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APPROXIMATE OPTIMAL CONTROLS VIA INSTANTON
EXPANSION FOR LOW TEMPERATURE FREE ENERGY

COMPUTATION\ast 

GR\'EGOIRE FERR\'E\dagger AND TOBIAS GRAFKE\ddagger 

Abstract. The computation of free energies is a common issue in statistical physics. A natural
technique to compute such high-dimensional integrals is to resort to Monte Carlo simulations. How-
ever, these techniques generally suffer from a high variance in the low temperature regime, because
the expectation is often dominated by high values corresponding to rare system trajectories. A stan-
dard way to reduce the variance of the estimator is to modify the drift of the dynamics with a control
enhancing the probability of rare events, leading to so-called importance sampling estimators. In
theory, the optimal control leads to a zero-variance estimator; it is, however, defined implicitly and
computing it is of the same difficulty as the original problem. We propose here a general strategy
to build approximate optimal controls in the small temperature limit for diffusion processes, with
the first goal to reduce the variance of free energy Monte Carlo estimators. Our construction builds
upon low noise asymptotics by expanding the optimal control around the instanton, which is the
path describing most likely fluctuations at low temperature. This technique not only helps reducing
variance, but it is also interesting as a theoretical tool since it differs from usual small temperature
expansions (WKB ansatz). As a complementary consequence of our expansion, we provide a per-
turbative formula for computing the free energy in the small temperature regime, which refines the
now standard Freidlin--Wentzell asymptotics. We compute this expansion explicitly for lower orders,
and explain how our strategy can be extended to an arbitrary order of accuracy. We support our
findings with illustrative numerical examples.

Key words. free energy, low temperature, large deviations, optimal control, Monte Carlo
simulation, variance reduction
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1. Introduction. This work is concerned with the computation of free energy-
like quantities arising in statistical physics, for diffusion processes in the low temper-
ature and finite time regime [16, 11, 18, 59]. Although such quantities are defined by
integrals, the typical high dimensionality of the problem makes numerical integration
impossible, so that one generally resorts to Monte Carlo simulation for numerical es-
timations. However, naive Monte Carlo methods often fail to provide accurate results
because of the high variance of standard estimators. This situation typically arises
because the observable of interest is dominated by large values along rare trajecto-
ries [6].

There are, in general, two ways for reducing the variance of naive Monte Carlo
estimators when computing free energies. One is to introduce a bias in the dynamics,
so that rare trajectories become more likely under the new dynamics [16, 53, 36, 47]---
a strategy sometimes referred to as tilting. We know at a theoretical level that there
exists a control, called optimal, which provides a zero-variance estimator. However,
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1311

for high-dimensional systems, it is hopeless to compute this optimal control to a
high degree of accuracy, and poor approximations may deteriorate the quality of
the estimator. It is therefore an important and challenging problem to estimate as
accurately as possible, and at a reasonable computational cost, the zero-variance
control.

Another strategy is to resort to population dynamics [32, 10, 9, 8, 46, 5], another
instance of importance sampling. The idea here is to run a series of systems in parallel,
and to select the ones that realize the rare event dominating the expectation defining
the free energy. There are various possibilities to design a selection mechanism, some
provably behaving better than others [55, 1, 13]. However, it is a known fact that, in
high-dimension and at low temperature, the number of replicas needed for performing
accurate computations becomes very large [49, 50]. Of course, it is also possible to
combine the two approaches; see [49] for an example of application to long time large
deviations computations.

We focus here on the construction of approximate optimal controls for diffusion
processes in the low temperature regime. Since different equivalent expressions are
available for the optimal control (for instance, through stochastics, partial differential
equations (PDEs), or variational representations), many approximation techniques
have been developed, including cross-entropy methods [61], milestoning [36], Isaacs
equation [14], martingale based techniques [48], model reduction [37], and forward-
backward stochastic differential equations [42], or more recently machine learning
based algorithms [34, 15, 35, 52]. We anticipate already here that, when an approx-
imation of the optimal control is available, it is still not obvious that the resulting
estimator should actually decrease the variance (see [56, 25, 2, 33] and references
therein for more insight on this subtle issue).

