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—— Abstract

We study the geodesic Voronoi diagram of a set S of n linearly moving sites inside a static simple
polygon P with m vertices. We identify all events where the structure of the Voronoi diagram
changes, bound the number of such events, and then develop a kinetic data structure (KDS) that
maintains the geodesic Voronoi diagram as the sites move. To this end, we first analyze how often a
single bisector, defined by two sites, or a single Voronoi center, defined by three sites, can change.
For both these structures we prove that the number of such changes is at most O(m?), and that this
is tight in the worst case. Moreover, we develop compact, responsive, local, and efficient kinetic
data structures for both structures. Our data structures use linear space and process a worst-case
optimal number of events. Our bisector KDS handles each event in O(logm) time, and our Voronoi
center handles each event in O(log® m) time. Both structures can be extended to efficiently support
updating the movement of the sites as well. Using these data structures as building blocks we obtain
a compact KDS for maintaining the full geodesic Voronoi diagram.
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Kinetic Geodesic Voronoi Diagrams in a Simple Polygon

1 Introduction

Polygons are one of the most fundamental objects in computational geometry. As such, they
have been used for many different purposes in different contexts. Within the path planning
community, polygons are often used to model different regions. A simple example is when
we have a robot moving within a building: in such a case we model all possible locations
that a robot can reach by a polygon (the walls or any obstacle in the way form the boundary
of this polygon). Then, the goal is to find a path that connects the source point and the
destination and that minimizes some objective function. There are countlessly many results
that depend on the exact function used (distance traveled [10], time needed to reach [18],
number of required turns [27], etc.) Paths that minimize distance are often called geodesics.

Two of the most fundamental problems in this setting are constructing shortest path maps
and augmented Voronoi diagrams. A shortest path map (or SPM for short) is a partition of
the space into regions so that points in the same region travel in the same way to the fixed
source [10, 13]. The exact definition of “in the same way” depends on the exact problem
setting, but it often means that paths are combinatorially the same, that is, they have the
same internal vertices. Augmented Voronoi diagrams are a generalization of SPMs for the
case in which we have more than one fixed source and we are interested in the topology of
the path to the closest source [3]. See Fig. 1 for an illustration. These structures are of
critical importance in obtaining efficient solutions to related problems such as finding center
points, closest pairs, nearest neighbors, and constructing spanners [22, 23].

It often happens that while we are moving to our destination, that destination is also
moving. For example, when two agents try to meet, one wants to evade the other, or one
simply needs to meet up with a second one that is doing a different task [17]. Since it is very
costly to recompute the solution after each infinitesimal movement, the aim is to somehow
maintain some information from which we can easily obtain the solution, and update this
information only when the solution has significant changes. A data structure that can handle
such a setting is known as a kinetic data structure (or KDS for short) [6]. There is a wide
range of problems that have been studied in this setting. We refer to the survey by Basch et
al. [6] for an overview of these results.

Surprisingly, there is very little work that combines all three of the above concepts
(polygons, shortest paths, and kinetic data structures). We are aware of only two results.
Aronov et al. [5] present a KDS for maintaining the shortest path map of a single point

l

Figure 1 The (augmented) geodesic Voronoi diagram of four moving sites p, ¢, r, and s.
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moving inside a simple polygon, and Karavelas and Guibas [14] give a KDS to maintain a
constrained Delaunay triangulation of a set of moving points. This allows them to maintain
nearest neighbors and the geodesic hull.

We present the first KDS to maintain the full (augmented) geodesic Voronoi diagram of
a set of point sites moving inside a simple polygon, thus generalizing the above results. We
carefully analyze when and how often it can change. To this end, we prove tight bounds on
the number of combinatorial changes in a single bisector, and on the trajectory of a Voronoi
center. Our results provide an important tool for maintaining related structures in which
the agents (sites) move linearly within the simple polygon (e.g. minimum spanning trees,
nearest-neighbors, closest pairs, etc.).

Related Work. Our data structures are based on the Kinetic Data Structures (KDS)
framework introduced by Basch et al. [6]. In this framework motions are assumed to be
known in advance. Each KDS maintains a set of certificates that together certify that the
KDS currently correctly represents the target structure. Typically these certificates involve a
few objects each and represent some simple geometric primitive. For example a certificate
may indicate that three points form a clockwise oriented triangle. As the points move these
certificates may become invalid, requiring the KDS to update. This requires repairing the
target structure and creating new certificates. Such a certificate failure is called an (internal)
event. An event is external if the target structure also changes. The performance of a
KDS is measured according to four measures. A KDS is considered compact if it requires
little space, generally close to linear, responsive if each event is processed quickly, generally
polylogarithmic time, local if each site participates in few events, and efficient if the ratio
between external and internal events is small, generally polylogarithmic. Note that for
efficiency it is common to compare the worst-case number of events for either case.

