‖L2(I,L2(Ωout)). Furthermore, we equip Bout with the inner prod-

uct ((µ, ν))out :=
∫
I

∫
Ωout α∇H(µ)∇H(ν) and the induced energy norm |||µ|||out :=

‖α 1
2∇H(µ)‖L2(I,L2(Ωout)), where H(µ) ∈ Hout is the solution of (P out) for f = 0,

u0 = 0, and boundary condition µ ∈ Bout.1
Since we are interested in approximating the space Hin, we next define a transfer

operator P : Bout → Hin, similar to [8, 67], that is given by

P (w|I×∂Ωout) := w|I×Ωin for all w ∈ Hout and thus w|I×∂Ωout ∈ Bout.(3.1)

In order to approximate Hin with the left singular vectors of P , we need to prove
compactness of the latter; see Theorem A.1. To this end, we want to employ the
compactness theorem of Aubin-Lions [65, Corollary 5], which states that the gener-
alized Sobolev space W 1,2,2(I,H1(Ωout), H−1(Ωout)) := {u ∈ L2(I,H1(Ωout)) | ut ∈
L2(I,H−1(Ωout))} is compactly embedded in the space L2(I, L2(Ωout)), and the fol-
lowing parabolic Caccioppoli-type inequality2, which is proved in Appendix A.1.

Proposition 3.1 (Parabolic Caccioppoli inequality). For a function w ∈ Hout and
thus w|I×Ωin ∈ Hin the following estimate holds:

‖w|I×Ωin‖2L∞(I,L2(Ωin)) + ‖α 1
2∇(w|I×Ωin)‖2L2(I×Ωin) ≤

8α1

δ2
‖w‖2L2(I×Ωout).(3.2)

1Note that |||·|||in defines a norm on Hin thanks to a Poincaré inequality for parabolic problems

stated in Proposition A.2. Thanks to the trace inequality and Proposition A.2 |||·|||out defines a norm

on Bout.
2Similar parabolic Caccioppoli inequalities can, for instance, be found in [11, (3.13)], [18, Lemma

2.1], [44, Lemma 2.4], and [56, Lemma 2.4].
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To combine Proposition 3.1 with the compactness theorem of Aubin-Lions and thus
prove compactness of P , the following regularity result is required, which is proved in
Appendix A.1.

Lemma 3.2 (Regularity). There holds Hin ⊆ W 1,2,2(I,H1(Ωin), H−1(Ωin)) and
analogously for Hout.

As we aim at providing a good approximation space for a whole set of functions,
the Kolmogorov n-width [47] serves as a benchmark and we will see below that the
left singular vectors of P actually span a space which is optimal in the sense of
Kolmogorov; a notion which we define now.

Definition 3.3 (Kolmogorov n-width). Let Hilbert spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y )
with associated norms and a linear continuous operator T : Y → X be given. For
an arbitrary n ∈ N let Xn ⊆ X denote an n-dimensional subspace of X. Then, the
Kolmogorov n-width of T (Y ) in X is given by

dn(T (Y );X) := inf
Xn⊆X

dim(Xn)=n

sup
v∈Y

inf
w∈Xn

‖Tv − w‖X
‖v‖Y

.

An n-dimensional subspace Xn ⊆ X is called optimal for dn(T (Y );X) if

sup
v∈Y

inf
w∈Xn

‖Tv − w‖X
‖v‖Y

= dn(T (Y );X).

Having proved compactness of P , we finally introduce the corresponding adjoint
operator P ∗ : Hin → Bout. Consequently, their composition P ∗P : Bout → Bout is a
compact, self-adjoint, non-negative operator. Employing the Hilbert-Schmidt theorem
as well as [61, Theorem 2.2 in Chapter 4] then yields the following result:

Theorem 3.4 (Optimal approximation spaces in the interior). Let λi ∈ R+ and
ϕi ∈ Hout, i = 1, . . . ,∞, denote the eigenvalues and eigenfunctions satisfying the
transfer eigenvalue problem: Find (λi, ϕi) ∈ (R+,Hout) such that

((ϕi|I×Ωin , w|I×Ωin))in = λi ((ϕi|I×∂Ωout , w|I×∂Ωout))out ∀w ∈ Hout.(3.3)

Furthermore, let the eigenvalues {λi}∞i=1 be listed in non-increasing order of magni-

tude: λ1 ≥ λ2 ≥ . . . ≥ 0, additionally satisfying λj
j→∞−−−−→ 0. Then the optimal

approximation space for dn(P (Bout);Hin) is given by

Λn := span{χ1, . . . , χn}, χi := P (ϕi|I×∂Ωout), i = 1, . . . , n.

Moreover, the associated Kolmogorov n-width is characterized as follows:

dn(P (Bout);Hin) = sup
v∈Bout

inf
w∈Λn

|||Pv − w|||in
|||v|||out

=
√
λn+1 .(3.4)

Proof. Thanks to the definition of the transfer operator P and its adjoint operator
P ∗, the transfer eigenvalue problem (3.3) may be reformulated as follows:

((P ∗Pϕi|I×∂Ωout , w|I×∂Ωout))out = λi ((ϕi|I×∂Ωout , w|I×∂Ωout))out.

Then, the assertion directly follows from Theorem 2.2 in Chapter 4 of [61]. �

Similar results have been obtained in [8, 67] for elliptic problems.
To address non-homogeneous data f and u0, uf ∈ L∞(I, L2(Ωout))∩L2(I,H1

0 (Ωout))
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Figure 3. Local target domain Ωin and oversampling domain Ωout at the boundary of Ω.

denotes the solution of (P out) for arbitrary f ∈ L2(I,H−1(Ωout)) and u0 ∈ L2(Ωout).
Finally, the optimal local approximation space over I × Ωin is given by

Λn,data := span{χ1, . . . , χn, χ
f}, χf := uf |I×Ωin −

n∑
k=1

((uf |I×Ωin , χk))in χk.(3.5)

Thus, Λn,data provides an approximation of all functions in {w ∈ L∞(I, L2(Ωin)) ∩
L2(I,H1(Ωin)) |w solves (P in)}.

3.3. Optimal local approximation spaces at the boundary. Let Ωin ⊆ Ωout ⊆
Ω denote subdomains that are located at the boundary of the computational domain
Ω and satisfy ∂Ωin ∩ ∂Ωout ∩ ∂Ω 6= ∅ and dist(∂Ωin ∩ Ω, ∂Ωout ∩ Ω) > δ > 0 as
illustrated in Fig. 3 (right); the case ∂Ωout ∩ ∂Ω 6= ∅ and dist(∂Ωin, ∂Ωout) > δ > 0
(see Fig. 3 (left)) follows analogously. We want to approximate all functions w ∈
L∞(I, L2(Ωin)) ∩ L2(I, V inΣD

) that satisfy w(0) = u0 in L2(Ωin) and solve

−
∫
I

(w(t), v)L2(Ωin) ϕt(t) dt+

∫
I

(α∇w(t),∇v)L2(Ωin) ϕ(t) dt

=

∫
I

〈f(t), v〉V in
0
ϕ(t) dt+

∫
I

〈gN (t), v〉
H

1
2 (∂Ωin∩ΣN )

ϕ(t) dt ∀ v ∈ V in0 , ϕ ∈ C∞0 (I),

(P in)

where V inΣD
:= {w∈H1(Ωin) | w= gD on ∂Ωin∩ΣD} and V in0 := {w∈H1(Ωin) | w= 0

on ∂Ωin∩ (Ω∪ΣD)}. The analogous problem on I × Ωout will be denoted by (P out).
We again first address the case where f = 0, u0 = 0, gD = 0, and gN = 0 and consider

Hin :=
{
w ∈ L∞(I, L2(Ωin)) ∩ L2(I, V in)

∣∣w solves (P in) for f, u0, gD, gN = 0
}
,

where V in :=
{
w ∈ H1(Ωin)

∣∣w = 0 on ∂Ωin ∩ ΣD
}
, Hout is defined analogously,

Bout :=
{
w|I×∂Ωout

∣∣w ∈ Hout}.
We introduce the transfer operator P : Bout → Hin defined as

P (w|I×∂Ωout) := w|I×Ωin for all w ∈ Hout,(3.6)

where the compactness of P follows from similar arguments as above (see Appen-
dix A.2). Analogous to subsection 3.2 we then obtain that the optimal approximation
space for dn(P (Bout);Hin) is given by Λn := span{χ1, . . . , χn}, χi := P (ϕi|I×∂Ωout),
where λi ∈ R+ and ϕi ∈ Hout denote the n largest eigenvalues and corresponding
eigenfunctions that satisfy P ∗Pϕi = λiϕi. Moreover, it again follows that the Kol-
mogorov n-width is given by dn(P (Bout);Hin) =

√
λn+1.

To address non-homogeneous data f , u0, gD, and gN , first choose a lifting function
ub ∈ W 1,2,2(I, VΣD

, V ∗)3 that satisfies α∇ub · n = gN in L2(I,H−
1
2 (ΣN )), ub(0) = 0

in L2(Ω), and is equal to zero on the union of all local oversampling domains that do
not touch the global boundary.4 Next, for f ∈ L2(I, (V out0 )∗) and u0 ∈ L2(Ωout) let

3Recall that VΣD
:= {w ∈ H1(Ω) | w = gD on ΣD} and V := {w ∈ H1(Ω) | w = 0 on ΣD}.

4Note that in practice this is not a problem since we can for instance choose ub to be zero on all

inner degrees of freedom and thus do not violate locality.
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uf ∈ L∞(I, L2(Ωout)) ∩ L2(I, V out0 ) be the solution of (P out), where the right hand
side of (P out) is given by∫
I

〈f(t), v〉V out
0

ϕ(t) dt+

∫
I

(ub(t), v)L2(Ωout) ϕt(t) dt−
∫
I

(α∇ub(t),∇v)L2(Ωout) ϕ(t) dt

for all v ∈ V out0 and ϕ ∈ C∞0 (I) and V out0 := {w ∈ H1(Ωout) | w = 0 on ∂Ωout ∩ (Ω ∪
ΣD)}. Then, the optimal approximation space over I × Ωin is denoted by Λn,data :=
span{χ1, . . . , χn, χ

f , ub|I×Ωin}, where χf := uf |I×Ωin −
∑n
k=1((uf |I×Ωin , χk))in χk.