The first goal of this paper is to provide a simple way to construct approximate
controls that are well suited for variance reduction of free energy Monte Carlo com-
putations in the small temperature regime. We rely for this on low temperature
reaction paths (instantons) [16, 17, 27, 30] by building a time-inhomogeneous Tay-
lor expansion around such reaction paths. This is quite different from the standard
Wentzell--Kramers--Brillouin (WKB) (or Freidlin--Wentzell--Graham) small tempera-
ture expansion [31, 24, 3, 4, 43] where series run in the small temperature parameter
and are defined through solutions to PDEs. From a more mathematical viewpoint,
we propose an expansion of a finite noise Hamilton--Jacobi--Bellman (HJB) equation
around the solution to the characteristic equation of the associated noiseless partial
differential equation (PDE) (see [20, Chapter 3.2]), which is not a standard proce-
dure to the best of our knowledge. With our technique, we manage to build offline
(i.e., involving only computations that can be done once before starting the sampling)
an approximate control that behaves well at low temperature. This should be put
in contrast with techniques that build a precise estimate of the control by requiring
costly on-the-fly updates [59] or solving a PDE---see, for instance, the interesting
Isaacs subsolution approach [14].

A second output of our work is a perturbative formula for the free energy at
low temperature. Using the optimal control expansion, we compute correction terms
to the Freidlin--Wentzell zero-order asymptotics to the free energy, which can be es-
timated without resorting to Monte Carlo simulation. In general, we believe the
expansion we propose is an interesting object to understand more precisely from a
mathematical standpoint, in particular in view of the theory of viscosity solutions for
Hamilton--Jacobi equations [7, 20, 23, 53].
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1312 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

This paper is organized as follows. Section 2 presents our problem (section 2.1)
and recalls some well-known facts about zero variance estimators (section 2.2) and
low temperature reaction paths (section 2.3). We next turn to the main results of the
paper, by first presenting our approximation of the optimal control in section 3.1 and
then the resulting perturbative formula for the free energy in section 3.2. We conclude
in section 4 with some numerical applications illustrating our results. We finish with
a short discussion, pointing out limitations of our technique, and indicating directions
to address them.

2. Optimal control and low temperature limit. This section presents the
overall setting of the work, and recalls some well-known facts about optimal con-
trol and low temperature asymptotics of exponential expectations, which we use in
section 3 for our approximation procedure.

2.1. Free energy computation. We consider the computation of integrals of
exponential quantities for which numerical integration is impossible and Monte Carlo
estimators typically have a large variance. Concretely, for fixed time T > 0 and initial
condition x0 \in \BbbR d, we consider

(2.1) A\varepsilon = \BbbE x0

\Bigl[ 
e

1
\varepsilon f(X

\varepsilon 
T )
\Bigr] 
.

Here, f : \BbbR d \rightarrow \BbbR is a smooth function and (X\varepsilon 
t )t\geq 0 is solution to the following sto-

chastic differential equation in \BbbR d (with d a positive integer standing for the physical
dimension)

(2.2) dX\varepsilon 
t = b(X\varepsilon 

t ) dt+
\surd 
\varepsilon \sigma dBt,

where (Bt)t\geq 0 is an m-dimensional Brownian motion, the function b : \BbbR d \rightarrow \BbbR d is
smooth, and \sigma \in \BbbR d\times m is such that the diffusion matrix D = \sigma \sigma T \in \BbbR d\times d is positive
definite (\sigma T stands for the transpose of the matrix \sigma ). In (2.1), we denote by \BbbE x0

the expectation with respect to all trajectories solving (2.2) and starting at the initial
point x0 \in \BbbR d at time t = 0. Note that we could also consider a time-dependent
function b as well as a time-position dependent diffusion matrix \sigma without additional
difficulty, but restrict ourselves to this setting for notational simplicity. The generator
of the dynamics (2.2) reads

(2.3) \scrL = b \cdot \nabla + \varepsilon 
\sigma \sigma T

2
: \nabla 2,

where \cdot is the scalar product in \BbbR d. The notation \nabla 2 stands for the \BbbR d\times d-valued
Hessian operator, while for two matrices A,B \in \BbbR d\times d we write A : B = Tr(ATB). The
differential operators \nabla , \nabla 2, and \scrL can be defined on smooth compactly supported
functions, and we assume in what follows that the parameters of the model allow one
to define (2.1) as a finite quantity for all \varepsilon > 0; see, in particular, [24] for technical
considerations.
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1313

A motivation for studying (2.1) is the computation of the free energy

(2.4) Z\varepsilon = \varepsilon logA\varepsilon 

in the small temperature regime.1 It is known by large deviations arguments that,
under mild assumptions, it holds [24, 12] that

(2.5) Z\varepsilon  -  -  - \rightarrow 
\varepsilon \rightarrow 0

Z0

for some finite value Z0; see section 2.3 below. The numerical computation of Z0 is
one motivation for estimating (2.1) when \varepsilon \ll 1. In a large deviations perspective, it
is also useful to compute Z0 for numerically estimating the rate function associated to
the path measure of (X\varepsilon 

t )t\in [0,T ], which is related to Z0 through a Legendre--Fenchel
transform. We refer to [58, 21] for numerical examples in the related infinite time
context.