Let S be a set of n point sites moving linearly in a space P, that is, each point moves
with a fixed speed and direction. The Voronoi diagram VDp(S) of S is a partition of P into
n regions, one per site s € .S, such that for any point ¢ in such a region V; is closer to s than
to any other site from S. Guibas et al. [11] studied maintaining the Voronoi diagram in case
P =R? and distance is measured by the Euclidean distance. They prove that VDg2(S) may
change (n?) times, and present an a KDS that handles at most O(n384(n)) events, each
in O(logn) time. Here, 8,(n) = A,(n)/n and A,(n) is the maximum length of a Davenport-
Schinzel sequence of n symbols of order z [25]. Their results actually extend to slightly more
general types of movement. It is one of the long outstanding open problems if this bound
can be improved [8, 9]. Ounly recently, Rubin [24] showed that if all sites move linearly and
with the same speed, the number of changes is at most O(n?*¢) for some arbitrarily small
e > 0. For arbitrary speeds, the best known bound is still O(n?B4(n)). When the distance
function is specified by a convex k-gon the number of changes is O(k*n?3,(n)) [2]. Here, and
throughout the rest of the paper z denotes some small constant.

Let P be a simple polygon with m vertices, and let 7 (s, ¢) be the shortest path between s
and ¢ that stays entirely inside P. We measure length of a path by the sum of the Euclidean
edge lengths. Such a shortest path 7(s,q) is known as a geodesic, and its length as the
geodesic distance between s and q. With some abuse of notation we use 7(s,¢q) to denote
both the shortest path and its length.

Aronov was the first to study the geodesic Voronoi diagram [3]. He proved that when the
sites in S are static, VDp(S) has complexity O(n + m). The same bound applies for the
augmented geodesic Voronoi diagram. Moreover, he presented an O((n+m)log(n+m)logn)
time algorithm for constructing VD p(S), which was improved to O((n + m)log(n + m)) by

75:3

ICALP 2020



75:4

Kinetic Geodesic Voronoi Diagrams in a Simple Polygon

Table 1 The different types of events at which the geodesic Voronoi diagram changes, and their
number. At an a,b-collapse event two vertices of VDp(S) with degrees a and b collide and one
disappears. Similarly, at an a, b-expand one such a vertex appears. At a vertex event a vertex of
VDp(S) collides with a vertex of P.

Event Lower bound Upper bound

1, 2-collapse/expand Q(m?n) O(m*n?)

1, 3-collapse/expand Q(mnmin{n,m}) O(m?*n® min{mp.(n),n})
2, 2-collapse/expand Q(m3n) O(m3nB4(n))

2, 3-collapse/expand Q(mn? +m3n) O(m3n?B4(n)pB.(n))

3, 3-collapse/expand Q(mn? +m?n) o(m3n®B.(n))

vertex Q(m?n) O(m*nB4(n))

Papadopoulou and Lee [23]. Recently, there have been several improved algorithms [16, 21]
which ultimately lead to an optimal O(m + nlogn) time algorithm by Oh [20]. Furthermore,
Agarwal et al. [1] recently showed that finding the site in S closest to an arbitrary query
point ¢ € P — a key application of geodesic Voronoi diagrams — can be achieved efficiently
even if sites may be added to, or removed from, S. Note however, that their result cannot be
used directly to maintain a substructure of the Voronoi diagram (e.g. an MST).

There are no known results on maintaining an (augmented) geodesic Voronoi diagram
when multiple sites S move continuously in a simple polygon P. In case there is only one site
s, Aronov et al. [5] presented a KDS that maintains the shortest path map SPM; of s. Their
data structure uses O(m) space, and processes a total of O(m) events in O(logm) time each!.
Karavelas and Guibas [14], provide a KDS to maintain a constrained Delaunay triangulation
of S. This allows them to maintain the geodesic hull of S w.r.t. P, and the set of nearest
neighbors in S (even in case P has holes). Their KDS processes O((m +n)3B.(n+m)) events
in O(log(n 4+ m)) time each.

Organization and Results. We present a kinetic data structure to maintain the geodesic
Voronoi diagram VD p(S) of a set S of n sites moving linearly inside a simple polygon P
with m vertices. To this end, we prove a tight O(m?) bound on the number of combinatorial
changes in a single bisector, and develop a compact, efficient, and responsive KDS to maintain
it (Section 3). Our KDS for the bisector uses O(m) space and processes events in O(logm)
time. We then show that the movement of the Voronoi center cpqs — the point equidistant to
three sites p,q,s € S — can also change O(m?) times (Section 4). We again show that this
bound is tight, and develop a compact, eflicient, and responsive KDS to maintain cp4s. The
space usage is linear, and handling an event takes O(log2 m) time. Both our KDSs can be
made local as well, and therefore efficiently support updates to the movement of the sites.
Building on these results we then analyze the full Voronoi diagram VDp(S) of n moving
sites (Section 5). We identify the different types of events at which VD p(S) changes, and
bound their number. Table 1 gives an overview of our bounds. We then develop a compact
KDS to maintain VDp(.S). Omitted proofs are in the full version of this paper [15].