4. Approximation of the optimal local approximation spaces

In this section we describe how to compute an approximation of the transfer eigen-
value problem (cf. (3.3)) and thus an approximation of the optimal local reduced space
Λn,data (cf. (3.5)) employing the FE method, and discuss its practical realization via
Krylov subspace methods and random sampling.

4.1. Computational realization of the transfer eigenvalue problem. To sim-
plify the notation we consider in this section subdomains Ωin ⊆ Ωout located in the
interior of Ω and homogeneous initial conditions. We assume that a partition of Ωout

is given such that ∂Ωin does not intersect any element of that partition and consider a
conforming finite element (FE) space V outh ⊆ H1(Ωout) of dimension Nout

h ∈ N. Fur-
thermore, we introduce a triangulation of the time interval I = (0, T ) and consider a
piecewise linear FE space St ⊆ H1(I) and a piecewise constant FE space Qt ⊆ L2(I)
of dimension NT ∈ N.5 Then, the ansatz and test space of dimension N := NT ·Nout

h

for the Petrov-Galerkin approximation are given by St ⊗ V outh and Qt ⊗ V outh with
canonical basis functions φi and ψi for i = 1, . . . , N . To ensure stability, we assume
that the space-time discretization satisfies the CFL condition (cf. [2]).6 We introduce
the matrix B ∈ RN×N defined as

Bij := ((φj)t, ψi)L2(I×Ωout) + (α∇φj ,∇ψi)L2(I×Ωout) ∀φj ∈ St⊗V outh , ψi ∈ Qt⊗V outh

for i, j = 1, . . . , N . In addition, we suppose that the Nout rows of B that correspond
to nodes on I × ∂Ωout are replaced by the respective rows of the identity matrix. For
every m = 1, . . . , Nout we then compute the local solution um ∈ RN by solving

B um = em,(4.1)

where em ∈ RN is the unit vector associated with the m-th node that lies on I×∂Ωout.
Moreover, we denote by Min ∈ RNin×Nin and Mout ∈ RNout×Nout inner product
matrices associated with I × Ωin and I × ∂Ωout and D→in ∈ RNin×N restricts the
coefficients of a FE function on I×Ωout to the respective Nin coefficients corresponding
to I×Ωin. Finally, we assemble and solve the following generalized eigenvalue problem:

5We assume that homogeneous initial conditions are included in the definition of St. For coeffi-

cients α that do not depend on the temporal variable, the Petrov-Galerkin formulation is equivalent

to a Crank Nicolson time stepping procedure [72].
6Unconditional stability can be proven, for instance, if the discrete ansatz space is a subspace of

the discrete test space or if the test space is refined with respect to the temporal direction. However,
in the latter case the dimension of the test space will be larger than the dimension of the ansatz space

and the discrete solution needs to be computed as the minimizer of a certain residual functional (see,

e.g., [2]).
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Find eigenvalues λh,j ∈ R+ with corresponding eigenvectors ξj ∈ RNout such that7

(4.2) [D→in u1 . . .D→in uNout
]
>

Min [D→in u1 . . .D→in uNout
] ξj = λh,j Mout ξj .

The coefficients of the FE approximation of the reduced basis {χ1, . . . , χn} are then
given by χj := [D→in u1 . . . D→in uNout ] ξj ∈ RNin for j = 1, . . . , n.

Moreover, the transfer eigenvalue problem can equivalently be approximated using
the matrix representation P∈RNout×Nin of the discrete transfer operator Ph given as

P ξ = D→in B−1 D out→ ξ.(4.3)

Here, D out→ ∈ RN×Nout extends a coefficient vector corresponding to I × ∂Ωout to
the respective coefficient vector associated with I ×Ωout by setting the new entries to
zero. Consequently, we solve the problem: Find λh,j ∈ R+ and ξj ∈ RNout such that

P>Min P ξj = λh,j Mout ξj .(4.4)

The reduced basis FE coefficients are then given by χj := P ξj ∈ RNin for j = 1, . . . , n.
To augment the reduced FE basis with the data f we compute the solution of

B uf = F, where Fi := 0 for indices i that correspond to nodes on I × ∂Ωout and
Fi := (f, vi)L2(I×Ωout), vi ∈ Qt ⊗ Vh, else. Then, D→in uf is added to the basis.

Remark 4.1 (Comparison of computational approaches to approximate the optimal
local spaces). A direct computation of the optimal local space via (4.1) and (4.2) would
require Nout evaluations of the transfer operator and thus Nout local solutions of the
PDE and solving a dense generalized eigenproblem of dimension Nout × Nout. As
this becomes infeasible for large Nout, one would in general use Krylov subspace or
randomized methods for the approximation of the transfer eigenvalue problem.

In Krylov subspace methods, the application of the transfer operator (4.3) would be
implicitly passed to the eigenvalue solver. To calculate the n eigenvectors correspond-
ing to the biggest n eigenvalues of P>h Ph using, for instance, the implicitly restarted
Arnoldi method (IRAM) from [48], O(n) evaluations of Ph and P>h are required in
every iteration. Algorithm 1 in subsection SM2.1 summarizes the approximation of
the optimal local spaces using IRAM. While Krylov subspace methods can lead to
more accurate approximations especially for slowly decaying singular values, random-
ized methods have the main advantage that they are inherently stable and amenable to
parallelization.

To generate an approximation space of dimension n via random sampling as de-
scribed in subsections SM2.2 and 4.2, n+ nt evaluations of the transfer operator are
required in total; n evaluations to construct the basis and nt evaluations to construct
test vectors that are used for a probabilistic a posteriori error estimator. In compar-
ison, the O(n) evaluations of Ph and P>h in every iteration of IRAM will likely sum
up to more than n+ nt evaluations required by random sampling.

As randomized methods can outperform Krylov subspace methods even in the se-
quential setting (see, e.g., [15]), they are thus an appealing choice for the approxima-
tion of the optimal local spaces. For a more in-depth comparison of Krylov subspace
and randomized methods, we refer, for instance, to [36, section 6].

Remark 4.2 (Computational complexity). The computational complexity of the local
basis construction is clearly dominated by the evaluation of Ph or P>h and thus the

7Assuming a certain ordering of the nodes, the matrix containing the restrictions of u1, . . . ,uNout

to I × ∂Ωout on the right hand side simplifies to the identity matrix.
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numerical solution of the local PDE, where we employ a sparse direct solver. For
a standard space-time FE discretization in three dimensions (one temporal and two
spatial dimensions) the factorization of B ∈ RN×N (e.g., LU, QR, Cholesky) can be
computed in O(N2) work [32]. After factorizing, the computational complexity for
each local solution of the PDE is O(N4/3) [32]. More details on the computational
complexity of the local basis construction are provided in subsection SM2.3.

4.2. Quasi-optimal local approximation spaces via random sampling. To
construct a suitable approximation Λnrand of the optimal local space Λn introduced
in section 3, we prescribe random boundary conditions on I × ∂Ωout, where the coef-
ficient vectors of the corresponding FE functions are normally distributed with mean
zero and covariance matrix M−1

out. Then, P is applied to the random vectors and
Λnrand is spanned by the resulting local solutions. Using this approach we can achieve

a quasi-optimal convergence of order
√
nλh,n+1 [15, 36]. Furthermore, we employ an

adaptive algorithm that is driven by a probabilistic a posteriori error estimator. The
output of the algorithm is an approximation space Λnrand that satisfies the property
P(‖Ph−projΛn

rand
Ph‖ ≤ tol) > (1− εalgofail),

8 where the accuracy tol and the failure

probability εalgofail are prescribed by the user. For further details we refer to subsec-
tion SM2.2 and to [15] where methods from randomized linear algebra [36] have been
used to approximate the optimal local approximation spaces in the elliptic setting.

5. Global approximation

To compute an approximation of the global solution, we employ the GFEM as one
example for coupling the local approximation spaces introduced in section 3 since it al-
lows to bound the global approximation error in terms of the local error contributions.
Exploiting the local optimality result (3.4), which states that ‖P −projΛn

P‖ = σn+1
9,

we first show in subsection 5.1 that the relative local approximation error in the
L2(H1)-seminorm is bounded by the projection error (which equals σn+1) times a
locally computable constant (cf. Proposition 5.2). Subsequently, we prove in Proposi-
tion 5.5 that the global error between the solution and the GFEM approximation in a
suitable graph norm can be bounded only by the local errors in the L2(H1)-seminorm
and is thus decaying as σn+1 or better. If we employ random sampling to approxi-
mate the optimal local spaces, the local and global a priori error bounds are still valid,
provided that ‖Ph−projΛn

rand
Ph‖ ≤ ε for a local error tolerance ε > 0 with a very low

failure probability (cf. subsection 4.2), and we can achieve a local and global error
decaying as

√
nσh,n+1 or better (cf. Theorem SM2). A priori error bounds concerning

the elliptic case can be found in [7, 8, 15, 67]. Finally, we discuss the computational
realization of the global GFEM approximation in subsection 5.2.

In contrast to existing approaches for parabolic PDEs [35], we consider here a
space-time GFEM based on local space-time ansatz functions. Consequently, the
computation of the global approximation does not require a time stepping method
and is thus computationally very efficient due to the very rapid and exponential decay
of the local and global approximation errors observed in several numerical experiments
(cf. section 6). In contrast, for certain problems, for instance, problems with multi-
scale diffusion coefficients that are varying non-periodically in time, a reduction only

8Here, projΛn
rand

denotes the orthogonal projection onto the space Λnrand.
9Recall that σn+1 denotes the n+1st singular value of P and projΛn

is the orthogonal projection

onto the space Λn spanned by the n leading left singular vectors of P .
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with respect to the spatial variable can become expensive if the time discretization
involves many time steps. As either the reduced spatial bases would become very large
since snapshots for many time points have to be included or one would have to use
an adaptive-in-time procedure based on smaller time intervals, a very large amount
of memory would be consumed.