In the regime of small temperature, the expectation in (2.1) is often dominated by
very large values realized over rare trajectories, which leads to large variance Monte
Carlo estimators. However, we know that the dynamics (2.2) can be controlled to be
turned into a zero-variance estimator of (2.1), as we recall now.

2.2. Optimal tilting on path space. We now present the modification of (2.2)
leading to a zero-variance estimator of (2.1). These computations are standard, pro-
vided technical conditions are met; see, for instance, [23, 53]. In this procedure, we

consider the tilted process ( \widetilde X\varepsilon 
t )t\geq 0 solution to

(2.6) d \widetilde X\varepsilon 
t = b( \widetilde X\varepsilon 

t ) dt+D\nabla g(t, \widetilde X\varepsilon 
t ) dt+

\surd 
\varepsilon \sigma dBt,

where g : \BbbR + \times \BbbR d \rightarrow \BbbR is an arbitrary smooth function, and we call \nabla g the control.
We restrict ourselves to gradient controls since, as shown below, the optimal control
is indeed gradient.

First, we introduce the Girsanov weight \alpha : [0, T ] \times \BbbR d \rightarrow \BbbR associated with g,
namely

\forall t \geq 0, \forall x \in \BbbR d, \alpha (t, x) = \partial tg(t, x) + \scrL g(t, x) + 1

2
| \sigma \nabla g| 2(t, x).

Next, we define the function \psi \varepsilon : [0, T ]\times \BbbR d \rightarrow \BbbR + as

(2.7) \psi \varepsilon (t, x) = \BbbE t,x

\Bigl[ 
e

1
\varepsilon f(X

\varepsilon 
T )
\Bigr] 

and

(2.8) g\varepsilon (t, x) = \varepsilon log \psi \varepsilon (t, x).

1The term free energy is often associated with long time problems through the quan-

tity limT\rightarrow +\infty 
1
T
log\BbbE 

\bigl[ 
e
\int T
0 f(X\varepsilon 

s ) ds
\bigr] 
.Here, we use the terminology associated with small tem-

perature problems, like in [36]. Note that we could also consider expectations involving a

random stopping time \tau , such as \varepsilon log\BbbE x0

\bigl[ 
e

1
\varepsilon 
f(X\varepsilon 

\tau )
\bigr] 
, or finite time-integrated quantities like

\varepsilon log\BbbE x0

\bigl[ 
e

1
\varepsilon 

\int T
0 f(X\varepsilon 

s ) ds
\bigr] 
, for a finite integration time T > 0, when \varepsilon \rightarrow 0. These cases can be

treated by appropriately modifying the computations performed in Appendix B. In this paper, we
present our method by considering (2.1) and leave the modifications needed in other cases to the
interested reader. Combining long time and small temperature asymptotics on the other hand is a
difficult problem; see, for instance, [51] for interesting insights.
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1314 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

In (2.7), \BbbE t,x refers to the expectation with respect to all realizations of the dy-
namics (2.2) started at time t from position x. Under technical conditions, g\varepsilon is
well-defined as a solution (at least in a weak sense [20]) to the following HJB equation
(see Appendix A):

(2.9)

\left\{   \partial tg\varepsilon + \scrL g\varepsilon +
1

2
| \sigma \nabla g\varepsilon | 2 = 0,

g\varepsilon (T, x) = f(x) \forall x \in \BbbR d.

We assume in what follows that g\varepsilon actually exists as a unique smooth solution of (2.9)
with the probabilistic representation (2.7)--(2.8), and refer to section 3.1 for more
details on this assumption.

Then, by setting g = g\varepsilon in (2.6), the estimator

(2.10) A\varepsilon = eg\varepsilon (0,x0)\BbbE x0

\Biggl[ 
exp

\Biggl( 
1

\varepsilon 

\bigl[ 
f( \widetilde X\varepsilon 

T ) - g\varepsilon (T, \widetilde X\varepsilon 
T )
\bigr] 
+

1

\varepsilon 

\int T

0

\alpha (t, \widetilde X\varepsilon 
t ) dt

\Biggr) \Biggr] 

has zero variance. Namely,

(2.11) A\varepsilon = \psi \varepsilon (0, x0).