L The original description by Aronov et al. [5] uses a dynamic convex hull data structure that supports
O(log? m) time queries and updates. Instead, we can use the data structure by Brodal and Jacob [7]
which supports these operations in O(logm) time.
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2  Preliminaries

We first review some properties of geodesic Voronoi diagrams and shortest path maps that we
will use. Let SPM be the shortest path map of s, hence for all points in a region of SPMj
the shortest path from s has the same internal vertices. Each such region R is star-shaped
with respect to the last internal vertex v on the shortest path. Often it will be useful to refine
R into triangles incident to v. We refer to the resulting subdivision of P as the extended
shortest path map. With some abuse of notation we will use SPM; to denote this subdivision
as well. An edge in SPM; that starts in a vertex v that is colinear with the last edge in
m(s,v) is called an extension segment E,s = E,,.

Let T = R denote the time domain. We consider each site s € S as a function from T to
P. For functions we will not distinguish between the function itself and its graph. We say
that a function is simple if it is continuous, i.e. if it has no break points.

Given two sites p and g, the bisector By, is the set of all points that are equidistant to p
and ¢. If no vertex of P lies on the bisector, then B, is a piecewise curve connecting two
points on OP. Each curve on B, is a subarc of a hyperbola [3, 19].

» Lemma 1 (Aronov [3]). VDp(S) consists of O(n) vertices with degree 1 or 3, and O(m)
vertices of degree 2. For each degree 2 verter v there is are p,q € S so that v lies on the
bisector By, and v lies on extension segment of SPM,, or SPM,. All edges of VDp(S) are
hyperbolic arc segments. Fvery vertex v of P contributes at most one extension segment E,,.

» Lemma 2 (Aronov et al. [5]). Let s be a point moving linearly inside a simple polygon P
with m vertices. The extended shortest path map SPMy changes at most O(m) times.

» Lemma 3. Let v be a vertex of P, there are O(mnf4(n)) time intervals in which v has a
unique closest site s € S, and the distance from v to s over time is a hyperbolic function.

3 A Single Bisector

Fix a pair of sites p and ¢, and let by4(t) and bgp(t) be the endpoints of the bisector B,

defined so that p lies to the right of By, (t) when following the bisector from bpq(t) to bgp(t).

As p and ¢ move, the structure of By, changes at discrete times, or events. We distinguish

between the following types of events (see Fig. 2):

= verter events, at which an endpoint of B, coincides with a vertex of P,

m 1, 2-collapse events, at which a degree 2 vertex (an interior vertex) of B,, disappears as
it collides with a degree 1 vertex (an endpoint),

= 1, 2-ezpand events, at which a new degree 2 vertex appears from a degree 1 vertex,

vertex

1, 2-collapse 2, 2-collapse
J! v = l \.u\/r\ = e N
1, 2-expand v 2, 2-expand
< <=

Figure 2 The types of events during which the structure of B,, changes.
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Figure 3 A vertex event at v may coincide with a 1,2-expand event. At the time of the event all
points in R are equidistant to p and g, and bpq jumps from v to eyp.

m  2,2-collapse events at which a degree 2 vertex disappears by colliding with an other
degree 2 vertex, and
m 2, 2-expand events, at which a new degree 2 vertex appears from a degree 2 vertex.

In Section 3.1 we prove that there are at most O(m?) vertex and 1, 2-collapse events, and
at most O(m?) 2, 2-collapse events. The number of expand events can be similarly bounded.
Some of these events may actually happen simultaneously. See for example Fig. 3, where B,
changes when a vertex event and a 1, 2-expand event coincide. So we are double-counting
these simultaneous events. Despite this, we show that our O(m?) bound on the number of
changes of B, is tight in the worst case. In Section 3.2 we then argue that there is a KDS
that can maintain B, efficiently.

3.1 Bounding the Number of Events

We start by showing that a bisector By, of p and ¢ may change Q(m?) times. We then argue
that there is also an O(m?3) upper bound on the number of such changes.

» Lemma 4. The bisector Byy(t) can change Q(m3) times.

Proof. The main idea is to construct a bisector B,,, a piecewise hyperbolic curve, of
complexity Q(m) in the middle of a region that consists of 2(m?) cells. These cells are
defined by the extension segments in SPM,, and SPM, that extend from the vertices on two
convex chains of the polygon; one chain on either side of B,,. See the top area in Fig. 4. In
each cell the distance functions to p and ¢ are different, thus if B,, moves across a cell this
causes a change in the bisector. The two upper convex chains in P have size {2(m) and are
placed such that as p moves towards the left (and ¢ remains in place), the bisector sweeps
from left to right over Q(m?) middle cells, thus causing Q(m?) changes to Bp,.

Figure 4 The bisector By, may be involved in Q(m®) 2, 2-collapse events.
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Next, we argue that B, can be moved back and forth across these cells (m) times by
adding two convex chains of size Q(m) to the bottom of the polygon, just above p and ¢. This
way we can ensure that p and ¢ alternate being the closest to the top of the polygon. Thus,
when p is closest the bisector will move to the right and when ¢ is the closest the bisector
will move to the left. By making p and ¢ move at the same speed and having the segments
defining the convex chain on ¢’s side start and end in the middle of where the segments
of the convex chain on p’s side, we can cause this alternation. It follows that the bisector
sweeps over the Q(m?) middle cells 2(m) times and thus it changes Q(m?) times. <

In the above proof one can observe that the counted events are only the 2,2-collapse
events. For 2,2-collapse and 2,2-expand events there is also a O(m?) upper bound. For other
events there is a O(m?) upper bound (proofs are in the full version [15]). Hence the bisector
B,y may change at most O(m?) times. Even though the entire bisector may change O(m?)
times, the trajectories of its intersection points with the boundary of P have complexity at
most O(m?). The following theorem summarizes these results.