To this end, let {Ωin1 , . . . ,ΩinM} be an open cover of the computational domain Ω
such that Ω = ∪Mi=1Ωini . We introduce a corresponding partition of unity {ψ1, . . . , ψM}
with the following properties for i = 1, . . . ,M and 0 < c1, c2 <∞:

ψi ∈ C1(Ωini ), supp(ψi) ⊆ Ωini ,

M∑
i=1

ψi(x) = 1 ∀x ∈ Ω,

‖ψi‖L∞(Ω) ≤ c1, ‖∇ψi‖L∞(Ω) ≤ c2/ diam(Ωini ).

(5.1)

Then, we define the global GFEM ansatz space as XGFEM := ⊕Mi=1{ψiui | ui ∈
Λn,data
i }, where Λn,data

i is the local reduced space on I × Ωini (cf. section 3). The
oversampling domains used to construct the local reduced spaces will be denoted by
I × Ωouti for i = 1, . . . ,M . Moreover, we assume that we have the following overlap
conditions: There exist M in,Mout ∈ N such that for every x ∈ Ω we have that

#{i | x ∈ Ωini } ≤M in and #{i | x ∈ Ωouti } ≤Mout.(5.2)

Finally, let a test space VGFEM ⊆ L2(I, V )10 be given such that the inf-sup condition

β = inf
u∈XGFEM

sup
v∈VGFEM

〈ut, v〉L2(I,V ) + (α∇u,∇v)L2(I,L2(Ω))

‖α 1
2∇u‖L2(I,L2(Ω))‖v‖L2(I,V )

> β0 > 0(5.3)

is satisfied. Then, the global Petrov-Galerkin GFEM approximation reads as follows:
Find uGFEM ∈ XGFEM such that

〈(uGFEM)t, v〉L2(I,V ) + (α∇uGFEM,∇v)L2(I,L2(Ω))

= 〈f, v〉L2(I,V ) + 〈gN (t), v〉
L2(I,H

1
2 (ΣN ))

∀ v ∈ VGFEM.
(5.4)

Remark 5.1. In general, we cannot guarantee stability of the discretization. A well-
known strategy to ensure stability is to construct optimally stable pairs of ansatz and
test spaces (see, e.g., [3, 12, 20, 21, 22, 23, 69]). This, however, may require global
computations and a localization strategy is thus the subject of future work. Never-
theless, Table 1 shows that for our particular choice of test and trial spaces (c.f.
subsection 5.2) the inf-sup constant β is close to one and we thus have stability at
least for the considered numerical test cases (cf. subsection 6.2).

5.1. A priori error bounds. In the remainder of the paper all local quantities
that are associated with the subdomains I × Ωini and I × Ωouti will be identified
by the additional subscript i. Moreover, we assume that the data functions satisfy
f ∈ L2(I, L2(Ω)), gD ∈ L2(I,H3/2(ΣD))∩H3/4(I, L2(ΣD)) with gD|t=0 = 0, and gN ∈
L2(I,H1/2(ΣN )) ∩H1/4(I, L2(ΣN )). The assumptions on gD and gN guarantee that
the lifting function ub defined in subsection 3.3 has a time derivative in L2(I, L2(Ω))
[49, Theorem 2.1].11 In the proof of the global a priori error bound we exploit the local

10Recall that V := {w ∈ H1(Ω) | w = 0 on ΣD} with ‖ · ‖V := ‖α
1
2 · ‖L2(Ω) + ‖α

1
2∇ · ‖L2(Ω).

11If ΣN = ∅ it is sufficient to assume that gD ∈ L2(I,H1/2(∂Ω)) ∩ H1/2(I, L2(∂Ω)) (cf. [49,

Theorem 2.1]). We therefore conjecture that also for gN less regularity is sufficient to infer that

ubt ∈ L2(I, L2(Ω)), but unfortunately we could not find a result guaranteeing this property.
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a priori error result and the previous assumptions on the data allow us to estimate
the sum of local norms of certain data terms by their respective global norms.

Proposition 5.2 (Local a priori error bound). Let Ωini ⊆ Ωouti ⊆ Ω be subdomains
as introduced in subsections 3.2 and 3.3 and let u be the (global) solution of (2.2). If
the reduced space Λni over I × Ωini for εi > 0 satisfies

‖Pi − projΛn
i
Pi‖ = sup

v∈Bout
i

inf
w∈Λn

i

‖α 1
2∇(Piv − w)‖L2(I,L2(Ωin

i ))

‖α 1
2∇Hi(v)‖L2(I,L2(Ωout

i ))

≤ εi,(5.5)

then there exists a wni ∈ Λn,datai such that the following a priori error bound holds:

‖α 1
2∇(u|I×Ωin

i
− wni )‖L2(I×Ωin

i )

‖α 1
2∇u|I×Ωout

i
‖L2(I×Ωout

i )+‖f‖L2(I×Ωout
i )+‖u0‖L2(Ωout

i )+?i
≤ max{2, cf,i} εi,(5.6)

where ?i is given by ?i := ‖ubt‖L2(I,L2(Ωout
i ))+‖α

1
2∇ub‖L2(I,L2(Ωout

i )) if Ωouti is located at
the global boundary and ?i := 0 else. Furthermore, the constant cf,i is defined as cf,i :=

‖ufi ‖L2(I,L2(Ωout
i ))/‖α

1
2∇ufi ‖L2(I,L2(Ωout

i )) and projΛn
i

is the orthogonal projection onto

the space Λni .

Proof. The key idea is to employ that functions in Λn,data
i solve the PDE locally and

to use Assumption (5.5). For a detailed proof see Appendix A.3. �

Remark 5.3. Note that Assumption (5.5) holds either with εi =
√
λn+1,i if we employ

the optimal local approximation space (cf. (3.4)) or with a very low failure probability
if we approximate the optimal local space via random sampling using Algorithm 2
(cf. subsections SM2.2 and 4.2). Since the transfer eigenvalue problems just contain
spatial derivatives, only the approximation error in the L2(H1)-seminorm can locally
be bounded via Theorem 3.4. Moreover, one can explicitly construct counterexamples
demonstrating that the local a priori error result does in general not hold without
additional data terms or additional assumptions on the data in the parabolic case as
the following remark shows.

Remark 5.4. In the elliptic case (cf. [15, Lemma SM5.2]) the a priori error bound

‖α 1
2∇(u|Ωin − wn)‖L2(Ωin) ≤ c ‖α

1
2∇u|Ωout‖L2(Ωout)

holds for a constant c > 0. Here, a bound ‖α 1
2∇(u|I×Ωin − wn)‖L2(I,L2(Ωin)) ≤

c ‖α 1
2∇u|I×Ωout‖L2(I,L2(Ωout)) does in general not hold as the following example shows:

Assume that Ωout is located in the interior of Ω and consider the linear heat equation

∂tu−∆u = 1 in I × Ωout, u(0, x) = 0 ∀x ∈ Ωout, u(t, x) = t ∀ (t, x) ∈ I × ∂Ωout,

where I × Ωout = (0, 1)× (0, π)2. Then, u equals ũ+ û, where ũ and û solve

∂tũ−∆ũ = 0 in I × Ωout, ũ(0, x) = 0 ∀x ∈ Ωout, ũ(t, x) = t ∀ (t, x) ∈ I × ∂Ωout,

∂tû−∆û = 1 in I × Ωout, û(0, x) = 0 ∀x ∈ Ωout, û(t, x) = 0 ∀ (t, x) ∈ I × ∂Ωout.

Using separation of variables we obtain (see section SM1)

ũ(t, x1, x2) =

∞∑
k,l=1

−4 (1− cos(kπ))(1− cos(lπ))(1− e−(k2+l2)t)

k l (k2 + l2)π2
sin(kx1) sin(lx2) + t,

û(t, x1, x2) = −ũ(t, x1, x2) + t.
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Hence, ∇û equals −∇ũ and we have ‖∇u‖L2(I×Ωout) = 0 while ‖∇ũ‖L2(I×Ωout) > 0.
Therefore, the estimate ‖∇ũ‖L2(I×Ωout) ≤ ‖∇u‖L2(I×Ωout) does not hold, but since ũ
equals u−û we can infer that ‖∇ũ‖L2(I×Ωout) ≤ ‖∇u‖L2(I×Ωout) +‖∇û‖L2(I×Ωout) and
the data corrector û can be estimated in terms of the data (cf. proof of Proposition 5.2).
However, in specific cases the local a priori error bound may be improved.

Proposition 5.5 (Global GFEM error bound). Let u be the solution satisfying (2.2)
and let uGFEM ∈ XGFEM be the GFEM approximation solving (5.4). If we assume

that for each subdomain Ωini and εi > 0 there exists a wni ∈ Λn,datai such that

‖α 1
2∇(u|I×Ωin

i
− wni )‖L2(I×Ωin

i )

‖α 1
2∇u|I×Ωout

i
‖L2(I×Ωout

i )+‖f‖L2(I×Ωout
i )+‖u0‖L2(Ωout

i )+?i
≤ max{2, cf,i} εi,(5.7)

where ?i and cf,i are defined as in Proposition 5.2, the following error bound holds:√
‖(u− uGFEM)t‖2L2(I,(VGFEM)∗) + ‖α 1

2∇(u− uGFEM)‖2L2(I,L2(Ω))

≤
√

10Mout max
i=1,...,M

{
Ci(c1, c2, β,M

in,Ωini , c
α
p,i) max{2, cf,i} εi

}
(
‖α 1

2∇u‖L2(I×Ω) + ‖f‖L2(I×Ω) + ‖u0‖L2(Ω) + ‖ubt‖L2(I×Ω) + ‖α 1
2∇ub‖L2(I×Ω)

)
.

