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Abstract

We develop a new interior-point method (IPM) for symmetric-cone optimization, a common
generalization of linear, second-order-cone, and semidefinite programming. In contrast to clas-
sical IPMs, we update iterates with a geodesic of the cone instead of the kernel of the linear
constraints. This approach yields a primal-dual-symmetric, scale-invariant, and line-search-free
algorithm that uses just half the variables of a standard primal-dual IPM. With elementary
arguments, we establish polynomial-time convergence matching the standard O(

√
n) bound.

Finally, we prove global convergence of a long-step variant and provide an implementation that
supports all symmetric cones. For linear programming, our algorithms reduce to central-path
tracking in the log domain.

Introduction

Let J denote a Euclidean Jordan algebra [8] of rank n with multiplication operator ◦ : J ×J → J ,
identity e ∈ J , and trace inner-product 〈u, v〉 := tr u◦v. This paper considers the following primal-
dual pair of linear optimization problems formulated over the cone-of-squares K := {u ◦ u : u ∈ J }

minimize 〈s0, x〉
subject to x ∈ K ∩ (x0 + L)

minimize 〈x0, s〉
subject to s ∈ K ∩ (s0 + L⊥),

(1)

where (x, s) denotes the primal-dual decision variables, (x0, s0) ∈ J × J denotes fixed parameters
and L ⊆ J is a linear subspace with orthogonal complement L⊥ ⊆ J . This standard form [10]
generalizes linear, second-order-cone, and semidefinite programs [5], which typically present x0 +L
as the solution set of linear equations and the dual constraint s ∈ K∩(s0 +L⊥) as a cone inequality.
It is also called a symmetric cone program given that K is both self-dual and homogeneous [8].

This paper contributes to the theory of interior-point methods (IPMs), widely used algorithms
for solving (1). For IPMs, the following assumption is standard.

Assumption 1. The primal and dual satisfy Slater’s condition, i.e., int(K) ∩ (x0 + L) 6= ∅ and
int(K) ∩ (s0 + L⊥) 6= ∅, where int(K) ⊆ J denotes the interior of K.

We make this assumption throughout.

Interior-point methods A pair (x, s) is optimal if it satisfies the constraints of (1) and the
additional complementary slackness condition x ◦ s = 0. Primal-dual IPMs solve a perturbation of
these constraints defined by µ > 0:

x ∈ K ∩ (x0 + L), s ∈ K ∩ (s0 + L⊥), x ◦ s = µe. (2)
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A unique solution (x̂(µ), ŝ(µ)) of (2) exists for all µ > 0 under Assumption 1 [9, Theorem 2.2].
The set of solutions {(x̂(µ), ŝ(µ)) : µ > 0} is called the central path. Primal-dual IPMs follow the
central path to an optimal solution of (1), i.e., they solve (2) while gradually reducing µ to zero.

While there are a variety of primal-dual IPMs (e.g., [10, 34, 30]), they share a common feature.
Specifically, when initialized at feasible points, they all produce iterates {xi, si}Ni=1 satisfying

xi+1 − xi ∈ L, si+1 − si ∈ L⊥, (3)

which implies that xi ∈ x0 + L and si ∈ s0 + L⊥ for all i. These iterations reduce violation of the
complementarity constraint xi ◦ si = µe and are interleaved with reductions in µ. For fixed µ0 and
µf , IPMs can move from (x̂(µ0), ŝ(µ0)) to (x̂(µf ), ŝ(µf )) in O(

√
n) iterations, where n denotes the

rank of K.

Geodesic interior-point methods This paper introduces geodesic interior-point methods, a
family of IPMs that views K as a Riemannian manifold [28, 22, 20, 8]. As indicated by (3), classical
IPMs update (x, s) inside subspaces that preserve the affine constraints. In contrast, geodesic IPMs
will update (x, s) along geodesic curves that preserve the complementarity constraint x ◦ s = µe.
In other words, rather than enforcing (3), they will take

xi+1 = gxi
(ti), si+1 = gsi

(ti), (4)

where ti ∈ R is a chosen “step-size” and gxi
: R→ K and gsi

: R→ K are chosen geodesics satisfying

gxi
(0) = xi gsi

(0) = si, gxi
(t) ◦ gsi

(t) = µe ∀t. (5)

These iterations will reduce violation of the affine constraints xi ∈ x0 + L and si ∈ s0 + L⊥

and, like (3), will be interleaved with reductions in µ. Like classical IPMs, we will show that
geodesic IPMs can trace the central path in O(

√
n) iterations, with essentially identical per-iteration

complexity. We note that while the Riemannian geometry of K has been used to analyze the
central path [31, 28, 15], develop gradient methods [2, 4], and solve non-convex problems [1], to our
knowledge no central-path following algorithm for (1) is based on (4)-(5).

Geodesics of symmetric cones A geodesic is the shortest path between two points as measured
by a particular integral cost (made precise in Section 1). For this reason, tracing a geodesic curve
typically requires solving an ordinary differential equation (ODE) that expresses this integral’s
optimality conditions. For symmetric cones, however, geodesics can be expressed in closed form.
This in turn provides simple formulae for the update (4). Indeed, for linear programming (LP),
i.e., when J = Rn and u ◦ v denotes elementwise multiplication, the update (4) will take the form

xi+1 = xi ◦ exp(tidi), si+1 = si ◦ exp(−tidi) (6)

for some di ∈ Rn, where exp(u) denotes elementwise exponentiation. For semidefinite programming,
i.e., when J denotes the symmetric matrices and U ◦ V = 1

2(UV + V U), it will take the form

Xi+1 = X
1/2
i exp(tiDi)X

1/2
i , Si+1 = S

1/2
i exp(−tiDi)S

1/2
i (7)

for symmetric Di, where exp(U) and U1/2 denote the matrix exponential and the symmetric square
root. Similar exponential parametrizations hold for arbitrary symmetric cones. This will allow us
to state and analyze algorithms based on (4) using basic properties of Euclidean Jordan algebras.
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Log-domain interpretation The LP update (6) is equivalent to addition in the log-domain.
In fact, for LP, the proposed algorithms essentially reduce to Newton’s method on a log-domain
formulation of the central-path conditions, i.e., to nonlinear equations f(z) = 0 induced by

√
µ exp(z) ∈ x0 + L,

√
µ exp(−z) ∈ s0 + L⊥.

We expand on this log-domain formulation in [33], but it, surprisingly, seems otherwise unanalyzed.
In fact, to our knowledge, all interior-point methods for LP—in order to satisfy (3)—operate in
the Euclidean space J as opposed to the log-domain; see, e.g., [38, 32].

Manifold optimization interpretation Our algorithms can be stated using basic concepts
from Riemannian geometry and manifold optimization. In particular, the key steps reduce to
selection of a tangent vector and evaluation of the Riemannian exponential map associated with K.
This viewpoint is crucial to generalizing the presented techniques to arbitrary convex cones and is
discussed in Section 2.2.

Relationship with IPMs of Nesterov and Todd As we will show, our approach has intimate
connections with that of Nesterov and Todd [30]. At a high-level, both yield an algorithm with
O(
√

n) complexity that is scale-invariant and primal-dual symmetric [41]. At a deeper level, we
can interpret our algorithms as [30, Section 6] modified to perform geodesic updates. Crucially, this
modification removes line searches and computation of a scaling point, which requires eigenvalue
decomposition. It also reduces the number of variables, as we can represent both x and s using w ∈
K satisfying (x, s) =

√
µ(w, w−1). As a trade-off, we must evaluate the exponential function, but

this can be done using an assortment of techniques [24]. Indeed, early computational experiments
show that our implementation competes with sdtp3 [40], a widely used solver based on the Nesterov-
Todd approach.

Outline This paper is organized as follows. Section 1 briefly reviews the Riemannian geometry
of K and provides a general formula for the geodesic update (4). Section 2 gives an IPM based
on geodesic updates and establishes its O(

√
n) complexity, log-domain and manifold optimization

interpretations, scale invariance, and relation to the Nesterov-Todd method. We also show that
selection of (gx, gs), like selection of a search direction in classical IPMs, reduces to orthogonal pro-
jection. Since this procedure conservatively tracks the central path, we refer to it as our short-step
algorithm [43]. In Section 3, we study connections between geodesic distance and symmetrized
Kullback-Leibler divergence, proving key results invoked in our short-step analysis. Leveraging this
study, we describe a less conservative long-step algorithm in Section 4 and prove its global conver-
gence and scale invariance; we also discuss efficient computation of geodesic updates, construction of
feasible points, and other implementation issues. Finally, Section 5 contains computational results
and links to an implementation.

1 Geodesic updates for symmetric cones

The interior of a symmetric cone K, denoted intK, can be viewed as a Riemannian manifold by
equipping each u ∈ intK with a local norm ‖ · ‖u using the quadratic representation Q(u) : J → J ,
the self-adjoint, linear map induced by u ∈ J via the relation Q(u)v := 2u ◦ (u ◦ v) − (u ◦ u) ◦ v.
For u ∈ intK, the map Q(u) is also positive definite, leading to the definition ‖v‖u := ‖Q(u)−1/2v‖,
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where ‖w‖ :=
√

〈w, w〉. The local norm ‖ · ‖u in turn induces an arc-length L(γ) for smooth curves
γ : [0, 1]→ intK via

L(γ) :=

∫ 1

0
‖γ′(t)‖γ(t)dt.

We note that this Riemannian geometry is studied by [3, Chapter 6] for the cone of positive definite
matrices and by [19, 20, 22, 8] for general symmetric cones.

For u, v ∈ intK, let δ(u, v) denote the infimum of L(γ) over smooth curves γ(t) satisfying
γ(0) = u and γ(1) = v. A curve of length δ(u, v) connecting u and v is called a geodesic. Useful
properties are collected below, including explicit formulae for δ(u, v) and geodesic curves. These
formulae employ the square root u1/2 and inversion u−1 operations of the algebra J , as well as its
log and exponential functions.

Lemma 1.1 (e.g., [19, 20]). The following statements hold:

(a) δ(u, v) is a metric on intK.

(b) Given u, v ∈ intK, let d := log Q(u−1/2)v and g(t) := Q(u1/2) exp(td). The curve g(t) is a
geodesic from u to v, i.e.,

g(0) = u, g(1) = v, L(g) = δ(u, v).

Further, δ(u, v) = ‖d‖.

(c) δ(u, v) = δ(T u, T v) for all u, v ∈ intK and for any automorphism T of K, i.e., for any
invertible, linear map T : J → J satisfying {T z : z ∈ K} = K.

(d) δ(u−1, v−1) = δ(u, v) for all u, v ∈ intK
In light of (a), the function δ(u, v) is called geodesic distance. The vector d in (b) denotes normal
coordinates of v at the point u. In light of (c), the inner-product 〈v, w〉u := 〈v, Q(u)−1w〉 associated
with ‖ · ‖u is called a scale-invariant or affine-invariant metric for K. Item (d) shows inversion is
an isometry. Note that g(0) = u and g(1) = v in (b) is immediate from the identities Q(u1/2) =
Q(u)1/2, Q(u−1) = Q(u)−1, and Q(u1/2)e = u; see Appendix A.