» Theorem 5. Let p and q be two points moving linearly inside P. The bisector Bpy of p
and q can change O(m?) times. This bound is tight in the worst case. The trajectories of the
endpoints of By, have O(m?) edges, each corresponding to a low-degree algebraic curve.

3.2 A Kinetic Data Structure to Maintain a Bisector

We first describe a simple, yet naive, KDS to maintain By, that is not responsive and then
show how to improve it to obtain a responsive KDS.

A Non-Responsive KDS to Maintain a Bisector. Our naive KDS for maintaining B,,
stores: (i) the extended shortest path maps of p and ¢ using the data structure of Aronov et
al. [5], (ii) the vertices of By, ordered along B,,q from by, to by in a balanced binary search
tree, and (iii) for every vertex u of B, the cell of SPM,, and of SPM, that contains u. Since
all cells in SPM,, and SPM,, are triangles, this requires only O(1) certificates per vertex. We
store these certificates in a priority queue Q.

At any time where B, changes combinatorially (i.e. at an event) the shortest path to
a vertex v of B), changes combinatorially, which indicates a change in the SPM cells that
contain v. Hence, we detect all events. Conversely, when any vertex v of Bj,, moves to a
different SPM cell there is a combinatorial change in the bisector, so each event triggered
by parts (ii) and (iii) of the KDS is an external event. The events at which SPM,, or SPM,

changes are internal (unless they also cause a change in a shortest path to a vertex of B,g).

The changes to SPM,, and SPM, are handled as in Aronov et al. and we update our
other structures accordingly (see the full version for details [15]). This leads to a compact
and efficient KDS to maintain the bisector. However, when the shortest path from p or ¢
to some polygon vertex v changes this affects all bisector vertices whose shortest paths go
through v. Hence, a single change in SPM,, or SPM, may lead to a large number of updates
to the certificates of bisector vertices. Therefore, the KDS is not responsive. To solve this
issue we need a more refined data structure.

A Responsive KDS to Maintain a Bisector. First we dissect in some more detail the
anatomy of a bisector. Each bisector consists of two endpoints which are degree 1 vertices
and a chain of degree 2 vertices connecting them. We can further divide this chain based on
which parts are directly visible from the sites defining the bisector. This division results in
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Figure 5 A bisector can be split into at most five pieces, here separated by degree 2 vertices
marked as crosses.

at most 5 pieces, as illustrated in Fig. 5; some pieces may not be present in every bisector.
First there is a double-visible piece that is visible from both sites p and ¢. Since P is a simple
polygon, this piece consists of a single line segment. Adjacent to the double-visible piece on
either side there may be a single-vistble piece that is only visible to p or to ¢, but not both.
Lastly, there are up to two non-visible pieces that are not directly visible from either p or q.

We will still store the bisector vertices in a balanced binary tree ordered along the bisector,
but we will store the certificates for the degree 2 vertices a little differently. For each of the
at most four degree 2 vertices that separate the pieces as well as the degree 1 endpoints, we
store the cells of SPM,, and SPM, that contain them. Then we observe that for internal
vertices of the single-visible piece there can be no events. Each of these internal vertices lies
on an extension segment of a single convex chain of vertices in the simple polygon and these
extension segments do not intersect. Therefore no 2,2-collapses can occur.

The non-visible pieces are trickier, since 2,2-collapses may occur when a vertex moving on
an extension segment of SPM, moves to a different cell of SPM,,. Fortunately such potential
events on a single non-visible bisector piece are related and form a strict ordering, regardless
of the exact distance functions of the various vertices to p and gq.

We define event points to be the locations at which 2,2-collapses that may occur. Consider
two degree 2 vertices v and w that are internal to a non-visible piece of bisector between
sites p and ¢, such that v and w are adjacent on the bisector and we have that v is on an
extension segment of SPM,, and w is on an extension segment of SPM,. Let the event point
ep,.,, denote the intersection between these two extension segments. A 2,2-event between
v and w corresponds to the event point being on the bisector between p and q. Without
loss of generality assume that the event point currently lies in the Voronoi cell of p. We can
then use the certificate 7(ep, ,,,p) < 7(ep, ., q) to detect the 2,2-event between v and w.
As we saw above maintaining these certificates explicitly is not efficient as any change in
the shortest path towards p or ¢ requires us to recompute the failure time. Instead we will
store all event points in the Voronoi cell of p in one balanced binary tree ordered along the
bisector and those in ¢ in another. For each node in such a tree, we maintain the event point
in its subtree that will be the first to be on the bisector, similar to a kinetic tournament
(this, in turn requires maintaining distances between some of the relevant event points in the
subtree). With this representation, we have to compute explicit failure times only for the two
event points stored in the roots of the trees. Using these ideas we obtain the following result:
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€Po

Figure 6 On the left is a schematic drawing of the event points ep,; and ep, with their shortest
paths towards p and g. On the right how (the certificates of) ep; and ep, are stored in the BST.