This result is a consequence of the Feynman--Kac formula and the Girsanov the-
orem; see Appendix A for a more detailed argument. A consequence of (2.10) is
that (2.1) can be estimated with a zero-variance (i.e., deterministic) estimator pro-
vided (2.8) is known.

In general, the Monte Carlo estimator built on (2.10) by drawing independent
trajectories distributed according to (2.6) cannot be used as such for numerical ap-
plications, because estimating (2.8) and its gradient for all t \geq 0 and x \in \BbbR d is
still more difficult than solving the initial problem of estimating (2.1). However, this
result serves as a guide to design approximate controls that are easier to compute
while still reducing the variance of Monte Carlo estimators of (2.1). We will present
in section 3 an original strategy to build such approximate controls behaving well in
the small \varepsilon regime from the low temperature asymptotics provided by transition path
theory, which is the main contribution of this work. For this, we first need to recall
the definition of the transition path in our context, which is the purpose of the next
section.

2.3. Low temperature regime and reaction path. Even though the con-
trol g\varepsilon is difficult to estimate in practice, we can nevertheless have access to an
instanton, or reaction or transition path, which stands for the zero temperature most
likely path of fluctuation for the dynamics. In the small noise limit, we know by the
Freidlin--Wentzell theory [24, section 3] that the trajectories of (X\varepsilon 

t )t\in [0,T ] dominating
the expectation (2.1) concentrate exponentially fast on this path for the uniform norm
under relatively mild conditions on the parameters of the problem. We only recall the
most important features of the theory here, and refer to [30] and references therein
for more details.

The instanton is a path (\phi t)t\in [0,T ] taking values in \BbbR d, assumed here to be smooth
and uniquely defined (we shall discuss more this assumption in Remark 3.3 below).
In order to provide an equation for this path, we also consider a conjugate variable
(\theta t)t\in [0,T ], which can be thought of as a momentum. The reaction path (\phi t, \theta t)t\in [0,T ]
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1315

is then described by the following forward-backward system of equations:

(2.12)

\Biggl\{ 
\.\phi t = b(\phi t) +D\theta t, \phi 0 = x0,

\.\theta t =  - (\nabla b)T(\phi t)\theta t, \theta T = \nabla f(\phi T ).

Note that the initial condition x0 of \phi is the same as the one appearing in the defini-
tion (2.1) of the free energy. We insist on the fact that the instanton is defined by a
deterministic system of equations, and that the reaction path (\phi t)t\in [0,T ] corresponds
to a typical path whose final value of f dominates the expectation in (2.1). More-
over, we mention that the set of equations (2.12) is simply the characteristic system
describing the noiseless limit of the HJB equation (2.9); see [20, Chapter 3.2].

Finally, the set of equations defining the reaction path provides a representation
of the low temperature limit (2.5) of the free energy through

(2.13) Z0 = lim
\varepsilon \rightarrow 0

Z\varepsilon = f(\phi T ) - 
1

2

\int T

0

\theta t \cdot D\theta t dt.

Thus, Z0 can be interpreted in an optimal control sense as the maximal value of f
that can be reached under a quadratic penalization of the momentum [36]. Not
surprisingly, this kind of asymptotic is obtained via the Girsanov theorem through
computations similar to that of section 2.2.

We now have all the tools to present the main contributions of the paper, which
are as follows: (i) an approximation of the optimal control g\varepsilon around the reaction
path and (ii) a resulting expansion of Z\varepsilon for small values of \varepsilon .

3. Low temperature approximation of the optimal bias. We now present
our main results. First, we build an approximation of the optimal control around the
instanton in section 3.1. We next deduce in section 3.2 a perturbative formula for the
free energy Z\varepsilon .

3.1. Expansion around the instanton. In order to present our expansion,
we first recall that the zero-variance control is the solution to the HJB equation (2.9)
which reads in full form

(3.1)

\left\{   \partial tg\varepsilon + b \cdot \nabla g\varepsilon + \varepsilon 
D

2
: \nabla 2g\varepsilon +

1

2
| \sigma \nabla g\varepsilon | 2 = 0,

g\varepsilon (T, x) = f(x) \forall x \in \BbbR d.

In the zero-temperature limit \varepsilon \rightarrow 0, the PDE above becomes

(3.2)

\left\{   \partial tg0 + b \cdot \nabla g0 + 1

2

\bigm| \bigm| \sigma \nabla g0\bigm| \bigm| 2 = 0,

g0(T, x) = f(x) \forall x \in \BbbR d.