1.1 Complementary geodesics

Given x, s ∈ intK satisfying x ◦ s = µe, we wish to parametrize geodesics gx and gs starting at x
and s that satisfy gx(t)◦gs(t) = µe for all t. Combining Lemma 1.1 with properties of the quadratic
representation Q(u) provides a parametrization in terms of d ∈ J . We also express (x, s) using the
point w ∈ K satisfying (x, s) =

√
µ(w, w−1).

Proposition 1.1. For d ∈ J , w ∈ intK and µ > 0, let (x, s) =
√

µ(w, w−1) and let

gx(t) =
√

µQ(w1/2) exp(td), gs(t) =
√

µQ(w−1/2) exp(−td). (8)

Then, gx(t) and gs(t) are geodesics satisfying gx(0) = x, gs(0) = s, and gx(t) ◦ gs(t) = µe for all
t ∈ R.

Proof. The condition gx(t) ◦ gs(t) = µe holds from the identity [Q(u)v]−1 = Q(u−1)v−1, whereas
gx(0) = x and gs(0) = s hold from the identities exp(0) = e and Q(u1/2)e = u; see Appendix A.
Finally, that gx(t) and gs(t) are geodesic follows from Lemma 1.1 (b) and the identity Q((

√
cu)1/2) =√

cQ(u1/2).
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Procedure shortstep(w0, µ0, µf )
w← w0, µ← µ0

while µ > µf do

µ← 1
k µ

for i = 1, 2, . . . , m do
d← dN (w, µ)
w ← Q(w1/2) exp(d)

end

end

return (w, µ)

K Definition rank

Rn
+ {x ∈ Rn : xi ≥ 0} n

Sn
+ {X2 : X ∈ Rn×n, X = XT} n

Lm+1 {(x0, x1) ∈ R× Rm : x0 ≥ ‖x1‖} 2

K exp(d) Q(w1/2) exp(d)

Rn
+ element-wise exp. exp(log w + d)

Sn
+ matrix exponential W 1/2 exp(D)W 1/2

Lm+1 replace eigenvalues
with exp(d0 ± ‖d1‖)

(2zzT − (det z)R) exp(d)

Figure 1: Short-step algorithm (left) with parameters (k, m) and implementation details (right) for
linear programs (Rn

+), second-order-cone programs (Lm+1), and semidefinite programs (Sn
+). In the

Lm+1 row, the map R denotes (u0, u1) 7→ (u0,−u1), while z = w1/2 and det z = z2
0 − ‖z1‖2.

1.2 Newton direction

Proposition 1.1 shows that the geodesic update of (x, s) =
√

µ(w, w−1) introduced by (4) is per-
formed by selecting d ∈ J and evaluating (8) at some t. Since our goal is to decrease violation of
the affine constraints x ∈ x0 + L and s ∈ s0 + L⊥, a natural choice for d is the Newton direction,
which we define by substituting (8) into the central-path conditions (2) with the linearizations
exp(d) ≈ e + d and exp(−d) ≈ e− d.

Definition 1.1. (Newton Direction) For w ∈ intK and µ > 0, the Newton direction dN (w, µ) is
the unique d ∈ J satisfying

Q(w1/2)(e + d) ∈ 1√
µ

x0 + L, Q(w−1/2)(e− d) ∈ 1√
µ

s0 + L⊥.

Uniqueness of dN (w, µ) is proven later by Proposition 2.4, but essentially follows from invertibility
of Q(w1/2) and Q(w−1/2). Geodesic updates using dN (w, µ) are the basis of algorithms given
in Section 2 and Section 4.

2 Short-step algorithm

We give a procedure shortstep (Figure 1) for tracking the central path that employs the geodesic
updates described by Proposition 1.1. Per this proposition, it updates w ∈ intK satisfying

x =
√

µw, s =
√

µw−1 (9)

via w ← Q(w1/2) exp(td), or, equivalently, via w−1 ← Q(w−1/2) exp(−td). At each iteration, it sets
d equal to the Newton direction dN (w, µ) and the step-size t equal to one, i.e., it performs a full
Newton step. By construction, each iterate w induces via (9) variables x and s satisfying x◦s = µe.
Each Newton step in turn aims to reduce the violation of the affine constraints x ∈ x0 + L and
s ∈ s0 + L⊥.

The inputs are an initial w0 ∈ intK and centering parameters µ0, µf ∈ R satisfying µ0 > µf > 0.
The output is an approximation of the centered point ŵ(µ) for µ ≤ µf , where ŵ(µ) denotes
the unique point satisfying

√
µ(ŵ(µ), ŵ(µ)−1) = (x̂(µ), ŝ(µ)) for (x̂(µ), ŝ(µ)) on the central path.
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Behavior depends on a parameter k that controls how much µ decreases at each outer iteration
and a parameter m that denotes the number of inner iterations. Like short-step IPMs [43], our
analysis will choose k conservatively and assume that w0 = ŵ(µ0). A more aggressive algorithm
that supports arbitrary initialization by using damped updates (t < 1) appears in Section 4.

To establish convergence results, we need two lemmas whose proofs we postpone to Section 3.
They employ the function q : R→ R+ and its nonnegative inverse q−1 : R+ → R+ defined via:

q(u) := 2(cosh(u)− 1), q−1(u) := cosh−1(1 +
1

2
u).

In passing, we observe that q(u) ≥ u2 for all u ∈ R and
√

u ≥ q−1(u) for all u ≥ 0. The first lemma
bounds the geodesic distance between two centered points ŵ(µ0) and ŵ(µ1) using the rank of K
(denoted by n) and the ratio k of the centering parameters.

Lemma 2.1 (µ-update). Let µ, k > 0. Then, 1
nδ
(

ŵ(µ), ŵ( 1
k µ)

)2
≤ q(1

2 log k).

The second lemma establishes a region of quadratic convergence of the sequence w0, w1, . . . , wm

generated by Newton steps (inner iterations).

Lemma 2.2 (Centering). For µ > 0 and w0 ∈ intK, recursively define wi via the iterations

wi+1 = Q(w
1/2
i ) exp(dN (wi, µ)). If δ (w0, ŵ(µ)) ≤ q−1(β) for 0 ≤ β ≤ 1

2 , then δ(wi, ŵ(µ))2 ≤ β2i
.

Our main result follows from these lemmas, the triangle inequality for geodesic distance δ, and an
inequality relating the scalar functions q−1 and

√
u.

Theorem 2.1 (Main Result). Let shortstep (Figure 1) have parameters (k, m) that satisfy, for
some 1

2 ≥ β > 0 and q−1(β) > ǫ > 0, the conditions

β2m ≤ ǫ2,
1

2
log k = q−1(

1

n
ζ2), (10)

where ζ := q−1(β)−ǫ. Then, the following statements hold for shortstep given input (ŵ(µ0), µ0, µf ):

(a) At most m⌈c−1√n log µ0

µf
⌉ Newton steps execute, where c := 2q−1(ζ2).

(b) The output (w, µ) satisfies δ(w, ŵ(µ)) ≤ ǫ and µ ≤ µf . Further,

δ(
√

µw, x̂(µ)) ≤ ǫ, δ(
√

µw−1, ŝ(µ)) ≤ ǫ,

where (x̂(µ), ŝ(µ)) denotes the solution to the central-path conditions (2).

Proof. Let γ = (log k)−1 log µ0

µf
. The number of outer iterations is at most ⌈γ⌉. To upper bound

(log k)−1, we first note that for any a, b ∈ R satisfying 0 ≤ a ≤ b,

q−1(a) ≥ q−1(b)√
b

√
a,

since q−1(u)/
√

u is a decreasing function. Setting a = 1
nζ2 and b = ζ2 and using (10) gives

1

2
log k = q−1(

1

n
ζ2) ≥ q−1(ζ2)

ζ

ζ√
n

=
q−1(ζ2)√

n
.

Hence, (log k)−1 ≤ c−1√n for c = 2q−1(ζ2), proving the first statement.
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We prove the next statement using induction on outer iterations, observing first that

δ(ŵ(µ), ŵ(k−1µ))2 ≤ n[q(
1

2
log k)] = n

1

n
ζ2 = (q−1(β)− ǫ)2 (11)

by Lemma 2.1 and our choice of k. Now let wµ
i denote w at the end of inner iteration i for the

current µ and let µ′ := k−1µ. Make the inductive hypothesis that δ(wµ
m, ŵ(µ)) ≤ ǫ. Then,

δ(wµ
m, ŵ(µ′)) ≤ δ(wµ

m, ŵ(µ)) + δ(ŵ(µ), ŵ(µ′)) ≤ ǫ + q−1(β)− ǫ = q−1(β),

where the second inequality follows from (11) and the first is the triangle inequality (Lemma 1.1(a)).

This allows us to update µ to µ′, restart inner iterations at wµ′

0 = wµ
m, and use Lemma 2.2 to

conclude that
δ(wµ′

m , ŵ(µ′))2 ≤ β2m ≤ ǫ2,

where the second inequality follows from our choice of m. Hence we’ve show if δ(wµ
m, ŵ(µ)) ≤ ǫ,

then δ(wµ′
m , ŵ(µ′)) ≤ ǫ. The base case holds by identical argument using the assumption that

w0 = ŵ(µ0). Hence, δ(w, ŵ(µ)) ≤ ǫ holds at termination. That δ(
√

µw,
√

µŵ(µ)) ≤ ǫ and
δ(
√

µw−1,
√

µŵ−1(µ)) ≤ ǫ follows from the invariance of δ under rescaling and inversion; see
Lemma 1.1(c)-(d).

The remainder of this section gives other properties of shortstep, namely, log-domain and
manifold optimization interpretations, an orthogonal decomposition of the Newton direction, and
scale invariance. We also discuss connections with an algorithm of Nesterov and Todd.

2.1 Log-domain interpretation

Suppose that (1) is a primal-dual pair of linear programs, i.e., that K = Rn
+. Under this assumption,

the algebra J is associative. Hence, geodesic distance simplifies to δ(u, v) = ‖ log u − log v‖, and
the geodesic update w← Q(w1/2) exp(d) satisfies

log
(

Q(w1/2) exp(d)
)

= log(w ◦ exp(d)) = log(w) + d, (12)

i.e., it reduces to addition in the log domain. The Newton direction dN (w, µ) also has a log-
domain interpretation: it is precisely the direction one obtains by linearizing x(z) :=

√
µ exp z and

s(z) :=
√

µ exp(−z) at z = log w and substituting into the central-path conditions (2).

Proposition 2.1. Let J be associative. For µ > 0 and w ∈ intK, let d = dN (w, µ). Then,

exp(z) + J(z)d ∈ 1√
µ

x0 + L, exp(−z)− J(−z)d ∈ 1√
µ

s0 + L⊥,

where z = log w and J(z) : J → J is the Jacobian of exp(z).