» Theorem 6. Let p and q be two sites moving linearly inside a simple polygon P with m
vertices. There is a KDS that maintains the bisector By that uses O(m) space and processes
at most O(m3) events, each of which can be handled in O(logm) time. Additionally it can
support movement changes of p and q in O(logm) time and splitting the bisector at any
given vertex in O(log® m) time.

Proof. For a single non-visible bisector piece between sites p and ¢, Consider event points
ep; and ep, where ep, is a child of ep; in the tree. Let s; and ¢; denote the first polygon
vertex on the shortest path from ep; towards p and g respectively and let so and t5 be defined
symmetrically. See Fig. 6. Then we can rewrite the certificate for ep; as

'/T(epl,81)+7l'(81,p) < ﬂ-(eplvtl)—'_ﬂ-(tl?q) = ﬂ-(eplvsl)_ﬂ-(eplvtl) < ﬂ-(tluq)_ﬂ-(slvp)a

and the certificate for ep, similarly. Then observe that if s; = sy and t; = t2, then ep; will

be on the bisector before ep, if and only if 7w(ep,, s1) — 7(ep;,t1) > w(epy, s2) — m(epy, t2).

This creates a strict ordering of the event points in the Voronoi cell of p. Unfortunately in
many cases the first vertex on the path towards p or ¢ will not be the same for every vertex
on the bisector. Therefore we introduce an offset value to allow comparing event points that
have different first vertices on their paths towards p and gq.

If 51 # so and t1 # to, we should compare based on a common node on the paths towards
p and ¢, which may be any combination of s; or s, and t; or t5. As these cases are analogous,
we consider the case where s; and o are on the shortest paths towards p and ¢ respectively
for both event points. (Intuitively sy and to are further towards p and g). Now the values we
would like to compare are w(ep, 1) — 7(epy, t2) > w(epy, $1) — 7(epy, t2). However these are
not what we stored. With some rewriting, we find that the above inequality holds if and
only if

m(epy, s1) — w(epy, t1) > m(epy, S2) — w(epy, ta) — 7(s1, $2) — w(t1,ta2).

We call —m(s1, s2) — 7(t1,t2) the offset of epy with respect to ep;. Each node will store the

maximum event value in its subtree as follows. For a leaf the maximum is its own event value.

For an internal node, it is the maximum over its own event value and the maximum values
of its children with the offset added. The maximum value of the root can then be used to

determine the first time an 2, 2-event happens among the bisector vertices stored in the tree.
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Note that the above data structure stores only a constant number of certificates directly
involving p or g, all of which are stored at the root of the tree. Therefore, it can be made to
support changes in the movement of p and ¢ in O(logm) time. Furthermore, we can support
splitting the bisector at a vertex in O(log? m) time, since a split affects O(logm) nodes in the
balanced binary search tree, and recomputing the offsets (and thus updating the certificates)
takes O(logm) time per node.

By replacing part (iii) of the naive structure with this data-structure we are still guaranteed
to detect all events, but now when SPM,, changes, we have to update only a constant number
of certificates (rather than ©(m)). As the certificates are stored in a binary tree it is easy to
add or remove vertices when the bisector is expanded or shrinks. This proves the theorem. <«

4 A Voronoi Center

Let ¢pqs(t) be the point equidistant to p(t), ¢(t), and s(t) if it exists. By Aronov et al. [4]
(Lemma 2.3.5) there is indeed at most one such a point. We refer to ¢,qs as the Voronoi
center of p, g, and s. Note that there may be times at which c,qs does not exist. We identify
five types of events at which c,qs may appear or disappear, or at which the movement of
Cpgs can change (see Fig. 7). They are:
1, 3-collapse events in which ¢,qs collides with the boundary of the polygon (in a bisector
endpoint) and disappears from P,

1, 3-expand events in which cp4s appears on the boundary of P as two bisector endpoints
intersect, creating a point equidistant to all three sites,

vertez-events where cpqs appears or disappears strictly inside P, as two sites, say p and g,
are equidistant to a vertex v that appears on the shortest paths to cpgs,

2, 3-collapse events where one of the geodesics from either p, g, or s to cpqs loses a vertex,

2, 3-expand events where one of the shortest paths gains a new vertex.

Observe that, as the name suggests, at a 1, 3-collapse event the Voronoi center (a degree 3
vertex in VDp({p, g, s})) disappears as it collides with the endpoint of a bisector (a degree 1
vertex). Similarly, at a 2, 3-collapse event a degree 2 vertex on one of the bisectors disappears
as it collides with a degree 3 vertex (the Voronoi center c¢,,s). As in case of the bisector,
some of these events may coincide. In the next section, we bound the number of events, and
thus the complexity of the trajectory of c,qs. We then present a kinetic data structure to
maintain cpqs in Section 4.2.