Here, the constant Ci(c1, c2, β,M
in,Ωini , c

α
p,i) is given by Ci(c1, c2, β,M

in,Ωini , c
α
p,i) :=

max
{

(1 + 1/β)
√

2M in
(
c21 + (c2cαp,i/ diam(Ωini ))2

)
,
(
c1 + c2/ diam(Ωini )

)
/β
}

and the

constant cαp,i is defined as cαp,i := supwi∈Hin
i
‖α 1

2wi‖L2(I×Ωin
i )/‖α

1
2∇wi‖L2(I×Ωin

i ).

Proof. The key idea is to exploit the local a priori error bound (5.7) and the fact that
the GFEM basis functions solve the PDE locally. To that end, the proof follows similar
ideas as the proofs of Proposition SM5.1 and Corollary SM5.3 in [15] and Theorem
2.1 in [10]. To additionally control the time derivative of the global error in the
L2((VGFEM)∗)-norm, we use a (Petrov-)Galerkin orthogonality of the approximation
error and the reduced test space. A detailed proof is provided in Appendix A.3. �

Remark 5.6. Proposition 5.5 shows that the global convergence of the GFEM approx-
imation to the true solution with respect to a certain graph norm can be controlled only
by the respective local errors in the L2(H1)-seminorm for both the randomized setting
and the transfer eigenvalue problem (choosing εi =

√
λn+1,i). Moreover, it enables a

localized construction of the local ansatz spaces such that the global GFEM approxi-
mation satisfies a prescribed global error tolerance (with a very low failure probability
in the randomized setting), cf. Algorithm 3 in section SM3. We only have one global
constant, the reduced inf-sup constant β. However, Table 1 shows that β is close
to one for our numerical experiments. Therefore, we conjecture that in general it is
possible to construct suitable local reduced spaces without knowledge about the global
computational domain Ω. Furthermore, if we assume that a heat source f ∈ L2(I, V ∗)
with f /∈ L2(I, L2(Ω)) is given, additional orthogonality assumptions are required to
estimate the sum of local norms of f in terms of the global norm of f (cf. [13, Chapter
4]).

5.2. Computational realization of the global GFEM approximation. In the
following we outline how a global GFEM approximation may be computed numeri-
cally. To simplify the notation we assume homogeneous initial and Dirichlet boundary
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conditions. Following the notation in subsection 4.1, Vh ⊆ H1
0 (Ω) denotes a conform-

ing FE space and the approximation uh ∈ St ⊗ Vh of the solution is computed by
solving

((uh)t, vh)L2(I×Ω) + (α∇uh,∇vh)L2(I×Ω) = (f, vh)L2(I×Ω) ∀vh ∈ Qt ⊗ Vh.
Well-posedness of the corresponding continuous problem has, e.g., been shown in [64]
by proving the inf-sup condition and surjectivity of the operator associated with the
bilinear form. To compute an approximation of the global GFEM solution uGFEM, we
assume that for each local subdomain I×Ωini , i = 1, . . . ,M , a reduced approximation
space span{χi1, . . . , χiNred

i
} ⊆ St ⊗ Vh|Ωin

i
of dimension Nred

i was computed using

either Algorithm 1 in subsection SM2.1 (deterministic approach based on a Krylov
subspace method) or Algorithm 2 in subsection SM2.2 (randomized approach). We
choose partition of unity hat functions φ1

PU , . . . , φ
M
PU as the basis functions of the

linear FE space associated with the decomposition Ω = ∪Mi=1Ωini . Then, for every
local reduced basis χi1, . . . , χ

i
Nred

i
and corresponding hat function φiPU we compute

their (discrete) pointwise product denoted by χi,PU1 , . . . , χi,PU
Nred

i

∈ St ⊗ V inh,i,0, where

V inh,i,0 := {w ∈ Vh|Ωin
i
| w = 0 on ∂Ωini }. To define a test space for the Petrov-

Galerkin GFEM approximation, we generate test functions ϕi1, . . . , ϕ
i
Nred

i
∈ Qt⊗V inh,i,0

by computing projections of the reduced ansatz functions χi,PU1 , . . . , χi,PU
Nred

i

as follows:

Find ϕij ∈ Qt ⊗ V inh,i,0, 1 ≤ j ≤ Nred
i , such that

((wh)t, ϕ
i
j)L2(I×Ωin

i ) + (α∇wh,∇ϕij)L2(I×Ωin
i )

= ((wh)t, χ
i,PU
j )L2(I×Ωin

i ) + (α∇wh,∇χi,PUj )L2(I×Ωin
i ) ∀wh ∈ St ⊗ V inh,i,0.

The ansatz and test space for the Petrov-Galerkin GFEM approximation are given

by XGFEM
h := span{χ1,PU

1 , . . . , χ1,PU

Nred
1
, χ2,PU

1 , . . . , χ2,PU

Nred
2
, . . . , χM,PU

1 , . . . , χM,PU

Nred
M

} and

V GFEM
h := span{ϕ1

1, . . . , ϕ
1
Nred

1
, ϕ2

1, . . . , ϕ
2
Nred

2
, . . . , ϕM1 , . . . , ϕM

Nred
M
}, respectively.12 Fi-

nally, we define uGFEM
h ∈ XGFEM

h as the solution of the projected problem

((uGFEM
h )t, vh)L2(I×Ω) + (α∇uGFEM

h ,∇vh)L2(I×Ω) = (f, vh)L2(I×Ω) ∀ vh ∈ V GFEM
h .

Remark 5.7 (Computational complexity). Algorithm 3 in section SM3 summarizes
the global GFEM approximation using either deterministic or randomized local basis
generation. The algorithm enables a localized construction of the local ansatz spaces
such that the global GFEM approximation satisfies a desired global error tolerance that
is prescribed by the user.

To compute a global approximation, we first construct M local approximation spaces,

which has a computational complexity of O(N2
i +(mi+N

red
i +2)N

4/3
i ) in the determin-

istic case and O(N2
i +(nt+N

red
i +2)N

4/3
i ) in the randomized setting (cf. Remarks 4.1

and 4.2 and subsections SM2.3 and SM3.1) for i = 1, . . . ,M . Here, Ni denotes the
number of degrees of freedom on the oversampling subdomain I ×Ωouti , mi ≥ Nred

i is
the number of eigenvalues and eigenvectors computed via a Krylov subspace method,
and nt denotes the number of test vectors used in the randomized approach. We high-
light that the computations for the local bases construction are embarrassingly parallel.

12For this choice of V GFEM
h we cannot guarantee stability in general, but Table 1 shows that the

inf-sup constant β is close to one for our numerical experiments. However, a well-known strategy

to ensure stability is to construct optimally stable pairs of trial and test spaces (see, for instance,

[12, 20]).
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If we employ random sampling to generate the local bases, also the computations for
each subdomain can be parallelized.

The reduced global system of size Nred
gl × Nred

gl , where Nred
gl :=

∑M
i=1N

red
i , has a

block sparsity pattern resulting from the overlap of neighboring local subdomains and
is dense within each block. To solve the global system one can employ, for instance,
a preconditioned conjugate gradient method. The computational complexity for each
iteration of the conjugate gradient method depends on the number of non-zero entries
in the global reduced system matrix, which scales quadratically in the dimension of the
local reduced spaces and linearly in the number of local subdomains, and is thus less
than O((Nred

gl )2), but more than O(Nred
gl ) (for more details see subsection SM3.1).

As the matrix resulting from the global GFEM approximation may have a large con-
dition number, using a preconditioner is often mandatory. For more details on the
computational complexity of the global approximation we refer to subsection SM3.1.

Moreover, [13] provides a numerical experiment concerning the signal integrity sim-
ulation in a high frequency printed circuit board, where the dimension of the global
FEM space is approximately 65 million and a supercomputer would thus be required to
solve the global system. A localized approach as suggested here allows to tackle such
problems using common computer architectures and enables to parallel local computa-
tions.

6. Numerical Experiments

In this section we numerically analyze the approximation properties of the (quasi-)
optimal local reduced spaces and the global GFEM approximation introduced in sec-
tions 3 to 5 and demonstrate that our approach is capable of approximating problems
that include coefficients that are rough with respect to both space and time. In sub-
section 6.1 we focus on the local transfer eigenvalue problem and show the rapid decay
of the eigenvalues for two model problems with high contrast and multiscale structure
with respect to space and time. Moreover, we construct global GFEM approxima-
tions from the local reduced spaces using randomization and consider two test cases
in subsection 6.2, where one includes high contrast regarding the spatial and temporal
variables. We demonstrate that the local approximation qualities carry over to the
global approximation and that we can achieve a desired global error tolerance only by
local computations. In all numerical experiments we equip the spaces of traces on the
local oversampling boundaries with the corresponding L2-inner products weighted
with the diffusion coefficient α. The complete source code to reproduce all results
shown in this section is provided in [63].

6.1. Analysis of the transfer eigenvalue problem. To analyze the transfer eigen-
value problem (3.3), we first consider a test case including high conductivity channels
with high contrast and refer to this numerical example as Example 1. We choose
I = (0, 1), Ωin = (0.3, 0.45)2, and study different sizes of oversampling, ranging from
0.5 to 2 layers; in detail Ωout ∈ {(0.225, 0.525)2, (0.15, 0.6)2, (0.075, 0.675)2, (0, 0.75)2}.
We discretize the local domains with a regular quadrilateral mesh with mesh size
1/200 in both directions and the time interval by 50 equidistant time steps. For
numerical accuracy we employ in this subsection an implicit Euler time stepping.
Furthermore, we consider zero to three high conductivity channels positioned at
I × ((0.33, 0.34) ∪ (0.37, 0.38) ∪ (0.41, 0.42)) × (0, 0.75), where α(t, x, y) = 103 in the
channels and α(t, x, y) = 1 else. Fig. 4 shows that the singular values of the transfer
operator first have a plateau and then decay exponentially, where the plateau is longer
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Figure 4. Singular value decay for Example 1:

0, 1, 2, or 3 high conductivity channels and 1
layer of oversampling.
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Figure 5. Singular value decay for Example 1:
1 high conductivity channel and 0.5, 1, 1.5, or

2 layers of oversampling.