Proof. Under our associativity assumption, we observe that J(z)d = exp(z) ◦ d and

Q(w1/2)(e + d) = w + w ◦ d, Q(w−1/2)(e − d) = w−1 − w−1 ◦ d.

Substituting w = exp(z) and w−1 = exp(−z) and using Definition 1.1 proves the claim.
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In total, we can reinterpret the inner iterations of shortstep as simply Newton’s method applied
to the central-path conditions in the log domain. We elaborate on this interpretation (and extend
it to quadratic optimization) in the paper [33].

Observe that when J is not associative, this interpretation fails because the identity (12) fails.
For semidefinite programming, failure of (12) reduces to the fact that for matrices W ≻ 0 and D,

log
(

W 1/2 exp(D)W 1/2
)

6= log(W ) + D,

since, in general, exp(A + B) 6= exp(A) exp(B) for the matrix exponential.

2.2 Manifold optimization interpretation

Geodesic updates can be alternatively described using the Riemannian exponential map of intK.
This function, denoted Expu : J → intK, maps tangent vectors v ∈ J to points on geodesics
passing through u ∈ intK. Precisely, Expu(v) = g(1), where g : [0, 1] → intK is the geodesic
satisfying

g(0) = u, ġ(0) = v,

where ġ(t) := d
dtg(t). For a general manifold M ⊆ Rm, evaluating this map requires solving a

system of 2nd-order ODEs of the form

g̈k +
m
∑

i=1

m
∑

j=1

Γk
ij ġiġj = 0, k = 1, 2, . . . , m, (13)

where Γk
ij ∈ R are the Christoffel symbols of M. For symmetric cones, however, Expu has an

explicit formula involving the exponential map of the algebra J :

Exp
u

(v) = Q(u1/2) exp(Q(u−1/2)v).

Further, we can express geodesic updates (Proposition 1.1) of the primal-dual variables (x, s) =√
µ(w, w−1) using Expx and Exps.

Proposition 2.2. For w ∈ intK and µ > 0, let d = dN (w, µ) and define

x :=
√

µw, s :=
√

µw−1, dx :=
√

µQ(w1/2)d, ds := −√µQ(w−1/2)d. (14)

The following statements hold.

• Expx(dx) =
√

µQ(w1/2) exp(d).

• Exps(ds) =
√

µQ(w−1/2) exp(−d).

• Expx(dx) ◦ Exps(ds) = µe.

Proof. We first observe that

√
µQ(w1/2) = Q(µ1/4w1/2) = Q((

√
µw)1/2) = Q(x1/2),

which implies that Q(x−1/2) = 1√
µQ(w−1/2). Evaluating Expx at dx :=

√
µQ(w1/2)d yields

Exp
x

(dx) = Q(x1/2) exp(Q(x−1/2)
√

µQ(w1/2)d) =
√

µQ(w1/2) exp(d).

The second statement follows by identical argument. The third follows using the first two statements
and the identity (Q(w1/2) exp(d))−1 = Q(w−1/2) exp(−d); see Lemma A.1.
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Recalling the definition of the local norm ‖v‖u := ‖Q(u)−1/2v‖, we can also characterize the
tangent vectors dx and ds without reference to dN (w, µ).

Proposition 2.3. The tangent vectors dx and ds in (14) are the unique points in J satisfying

x + dx ∈ x0 + L, s + ds ∈ s0 + L⊥, ds = −µQ(x)−1dx.

Further, ‖d‖ = ‖dx‖x and ‖d‖ = ‖ds‖s.

Proof. The first two conditions are immediate from definition of (x, dx), (s, ds), and the Newton
direction dN (w, µ). To see that ds = −µQ(x)−1dx, observe first that

√
µd = Q(w−1/2)dx, −√µd = Q(w1/2)ds.

Hence, −ds = Q(w−1)dx = Q(
√

µx−1)dx = µQ(x−1)dx. Uniqueness follows from the fact Q(x)
is invertible and the fact the first two conditions are equivalent to dimJ linearly independent
constraints.

For the last statement, we have that

‖dx‖2x = 〈Q(x−1/2)dx, Q(x−1/2)dx〉.

But Q(x1/2) =
√

µQ(w1/2). Hence, Q(x−1/2)dx = d, proving that ‖d‖ = ‖dx‖x. That ‖d‖ = ‖ds‖s
follows by similar argument.

These propositions suggest how shortstep generalizes to non-symmetric cones. Indeed, any
cone with a log-homogeneous, self-concordant barrier function is equipped with a natural Rieman-
nian geometry [31] that enables definition of Expx and Exps. The affine constraints characterizing
the tangent vectors (Proposition 2.3) also generalize if one interprets Q(u)−1 as the Hessian of
the barrier function log det u−1. One can also interpret µQ(x−1) in Proposition 2.3 as the parallel
transport operator from x to s, a canonical operation in Riemannian geometry. An obstruction
to implementation, however, is evaluation of Expx and Exps, which, as mentioned, may require
numerical solution of the ODE system (13). Our convergence analysis (Section 3) will also leverage
the spectral theory of symmetric cones, and hence does not immediately generalize.

An alternative generalization, applicable to even symmetric cones, replaces Expu with a general
retraction Ru : J → intK. Retractions are defined by relaxing the geodesic property of Expu.
That is, a retraction Ru smoothly maps a tangent vector v ∈ J to a point Ru(v) ∈ intK with the
property that the curve γ(t) := Ru(tv) satisfies γ(0) = u and γ̇(0) = v. The map Expu is a special
case of a retraction for which γ(t) is geodesic. See [1, Chapter 4.1] for more details.

2.3 Newton direction via orthogonal projection

We next derive an orthogonal, direct-sum decomposition of the Newton direction with respect to
the subspaces Lw := {Q(w−1/2)u : u ∈ L} and L⊥

w = {Q(w1/2)u : u ∈ L⊥}. This decomposition
establishes both its claimed uniqueness (Definition 1.1) and a formula for its construction via
orthogonal projection.

Proposition 2.4. For µ > 0 and w ∈ intK, let

d1 = proj
L⊥

w

(

Q(w−1/2)(
1√
µ

x0 − w)

)

, d2 = proj
Lw

(

Q(w1/2)(
1√
µ

s0 − w−1)

)

.

Then the Newton direction dN (w, µ) satisfies dN (w, µ) = d1 − d2.

9



Proof. Let r1 = Q(w−1/2)( 1√
µx0−w) and r2 = Q(w1/2)( 1√

µs0−w−1). By the identity Q(z1/2)e = z

(Lemma A.1), the conditions of Definition 1.1 are equivalent to

w + Q(w1/2)d ∈ 1√
µ

x0 + L, w−1 −Q(w−1/2)d ∈ 1√
µ

s0 + L⊥.

Using Q(z−1) = Q(z)−1 (Lemma A.1), we conclude that d ∈ r1+Lw and d ∈ −r2+L⊥
w . Equivalently,

d ∈ (proj
L⊥

w

(r1) + Lw)
⋂

(proj
Lw

(−r2) + L⊥
w),

since any affine set z0 + S satisfies z0 + S = projS⊥(z0) + S. Hence, d has the following direct-sum
decompositions with respect to Lw and L⊥

w:

d = proj
L⊥

w

(r1) + dLw , d = proj
Lw

(−r2) + dL⊥
w

.

Since such decompositions are unique, dLw = projLw
(−r2), proving the claim.

This decomposition has immediate practical implications: one can use any algorithm for orthogonal
projection, e.g., the Gram-Schmidt process or a least-squares method, to find dN . Section 4.2 gives
an explicit linear system for performing this projection using this latter approach. Further, the
size/structure of this linear system matches the size/structure of linear systems arising in classical
IPMs.

2.4 Scale invariance

For an automorphism T : J → J of K, consider the transformed primal-dual pair:

minimize 〈(T −1)∗s0, x〉
subject to x ∈ K ∩ T (x0 + L)

minimize 〈T x0, s〉
subject to s ∈ K ∩ (T −1)∗(s0 + L⊥),

(15)

where (T −1)∗ : J → J denotes the adjoint of T −1 : J → J . We next show the following:
if shortstep maps input w0 to output w̄ for the primal-dual pair (1), then it maps input T w0

to output T w̄ for the transformed pair (15). In other words, it is scale invariant in the sense
of [41]. To show this, we first establish that the Newton direction dN,T (w, µ) for the transformed
problem satisfies dN,T (T w, µ) = MdN (w, µ) for an automorphism M , dependent on T and w,
that is also orthogonal, i.e., M−1 = M∗. Scale invariance will follow, leveraging the fact that
exp(Md) = M exp(d) for any such M (Lemma A.2).

To give a formula for M and to establish its key properties, we use the decomposition dN (w, µ) =
d1(w, µ) − d2(w, µ) of the Newton direction from Proposition 2.4. We also decompose the trans-
formed direction as dN,T (v, µ) = d1,T (v, µ) − d2,T (v, µ) by applying Proposition 2.4 to the trans-
formed problem (15).

Lemma 2.3. Let M = Q(T w)−1/2T Q(w)1/2 for w ∈ intK and an automorphism T : J → J of
K. The following statements hold.

(a) M is an orthogonal automorphism of K.

(b) M = Q(T w)1/2(T −1)∗Q(w)−1/2.

10



(c) For all µ > 0, the Newton directions satisfy dN,T (T w, µ) = MdN (w, µ). Further, their direct
summands satisfy

d1,T (T w, µ) = Md1(w, µ), d2,T (T w, µ) = Md2(w, µ).

Proof. That M is an automorphism follows because it is a composition of automorphisms. We next
verify orthogonality, i.e., that M−1 = M∗:

M∗M = Q(w)1/2T ∗Q(T w)−1T Q(w)1/2 = Q(w)1/2T ∗(T Q(w)T ∗)−1T Q(w)1/2 = I,

where we’ve used the identities Q(T w) = T Q(w)T ∗ and Q(w)1/2Q(w)−1Q(w)1/2 = I (Lemma A.1).
Since by construction M∗Q(T w)1/2(T −1)∗Q(w)−1/2 = I, orthogonality implies the next statement.

By definition of M and the second property, we conclude that MQ(w)−1/2 = Q(T w)−1/2T and
MQ(w)1/2 = Q(T w)1/2(T −1)∗. Combining this with Me = e (Lemma A.2) shows that both

dN,T (T w, µ) ∈M

(

1√
µ

Q(w−1/2)x0 − e + Q(w−1/2)L
)

and

dN,T (T w, µ) ∈M

(

e−Q(w1/2)
1√
µ

s0 + Q(w1/2)L⊥
)

.

Following the proof of Proposition 2.4, we conclude that dN,T (T w, µ) = M(d1 − d2), which implies
d1,T = Md1 and d2,T = Md2.

We use this lemma to show scale invariance of w← Q(w1/2) exp(α(d1, d2)d), where d = dN and
α : J × J → R is a step-size rule invariant under transformation by M .