; 1, 3-collapse 2, 3-collapse
Cpgs =—> u Cors => \_/@
1, 3-expand " 9 3 ex
) , 3-expand
<=
vertex
®s Bypq q’f ®s ®s
Pe. De. Pe.

Figure 7 The events that can happen during the movement of a Voronoi center.
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Figure 8 A polygon in which the trajectory of a voronoi center cpqs has complexity Q(m?).

4.1 Bounding the Number of Events

We give a construction in which the trajectory of ¢,qs has complexity Q(m?), and then prove
a matching upper bound.

» Lemma 7. The trajectory of the Voronoi center cpqs of three points p, q, and s, each
moving linearly, may have complexity Q(m?).

Proof. The main idea is that we can construct a trajectory for c,qs of complexity Q(m?), even
when two of the three sites, say p and ¢, are static. We place p and ¢ so that their bisector
B, a piecewise hyperbolic curve of complexity {(m), intersects an (almost) horizontal line
E Q(m) times. We can realize this using two convex chains F), and F, in OP. See Fig. 8 for
an illustration. We now construct a third convex chain D, in 0P and place the third site s

so that the extension segments in SPM; incident to the vertices of Dy all lie very close to F.

Thus, each such segment intersects By, €(m) times. We choose the initial distances so that
the voronoi center c,q, lies on the rightmost segment of B,,. Now observe that as s moves
away from Dy, the center cpqs(t) will move to the left on B,,, and thus it will pass over
all Q(m?) intersection points of B, with the extension segments of the vertices in D;. At
each such time, the structure of one of the shortest paths 7(p(t), cpgs(t)), m(q(t), cpgs(t)), or
m(5(t), cpqs(t)) changes (they gain or lose a vertex from F),, F,, or Ds, respectively). Hence,
the trajectory of c,qs changes Q(m?) times.

Next, we argue that we can make cpqs “swing” back and forth Q(m) times by having p
and ¢ move as well. The voronoi center cpqs will then encounter every intersection point on

Bpg Q(m) times. It follows that the complexity of the trajectory of c,qs is Q(m?) as claimed.

The idea is to add two additional convex chains, Cs and C), that make the bisector By,
between p and s “zigzag” (m) times throughout the movement of p and s. We can achieve
this using a similar construction as in Lemma 4. To make sure that the bisector By, = Bpy(t)
between p and ¢ remains static, we create a third chain C,, which is a mirrored copy of C),
and we make ¢ move along a trajectory identical to that of p. See Fig. 8. Finally, observe
that cpgs(t) = Bpg N Bps(t), and thus cpys(t) will indeed encounter all Q(m?) intersection

points on By, Q(m) times. The lemma follows. <
» Lemma 8. The number of 1,3-collapse events is at most O(m?).

» Theorem 9. The trajectory of the Voronoi center cpqs has complexity O(m?®). Each edge
is a constant degree algebraic curve.
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Figure 9 In black the certificates that we maintain in order to detect: (a) events where by,
changes movement, (b) 1, 3-collapse, 2, 3-collapse and 2, 3-expand events, and (c) 1, 3-expand events.

4.2 A Kinetic Data Structure to Maintain a Voronoi Center

Our KDS for maintaining c,qs stores: (i) the extended shortest path maps of p, ¢, and s, (ii)
the cells of these shortest path maps containing cpqs (When cpqs lies inside P), and (iii) the
endpoints of all bisectors (for all pairs), and their cyclic order on 9P. In particular, for each
such endpoint by, we keep track of the cells of SPM,, and SPM, that contain it. See Fig. 9.
At any time we maintain O(m) certificates, which we store in a global priority queue.

Observe that at 1, 3-collapse, 2, 3-collapse, and 2, 3-expand events the shortest path from
Cpgs to one of the sites changes combinatorially. Hence, we can detect all such events. At a
vertex event a vertex is equidistant to two sites, say p and ¢. At such a time, one of the two
endpoints of By, leaves an edge of P, and thus exits a shortest path map cell in SPM,, (and
SPM,). Since we explicitly track all bisector endpoints, we can thus detect this vertex event
of cpgs. Finally, at every 1,3-expand event two such bisector endpoints collide, and thus
change their cyclic order along 9P. We detect such events due to certificates of type (iii).

Any time at which c¢,qs changes cells in a shortest path map the movement of c,qs
changes combinatorially. Hence, any failure of a certificate of type (ii) is an external event
(a 1, 3-collapse, 2,3-collapse, or 2,3-expand). The certificates of types (i) and (iii) may be
internal or external.

» Theorem 10. Let p,q and s be three sites moving linearly inside a simple polygon P with
m vertices. There is a KDS that maintains the Voronoi center c,qs that uses O(m) space and
processes at most O(m?®) events, each of which can be handled in O(log®> m) time. Updates
to the movement of p, q, and s, can be handled in O(log2 m) time.