Figure 6. Eigenfunctions corresponding to
√
λ50 (top) and

√
λ101 (bottom) on Ωin at time t = 0.1,

t = 0.3, t = 0.6, and t = 0.8 (left to right) for Example 1 with 3 high conductivity channels and 1

layer of oversampling.

for a larger number of channels. This is due to the fact that the eigenfunctions corre-
sponding to the singular values located in the plateau contain most energy in the local
domain Ωin and one can observe variations within the channels as exemplarily shown
in Fig. 6. The more channels, the more variations are possible. However, the exponen-
tial decay of the singular values is faster if the plateau is longer as already observed
for the Helmholtz equation in [15]. Furthermore, we see in Fig. 5 that the singular
values decay faster if we increase the number of oversampling layers, where simulta-
neously the computational costs increase. However, if we compare the eigenfunctions
corresponding to different oversampling sizes we can observe that these show very
similar dynamics. We therefore conjecture that less oversampling is already sufficient
to extract the significant modes.

Next, we investigate a model problem including multiscale structure with respect
to space and time, which we denote as Example 2. We consider I = (0, 0.4), Ωin =
(0.3, 0.6)2, and Ωout = (0, 0.9)2 (1 layer of oversampling). Moreover, we use a regular
quadrilateral mesh with mesh size 1/200 in both directions for the spatial discretization



OPTIMAL LOCAL APPROXIMATION SPACES FOR PARABOLIC PROBLEMS 19

200 400 600 800

10−4

10−3

10−2

10−1

100

e −
0.011n

local basis size n

√ λ n
+

1
ε = 1

ε = 0.01

Figure 7. Singular value decay for

Example 2: ε = 1 vs. ε = 0.01.

Figure 8. Eigenfunctions corresponding to
√
λ200 on Ωin at

time t=0.3 for ε=1(left) vs. ε=0.01(right) for Example 2.

and a step size of 1/100 for the implicit Euler time stepping. We consider αε(t, x, y) =
10 + 8 cos(πx/ε) + cos(πt/ε) and compare the cases ε = 1 (only coarse scale) and
ε = 0.01 (additionally including fine scale). In Fig. 7 we observe that the rapid
singular value decay is almost identical for ε = 1 and ε = 0.01. Therefore, we can
conclude that at least for this test case we do not require a higher number of local
reduced basis functions for the approximation of the more complex problem including
multiscale behavior regarding space and time. Finally, Fig. 8 exemplarily shows that,
as expected, the eigenfunctions inherit the multiscale structure of the problem.

6.2. Global GFEM approximation with random local basis generation. In
this subsection we analyze the global GFEM approximation constructed from local
reduced spaces that were generated using randomization to enable a more efficient
computation; in detail we used Algorithms 2 and 3 in subsection SM2.2 and section
SM3.13 Throughout the whole subsection we consider the time interval I = (0, 0.5)
and the global spatial domain Ω = (0, 5)2 decomposed into 4× 4 local domains of size
2 × 2 with an overlap of size 1. We also use an oversampling size of 1. To ensure
that the CFL condition for the numerical accuracy of the space-time Petrov-Galerkin
discretization is satisfied (cf. [2]), we discretize the computational domain either with
a regular quadrilateral mesh with mesh size 1/10 in both directions and time step size
1/400 (discretization 1) or with mesh size 1/15 and time step size 1/900 (discretization
2).

We analyze two test cases: First, we consider a constant coefficient α ≡ 1 with
right hand side f(t, x, y) = [π cos(πt) + 2π2/25 sin(πt)] sin(πx/5) sin(πy/5) and ho-
mogeneous initial and Dirichlet boundary conditions. Hence, the analytical solution
u(t, x, y) = sin(πt) sin(πx/5) sin(πy/5) is known. We refer to this numerical example
as Example 3.1 (discretization 1) and 3.2 (discretization 2) depending on which dis-
cretization is used. Secondly, we investigate a model problem including high contrast
with respect to space and time in terms of high conductivity channels that are switched
on and off over time (Example 4 in the following). To this end, we define a heating re-
gion Γheat := I×(0.4, 4.6)×(4, 4.6), a cooling region Γcool := I×(0.4, 4.6)×(0.4, 1), and
a channel region Γchannel := [((0, 0.2)∪ (0.35, 0.5))× (0.6, 0.8)× (1, 4)]∪ [(0.15, 0.45)×
(2.4, 2.6) × (1, 4)] ∪ [((0, 0.2) ∪ (0.35, 0.5)) × (4.2, 4.4) × (1, 4)] as depicted in Fig. 9.

13Following the notation in subsection SM2.2 and section SM3 we use a local and global failure
probability of εalgofail = εfail = 10−15 and nt = 20 test vectors. For an intense study on how the

results of the randomized algorithm depend on parameters such as the number of test vectors see

[15].
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Figure 9. Coefficient field

for Example 4. White
equates to 10−2 and black

to 1 (when channel is on) or

10−2 (when channel is off).
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Figure 10. The slowest singular value decay, the maximum rela-

tive local error, and the relative global error. Median values over
20 realizations.

local basis size n 10 25 50 100 200 300 400 500 600 700 800
inf-sup constant β 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.95 0.91 0.87

Table 1. Global reduced inf-sup constant β exemplary for one realization of Example 3.1.
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Figure 11. The minimum, median, and maximum relative local and global error over 20 realiza-

tions for Example 3.1 (left) versus the maximum relative local error and the relative global error

for one realization of Example 3.2 (right).

Note that the channels are switched on and off at certain time points. We assume that
α(t, x, y) = 1 for (t, x, y) ∈ Γheat∪Γcool∪Γchannel, α(t, x, y) = 10−2 else, f(t, x, y) = 1
for (t, x, y) ∈ Γheat, f(t, x, y) = −1 for (t, x, y) ∈ Γcool, and f(t, x, y) = 0 else. More-
over, we prescribe homogeneous initial and Dirichlet boundary conditions and use
discretization 2.

While we cannot guarantee stability of the global GFEM approximation in general,
we observe in Table 1 that for Example 3.1 the inf-sup constant β is close to one and we
thus have stability. Fig. 10 shows that the global error14 convergence is clearly guided
by the local error15 convergence, which is in turn very similar to the singular value
decay. This is in line with the predictions by theory, cf. subsection 5.1. Although we
only use 0.5 layers of oversampling for the computation of the local reduced spaces
this seems to be sufficient to yield good approximation properties and extract the

14(‖(uh − uGFEM
h )t‖2L2(I×Ω)

+ ‖α
1
2∇(uh − uGFEM

h )‖2
L2(I×Ω)

)1/2/
(
‖α

1
2∇uh‖L2(I×Ω) + ‖f‖L2(I×Ω)

)
15min

wn
i
∈Λ

n,data
i

‖α
1
2∇(uh|I×Ωin

i
−wn

i )‖
L2(I×Ωin

i
)
/
(
‖α

1
2∇uh|I×Ωout

i
‖L2(I×Ωout

i
) + ‖f‖L2(I×Ωout

i
)

)
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significant modes which confirms the conjecture in subsection 6.1 at least for the given
numerical examples. If we have a closer look at the results for Example 3.1, we observe
that for increasing local basis sizes n ≥ 400 the global error behavior seems to change
as shown in Fig. 11 (left). However, this can be traced back to the coarse spatial
discretization since the result for the finer discretization employed in Example 3.2
again shows that the global errors exactly follow the local errors (cf. Fig. 11 (right)).
For the results shown in Figs. 12 and 13 we used the adaptive randomized Algorithms
2 and 3 introduced in subsection SM2.2 and section SM316 and chose β equal to one
due to the results observed in Table 1. Algorithm 3 enables us to prescribe a global
error tolerance and generate an approximation that satisfies the desired tolerance with
probability (1 − εfail). In Fig. 13 we observe that in our numerical experiments the
algorithm always succeeded and the same holds true for the outcome of Algorithm 2
(cf. Fig. 12). The local17 (global18) results are more accurate than required by about
2 to 3.5 (4 to 4.5) orders of magnitude. The former is due to the fact that Algorithm

16Since we assume that u0 = gD = gN = 0 for Example 3 and 4 (thus ub = 0), we used Algorithm

3 with the improved relative global error bound 2
√
Mout maxi=1,...,M

{
Ci(c1, c2, β,M

in,Ωini , c
α
p,i)

max{1, cf,i} εi
}

(cf. Proposition 5.5) to generate the results shown in Fig. 13.
17min

wn
i
∈Λ

n,data
i

‖α
1
2∇(uh − wn

i )‖
L2(I×Ωin

i
)
/max{2, cf,i}

(
‖α

1
2∇uh‖L2(I×Ωout

i
) + ‖f‖L2(I×Ωout

i
)

)
18
(
‖(uh − uGFEM

h )t‖2L2(I×Ω)
+ ‖α
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(
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2 constructs local spaces that have better approximation properties than required,
where the latter is additionally caused by the pessimistic global a priori error bound
(cf. Proposition 5.5) that is employed to calculate local error tolerances from the
prescribed global error tolerance in Algorithm 3. Finally, Fig. 14 shows the sparsity
pattern of the global reduced system matrix, where the block sparsity structure results
from the overlap of neighboring local subdomains.