Proposition 2.5. Let α : J ×J → R be a function satisfying α(d1, d2) = α(Md1, Md2) for any
orthogonal automorphism M : J → J . Then, for any automorphism T : J → J , w ∈ intK, and
µ > 0,

Q(w̃1/2) exp
(

α(d̃1, d̃2)d̃
)

= T Q(w1/2) exp
(

α(d1, d2)d
)

,

where w̃ = T w, d = dN (w, µ), d̃ = dN,T (w̃, µ), di = di(w, µ), and d̃i = di,T (w̃, µ) for i ∈ {1, 2}.

Proof. Let M = Q(T w)−1/2T Q(w)1/2. By Lemma 2.3, M is an orthogonal automorphism. Hence,
exp(Mx) = M exp(x) for all x (Lemma A.2). Combining this with Lemma 2.3(c) yields

Q(w̃1/2) exp(α(d̃1, d̃2)d̃) = Q(w̃1/2) exp(α(Md1, Md2)Md)

= Q(w̃1/2)M exp(α(Md1, Md2)d).

But α(Md1, Md2) = α(d1, d2) by assumption and Q(w̃1/2)M = T Q(w1/2) by definition of M and
the identity Q(u)1/2 = Q(u1/2); see Lemma A.1.

Scale invariance of shortstep follows by invoking this result at each iteration with the step-size
α(d1, d2) = 1. We will use a nontrivial step-size rule in Section 4.
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2.5 Comparison with the Nesterov-Todd algorithm

The celebrated algorithm of Nesterov and Todd (NT) [30, Section 6], which extends the linear
programming algorithms of Kojima et al. [16] and Monteiro and Adler [26], shares key properties
with shortstep: it is scale invariant, it executes O(

√
n) iterations, it is primal-dual symmetric,

and finding its search direction reduces to orthogonal projection. This suggests a fundamental
connection with shortstep. In general, iterations of the NT algorithm do not satisfy x = µs−1.
However, if this relation holds, then the NT search direction coincides with our Newton direction.
Further, its (x, s)-update is a first-order approximation of our geodesic update.

To see this, note that the NT direction is, in the framework of Jordan algebras [11, Section 3.2],
the unique (dx, ds) ∈ J × J satisfying

x +
√

µQ(p1/2)dx ∈ x0 + L, s +
√

µQ(p−1/2)ds ∈ s0 + L⊥, dx + ds = v−1 − v, (16)

where p is the scaling point, defined as Q(x1/2)(Q(x1/2)s)−1/2, and v := 1√
µQ(p−1/2)x. Given

(dx, ds), the NT algorithm updates (x, s) to (x′, s′), where

x′ := x +
√

µQ(p1/2)dx, s′ := s +
√

µQ(p−1/2)ds. (17)

Our result follows.

Proposition 2.6. Let x, s ∈ intK satisfy x = µs−1 for µ > 0. Let w = 1√
µx and d = dN (w, µ).

Then,

(a) p = w, where p is the scaling point Q(x1/2)(Q(x1/2)s)−1/2.

(b) dx = d and ds = −d where (dx, ds) is the NT direction (16).

(c) x′ =
√

µQ(w1/2)(e+ d) and s′ =
√

µQ(w−1/2)(e−d), where (x′, s′) is the NT update (17) and
e + d and e− d are the first-order Taylor-expansions of exp(d) and exp(−d) at d = 0.

Proof. If x = µs−1, then the definitions of w and the scaling point p easily imply that p = w and
v = e. We also conclude that dx +ds = v−1−v = 0. Combining these identities with w = Q(w1/2)e,
w−1 = Q(w−1/2)e, and (16) yields

√
µQ(w1/2)(e + dx) ∈ x0 + L,

√
µQ(w−1/2)(e − dx) ∈ s0 + L⊥,

which are the defining conditions of dN (w, µ) given by Definition 1.1. Hence, d = dx. Finally, the
claimed formula for (x′, s′) holds because x =

√
µQ(w1/2)e and s =

√
µQ(w−1/2)e.

Note with the stronger assumption that x = s−1, we can similarly interpret algorithms based
on the so-called H..K..M direction since, in this case, it coincides with the NT direction [39]. It was
introduced independently by Helmberg et al. [14], Kojima et al. [17] and Monteiro [25]. Also note
that even if x = µs−1 fails, the scaling point p still has a Riemannian interpretation: it is precisely
the midpoint of the geodesic connecting x and s−1, or, equivalently, their geometric mean [21].
Finally, we note that the NT direction has an alternative derivation due to Sturm and Zhang [37];
see remarks in [36].
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3 Geodesics and divergence

The goal of this section is to prove the µ-update and centering lemmas used in the analysis of
shortstep (Figure 1). Towards this, we first study a proxy for geodesic distance δ(u, v) that is easier
to bound during the course of Newton’s method. This proxy generalizes the symmetric Kullback-
Leibler divergence h(U, V ) := Tr(UV −1 +U−1V −2I) of two zero-mean Gaussian distributions with
covariance matrices U and V , also known as the Jeffrey divergence [12, 23]. We hence call this
proxy divergence. We define it using the fact that tr e equals the rank of K (which we’ve denoted
by n).

Definition 3.1. Denote by h(u, v) the divergence of u, v ∈ intK, defined as h(u, v) := 〈u, v−1〉 +
〈u−1, v〉 − 2n.

Divergence is symmetric and non-negative, i.e., h(u, v) = h(v, u) and h(u, v) ≥ 0 for all u, v ∈ intK.
Further, h(u, v) = 0 if and only if u = v. However, unlike geodesic distance δ(u, v), it is not a
metric, as the triangle inequality can fail.

Recall from Lemma 1.1 that geodesic distance satisfies δ(u, v) = ‖ log Q(v−1/2)u‖. Equivalently,
δ(u, v)2 =

∑

λ∈S λ2, where S denotes the multiset of eigenvalues of log Q(v−1/2)u. This formula
holds for divergence if we replace λ2 with the upper bound q(λ) := 2(cosh(λ) − 1) introduced in
Section 2.

Lemma 3.1. For all u, v ∈ intK, the divergence satisfies h(u, v) =
∑

λ∈S q(λ), where S is the
multiset of eigenvalues of log Q(v−1/2)u.

This enables us to prove the following bounds relating divergence to geodesic distance.

Lemma 3.2. Let u, v ∈ intK. Then, δ(u, v)2 ≤ h(u, v) ≤ q(δ(u, v)).

Proof. Let λ ∈ Rn denote the vector of eigenvalues of log Q(v−1/2)u. The lower bound follows
from Lemma 3.1 and Lemma 1.1(b) given that q(λi) ≥ λ2

i . To prove the upper bound, it suffices
to show that

∑n
i=1(cosh(λi)− 1) ≤ cosh(‖λ‖) − 1. To begin, consider the upper bound

n
∑

i=1

(cosh(λi)− 1) ≤ sup
‖z‖=‖λ‖

n
∑

i=1

(cosh(zi)− 1).

Let z achieve the supremum. Then it must be a critical point, which implies existence of γ ∈ R

satisfying γz + sinh(z) = 0. We conclude that zi = 0 or |zi| = c for a constant c > 0. We now claim
that zi 6= 0 and zj 6= 0 implies i = j. Suppose otherwise. Then we don’t change ‖z‖ by setting zi = 0
and zj =

√
2c. Further, we increase

∑n
i=1(cosh(zi)− 1) given that cosh(

√
2c)− 1 > 2(cosh(c)− 1),

contradicting our assumption that z attains the supremum.

We also note that h(u, v) shares the invariance properties of geodesic distance δ(u, v). It is
symmetric with respect to inversion, i.e., h(u, v) = h(u−1, v−1). Hence, it measures the proximity
of (w, w−1) to the centered-points (ŵ(µ), ŵ(µ)−1) in a primal-dual symmetric way, i.e., h(w, ŵ(µ)) =
h(w−1, ŵ(µ)−1). It is also scale invariant, meaning h(T u, T v) = h(u, v) for any automorphism T of
K.

Remark 1. The quantity h(v, v−1) where v is as defined in Section 2.5, is used to analyze a full-step
Nesterov-Todd algorithm [11, Section 3.3].
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3.1 Divergence along the central path

Divergence has the following utility: we can calculate it exactly for two centered points ŵ(µ0)
and ŵ(µ1) even if we do not know these points explicitly. Instead, all we need is the ratio of the
centering parameters µ0 and µ1 and the rank of K, denoted by n.

Theorem 3.1. Let µ0, µ1 > 0. Then, 1
nh(ŵ(µ0), ŵ(µ1)) = q(1

2 log µ0

µ1
).

Proof. Let u = ŵ(µ0), v = ŵ(µ1) and α =
√

µ0

µ1
. Since

√
µ

0
(u, u−1) and

√
µ

1
(v, v−1) are feasible,

v − αu ∈ L, v−1 − αu−1 ∈ L⊥.

Hence, 0 = 〈v − αu, v−1 − αu−1〉 = (1 + α2)n− α〈v, u−1〉 − α〈u, v−1〉. Rearranging shows that

〈u, v−1〉+ 〈u−1, v〉 = n
1 + α2

α
= n(α +

1

α
) = 2n(cosh(log(α))).

Hence, h(u, v) = 2n(cosh(log(α)) − 1). Using q(t) := 2(cosh(t)− 1) and log α = 1
2 log µ0

µ1
yields:

1

n
h(u, v) = q(log α) = q(

1

2
log

µ0

µ1
).

Combining this theorem with the bounds relating divergence and geodesic distance (Lemma 3.2)
lets us prove the µ-update lemma, which we reproduce below.

Lemma 2.1 (µ-update). Let µ, k > 0. Then, 1
nδ
(

ŵ(µ), ŵ( 1
k µ)

)2
≤ q(1

2 log k).

Proof. From Theorem 3.1, we conclude that 1
nh(ŵ(µ), ŵ( 1

k µ)) = q(1
2 log k). Since δ(ŵ(µ), ŵ( 1

k µ))2 ≤
h(ŵ(µ), ŵ( 1

k µ)) by Lemma 3.2, the claim follows.

Remark 2. Since geodesic distance is invariant under inversion and positive rescaling, we have,
for (x, s) =

√
µ(w, w−1), that δ(x, x̂(µ)) = δ(s, ŝ(µ)) = δ(w, ŵ(µ)). This implies that the lengths

Lx and Ls of the primal and dual central paths also upper bound δ(ŵ(µ0), ŵ(µ1)), where

Lx :=

∫ µ1

µ0

‖ d

dµ
x̂(µ)‖x̂(µ)dµ, Ls :=

∫ µ1

µ0

‖ d

dµ
ŝ(µ)‖ŝ(µ)dµ,

and ‖v‖u := ‖Q(u)−1/2v‖. Bounds on Lx in terms of log(µ0/µ1) and the (generally unknown)
values of the barrier function log det z−1 at z = x̂(µ0) and z = x̂(µ1) appear in [28, Lemma 4.1].

3.2 Divergence along geodesics

Fix µ > 0, w ∈ intK, and nonzero d ∈ J , and define the function f : R→ R

f(t) = h
(

Q(w1/2) exp(td), ŵ(µ)
)

.