Proof. Certificate failures of type (i) are handled exactly as described by Aronov et al. [5].
This takes O(log2 m) time. Note that changes to the shortest path maps may affect the
certificates that guarantee that cp4s or a bisector endpoint lies in a particular SPM cell. In
these cases we trigger a type (ii) or type (iii) certificate failure. At a certificate failure of
type (ii) at which ¢,qs exits a shortest path map cell, we remove all certificates of type (ii)
from the event queue. Next, for each site p, ¢, and s, we compute the new cell in the shortest
path map containing c,qs (if ¢pgs still lies inside P). Finally, we create the appropriate new
type (ii) certificates. Since all cells have constant complexity, the total number of certificates
affected is also O(1). Computing them can easily be done in O(log* m) time.

Certificate failures of type (iii) where the movement of a bisector endpoint changes are
handled using the same approach as in Section 3.2. Furthermore, at such an event we check
if c,qs appears or disappears, that is, if the event is actually a vertex event of c,qs. This can
be done in O(log® m) time [21]. If ¢,y disappears then we delete all type (i) certificates.
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Figure 10 (a) Voronoi edges cannot intersect in their interior. (b) The 3, 3-collapse/expand
events.

If c,qs appears then we locate the cell of SPM,,, of SPM,, and of SPM, that contains cpqs,
and insert new type (ii) certificates that certify this. Finding the cells and updating the
certificates can be done in O(log? m) time. At a certificate failure of type (iii) where two
bisector endpoints collide, we check if the intersection point is equidistant to all three sites,
and is thus a 1, 3-expand event. Similarly to the approach described above, we add new type
(i) certificates in this case. Again this takes O(log? m) time.

Maintaining the extended shortest path maps requires handling O(m) events [5]. Events
where cpqs crosses a boundary of an extended SPM correspond to changes in the trajectory
of ¢pgs. By Theorem 9 there are at most O(m?) such events. This dominates the O(m?)
events that we have to handle to maintain the bisector endpoints in cyclic order around 9P
(Theorem 5 and Lemma 8).

Since in addition to SPM,,, SPM,, and SPM,, we maintain only a constant amount of
extra information. Since the KDS to maintain such a shortest path map SPMy is local and
can be updated to changes in the movement of s in O(log2 m) time. The same applies for our
data structure as well. Thus we obtain a compact, responsive, local, and efficient KDS. <«

5 The Geodesic Voronoi Diagram

In this section we consider maintaining the geodesic Voronoi diagram VDp(S) as the sites
in S move. As a result of the sites in S moving, the Voronoi vertices and edges in VD p(5)
will also move. However, we observe that all events involving Voronoi edges involve their
endpoints; two edges cannot start to intersect in their interior as this would split a Voronoi
region, see Fig. 10(a). Similarly, the interior of a Voronoi edge cannot start to intersect the
polygon boundary. This means we can distinguish the following types of events that change
the combinatorial structure of the Voronoi diagram.

Edge collapses, at which an edge between vertices u and v shrinks to length zero. Let d,,, d,,
with d, < d,, be the degrees of u and v, respectively. We then have a d,,, d,-collapse.
Edge expands. These are symmetric to edge collapses.

Vertex events, where a degree 1 vertex of VDp(S) crosses over a polygon vertex.

Indeed, we have seen most of these events when maintaining an individual bisector
or Voronoi center (a degree 3 vertex in VDp(5)). The only new types of events are the
3, 3-collapse and 3, 3-expand events which involve two degree 3 vertices. They are depicted
in Fig. 10.(b). We again note that some of these events may happen simultaneously.

» Theorem 11. Let S be a set of n sites moving linearly inside a simple polygon P with m
vertices. During the movement of the sites in S, the combinatorial structure of the geodesic
Voronoi diagram VDp(S) changes at most O(m>n3B,(n)) times. In particular, the events at
which VDp(S) changes, and the number of such events, are listed in Table 1.
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Figure 11 A vertex event may cause a bisector (here B,,) to split, and a degree 3 vertex crossing
an SPM extension segment may merge two bisectors.

We prove these bounds in the full version [15]. For most of the lower bounds we generalize
the constructions from Sections 3 and 4. For the upper bounds we typically fix a site or vertex
(or both), and map the remaining sites to a set of functions in which we are interested in the
lower envelope. In Section 5.1 we develop a kinetic data structure to maintain VD p(S).

5.1 A KDS for a Voronoi Diagram

In this section we develop a KDS to maintain the Voronoi diagram of S. Our KDS essentially
stores for each site the extended shortest path map of its Voronoi cell, and a collection of
certificates that together guarantee that the shortest paths from the sites to all Voronoi
vertices remain the same (and thus the KDS correctly represents VDp(S)). The main
difficulties that we need to deal with are shown in Fig. 11. Here, r becomes the site closest
to vertex v, and as a result a part of the polygon moves from the Voronoi cell V,, of p to the
Voronoi cell V,. of r. Our KDS should therefore support transplanting this region from the
SPM representation of V}, into V;. or vice versa. Moreover, part of the bisector By, becomes a
bisector B,,, which means that any certificates internal to the bisector (such as those needed
to detect 2,2-events) change from being dependent on the movement of p to being dependent
on the movement of r. Next, we show how to solve the first problem, transplanting part
of the shortest path map. Our KDS for the bisector from Theorem 6 essentially solves the
second problem. All that then remains is to describe how to handle each event.