We assume in what follows that (3.1) possesses a unique smooth solution on [0, T )\times \BbbR d,
which is typically the case under reasonable assumptions by parabolic regularity (see,
for instance, [23, section 4, Theorem 4.1]). Moreover, we also assume that (3.2) has a
unique smooth solution. This is a more stringent assumption for which it is difficult
to provide general conditions of application. However, we know by the method of
characteristics that this assertion is valid when the final time T is small enough [20,
section 3.2, Theorem 2]. We place ourselves in this setting in this paper, and refer
to Remark 3.3 below for further comments on these assumptions. Note also that it
typically holds in a weak sense that lim\varepsilon \rightarrow 0 g\varepsilon = g0.

D
ow

nl
oa

de
d 

08
/3

1/
21

 to
 3

5.
17

6.
47

.6
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1316 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

Solving the characteristics system for (3.2) actually relies [20, 30] on plugging the
ansatz

(3.3) g0(t, x) = \theta t \cdot (x - \phi t)

into (3.2), which allows one to derive the couple of equations (2.12) defining the
instanton. The definition (3.3) is motivated by Lagrangian considerations in statistical
physics [30], but is simply an application of the method of characteristics for first order
nonlinear PDEs [20, Chapter 3.2].

The main idea of this paper is to consider (3.3) as the first term of a polynomial
Taylor expansion around the instanton (\phi t)t\in [0,T ]. This suggests going to next order
by looking for a solution of (3.1) in the form

(3.4) g1(t, x) = \theta t \cdot (x - \phi t) +
1

2

\bigl( 
x - \phi t) \cdot Kt(x - \phi t),

where (Kt)t\in [0,T ] is a \BbbR d\times d-valued process to be determined. In what follows, we
call the ansatz (3.3) the zeroth order approximation and (3.4) the first order one,
because the resulting controls \nabla g0 and \nabla g1 are of zeroth and first order in x  - \phi t,
respectively (see Remark 3.1 below for expansions to arbitrary order). Although this
is not an expansion in powers of \varepsilon , the temperature appears implicitly through the
relation \widetilde X\varepsilon 

t  - \phi t = O(
\surd 
\varepsilon ), which holds when the drift is chosen accordingly. Indeed,

taking for example g = g0 in (2.6) and assuming that \widetilde X\varepsilon 
t = \Phi t + O(

\surd 
\varepsilon ) for some

path (\Phi t)t\in [0,T ], then (2.6) becomes

\.\Phi t +O(
\surd 
\varepsilon ) = b(\Phi t) +D\nabla g0(t,\Phi t) + O(

\surd 
\varepsilon ).

Since \nabla g0(t, x) = \theta t, we observe that indeed \Phi t = \phi t is the instanton. As a result,

one should think of x  - \phi t as a quantity of order
\surd 
\varepsilon along a trajectory ( \widetilde X\varepsilon 

t )t\in [0,T ]

when the drift g is built from g0.
We now derive heuristically the equation satisfied by (Kt)t\in [0,T ] for g

1 to be an
approximation of g\varepsilon . For this, we note that (3.1) rewrites componentwise \partial tg\varepsilon +
bk\partial kg\varepsilon + Djk\partial jg\varepsilon \partial kg\varepsilon /2 + \varepsilon Djk\partial jkg\varepsilon /2 = 0, where we use Einstein's notation for
summation over repeated indices. Taking the derivative twice with respect to indices
i \in \{ 1, . . . , d\} and l \in \{ 1, . . . , d\} shows that

\partial t\partial 
2
ilg\varepsilon + \partial 2ilbk\partial kg\varepsilon + \partial ibk\partial 

2
klg\varepsilon + \partial lbk\partial 

2
ikg\varepsilon + bk\partial 

3
iklg\varepsilon 

+Djk\partial 
2
jlg\varepsilon \partial 

2
ikg\varepsilon +Djk\partial jg\varepsilon \partial 

3
iklg\varepsilon \varepsilon 

Djk

2
\partial ijklg\varepsilon = 0.