That is, let f(t) return the divergence between the centered point ŵ(µ) and points on the geodesic
induced by (w, d). Though we don’t know ŵ(µ) and hence cannot evaluate f , we can still establish
crucial properties, such as its strict convexity.

Lemma 3.3. The function f is strictly convex.
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Proof. Let a := Q(w1/2)ŵ(µ)−1 and let
∑n

i=1 λiei denote the spectral decomposition of d. Then,

f(t) + 2n = 〈a, exp(td)〉+ 〈a−1, exp(−td)〉 =
n
∑

i=1

exp(tλi)〈a, ei〉+ exp(−tλi)〈a−1, ei〉.

But 〈a, ei〉 > 0 and 〈a−1, ei〉 > 0 since a, a−1 ∈ intK and ei ∈ K, proving the claim by strict
convexity of the scalar exponential function.

We can also ensure that f(t) < f(0) for a piecewise step-size rule involving the spectral norm ‖d‖∞
of d, defined as ‖d‖∞ := maxλ∈S |λ| where S denotes the multiset of eigenvalues of d. This rule also
incorporates a parameter θ ∈ (0, 1) controlling the transition from full to damped Newton steps.

Theorem 3.2. Let d = dN (w, µ) and α = max{1, 1
2θ‖d‖2∞} for θ ∈ (0, 1). The following

statements hold.

(a) If α = 1, then f(1) ≤ 1
2‖d‖2∞f(0) ≤ θf(0).

(b) f(1/α) < f(0).

To prove this theorem, we’ll first provide the derivatives of f(t) and a descent condition on t for
arbitrary d. We then specialize results to the Newton direction dN (w, µ).

Remark 3. A function p : intK → R is called geodesically convex if its restrictions to geodesics
are convex in the usual sense, i.e., if p(g(t)) is a convex function of t for all curves g(t) of the form
t 7→ Q(w1/2) exp(td). This convexity notion is a central concept in manifold optimization [35, 42, 7].
The convexity of f(t) reflects the geodesic convexity of the divergence map w 7→ h(w, ŵ(µ)).

3.2.1 Derivatives and descent condition

The derivatives dmf(t)/(dt)m, denoted f (m) for short, have a concise form given the role of the
exponential function in the definition of f . Interpreting f(t) as the trace of a particular point in K
also allows us to bound even derivatives using just d and f(t).

Lemma 3.4. Let a(t) = Q(exp(td))1/2Q(w1/2)ŵ(µ)−1. The following hold for all t ∈ R:

(a) f(t) = tr(a(t) + a(t)−1 − 2e), where a(t) + a(t)−1 − 2e ∈ K.

(b) f (m)(t) = 〈a(t) + (−1)ma(t)−1, dm〉.

(c) f (2m)(t) ≤ ‖d‖2m
∞ f(t) + 2〈e, d2m〉.

Proof. By definition of f and divergence (Definition 3.1), we have

f(t) = 〈Q(w1/2) exp(td), ŵ(µ)−1〉+ 〈Q(w−1/2) exp(−td), ŵ(µ)〉 − 2n.

Substituting exp(td) = Q(exp(td))1/2e and exp(−td) = Q(exp(−td))1/2e yields

f(t) = 〈e, Q(exp(td))1/2Q(w1/2)ŵ(µ)−1〉+ 〈e, Q(exp(−td))1/2Q(w−1/2)ŵ(µ)〉 − 2n.

Two applications of the identity [Q(u)v]−1 = Q(u−1)v−1 shows that

a(t)−1 = Q(exp(−td))1/2Q(w−1/2)ŵ(µ),

which proves the trace identity of the first statement. That a(t) + a(t)−1 − 2e ∈ K follows because
each eigenvalue has form λ + 1

λ − 2 for some λ > 0, which is always nonnegative.
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For (b), we have that dm

dtm exp(td) = dm ◦ exp(td) = Q(exp(td))1/2dm. This implies that

dm

dtm
〈e, a(t)〉 = 〈Q(w1/2)ŵ(µ)−1,

dm

dtm exp(td)〉

= 〈Q(exp(td))1/2Q(w1/2)ŵ(µ)−1, dm〉
= 〈a(t), dm〉.

By similar argument, dm

dtm 〈e, a(t)−1〉 = (−1)m〈a(t)−1, dm〉. We conclude for all integers m ≥ 1 that

f (m)(t) = 〈a(t) + (−1)ma(t)−1, dm〉. For statement (c), we have, since a(t) + a−1(t)− 2e ∈ K,

f (2m)(t) = 〈a(t) + a−1(t)− 2e, d2m〉+ 2〈e, d2m〉
≤ ‖a(t) + a−1(t)− 2e‖1‖d‖2m

∞ + 2〈e, d2m〉
= tr(a(t) + a−1(t)− 2e)‖d‖2m

∞ + 2〈e, d2m〉
= ‖d‖2m

∞ f(t) + 2〈e, d2m〉.

Let f ′ and f ′′ denote the first and second derivatives of f . Assuming f ′(0) < 0, we now provide
a descent condition on t, i.e., we establish an interval on which f(t) ≤ f(0). Our analysis rests on
Taylor’s theorem, convexity of f , and the Lemma 3.4 bound on f ′′(t).

Lemma 3.5. If f ′(0) < 0 and 0 ≤ t ≤ −2f ′(0)
‖d‖2

∞f(0)+2‖d‖2 , then f(t) ≤ f(0).

Proof. By Taylor’s theorem, f(t) = f(0) + f ′(0)t + 1
2f ′′(ζ)t2 for some ζ ∈ [0, t]. Further,

f ′′(ζ) ≤ ‖d‖2∞f(ζ) + 2‖d‖2 ≤ max
u∈{0,t}

‖d‖2∞f(u) + 2‖d‖2,

where the first inequality is Lemma 3.4(c) and the second inequality uses convexity of f(t). Hence,

f(t) ≤ f(0) + f ′(0)t +
1

2
max

u∈{0,t}
(‖d‖2∞f(u) + 2‖d‖2)t2. (18)

Now, let t̂ be the smallest t > 0 for which f(t̂) = f(0). Then

f(0) ≤ f(0) + t̂f ′(0) +
1

2
(‖d‖2∞f(0) + 2‖d‖2)t̂2,

which implies that

t̂ ≥ −2f ′(0)

‖d‖2∞f(0) + 2‖d‖2 .

Since f(t) ≤ f(0) for all 0 ≤ t ≤ t̂, the claim follows.

3.2.2 Newton direction

Suppose now that d = dN (w, µ). For this direction, we can bound f ′(0) using f(0) and ‖d‖2 by
applying the orthogonal, direct-sum decomposition of d from Proposition 2.4. Recall that this
decomposition is with respect to Lw := {Q(w−1/2)u : u ∈ L} and L⊥

w = {Q(w1/2)u : u ∈ L⊥}. This
bound also provides an updated descent condition for t.
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Lemma 3.6. Suppose that d = dN (w, µ). Then f ′(0) = −(f(0) + ‖d‖2). Further, f(t) ≤ f(0) if

0 ≤ t ≤ 2(f(0) + ‖d‖2)

‖d‖2∞f(0) + 2‖d‖2 .

Proof. Let r1(t) = a(t)−1 − e and r2(t) = a(t) − e, where a(t) is as in Lemma 3.4. Then, by
Lemma 3.4(b),

−f ′ = 〈a−1 − a, d〉 = 〈a−1 − e + e− a, d〉 = 〈r1 − r2, d〉.

Setting t = 0 and substituting d = projL⊥
w

r1(0)− projLw
r2(0) using Proposition 2.4 gives

−f ′(0) = 〈r1 − r2, d〉 = −〈r1, r2〉+ ‖proj
L⊥

w

r1‖2 + ‖proj
Lw

r2‖2 = −〈r1, r2〉+ ‖d‖2.

But f(t) = −〈r1(t), r2(t)〉 by Lemma 3.4(a), proving the first claim. The descent condition
(Lemma 3.5) specialized to the Newton direction d = dN proves the second claim.

3.2.3 Proof of Theorem 3.2

We can now prove the properties of the step-size rule t = min{1, 2θ
‖d‖2

∞
} claimed by Theorem 3.2

for the Newton direction d = dN (w, µ) and parameter θ ∈ (0, 1). Assume first that t = 1. Then
‖d‖2∞ ≤ 2θ < 2, which, by Lemma 3.6, implies that f(1) ≤ f(0). Combining this with the quadratic
upper bound (18) and f ′(0) = −(f(0) + ‖d‖2) from Lemma 3.6 yields

f(1) ≤ f(0)− (f(0) + ‖d‖2) +
1

2
(‖d‖2∞f(0) + 2‖d‖2) =

1

2
‖d‖2∞f(0) ≤ θf(0),

which is precisely the claim of Theorem 3.2-(a). Now suppose that t = 2θ
‖d‖2

∞
≤ 1. By Lemma 3.6

and strict convexity of f , we have f(t) < f(0) if

2θ

‖d‖2∞
(‖d‖2∞f(0) + 2‖d‖2) < 2f(0) + 2‖d‖2.

But this inequality follows since 0 < θ < 1 and 2θ
‖d‖2

∞
≤ 1. Hence, f(t) < f(0), which is the claim

of Theorem 3.2-(b).

3.3 Divergence bounds

Though the centered point ŵ(µ) is unknown, the Newton direction dN (w, µ) can provide a lower
bound hlb of the divergence h(w, ŵ(µ)) for any w ∈ intK and µ > 0. Under a norm condition, we
can also obtain an upper bound hub and relative-error estimates; precisely, we can obtain hub and
α ≥ 1 satisfying

h(w, ŵ(µ)) ≥ hlb ≥
1

α
h(w, ŵ(µ)) h(w, ŵ(µ)) ≤ hub ≤ αh(w, ŵ(µ)). (19)

These bounds use the direct-sum decomposition dN = d1− d2 from Proposition 2.4 induced by the
subspaces Lw := {Q(w−1/2)u : u ∈ L} and L⊥

w = {Q(w1/2)u : u ∈ L⊥}.

Theorem 3.3. For µ > 0 and w ∈ intK, let d = dN (w, µ), d1 = projL⊥
w

d, and d2 = − projLw
d.

The following statements hold:
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(a) h(w, ŵ(µ)) ≥ hlb for hlb := ‖d‖2

1+‖d1+d2‖∞
.

(b) If ‖d1 + d2‖∞ < 1, then h(w, ŵ(µ)) ≤ hub for hub := ‖d‖2

1−‖d1+d2‖∞
. Further, the relative-error

estimates (19) hold for α = 1+‖d1+d2‖∞
1−‖d1+d2‖∞

.