5.1.1 Maintaining Partial Shortest Path Maps

To support transplanting a part of SPM, into SPM, we extend the data structure of
Aronov et al. [5]. Observe that SPMjy is a tree rooted at s, and we transplant only subtrees,
rooted at some polygon vertex v. Our representation of SPM; should support: (i) link
operations in which we add the subtree rooted at v as a child of u, (ii) cut operations in
which we cut an edge (u,v), (iii) shortest path queries in which we report the length of the
shortest path from some vertex u to the root s, and (iv) principal-child queries in which we
report the principal child ¢ of some non-root node u. The principal child is the child of u for

which the angle between cu and up(u), where p(u) is the parent of u, is minimal. We need
this operation to support updating the certificates of SPM,2. To support these operations,

2 Since the root is the only node storing a moving point, all certificates involve only nodes from the first
three layers of the tree. Hence, it suffices to compute the principal child only for direct children of the
root.
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we store SPM; twice: once in a link-cut tree [26] and once in an Euler tour tree [12]. Both
these structures support link and cut operations in O(log m) time. The link-cut trees support
query operations on node-to-root paths, and hence we use them to answer shortest path
queries in O(logm) time (plus O(k) time to report the actual path, if desired). The Euler
tour trees support query operations on subtrees, and hence we use them to answer principal
child queries. In particular, we maintain the children of u in cyclic order around wu, starting
with ¢. This way link and cut operations still take O(logm) time, and the principal child of
u can be reported in constant time.

5.1.2 The data structure

The full KDS thus consists of an extended shortest path map for every Voronoi cell maintained
as described above; and certificates for each degree three vertex, degree one vertex, and each
bisector. For every degree three vertex c,,s; we maintain the cells of SPM,,, SPM, and SPM;
that contain it and its distance to neighboring vertices. For every degree one vertex byq, we
store the cells of SPM,, and SPM, that contain it, which edge of P it is on, and if applicable
its separation from neighboring degree one vertices on the same edge. For each bisector, we
store the data structure of Theorem 6. Our data structure uses a total of O(n 4+ m) space.

It is not to difficult to see that this certificate structure captures all external events.

For collapse and expand events involving degree three vertices we explicitly certify that the
distance to its adjacent vertices is non-zero. For events involving degree one vertices we
explicitly track which edge contains each such a vertex. This allows us to detect vertex
events. Furthermore, we maintain distance of each degree one vertex to other degree one
vertices on the same edge. Thus we can detect 1,3-expand events. Furthermore, we maintain
which cells of the SPM the vertex is contained in, which allows us to detect 1,2-expand
and 1, 2-collapse events. What remains are the 2,2-events. These are detected by the data
structure of Theorem 6.

5.1.3 Handling events

Handling the events is similar to what we described in Sections 3.2 and 4.2. Hence, we
describe only what is new or different here.

At all external-events we have to update the shortest path map representations of the
Voronoi cells. In most cases, this involves adding or removing a single vertex to the shortest
path map. This can easily be handled using local computations in O(log2 m) time. In case
of vertex events, we may have to move an entire region in SPM, to SPM,,. Since all shortest
paths in such a region go via the vertex involved, we can perform these updates in O(log2 m)
time using the above data structure.

Since there are now n sites, we maintain O(n + m) certificates, and thus updating the
event queue takes O(log(n 4+ m)) time. Furthermore, we now have multiple degree three
vertices, and thus we have to handle 3, 3-collapse and expand events. These are handled
in a similar fashion to the other events; we update the Voronoi regions, and compute new
certificates certifying the movement of the vertices involved from scratch. All these updates
can be done in O(log® m + logn) time.

At a vertex event where p and r are equidistant to a vertex v, the region R that moves
from SPM,, to SPM, may now be bounded by a bisector B,, rather than By, (see Fig. 11).
Since, at the time of the event, the relevant parts of B, and B, coincide we can obtain
the new part of B, by splitting B,,, and updating the movement of the associated sites. In
particular, replacing the function expressing the distance p to v by the distance from r to v.
Our bisector KDS allows such updates in O(log® m) time.
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Finally, we may have to update the certificates associated with the Voronoi vertices as
a result of changes to the individual shortest path maps. For example, when a site s can
no longer see polygon vertex v, this affects all Voronoi certificates of vertices for which the
shortest path goes through v. While our KDS for the bisector (Theorem 6) can update the
affected certificates of such a change efficiently, this unfortunately does not hold for the
certificates associated with degree one or degree three vertices. Updating these requires
O(k(log® m + logn)) time, where k is the number of neighbors of s in VDg(P). It is an
interesting open question to try and handle such events implicitly as well. We therefore
obtain the following result:

» Theorem 12. Let S be a set of n sites moving linearly inside a simple polygon P with m
vertices. There is a KDS that maintains the geodesic Voronoi diagram VDp(S) that uses
O(n +m) space and processes at most O(m>n3p,(n)) events, each of which can be handled
in O(k(log? m +logn)) time, where k is the number of neighbors of the affected Voronoi cell.
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