7. Conclusions

We have proposed local space-time ansatz spaces for linear parabolic PDEs that
are optimal in the sense of Kolmogorov [47] and can be used in domain decomposition
and multiscale methods. The diffusion coefficient of the PDE may be arbitrarily rough
with respect to both space and time. The optimal local spaces are spanned by the left
singular values of a compact transfer operator that acts on the space of local solutions.
Moreover, we have employed a space-time GFEM to couple the local ansatz spaces
and construct an approximation of the global solution. Furthermore, we have derived
rigorous local and global a priori error bounds. In particular, we have shown that
the global approximation error in a suitable graph norm can be bounded only by the
local approximation errors in the L2(H1)-seminorm. Finally, we have proposed an
adaptive algorithm for the localized construction of the local ansatz spaces such that
the global GFEM approximation satisfies a desired global error tolerance.

The numerical experiments demonstrate a very rapid and exponential decay of the
singular values of the transfer operator and the local and global approximation errors
for problems with high contrast or multiscale structure regarding both the spatial
and the temporal variable. Since in addition no time stepping procedure is required,
the computation of the global approximation is very efficient. For a multiscale test
case we have observed that the singular values of the transfer operator seem to be
independent of the size of the parameter ε that determines the periodicity of fine-scale
variations in the diffusion coefficient. We conjecture that this result transfers to ε→ 0
at least for the considered test case. Moreover, we have observed that the global error
convergence is clearly guided by the local error convergence as predicted by theory.
Our numerical experiments have shown that the global reduced inf-sup constant is
close to one and we thus have stability at least for the considered test cases.

For future applications it is favorable to investigate numerically more efficient dis-
cretization techniques such as low rank tensor formats (cf. [34] and references therein).

Appendix A. Proofs

A.1. Proofs of subsection 3.2. In the remainder of this subsection we denote
the L2(Ωin) inner product by (· , ·)in := (· , ·)L2(Ωin) and the dual pairing between

H1
0 (Ωin) and its dual space H−1(Ωin) by 〈· , ·〉in := 〈· , ·〉H1

0 (Ωin). Analogously, we

define (· , ·)out := (· , ·)L2(Ωout) and 〈· , ·〉out := 〈· , ·〉H1
0 (Ωout).

Proof of Proposition 3.1 (Parabolic Caccioppoli inequality). Since w is contained in

Hout, we have that
∫ T

0
〈wt(t), v〉out ϕ(t) dt +

∫ T
0

(α∇w(t),∇v)out ϕ(t) dt = 0 for all

v ∈ H1
0 (Ωout) and ϕ ∈ C∞0 (I). As ϕ ∈ C∞0 (I) is chosen arbitrarily the fundamental

lemma of calculus of variations yields that for almost every t ∈ (0, T )

〈wt(t), v〉out + (α∇w(t),∇v)out = 0 ∀ v ∈ H1
0 (Ωout).(A.1)
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Let η ∈ C1
0 (Ωout) denote a cut-off function with the following properties: 0 ≤ η ≤ 1,

η = 1 in Ωin, and |∇η| ≤ 1
δ . Additionally choose t∗ ∈ (0, T ] arbitrarily. In the

following we want to use wη2 as a test function. However, we cannot apply partial
integration in time since the function w is contained in L2(I,H1(Ωout)), but not in
L2(I,H1

0 (Ωout)). We therefore approximate wη ∈ L2((0, t∗), H1
0 (Ωout)) by a sequence

(wn)n∈N ⊆ C∞0 ((0, t∗), H1
0 (Ωout)) such that wn

n→∞−−−−→ wη in L2((0, t∗), H1
0 (Ωout))

(to simplify the notation we omit the restriction w|(0,t∗)×Ωout). Then, we have that

wn(t)η ∈ H1
0 (Ωout) for almost every t ∈ (0, t∗) and each n ∈ N and 〈wt(t), wn(t)η〉out+

〈Aαw(t), wn(t)η〉out = 0 for almost every t ∈ (0, t∗) according to (A.1). Consequently,

integrating over time yields
∫ t∗

0
〈wt(t), wn(t)η〉out dt +

∫ t∗
0
〈Aαw(t), wn(t)η〉out dt = 0

for each n ∈ N. Since η does not depend on time, we can infer that∫ t∗

0

〈wt(t), wn(t)η〉outdt = −
∫ t∗

0

(w(t), (wn(t)η)t)outdt = −
∫ t∗

0

(w(t)η, (wn(t))t)outdt

=

∫ t∗

0

〈(w(t)η)t, wn(t)〉outdt =

∫ t∗

0

〈wt(t)η, wn(t)〉outdt.

This implies that
∫ t∗

0
〈wt(t)η, wn(t)〉out dt +

∫ t∗
0

∫
Ωout α∇w(t)∇(wn(t)η) dt = 0. As

wn
n→∞−−−−→ wη in L2((0, t∗), H1

0 (Ωout)) the sequence especially converges weakly in
L2((0, t∗), H1

0 (Ωout)). Hence, we can conclude that∫ t∗

0

〈wt(t)η, w(t)η〉out dt+

∫ t∗

0

∫
Ωout

α|∇w(t)|2η2 + 2α∇w(t)w(t) η∇η dt = 0.

Finally, we apply partial integration in time and exploit w(0) = 0 in L2(Ωout) to obtain∫ t∗
0
〈wt(t)η, w(t)η〉out dt = 1

2‖w(t∗)η‖2L2(Ωout)−
1
2‖w(0)η‖2L2(Ωout) = 1

2‖w(t∗)η‖2L2(Ωout).

By applying the Cauchy-Schwarz and Young’s inequality we have that

‖w(t∗)η‖2L2(Ωout) +

∫ t∗

0

∫
Ωout

α|∇w(t)|2η2dt ≤ 4

∫ t∗

0

∫
Ωout

αw(t)2|∇η|2dt.

By exploiting the properties of the cut-off function η we infer that

‖w(t∗)|Ωin‖2L2(Ωin)+‖α
1
2∇(w|(0,t∗)×Ωin)‖2L2((0,t∗)×Ωin)≤

4α1

δ2

∫ T

0

∫
Ωout

w(t)2dt.(A.2)

Bounding each term in (A.2) by 4α1

δ2 ‖w‖2L2(I×Ωout) and taking in both inequalities the

supremum over all t∗ ∈ (0, T ] yields the estimate. �

Proof of Lemma 3.2 (Regularity). Let a function w ∈ Hin be given. Employing par-
tial integration in time, we have that∫

I

〈wt(t) +Aαw(t), vϕ(t)〉in dt = 0 ∀ v ∈ H1
0 (Ωin), ϕ ∈ C∞0 (I).

Here, the linear operator Aα :L2(I,H1(Ωin))→ (L2(I,H1
0 (Ωin)))∗∼=L2(I,H−1(Ωin)),

(Aαw)(t) := Ãα(w(t)), is induced by the linear operator Ãα : H1(Ωin) → H−1(Ωin),

〈Ãαw, v〉in :=
∫

Ωin α∇w∇v. Since the space {vϕ | v ∈ H1
0 (Ωin), ϕ ∈ C∞0 (I)} is a

dense subspace of L2(I,H1
0 (Ωin)), we apply the Hahn-Banach theorem to infer that

wt +Aαw = 0 in L2(I,H−1(Ωin)).

It follows that wt ∈ L2(I,H−1(Ωin)). The result for Hout can be shown analogously.
�
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Theorem A.1 (Compactness of transfer operator). The transfer operator P : Bout →
Hin introduced in (3.1) is compact.

Proof. Let (w̃k)k∈N ⊆ Bout denote a sequence that is bounded with respect to |||·|||out.
Consequently, the sequence (wk)k∈N := (H(w̃k))k∈N ⊆ Hout is bounded in L2(I,H1(Ωout)).
Then, there exists a subsequence (wkl)l∈N that converges weakly to a limit function
w ∈ L2(I,H1(Ωout)). Next, we show that w ∈ Hout. The weak convergence yields
−
∫
I
(w(t), v)out ϕt(t) dt+

∫
I
(α∇w(t),∇v)out ϕ(t) dt = 0 since we have wkl ∈ Hout for

every l ∈ N. Exploiting arguments completely analogous to the proof of Lemma 3.2,
we obtain wt ∈ L2(I,H−1(Ωout)), thus w ∈ W 1,2,2(I,H1(Ωout), H−1(Ωout))19 and
thanks to the embedding W 1,2,2(I,H1(Ωout), H−1(Ωout)) ↪→ C0(Ī , L2(Ωout)) we have
w ∈ L∞(I, L2(Ωout)). It remains to show that w satisfies homogeneous initial condi-
tions. For v ∈ H1

0 (Ωout) and ϕ ∈ C∞0 (I) we infer that∫
I

〈wt(t), v〉outϕ(t)dt = −
∫
I

(w(t), v)out ϕt(t)dt

= lim
l→∞
−
∫
I

(wkl(t), v)out ϕt(t)dt = lim
l→∞

∫
I

〈(wkl)t (t), v〉outϕ(t)dt.

Exploiting the density of {vϕ | v ∈ H1
0 (Ωout), ϕ ∈ C∞0 (I)} in L2(I,H1

0 (Ωout)) thus
yields that ((wkl)t)l∈N converges weakly-* to wt in L2(I,H−1(Ωout)). Choosing test
functions v ∈ H1

0 (Ωout) and ϕ ∈ C∞(I) satisfying ϕ(T ) = 0 we can conclude

(w(0), v)out ϕ(0) = −
∫
I

(w(t), v)out ϕt(t) dt−
∫
I

〈wt(t), v〉out ϕ(t) dt

= lim
l→∞

−
∫
I

(wkl(t), v)out ϕt(t) dt−
∫
I

〈(wkl)t (t), v〉out ϕ(t) dt

= lim
l→∞

(wkl(0), v)out ϕ(0) = lim
l→∞

(0, v)out ϕ(0) = 0.