This can be written in vectorial form as

\partial t\nabla 2g\varepsilon +\nabla 2b \cdot \nabla g\varepsilon + (\nabla b)T\nabla 2g\varepsilon +\nabla 2g\varepsilon \nabla b+ (\nabla 2g\varepsilon )
TD\nabla 2g\varepsilon 

+ b\nabla 3g\varepsilon + (\nabla 3g\varepsilon )
TD\nabla g\varepsilon + \varepsilon 

D

2
: \nabla 4g\varepsilon = 0,

where the equation is evaluated at any (t, x).
Since we look for an evolution equation for Kt = \nabla 2g1(t, \phi t), we compute

(3.5)

d

dt
\nabla 2g\varepsilon (t, \phi t) = \partial t\nabla 2g\varepsilon + \.\phi t \cdot \nabla 3g\varepsilon 

= - (\nabla 2b)T\nabla g\varepsilon  - (\nabla b)T\nabla 2g\varepsilon  - \nabla 2g\varepsilon \nabla b - (\nabla 2g\varepsilon )
TD\nabla 2g\varepsilon 

 - b\nabla 3g\varepsilon  - (\nabla 3g\varepsilon )
TD\nabla g\varepsilon + \.\phi t \cdot \nabla 3g\varepsilon  - \varepsilon 

D

2
: \nabla 4g\varepsilon ,
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1317

where the right-hand side is evaluated at (t, \phi t). Considering the ansatz g1 given
by (3.4) to replace g\varepsilon , we have \nabla g1(t, \phi t) = \theta t, \nabla 2g1(t, \phi t) = Kt, \nabla 3g1(t, \phi t) = 0,
and \nabla 4g1(t, \phi t) = 0, which can be plugged into (3.5) to obtain the equation satisfied
by (Kt)t\in [0,T ]. The final condition on KT can be derived similarly by differentiat-
ing twice the terminal condition in (3.1). As a consequence, in order for (3.4) to
approximate (3.1), (Kt)t\in [0,T ] should be solution to

(3.6)

\Biggl\{ 
\.Kt + (\nabla b)TKt +KT

t \nabla b+\nabla 2b \cdot \theta t +KT
t DKt = 0,

KT = \nabla 2f(\phi T ),

where b and its derivatives are evaluated at \phi t. A precise derivation of (3.6) can be
found in Appendix B via the Girsanov theorem (see, in particular, (B.3) and (B.5)).
Note that a solution to (3.6) is symmetric.

In order to formalize that g1 is indeed an approximation of g\varepsilon , the solution to (3.1),
we thus consider the first order approximation (3.4) where (\phi t, \theta t)t\in [0,T ] is defined
in (2.12) and (Kt)t\in [0,T ] satisfies (3.6). We also define the following function of time:

(3.7) \forall t \in [0, T ], Z1
\varepsilon (t) = f(\phi T ) - 

1

2

\int T

t

\theta s \cdot D\theta s ds+
\varepsilon 

2

\int T

t

D : Ks ds.

Then, we show in Appendix B that, in the small \varepsilon limit, for any t \in [0, T ] and x \in \BbbR d,
it holds that

(3.8) g\varepsilon (t, x) = g1(t, x) + Z1
\varepsilon (t) + o(\varepsilon ) + \varepsilon o(x - \phi t).

This formula shows that g1 approximates the optimal control g\varepsilon at small temperatures
and around the instanton. A key ingredient of the proof is that, as noted above, for
all time t \geq 0, it holds that \widetilde X\varepsilon 

t  - \phi t = O(
\surd 
\varepsilon ) (see (B.2) in Appendix B), so the

approximation is valid for the process (2.6) tilted by g1.
Equation (3.6) is an instance of algebraic Riccati equation [45], which is an in-

teresting feature compared to the more standard instanton presented in section 2.3.
Riccati equations recurrently appear in optimal control theory [39], so it is no surprise
to encounter such an equation in our approximation procedure (here a linearization)
of the optimal control. The original feature, we believe, is the fact that all the objects
in the approximation are centered around the zero-temperature instanton. Indeed,
we insist on the fact that our construction (3.4) is not a WKB ansatz since it is not
an expansion in the temperature parameter \varepsilon (see Remark 3.1 below). Actually, since

the tilted process controlled by g1 satisfies \widetilde X\varepsilon 
t  - \phi t = O(

\surd 
\varepsilon ), this dependency in the

temperature is hidden in the expansion around the instanton.
From a numerical perspective, we will use g1 as an ansatz for the optimal con-

trol g\varepsilon defined in (2.8). Note that most techniques relying on optimal control strategies
strive to estimate g\varepsilon (t, x) and its gradient for all time t and position x, which is very
difficult and computationally costly in practice [59]. Here, we can construct offline
an approximation of this optimal control, which is a polynomial expansion whose co-
efficients depend on time only, which drastically reduces the computational cost of
the procedure. However, since the construction relies on a small temperature expan-
sion, we expect this approximation to reduce the variance only in a low temperature
regime---a fact confirmed by the numerical simulations below.