Proof. Let a = Q(w1/2)ŵ(µ)−1, z = a + a−1 − 2e and g = a − a−1. Proposition 2.4 implies that
d1 = projL⊥

w
(a−1 − e) and d2 = projLw

(a− e). From d = d1 − d2, we conclude

proj
L⊥

w

(g + 2d) = proj
L⊥

w

(a− a−1 + 2(a−1 − e)) = proj
L⊥

w

(a + a−1 − 2e) = proj
L⊥

w

z,

and, similarly, that projLw
(g +2d) = − projLw

z. This implies that 〈g +2d, d〉 = 〈z, d1 +d2〉. Hence,

−‖z‖1‖d1 + d2‖∞ ≤ −〈g + 2d, d〉 ≤ ‖z‖1‖d1 + d2‖∞.

But from Lemma 3.6, we also have that −〈g + 2d, d〉 = h(w, ŵ(µ))− ‖d‖2. Hence,

−‖z‖1‖d1 + d2‖∞ ≤ h(w, ŵ(µ))− ‖d‖2 ≤ ‖z‖1‖d1 + d2‖∞.

Using the fact that ‖z‖1 = h(w, ŵ(µ)) from Lemma 3.4(a) and rearranging these inequalities gives

h(w, ŵ(µ))(1 + ‖d1 + d2‖∞) ≥ ‖d‖2 ≥ h(w, ŵ(µ))(1− ‖d1 + d2‖∞).

Dividing by 1+‖d1 +d2‖∞ proves the formula and error estimate for hlb. Dividing by 1−‖d1 +d2‖∞
proves the same for hub.

Observe that we also obtain valid bounds by replacing ‖d1 + d2‖∞ with ‖dN (w, µ)‖ given that
‖d1 + d2‖∞ ≤ ‖d1 + d2‖ = ‖d1 − d2‖ = ‖dN (w, µ)‖. This in turn allows us to bound the size of
Newton steps assuming bounds on divergence.

Corollary 3.1. For µ > 0 and w ∈ intK, suppose that h(w, ŵ(µ)) ≤ 1
2 . Then, ‖dN (w, µ)‖ ≤ 1.

Proof. Replacing ‖d1 + d2‖∞ with ‖dN (w, µ)‖ in the Theorem 3.3 lower bound yields

h(w, ŵ(µ)) ≥ ‖dN (w, µ)‖2
1 + ‖dN (w, µ)‖ , (20)

which proves the claim.

The inequalities of this section bear strong resemblance to inequalities [27, Theorems 4.1.7–8]
derived for self-concordant barrier functions, standard objects in IPM analysis. We will elaborate
on this connection in Section 3.5.

3.4 Quadratic convergence of Newton’s method

We have seen that the Newton direction bounds the reduction in divergence (Theorem 3.2). Diver-
gence in turn bounds the size of a full Newton step (Corollary 3.1). Combining these results proves
quadratic convergence of the sequence w0, w1, . . . , wm generated by Newton’s method.

Theorem 3.4. For µ > 0 and w0 ∈ intK, recursively define wi via the iterations wi+1 =

Q(w
1/2
i ) exp(dN (wi, µ)). If h(w0, ŵ(µ)) ≤ β ≤ 1

2 , then h(wi, ŵ(µ)) ≤ β2i
.
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Proof. Let hi = h(wi, ŵ(µ)) and di = dN (wi, µ). Make the inductive hypothesis that hi ≤ 1/2.
Then ‖di‖ ≤ 1 by Corollary 3.1, implying hi+1 ≤ 1

2hi‖di‖2∞ by Theorem 3.2 (a), which shows
hi+1 ≤ 1/2. Since h0 ≤ 1/2 by assumption, we conclude that both hi ≤ 1/2 and ‖di‖ ≤ 1 hold for
all i. Further, for all i,

hi+1 ≤
1

2
hi‖di‖2∞ ≤

1

2
hi‖di‖2 ≤

1

2
(‖di‖+ 1)h2

i ,

where the last inequality is (20). Since ‖di‖ ≤ 1, we have hi+1 ≤ h2
i . Hence, hi ≤ (h0)2i ≤ β2i

.

Combining this with our previous bounds relating divergence and geodesic distance (Lemma 3.2)
leads to a proof of the centering lemma, reproduced below.

Lemma 2.2 (Centering). For µ > 0 and w0 ∈ intK, recursively define wi via the iterations

wi+1 = Q(w
1/2
i ) exp(dN (wi, µ)). If δ (w0, ŵ(µ)) ≤ q−1(β) for 0 ≤ β ≤ 1

2 , then δ(wi, ŵ(µ))2 ≤ β2i
.

Proof. By Lemma 3.2, we conclude that h(w0, ŵ(µ)) ≤ β ≤ 1
2 . By Theorem 3.4, this implies that

h(wi, ŵ(µ)) ≤ β2i
, which, since δ(wi, ŵ(µ))2 ≤ h(wi, ŵ(µ)), proves the claim.

3.5 Energy interpretation and self-scaled barriers

We conclude this section by highlighting connections with the literature. This is strictly not
needed for our analysis, but helps put our work into context. The main object of study is the
energy functional E(γ), defined on smooth curves γ : [0, 1] → intK via

E(γ(t)) :=

∫ 1

0
‖γ′(t)‖2γ(t)dt,

where ‖v‖2u = 〈v, Q(u)−1v〉. In other words, energy is defined by replacing ‖γ′(t)‖γ(t) with ‖γ′(t)‖2γ(t)

in the arc-length integral (Section 1).
We next show that divergence h(u, v) is precisely the energy of the line-segment connecting u and

v. This immediately implies the Lemma 3.2 inequality δ(u, v)2 ≤ h(u, v) given that δ(u, v)2 ≤ E(γ)
holds for any curve γ(t) connecting u and v; see [6, Chapter 9, Lemma 2.3].

Proposition 3.1. For u, v ∈ intK, let ℓ(t) := u + t(v − u). Then h(u, v) = E(ℓ(t)), i.e.,

h(u, v) =

∫ 1

0
〈v − u, Q(ℓ(t))−1(v − u)〉dt. (21)

Proof. By definition, h(u, v) = 〈u, v−1〉+ 〈u−1, v〉 − 2n. Rearranging shows h(u, v) = 〈v − u, u−1 −
v−1〉. Since −Q(z)−1 is the Jacobian of the inverse map z 7→ z−1 [8, Proposition II.3.3], we can
also write

v−1 − u−1 =

∫ 1

0
−Q(ℓ(t))−1(v − u)dt.

Hence, h(u, v) = 〈v − u, u−1 − v−1〉 =
∫ 1

0 〈v − u, Q(ℓ(t))−1(v − u)〉dt, as claimed.

In view of this result, we can bound h(u, v) by bounding Q(ℓ(t))−1. For this, we use standard
Hessian bounds for self-scaled barrier functions [30], which generalize f(u) := log det u−1 and are
central in IPM analysis over self-scaled cones. Specifically, we interpret Q(u)−1 as the Hessian of
f(u) and invoke [29, Theorem 4.1]; see [29, 13] for the definition of self-scaled barriers and proof
that f(u) is self-scaled.
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Proposition 3.2. For u, v ∈ intK, let ∆ = Q(u)−1/2(u− v). If ‖∆‖∞ < 1, then

‖∆‖2
1 + ‖∆‖∞

≤ h(u, v) ≤ ‖∆‖2
1− ‖∆‖∞

. (22)

Proof. Let H(z) := Q(z)−1 and σz(p) := inf{β ≥ 0 : βz − p ∈ K}. Then [29, Theorem 4.1] states

1

(1 + tσu(−p))2
H(u) � H(u− tp) � 1

(1− tσu(p))2
H(u)

for all t ∈ [0, 1/σu(p)), where we take 1/σu(p) = +∞ if σu(p) = 0. Taking p = u− v and observing

σu(p) ≤ |λmax(Q(u)−1/2p)| ≤ ‖∆‖∞, σu(−p) ≤ |λmin(Q(u)−1/2p)| ≤ ‖∆‖∞,

gives, for all t ∈ [0, 1/‖∆‖∞), the bounds

1

(1 + t‖∆‖∞)2
H(u) � H(u + t(v − u)) � 1

(1− t‖∆‖∞)2
H(u).

When ‖∆‖∞ < 1, we can substitute each bound into the energy integral (21) and apply the identities

∫ 1

0

dt

(1 + t‖∆‖∞)2
=

1

1 + ‖∆‖∞
,

∫ 1

0

dt

(1− t‖∆‖∞)2
=

1

1− ‖∆‖∞
,

to conclude that
〈H(u)p, p〉
1 + ‖∆‖∞

≤ h(u, v) ≤ 〈H(u)p, p〉
1− ‖∆‖∞

.

Since ‖∆‖2 = 〈H(u)p, p〉, the claim follows.

When applied to h(w, ŵ(µ)), the bounds (22) are similar to those from Theorem 3.3, but
not equivalent. In particular, (22) requires the unknown quantity ŵ(µ) to construct ∆, whereas
Theorem 3.3 uses the Newton direction dN (w, µ). Further, (22) does not preserve the symmetry
h(w, ŵ) = h(w−1, ŵ−1), as replacing ∆ = Q(w)−1/2(w − ŵ) with ∆ = Q(w−1)−1/2(w−1 − ŵ−1)
leads to different bounds.

We also note that (22) still holds if ‖∆‖∞ is replaced with ‖∆‖. With this replacement, it is a
special case of [27, Theorem 4.1.7–8], which holds for arbitrary self-concordant functions, a superset
of self-scaled functions that are central in IPM analysis over general convex sets.

4 Long-step algorithm

When proving the convergence of shortstep (Figure 1), we established results that suggest an
alternative algorithm. This alternative uses our divergence upper-bound (Theorem 3.3) to loosely
track the central path and damped Newton steps to ensure that divergence strictly decreases (The-
orem 3.2). We state this algorithm in Figure 2 using the following notation for the divergence
upper-bound:

hub(w, µ) =







‖dN (w,µ)‖2

1−‖d1(w,µ)+d2(w,µ)‖∞
‖d1 + d2‖∞ < 1

∞ otherwise,

(Here d1(w, µ) and d2(w, µ) denote the direct-summands of the Newton direction dN (w, µ); see
Proposition 2.4.) We name this algorithm longstep in reference to classical long-step IPMs [43],
which also loosely track the central path.
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Algorithm longstep(w0, µ0, µf , ǫ)
µ← µ0, w ← w0

while µ > µf do

w ← center(w, µ, α)
µ← inf{µ > 0 : hub(w, µ) ≤ β}

end

return center(w, µ, ǫ)

Procedure center(w0, µ, ǫ)
w ← w0

while hub(w, µ) > ǫ do

d← dN (w, µ)
γ ← max{1, 1

2θ‖d‖2∞}
w ← Q(w1/2) exp( 1

γ d)

end

return w

Figure 2: A long-step algorithm (left) and centering procedure (right). The parameters β and α
control distance to the central path and θ the transition to damped Newton steps. The algorithms
globally convergence on all inputs if 1 > θ > 0 and β > α > 0.