As ϕ(0) is arbitrary and H1
0 (Ωout) is dense in L2(Ωout) it follows that w(0) = 0 in

L2(Ωout). Hence, the limit w is an element of Hout.
As (wkl)l∈N is bounded in W 1,2,2(I,H1(Ωout), H−1(Ωout)) thanks to Lemma 3.2,

the compactness theorem of Aubin-Lions [65, Corollary 5] then yields a subsequence
(wklm )m∈N which converges strongly to w in L2(I, L2(Ωout)) due to the uniqueness
of weak limits. Considering the error sequence (eklm )m∈N := (wklm − w)m∈N ⊆ Hout,
we thus have that eklm

m→∞−−−−→ 0 in L2(I, L2(Ωout)). Since each eklm is contained in

Hout, the parabolic Caccioppoli inequality (3.2) yields ‖α 1
2∇(eklm |I×Ωin)‖2L2(I×Ωin) ≤

8α1

δ2 ‖eklm ‖
2
L2(I×Ωout)

m→∞−−−−→ 0 and we obtain wklm |I×Ωin
m→∞−−−−→ w|I×Ωin in Hin. �

Proposition A.2 (Parabolic Poincaré inequality). There exists a constant cinp > 0

such that for all functions w ∈ Hin

‖w‖L2(I,L2(Ωin)) ≤ cinp ‖∇w‖L2(I,L2(Ωin)).(A.3)

An analogous result holds for functions in Hout.

Similar parabolic Poincaré inequalities can, for instance, be found in [4, Theorem
2.2], [44, Lemma 2.5], and [70, Lemma 3]. However, the idea of the proof of inequality
(A.3) is guided by the proof of the (elliptic) Poincaré inequality (see [27, Theorem 1,
section 5.8]).

19Recall that W 1,2,2(I,H1(Ωout), H−1(Ωout)) :=
{
u∈L2(I,H1(Ωout)) |ut ∈L2(I,H−1(Ωout))

}
.
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Proof. We provide the proof for the case of a function w ∈ Hin, the case w ∈ Hout
follows analogously. First, we derive an auxiliary result which demonstrates that a
function in Hin that is constant in space for all time points is zero. In a second step
the parabolic Poincaré inequality is proved by contradiction.

Let w ∈ Hin satisfy ∇w = 0 almost everywhere in Ωin for almost every t ∈ I.
Since we have w ∈ Hin, it follows that wt = 0 in L2(I,H−1(Ωin)). Consequently, w is
constant in space and time. Thanks to the homogeneous initial values prescribed for
functions in Hin, we obtain w = 0 almost everywhere in Ωin for almost every t ∈ I.

Subsequently, the inequality is proved by contradiction as follows: Suppose the
assertion of the lemma is false. Then for all k ∈ N we can find a function wk ∈
Hin satisfying ‖wk‖L2(I,L2(Ωin)) > k ‖∇wk‖L2(I,L2(Ωin)). Without loss of generality

we can moreover suppose that ‖wk‖L2(I,L2(Ωin)) = 1 for all k ∈ N.20 We therefore

have ‖∇wk‖L2(I,L2(Ωin)) <
1
k for all k ∈ N. Hence, the sequence (wk)k∈N ⊆ Hin

is bounded in L2(I,H1(Ωin)) and there exists a subsequence (wkl)l∈N and a limit

w ∈ L2(I,H1(Ωin)) such that wkl
l→∞−−−⇀ w in L2(I,H1(Ωin)). Following completely

analogous arguments as employed in the proof of Theorem A.1 we can exploit this weak
convergence to infer that w ∈ Hin. Furthermore, the arguments employed in the proof
of Theorem A.1 additionally yield a subsequence (wklm )m∈N which converges strongly

to w in L2(I, L2(Ωin)). Moreover, the subsequence (∇wklm )m∈N of gradients converges

strongly to 0 in L2(I, L2(Ωin)) by construction. We can thus infer that ∇w = 0 and

wklm
m→∞−−−−→ w in L2(I,H1(Ωin)). Since w ∈ Hin satisfies ∇w = 0 almost everywhere

in Ωin for almost every t ∈ I, the auxiliary result verified in the first step of this proof
yields w = 0 almost everywhere in Ωin for almost every t ∈ I. However, this is in
contradiction to ‖w‖L2(I,L2(Ωin)) = lim

m→∞
‖wklm ‖L2(I,L2(Ωin)) = 1. �

A.2. Proofs of subsection 3.3.

Proposition A.3 (Parabolic Caccioppoli inequality). For a function w ∈ Hout and
thus w|I×Ωin ∈ Hin the following estimate holds:

‖w|I×Ωin‖2L∞(I,L2(Ωin)) + ‖α 1
2∇(w|I×Ωin)‖2L2(I,L2(Ωin)) ≤

8α1

δ2
‖w‖2L2(I,L2(Ωout)).

Proof. The proof follows from analogous arguments as employed in the proof of the
parabolic Caccioppoli inequality (3.2) (see Appendix A.1), considering a cut-off func-
tion η ∈ C1(Ωout) with the properties 0 ≤ η ≤ 1, η = 1 in Ωin, η = 0 on ∂Ωout∩Ω, and
|∇η| ≤ 1

δ in Ωout. Moreover, we choose η = 1 on ∂Ωin ∩ ∂Ω if ∂Ωin ∩ ∂Ωout ∩ ∂Ω 6= ∅
and η = 0 on ∂Ωout ∩ ∂Ω else. �

Proposition A.4 (Parabolic Poincaré inequality). There exists a constant cinp > 0

such that for all functions w ∈ Hin

‖w‖L2(I,L2(Ωin)) ≤ cinp ‖∇w‖L2(I,L2(Ωin)).

An analogous result holds for functions in Hout.

Proof. The proof is analogous to the proof of the Poincaré inequality (A.3). �

Theorem A.5 (Compactness of transfer operator). The transfer operator P : Bout →
Hin introduced in (3.6) is compact.

20Otherwise we consider the normalized sequence (vk)k∈N :=
(
wk/‖wk‖L2(I,L2(Ωin))

)
k∈N

⊆

Hin.
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Proof. The proof is analogous to the proof of Theorem A.1. �

A.3. Proofs of subsection 5.1.

Proof of Proposition 5.2 (Local a priori error bound). First, we define a function in
Λn,data such that we can use Assumption (5.5), similar to the proof of Proposition
SM5.2 in [15]. Subsequently, we bound the remaining terms by the data (cf. the dis-
cussion in Remark 5.4). We provide the proof for subdomains located at the boundary
of Ω. For subdomains located in the interior the proof is slightly easier. We define
the following function wn ∈ Λn,data:21

wn :=

n∑
i=1

aiχi + uf |I×Ωin + ub|I×Ωin .(A.4)

Here, we assume without loss of generality that uf |I×Ωin and χi are orthogonal with
respect to the ((· , ·))in inner product. The coefficients a1, . . . , an ∈ R will be identified
below. Since u|I×Ωout solves (P out), u|I×Ωout can be decomposed in the following way

u|I×Ωout = uf + ub|I×Ωout + uout,(A.5)

where uout ∈ Hout. Consequently, for u|I×Ωin we have that

u|I×Ωin = uf |I×Ωin + ub|I×Ωin + uin,

where uin = P (uout|I×∂Ωout) = uout|I×Ωin ∈ Hin. Therefore, we can conclude

|||u|I×Ωin − wn|||in = |||P (uout|I×∂Ωout)−
n∑
i=1

aiχi|||in.

We then choose
∑n
i=1 aiχi as the best approximation of P (uout|I×∂Ωout) in Λn and thus

define ai := ((uout|I×∂Ωout , ϕi|I×∂Ωout))out, where ϕ1, . . . , ϕn are the eigenfunctions of
the transfer eigenvalue problem. Assumption (5.5) then yields

|||P (uout|I×∂Ωout)−
∑n
i=1((uout|I×∂Ωout , ϕi|I×∂Ωout))out χi|||in
|||uout|I×∂Ωout |||out

≤ ε.

Thus, we can so far conclude that

‖α 1
2∇(u|I×Ωin − wn)‖L2(I,L2(Ωin)) ≤ ε ‖α

1
2∇H(uout|I×∂Ωout)‖L2(I,L2(Ωout))

= ε ‖α 1
2∇uout‖L2(I,L2(Ωout)).

Thanks to (A.5), it holds that ‖α 1
2∇uout‖L2(I×Ωout) ≤ ‖α

1
2∇u|I×Ωout‖L2(I×Ωout) +

‖α 1
2∇uf‖L2(I×Ωout) +‖α 1

2∇ub|I×Ωout‖L2(I×Ωout). Using the density of {vϕ | v ∈ V out0 ,

ϕ ∈ C∞0 (I)} in L2(I, V out0 )22, the Cauchy-Schwarz and Young’s inequality, we obtain∫
I

〈uft (t), uf (t)〉V out
0

dt+ ‖α 1
2∇uf‖2L2(I×Ωout)

=

∫
I

(
(f(t), uf (t))L2(Ωout) − (ubt(t), u

f (t))L2(Ωout) − (α∇ub(t),∇uf (t))L2(Ωout)

)
dt

≤1

2
(cf‖f‖L2(I×Ωout)+cf‖ubt‖L2(I×Ωout)+‖α

1
2∇ub‖L2(I×Ωout))

2+
1

2
‖α 1

2∇uf‖2L2(I×Ωout),

21To simplify the notation we omit the subscript i. For the definition of uf or ub see subsection 3.3.
22Note that V out0 := {w ∈ H1(Ωout) | w = 0 on ∂Ωout ∩ (Ω ∪ ΣD)}.
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where the constant cf is given by cf := ‖uf‖L2(I×Ωout)/‖α
1
2∇uf‖L2(I×Ωout). Since we

have
∫
I
〈uft (t), uf (t)〉V out

0
dt = 1

2 (‖uf (T )‖2L2(Ωout)−‖u
f (0)‖2L2(Ωout)) ≥ −

1
2‖u0‖2L2(Ωout),

we can conclude that ‖α 1
2∇uout‖L2(I×Ωout) ≤ max{2, cf}(‖α

1
2∇u|I×Ωout‖L2(I×Ωout) +

‖f‖L2(I×Ωout) + ‖u0‖L2(Ωout) + ‖ubt‖L2(I×Ωout) + ‖α 1
2∇ub‖L2(I×Ωout)). �

Proof of Proposition 5.5 (Global GFEM error bound). First, we use a (Petrov-)Galer-
kin orthogonality of the global approximation error and the reduced test space to
bound the time derivative of the global error in the L2((VGFEM)∗)-norm in terms
of the global error in the L2(H1)-seminorm. Subsequently, we introduce a function
in XGFEM that is adapted for exploiting the local a priori error bound (5.7). To
finally make use of the latter, we exploit that functions in XGFEM solve the PDE
locally. Since {vϕ | v ∈ V, ϕ ∈ C∞0 (I)} is dense in L2(I, V ), we note that for any
v ∈ VGFEM ⊆ L2(I, V )23

〈(u− uGFEM)t, v〉L2(I,V ) = −(α∇(u− uGFEM),∇v)L2(I,L2(Ω))

≤ ‖α 1
2∇(u− uGFEM)‖L2(I,L2(Ω)) ‖v‖L2(I,V ).