Remark 3.1 (higher order expansion and relation to WKB ansatz). It is, of
course, possible to push our method to an approximation of order M > 1 for g\varepsilon 
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1318 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

through

(3.9) gM (t, x) =

M+1\sum 
k=1

Tk(t)\odot 
\bigl( 
x - \phi t

\bigr) \otimes k
,

where \otimes k stands for the kth order tensorization of a d-dimensional vector, \odot the
kth order contraction and, for each k \geq 1, Tk is a time dependent kth order tensor.
Comparatively, an expansion in the temperature parameter \varepsilon , sometimes called WKB
expansion, would read, up to order M ,

g(t, x) =

M\sum 
k=0

(
\surd 
\varepsilon )kuk(t, x),

where each uk is solution to a PDE [22]. Since \widetilde X\varepsilon 
t  - \phi t = O(

\surd 
\varepsilon ), the expansion (3.9)

looks like a WKB expansion in powers of
\surd 
\varepsilon around the tilted process although

this parameter does not appear explicitly. Moreover, we do not need to solve any
PDE since we work with ordinary differential equations at the process level. This
allows faster numerical computations and the simple derivation of a perturbative
formula for the free energy (2.4), as presented in section 3.2 below. In some sense, the
expansion we propose can be thought of as a Taylor, polynomial expansion version of
the standard WKB series.

With the notation (3.9), we have seen above that T1(t) = \theta t and T2(t) = Kt. In a
Lagrangian perspective, we can interpret \theta t as a momentum, and thus the matrix Kt

as an acceleration field. Moreover, in dimension d = 1, we can show going one order
further in the computations of Appendix B that the third term T3(t) = Qt is the
solution to \Biggl\{ 

\.Qt + b\prime \prime \prime \theta t + 3b\prime \prime Kt + 3b\prime Qt + 6KtDQt = 0,

QT = f \prime \prime \prime (\phi T ),

where the derivatives of b are evaluated at the instanton \phi t. The next terms follow
similarly by computing the next orders of the Taylor expansion.

We finally note that similar computations appear in [3]. However, the setting of
this paper is different since the authors consider a drift b\lambda depending on a free pa-
rameter \lambda unrelated to the temperature, and the expansions are realized with respect
to this additional degree of freedom. To the best of our knowledge, expanding around
the noiseless characteristic equation is a new technique.

3.2. Perturbative formula for the free energy at finite temperature.
In the previous section, we focused on constructing an approximate optimal control
for Monte Carlo importance sampling estimators. In addition to this result, we now
deduce from (3.8) a perturbative formula for (Z\varepsilon )\varepsilon >0 for small values of \varepsilon . For this,
it suffices to note that

Z\varepsilon = g\varepsilon (0, x0).

Considering (3.8) for t = 0 and x = x0 then leads to

(3.10) Z\varepsilon = Z1
\varepsilon (0) + o(\varepsilon ) = f(\phi T ) - 

1

2

\int T

0

\theta t \cdot D\theta t dt+
\varepsilon 

2

\int T

0

D : Kt dt .

For brevity, we will denote Z1
\varepsilon (0) by Z

1
\varepsilon in what follows. The above formula pro-

vides the first order correction to the zeroth order Freidlin--Wentzell asymptotics (2.13).
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1319

As mentioned in Remark 3.1, we could continue to construct higher order corrections
and obtain a full expansion of the free energy at finite temperature through integrals
of solutions to ordinary differential equations. Since we are more interested with
the numerical side of this paper, we propose (3.10) as a way to numerically correct
the Freidlin--Wentzell asymptotics (2.13) for small temperatures without resorting to
Monte Carlo simulation.

Remark 3.2 (relation to prefactor analysis). The correction term in (3.10) reads\int T

0

Tr(DKt) dt,

meaning that the correction to A\varepsilon defined in (2.1) is

exp

\Biggl( 
1

2

\int T

0

Tr(DKt) dt

\Biggr) 
.

Defining a matrix G \in \BbbR d\times d via

\.Gt = GtDKt ,

we can apply Liouville's formula2 to obtain

exp

\Biggl( 
1

2

\int T

0

Tr(DKt) dt

\Biggr) 
=

\sqrt{} 
det | GT | \sqrt{} 
det | G0| 

.