The next theorem shows that longstep is globally convergent, i.e., it can be initialized arbi-
trarily. To prove this, we exploit the fact that the sublevel sets of divergence h are compact, which
implies positive lower bounds on certain progress measures. This theorem also shows scale invari-
ance (Section 2.4). This follows from Proposition 2.5 given that the step-size γ−1 and divergence
bound hub depend only on the eigenvalues of d1 + d2 and d1 − d2.

Theorem 4.1. If 1 > θ > 0 and β > α > 0, then the algorithm longstep and its subroutine
center (Figure 2) have the following properties.

(a) For all inputs w0 ∈ intK and (µ0, µf , ǫ) > 0, longstep terminates and returns w satisfying
h(w, ŵ(µ)) ≤ ǫ for µ ≤ µf . Further, it monotonically decreases µ.

(b) For all inputs w0 ∈ intK and (µ, ǫ) > 0, center terminates and returns w satisfying
h(w, ŵ(µ)) ≤ ǫ. Further, it monotonically decreases h(w, ŵ(µ)).

(c) Both center and longstep are scale invariant.

Proof. To prove statements (a)-(b), we first show compactness of the set

S(ζ) := {(w, µ) : h(w, ŵ(µ)) ≤ ζ, µf ≤ µ ≤ µ0}.

It is closed because (w, µ) 7→ h(w, ŵ(µ)) is continuous. To see it is bounded, note that the eigen-
values of ŵ(µ) and ŵ(µ)−1 are bounded below by some c > 0 on µf ≤ µ ≤ µ0, implying that

ζ ≥ h(w, ŵ(µ)) ≥ c〈e, w + w−1〉 − 2n ≥ c‖w‖1 − 2n

when (w, µ) ∈ S(ζ). Hence, if (w, µ) ∈ S(ζ) then ‖w‖1 + |µ| is bounded, implying S(ζ) is compact.
To prove (b), let ζ = h(w0, ŵ(µ)). Let ∆(w, µ) denote the decrease in h after one Newton step

from w, i.e.,
∆(w, µ) = h(ŵ(µ), w) − h(ŵ(µ), w′)

where w′ = Q(w1/2) exp( 1
γ d). After N steps, h(w, ŵ(µ)) ≤ h(w0, ŵ(µ))−∆∗N , where

∆∗ := inf
w,µ
{∆(w, µ) : hub(ŵ(µ), w) ≥ ǫ, (w, µ) ∈ S(ζ)}.

Compactness of S(ζ) implies ∆∗ is attained, which implies ∆∗ > 0 by our step-size rule and
Theorem 3.2. Since h ≥ 0, we conclude that center must terminate before ∆∗N > h(w0, ŵ(µ)).
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To prove statement (a), note that µ ≤ k−M
∗ µ0 after M iterations, where

k∗ := inf
w,µ,k
{k ≥ 1 : (w, µ) ∈ S(α), hub(w, µ) ≤ α, hub(w, (1/k)µ) = β}.

Compactness of S(α) implies k∗ is attained, which implies that k∗ > 1 since β > α. This implies
µ < µf eventually holds, implying termination of longstep.

Finally, statement (c) follows from Proposition 2.5 and Lemma 2.3, given that γ and hub, viewed
as functions of d1 and d2, are invariant under transformation by an orthogonal automorphism M ,
i.e., γ(d1, d2) = γ(Md1, Md2) and hub(d1, d2) = hub(Md1, Md2).

We close this section with practical matters related to implementation. Specifically, we show
how to efficiently evaluate the divergence bound hub(w, µ) for fixed w, how to find the Newton
direction using a least-squares technique, how to evaluate geodesic updates without computation
of w1/2, and how to construct feasible points for the primal-dual pair (1).

4.1 Evaluating divergence for µ-selection

For fixed w, the divergence bound hw,ub(µ) := hub(w, µ) has a simple formula that admits efficient
selection of µ at each iteration of longstep. To evaluate the formula, we only need to know µ and
quantities involving the vector

gw := proj
L⊥

w

Q(w−1/2)x0 + proj
Lw

Q(w1/2)s0,

where we recall that Lw := {Q(w−1/2)u : u ∈ L} and L⊥
w = {Q(w1/2)u : u ∈ L⊥}.

Proposition 4.1. For w ∈ intK, let gw have minimum and maximum eigenvalues λmin and λmax.
Let k(µ) = min( 1√

µλmin, 2− 1√
µλmax). Then, for all µ > 0,

hw,ub(µ) =







1

µ
‖gw‖2−2 1√

µ
tr gw+n

k(µ) k(µ) > 0

∞ otherwise.

Proof. Let d = dN and let d1 and d2 be as in Proposition 2.4. Suppose that hub(w, µ) is finite, i.e.,
1− ‖d1 + d2‖∞ > 0. Then we have that

hub =
‖d‖2

1− ‖d1 + d2‖∞
, d1 + d2 =

1√
µ

gw − e.

Hence, ‖d1 + d2‖∞ is the max of 1 − 1√
µλmin and 1√

µλmax − 1. The claimed denominator k(µ)

follows using the identity

1−max(1− a, b− 1) = 1 + min(a− 1, 1 − b) = min(a, 2− b).

The identity for ‖d‖2 follows by expanding ‖ 1√
µgw − e‖2 and observing that ‖d‖ = ‖d1 + d2‖.

4.2 Newton direction via least squares

Interior-point methods typically find search directions by solving least-squares problem of the form

minimizey
1

2
yT A∗W (x, s)Ay − fT y subject to By = g,

22



where W (x, s) is a positive-definite weighting matrix induced by the current iterate (x, s) and
(A, B, f, g) are parameters induced by the affine constraints x0 +L and s0 +L⊥. Equivalently, they
solve linear systems of the form

[

A∗W (x, s)A B∗

B 0

] [

y
z

]

=

[

f
g

]

for which specialized algorithms exist (e.g., [18]). Such a system can also yield the Newton direction
dN (w, µ). This, of course, is not surprising given its construction via orthogonal projection (Propo-
sition 2.4). Nevertheless, we give this system explicitly for affine constraints of the form:

s0 + L⊥ = {c−Ay : By = g, y ∈ Rm}, x0 + L = {x ∈ J : ∃z ∈ Rd A∗x + B∗z = b}, (23)

where (y, z) ∈ Rm×Rd denote additional variables, A : Rm → J and B : Rm → Rd are linear maps
with adjoint operators A∗ : J → Rm and B∗ : Rd → Rm, and (b, g, c) ∈ Rm × Rd × J are fixed
parameters.

In this notation, the Newton direction becomes the d that for some (y, z) solves

A∗(Q(w1/2)(e + d)) =
1√
µ

b−B∗z, Q(w−1/2)(e − d) =
1√
µ

c−Ay, By =
1√
µ

g. (24)

Eliminating d and using Q(w) = Q(w1/2)Q(w−1/2)−1 yields a system with the desired form. Note
by modifying the right-hand-side of this system, we can also construct the direct-summands d1 and
d2 of Proposition 2.4.

Proposition 4.2. For w ∈ intK and µ > 0, let (y, z) ∈ Rm × Rd solve the least-squares system
[

A∗Q(w)A B∗

B 0

] [

y
z

]

=

[ 1√
µ(b + A∗Q(w)c) − 2A∗w

1√
µg

]

.

Then, the Newton direction satisfies dN (w, µ) = e−Q(w1/2)( 1√
µc−Ay).

Proof. From the second equation of (24), we conclude that d = e−Q(w1/2)( 1√
µc−Ay). Substituting

into the first equation yields

1√
µ

b−B∗z = A∗Q(w1/2)

(

2e−Q(w1/2)(
1√
µ

c−Ay)

)

= 2A∗w − 1√
µ

A∗Q(w)c + A∗Q(w)Ay.

Rearranging terms proves the claim.

4.3 Evaluation of geodesic updates

For w ∈ intK and v ∈ J , let g(w, v) := Q(w1/2) exp(Q(w1/2)v). By Proposition 4.2, we see that
dN (w, µ) = e+Q(w1/2)v for a particular point v ∈ J . Hence, the geodesic update Q(w1/2) exp(dN )
satisfies, for particular κ > 0, the equation

Q(w1/2) exp(dN ) =
1

κ
g(w, v). (25)

We next show that g(w, v) can be computed without constructing the square root w1/2. Letting
z = Q(w1/2)v, the key idea is expressing the power series of exp(z) in terms of Q(z) and applying
the identity Q(z) = Q(w1/2)Q(v)Q(w1/2) from Appendix A.
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Proposition 4.3. If w ∈ K and v ∈ J , then g(w, v) =
∑∞

n=0
1

(2n)! (Q(w)Q(v))n(w + 1
2n+1Q(w)v).

Proof. For arbitrary z, we have that z2n = Q(z)ne and z2n+1 = Q(z)nz, which implies that

Q(w1/2) exp(z) = Q(w1/2)
∞
∑

i=0

1

(2n)!
Q(z)n(e +

1

2n + 1
z). (26)

For z = Q(w1/2)v, we have, using Q(z)n = (Q(w1/2)Q(v)Q(w1/2))n, that

Q(w1/2)Q(z)n = (Q(w)Q(v))nQ(w1/2). (27)

Substituting (27) into (26) proves the claim.

An alternative formula for g(w, v) is available when J is special, i.e., if the product operation
x ◦ y satisfies x ◦ y = 1

2(xy + yx) for an associative product xy. An example of a special algebra
is the set of symmetric matrices with product 1

2(XY + Y X), where XY denotes ordinary matrix
multiplication. For any special algebra, the quadratic representation satisfies Q(x)y = xyx for all
x, y ∈ J . This fact allows us to compute g(w, v) by evaluating exp(wv) :=

∑∞
d=0

1
d!(wv)d, i.e., the

exponential map induced by the associative product, at the point wv.

Proposition 4.4. If J is special then g(w, v) = exp(wv)w for all v ∈ J and w ∈ intK.

Proof. Let z = Q(w1/2)v. Since z = w1/2vw1/2, we have that

w1/2zdw1/2 = w1/2w1/2v(wv)d−1w1/2w1/2 = (wv)dw

Hence,

Q(w1/2) exp(Q(w1/2)v) = w1/2

( ∞
∑

d=0

1

d!
zd

)

w1/2 =

( ∞
∑

d=0

1

d!
(wv)d

)

w = exp(wv)w.

Note that for symmetric matrices, exp(W V ) is the usual matrix exponential evaluated at the
matrix product W V . One can evaluate the matrix exponential using a power series or Pade ap-
proximation [24]. In total, the entire evaluation of Q(w1/2) exp(dN ) can be done without eigenvalue
decomposition or square roots.

Remark 4. The quantity g(w, v) := Q(w1/2) exp(Q(w1/2)v) can be written using the manifold
exponential map (Section 2.2) as

g(w, v) = Exp
w

(Q(w)v).

For the algebra of symmetric matrices (J = Sn), it’s known (e.g., [35]) that ExpW satisfies

Exp
W

(Z) = exp(ZW −1)W.

This provides an alternative proof of Proposition 4.4 for the special case of J = Sn. Precisely,
taking Z = Q(W )V = W V W , we deduce that

g(W, V ) = Exp
W

(Q(W )V ) = exp((W V W )W −1)W = exp(W V )W,

as claimed.