(A.6)

Therefore, we obtain ‖(u − uGFEM)t‖L2(I,(VGFEM)∗) ≤ ‖α
1
2∇(u − uGFEM)‖L2(I,L2(Ω)).

By using the triangle inequality we have that for any w ∈ XGFEM√
‖(u− uGFEM)t‖2L2(I,(VGFEM)∗) + ‖α 1

2∇(u− uGFEM)‖2L2(I,L2(Ω))

≤
√

2 ‖α 1
2∇(u− uGFEM)‖L2(I,L2(Ω))

≤
√

2
(
‖α 1

2∇(u− w)‖L2(I,L2(Ω)) + ‖α 1
2∇(uGFEM − w)‖L2(I,L2(Ω))

)
.

Assumption (5.3) regarding inf-sup-stability and (A.6) yield

‖α 1
2∇(uGFEM − w)‖L2(I,L2(Ω))

≤ 1

β
sup

v∈VGFEM

〈(uGFEM − w)t, v〉L2(I,V ) + (α∇(uGFEM − w),∇v)L2(I,L2(Ω))

‖v‖L2(I,V )

=
1

β
sup

v∈VGFEM

〈(u− w)t, v〉L2(I,V ) + (α∇(u− w),∇v)L2(I,L2(Ω))

‖v‖L2(I,V )
.(A.7)

In the following we choose w :=
∑M
i=1 ψi w

n
i ∈ XGFEM with local approximations

wni ∈ Λn,data
i as introduced in the proof of Proposition 5.2 (see (A.4)). To be able

to exploit the local a priori error bound (5.7), we bound the first term in (A.7) by
the sum of local L2(H1)-seminorms of u− w. To employ that u− w solves the PDE
locally, we approximate v ∈ VGFEM ⊆ L2(I, V ) by a sequence (vk)k∈N with vk := ϕkṽk,

ϕk ∈ C∞0 (I), and ṽk ∈ V , such that vk
k→∞−−−−→ v in L2(I, V ). It follows that

〈(u−w)t, v〉L2(I,V )= lim
k→∞

〈(u−w)t, vk〉L2(I,V )= lim
k→∞

M∑
i=1

〈ψi(u|I×Ωin
i
−wni )t, vk〉L2(I,V ).

23Recall that V := {w ∈ H1(Ω) | w = 0 on ΣD} with ‖ · ‖V := ‖α
1
2 · ‖L2(Ω) + ‖α

1
2∇ · ‖L2(Ω).
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Since u|I×Ωin
i
−wni ∈ Hini (cf. (A.4) in the proof of Proposition 5.2) and ψi ∈ C1(Ωini )

does not depend on time, we obtain

〈ψi(u|I×Ωin
i
− wni )t, vk〉L2(I,V )

=− (ψi(u|I×Ωin
i
− wni ), (vk)t)L2(I×Ω) = − (u|I×Ωin

i
− wni , (ψi vk)t)L2(I×Ωin

i )

=− (α∇(u|I×Ωin
i
− wni ),∇(ψi vk))L2(I,L2(Ωin

i ))

=− (α∇(u|I×Ωin
i
− wni ),∇(ψi vk))L2(I,L2(Ω))

k→∞−−−−→− (α∇(u|I×Ωin
i
− wni ),∇(ψi v))L2(I,L2(Ω))

≤‖α 1
2∇(u|I×Ωin

i
− wni )‖L2(I,L2(Ωin

i ))‖α
1
2∇(ψiv)‖L2(I,L2(Ω)).

Furthermore, the properties of the partition of unity (5.1) yield

‖α 1
2∇(ψiv)‖L2(I,L2(Ω)) ≤ ‖α

1
2∇ψi v‖L2(I,L2(Ω)) + ‖α 1

2ψi∇v‖L2(I,L2(Ω))

≤ c2/diam(Ωini )‖α 1
2 v‖L2(I,L2(Ω)) + c1‖α

1
2∇v‖L2(I,L2(Ω))

= (c1 + c2/ diam(Ωini ))‖v‖L2(I,V ).

Consequently, we may infer that

〈(u− w)t, v〉L2(I,V )

≤
M∑
i=1

(c1 + c2/diam(Ωini ))‖α 1
2∇(u|I×Ωin

i
− wni )‖L2(I,L2(Ωin

i ))‖v‖L2(I,V ).

As an intermediate result we therefore obtain√
‖(u− uGFEM)t‖2L2(I,(VGFEM)∗) + ‖α 1

2∇(u− uGFEM)‖2L2(I,L2(Ω))

≤
√

2
[
(1 + 1/β) ‖α 1

2∇(u− w)‖L2(I,L2(Ω))

+ 1/β

M∑
i=1

(c1 + c2/ diam(Ωini )) ‖α 1
2∇(u|I×Ωin

i
− wni )‖L2(I,L2(Ωin

i ))

]
.

Exploiting the definition of w, Young’s inequality, the Cauchy-Schwarz inequality, the
overlap condition, and the properties of the partition of unity, it follows that

‖α 1
2∇(u− w)‖2L2(I,L2(Ω)) = ‖α 1

2∇
( M∑
i=1

ψi(u|I×Ωin
i
− wni )

)
‖2L2(I,L2(Ω))

= ‖
M∑
i=1

α
1
2 (∇ψi(u|I×Ωin

i
− wni ) + ψi∇(u|I×Ωin

i
− wni ))‖2L2(I,L2(Ω))

≤ 2 ‖
M∑
i=1

α
1
2∇ψi(u|I×Ωin

i
− wni )‖2L2(I×Ω) + 2 ‖

M∑
i=1

α
1
2ψi∇(u|I×Ωin

i
− wni )‖2L2(I×Ω)

≤ 2M in
M∑
i=1

(
‖α 1

2∇ψi(u|I×Ωin
i
− wni )‖2L2(I×Ωin

i ) + ‖α 1
2ψi∇(u|I×Ωin

i
− wni )‖2L2(I×Ωin

i )

)
≤ 2M in

M∑
i=1

(
(c2/diam(Ωini ))2‖α 1

2 (u− wni )‖2L2(I×Ωin
i ) + c21 ‖α

1
2∇(u− wni )‖2L2(I×Ωin

i )

)
.
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Since u|I×Ωin
i
−wni ∈ Hini , we infer analogously to the proof of the parabolic Poincaré

inequality (Propositions A.2 and A.4) that there exists a constant cαp,i > 0 such that

‖α 1
2 (u|I×Ωin

i
− wni )‖L2(I,L2(Ωin

i )) ≤ cαp,i ‖α
1
2∇(u|I×Ωout

i
− wni )‖L2(I,L2(Ωin

i )).

We can finally employ Assumption (5.7) and obtain

‖α 1
2∇(u|I×Ωin

i
− wni )‖2

L2(I×Ωin
i )

‖α 1
2∇u|I×Ωout

i
‖2
L2(I×Ωout

i )
+ ‖f‖2

L2(I×Ωout
i )

+ ‖u0‖2L2(Ωout
i )

+ ?2
i

≤ 5 max{2, cf,i}2 ε2
i ,

where the constant cf,i is defined as cf,i := ‖ufi ‖L2(I×Ωout
i )/‖α

1
2∇ufi ‖L2(I×Ωout

i ) and

?i is given by ?i = ‖ubt‖L2(I×Ωout
i ) + ‖α 1

2∇ub‖L2(I×Ωout
i ) if ∂Ωouti ∩ ∂Ω 6= ∅ and ?i = 0

else. Exploiting the overlap condition (5.2) it follows that

M∑
i=1

‖α 1
2∇u|I×Ωout

i
‖2L2(I×Ωout

i ) + ‖f‖2L2(I×Ωout
i ) + ‖u0‖2L2(Ωout

i ) + ?2
i

≤Mout
(
‖α 1

2∇u‖2L2(I×Ω)+‖f‖2L2(I×Ω)+‖u0‖2L2(Ω)+‖ubt‖2L2(I×Ω)+‖α 1
2∇ub‖2L2(I×Ω)

)
.

Finally, we have√
‖(u− uGFEM)t‖2L2(I,(VGFEM)∗) + ‖α 1

2∇(u− uGFEM)‖2L2(I,L2(Ω))

≤
√

10Mout max
i=1,...,M

{
Ci(c1, c2, β,M

in,Ωini , c
α
p,i) max{2, cf,i} εi

}
(
‖α 1

2∇u‖L2(I×Ω) + ‖f‖L2(I×Ω) + ‖u0‖L2(Ω) + ‖ubt‖L2(I×Ω) + ‖α 1
2∇ub‖L2(I×Ω)

)
,

where the constant Ci(c1, c2, β,M
in,Ωini , c

α
p,i) is given by Ci(c1, c2, β,M

in,Ωini , c
α
p,i) :=

max
{

(1 + 1/β)
√

2M in
(
c21 + (c2cαp,i/ diam(Ωini ))2

)
,
(
c1 + c2/ diam(Ωini )

)
/β
}

. �
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