24



4.4 Feasible points

Since the presented algorithms update w along geodesics, the point
√

µ(w, w−1) only satisfies the
affine constraints of the primal-dual pair (1) in the limit. Nevertheless, under a norm condition,
we can always produce a feasible (x, s) from the Newton direction dN (w, µ).

Proposition 4.5. For w ∈ intK and µ > 0, let d = dN (w, µ) and

x =
√

µQ(w1/2)(e + d), s =
√

µQ(w−1/2)(e− d).

If ‖d‖∞ ≤ 1, then (x, s) is feasible for (1).

Proof. By definition of the Newton direction (Definition 1.1), it holds that x ∈ x0 + L and s ∈
s0 + L⊥. Further, since ‖d‖∞ ≤ 1, we have that e± d ∈ K. Finally, x, s ∈ K given that Q(z)y ∈ K
for all z ∈ J and y ∈ K.

In light of Section 2.5, this proposition gives a sufficient condition for feasibility of a full Nesterov-
Todd step when x = µs−1. It can therefore be compared with [11, Lemma 3.3].

5 Computational results

We provide a series of computational experiments that illustrate key features of our algorithms
and the performance of an implementation. First, we illustrate that longstep executes far fewer
iterations than shortstep, despite its weaker theoretical guarantees. We then illustrate longstep-
performance on a range of symmetric cones, including the exceptional cone and the psd Hermitian
matrices with complex and quaternion entries; to our knowledge, these are the first computational
results for the quaternion and the exceptional cone. We next demonstrate global convergence of the
centering procedure center. Finally, we compare our longstep-implementation conex (pronounced
CON-ex) to sdtp3, a widely used solver that is based on the Nesterov-Todd algorithm [40].

For each instance, the affine constraints are of the form (23) but with the equality constraints
By = g and associated dual variable z omitted. The operator A : Rm → J is randomly generated.
Unless stated otherwise, the cone K is the set of psd matrices Sn

+, the cost vectors are the identity,
i.e., x0 = e and s0 = e, and m = 10.

5.1 Algorithm comparison

We compare (Figure 3) the total number of Newton steps longstep and shortstep execute to
update an initial centered point ŵ(µ) to ŵ( 1

k µ) where k = 250002. For each n, we compute the
average number of steps executed by longstep over twenty random problems semidefinite programs
(K = Sn

+). The number of steps executed by shortstep is independent of the problem instance, so
no averaging is necessary. As shown, longstep provides a significant improvement over shortstep.
We also see that longstep enters a steady-state regime in which it reduces the centering parameter
µ at a rate that is independent of n.

For longstep, we chose a divergence bound β that grows linearly with n; specifically, we took
β = 100n where 100 is chosen arbitrarily and the dependence on n is intended to compensate for
the ‖dN‖2-dependence of the divergence upper-bound hub. We chose a re-centering tolerance of
α = 10, and a final centering tolerance of ǫ = 1

200 . For shortstep, we selected the centering-
parameter update k and the number of inner iterations m using Theorem 2.1 with the parameter

values (β, ǫ) = (1
2 ,
√

1
200 ).
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Figure 3: Total Newton steps vs n for shortstep and longstep (left) on random SDPs (K = Sn
+).

(Note the different scales.) Typical decrease in centering parameter µ for longstep (right).
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Figure 4: Typical decrease in centering parameter µ for longstep on a p-fold product of a special
cone Ks (left) and p-fold product of an exceptional cone Kex (right). The p-fold product of Ks has
rank n = 24p and and the product of Kex has rank n = 3p.
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Figure 5: Convergence of the centering procedure center for different initialization points in log
(left) and linear (right) scalings. Plotted is geodesic distance to the centered point ŵ(µ).

5.2 Products of special and exceptional cones

For a Euclidean-Hurwitz algebra D, let H(D)q denote the Hermitian matrices of order q endowed
with multiplication X ◦ Y = 1

2(XY + Y X) and inner-product Tr X ◦ Y . If D is the real numbers
R, the complex numbers C, or the quaternions Q, then H(D) is a special Jordan algebra of rank
q. When D is the octonions O, then H(D)3 is an exceptional Jordan algebra of rank three. (Note
that in this notation, H(R)q refers to the symmetric matrices Sq.)

Denoting the cone-of-squares by H(D)q
+, we consider the following cones

Ks := H(R)q
+ ×H(C)q

+ ×H(Q)q
+, Kex := H(O)3

+.

Fixing q = 8, we plot (Figure 4) the progress of longstep on randomly generated instances formu-
lated over p-fold products K = Ks ×Ks × · · · × Ks. We similarly plot progress for products of Kex.
For the special cone Ks, we used a divergence upper-bound of β = 100n, where n = 3qp, the rank
of K. For the exceptional cone Kex, we used a much tighter tolerance of β = 1

10n, where n = 3p.
This tighter tolerance was necessary to avoid numerical errors we suspect are related to errors in
the power-series approximation of the geodesic update (Proposition 4.3). Recall use of this approx-
imation is necessary because H(D)3 is not special and hence prevents use of the associative matrix
exponential (Proposition 4.4). Note that this tighter tolerance leads to more iterations compared
with the special cone Ks, but also more regular updates of µ that are essentially independent of n.

5.3 Global convergence

The procedure center used by longstep globally converges. That is, it always returns ŵ(µ) given
an arbitrary initial point w0 ∈ intK and centering parameter µ > 0. For a fixed problem instance,
we plot convergence behavior for different initial conditions (Figure 5). We observe that convergence
rate is divided into an initial and quadratic phase. These phases are expected from Theorem 3.2.
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Parameters Solver Time (sec) Dual Residual Duality Gap λmin(x) λmin(s)
(n, m) spdt3 conex spdt3 conex sdpt3 conex sdpt3 conex sdpt3 conex

(20, 20) 1.1e-01 4.1e-03 1.4e-12 3.9e-12 1.4e-09 8.9e-10 3.2e-10 2.2e-10 3.2e-10 2.2e-10
(50, 50) 7.0e-01 1.1e-01 1.0e-12 1.5e-12 1.1e-09 1.9e-09 1.2e-10 2.0e-10 1.2e-10 2.0e-10

(100, 100) 3.1e+00 9.8e-01 2.0e-12 3.9e-12 9.7e-10 2.4e-09 7.6e-11 1.9e-10 7.6e-11 1.9e-10

(20, 40) 1.4e-01 1.6e-02 6.9e-11 7.7e-13 4.6e-10 7.2e-10 1.2e-10 1.8e-10 1.2e-10 1.8e-10
(50, 250) 1.8e+00 5.6e-01 1.5e-11 9.8e-12 5.3e-09 6.6e-10 1.5e-09 1.9e-10 1.5e-09 1.9e-10

(100, 1000) 1.9e+01 1.4e+01 3.4e-11 3.1e-11 6.5e-10 6.9e-10 1.7e-10 1.9e-10 1.7e-10 1.9e-10

Table 5.4.1: Solver time and residual comparison between our implementation conex and sdpt3.
The dual residual and duality gap refer to k−1

1 ‖A∗x−b‖ and k−1
2 |〈c, x〉−bT y| for k1 = 1+‖b‖∞ and

k2 = 1 + |〈c, x〉| + |bT y|. Instances use a random A : Rm → Sn with c := e, b := A∗e and K = Sn
+.

5.4 Implementation

An implementation is available at www.github.com/frankpermenter/conex. All symmetric cones
are directly supported, including the Hermitian psd matrices with quaternion entries, the excep-
tional cone, and generalized Lorentz cones of the form {(x, t) ∈ Rn × R : 〈x, x〉 ≤ t2} for arbitrary
inner-products 〈·, ·〉. Table 5.4.1 compares performance with sdpt3 configured to use Nesterov-
Todd steps. Computations were performed in Ubuntu 18.04 on a machine with an Intel Xeon

CPU E5–2687W v4 @ 3.00GHz processor. Both solvers were configured to use the same linear al-
gebra (BLAS) library. For conex error calculations, (x, s, y) was constructed from w and the final
Newton step using Proposition 4.5. Results show that conex achieves the same accuracy in less
time across a range of different problem sizes. We note that the relative timing difference is re-
duced for problems with m > n. For such problems, both solvers spend more time on an identical
calculation: construction and solution of the linear system from Section 4.2; see also Section 2.5.
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A Appendix

This section contains background results about the Euclidean Jordan algebra J and cone-of-squares
K that we referenced without proof. The first establishes properties of the quadratic representation
Q(u)v := 2u ◦ (u ◦ v)− (u ◦ u) ◦ v.

Lemma A.1 ([8]). The following statements hold.

1. Q(u)−1 = Q(u−1) for all invertible u ∈ J .

2. (Q(u)v)−1 = Q(u−1)v−1 for all invertible u, v ∈ J .

3. Q(T u) = T Q(u)T ∗ for any u ∈ J and automorphism T : J → J of K, where T ∗ : J → J
denotes the adjoint of T .
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4. Q(u)2 = Q(u2) for all u ∈ J .

5. Q(u)e = u2 for all u ∈ J .

6. Q(u) is self-adjoint, i.e., 〈Q(u)v, w〉 = 〈v, Q(u)w〉 for all u, v, w ∈ J .

Proof. The first properties are Propositions II.3.1., II.3.3, III.5.2, p. 55, and p. 48 of [8]. The last
is evident from the definition of Q(u) and the fact that Jordan multiplication is self-adjoint, i.e.,
〈u ◦ v, w〉 = 〈v, u ◦ w〉.

The next establishes properties of orthogonal automorphisms of K. They trivially follow from the
fact that such automorphisms are precisely the Jordan-algebra automorphisms of J given our use
of the trace inner-product [8, p. 56].

Lemma A.2. Let M : J → J be an orthogonal automorphism of K. Then, the following state-
ments hold for all u ∈ J .

1. If u is an idempotent, i.e., u ◦ u = u, then Mu is an idempotent.

2. If u has spectral decomposition
∑n

i=1 λiei, then Mu has spectral decomposition
∑n

i=1 λiMei.

3. exp(Mu) = M exp(u).

Further, Me = e.

Proof. By use of the trace inner-product, M is also an automorphism of J [8, p. 56] and hence
satisfies (Mx) ◦ (My) = M(x ◦ y). Hence, (Mu) ◦ (Mu) = M(u ◦ u) = Mu, showing the first
statement. The second statement is immediate from the first: if u has spectral decomposition
∑n

i=1 λiei, then Mu has decomposition
∑n

i=1 λiMei, since the Mei are idempotent and pairwise
orthogonal, i.e., 〈Mei, Mej〉 = 〈ei, M∗Mej〉 = 〈ei, ej〉 = 0. The third is immediate from the second:

exp(Mu) =
n
∑

i=1

exp(λi)Mei =
n
∑

i=1

M exp(λi)ei = M exp(u).

Finally, Me = e given that e = exp(M0) = M exp(0) = Me.
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