It is common to express the first correction to the Freidlin--Wentzell small temperature
asymptotics as the determinant of a Hessian matrix. As a result, the perturbative
formula (3.10) can be understood as a prefactor analysis, and the integral of the
Riccati matrix as a continuous version of the determinant prefactor that arises for
instance in the Eyring--Kramers formula (see, e.g., [4] and references therein, as well
as [29, 57]). Following Remark 3.1, our methodology allows one to compute Z\varepsilon =
ZM
\varepsilon + o(\varepsilon M ), where ZM is a power series in \varepsilon up to order M \in \BbbN , with coefficients

defined as integrals of solutions to ordinary differential equations.

Remark 3.3 (multiple instantons). For now it is clear that our strategy relies on
the well-definedness of the reaction path. As we said, this is nothing else than the
characteristic solution to the noiseless HJB equation (3.2) associated with the optimal
control. However, in many cases the characteristic is ill-defined, which provokes shocks
and discontinuities in solutions to the HJB problem. This is why a theory of weak
solutions has been developed, in order to provide a sense of solution in cases where a
classical solution does not exist.

In these more complicated (yet easy to construct) situations [25, 59], it is not
clear yet how to adapt our method. Depending on the problem one wishes to solve, it
may be possible to content oneself with the ``most important"" instanton, that is, the
one defining the Freidlin--Wentzell asymptotics. Otherwise, one may want to consider
several characteristics and glue their resulting expansions together appropriately. We
will not address this issue here, and thus our results, as shown, only apply to the
situation where the characteristic system is well defined. Understanding how our
methodology can be extended to situations where only a weak solution is available is
an interesting open problem.

2For a given matrix-valued process A : [0, T ] \rightarrow \BbbR d\times d, the matrix \Psi (t) : [0, T ] \rightarrow \BbbR d\times d solution

to \.\Psi (t) = A(t)\Psi (t) satisfies det\Psi (T ) = det\Psi (0) exp
\bigl( \int T

0 TrA(t) dt
\bigr) 
.
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1320 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

Remark 3.4 (error analysis). Provided the problems raised in the above remark
are addressed properly, controlling precisely the error terms in (3.8) is another inter-
esting mathematical problem. We believe this can be tackled by more standard error
analysis techniques [24, 47]. However, even if such error estimates were available, it is
yet another problem to prove that the resulting importance sampling estimator built
on (3.4) indeed reduces the variance for estimating (2.1). This is a subtle problem for
which we refer to [56, 25, 2, 33] and references therein.

4. Numerical applications. In the following section, we demonstrate the use-
fulness of our approximation by performing numerical experiments on a number of
example systems, comparing first the value of the free energy Z\varepsilon estimated by Monte
Carlo sampling to the Freidlin--Wentzell asymptotics Z0 (which is constant) and the
linear approximation Z1

\varepsilon . Further, we compare the performance of a naive (unbiased)
Monte Carlo estimator to the one using importance sampling with the approximate
optimal biases g0 and g1.

For comparing Monte Carlo estimators, we use the relative error, which is the
ratio of the standard deviation of our estimator over its average for a number of
realizations. If, indeed, our approximation to the optimal bias is effective, heuristically
we expect smaller relative error for higher order approximations to the optimal bias.
Numerically measuring the relative error is therefore an experimental quantification
of the variance reduction capabilities of our proposed estimators. Moreover, for all
the numerical simulations we discretize the underlying SDE with a standard Euler--
Maruyama scheme with time step \Delta t > 0, and neglect the error arising from this
numerical quadrature [44].

4.1. One-dimensional Ornstein--Uhlenbeck process. The simplest situa-
tion is the one-dimensional case where the drift is given by b(x) =  - \gamma x, with \gamma > 0.
We further set \sigma = 1 and f(x) = x. This particular case corresponds to the Ornstein--
Uhlenbeck process.

For the above choice, we know that the optimal control is actually equal to the
conjugate momentum (\theta t)t\in [0,T ] from (2.12). Therefore, the zeroth order approxi-
mation (3.3) actually already provides the zero variance estimator described in sec-
tion 2.2. Numerically, we therefore expect an estimator with variance close to zero.
The first order correction term should not improve the results, so the matrix (scalar
in this case) (Kt)t\in [0,T ] should be zero for all times here.

The numerical experiment is performed with x0 =  - 1, T = 10, and \Delta t = 0.01
for the numerical discretization, performing N = 106 experiments. The results are
shown in Table 1, where we compare the naive unbiased estimator to the estimator
biased with the instanton (zeroth order approximation) and the estimator biased to
first order. While the relative error of the naive estimator blows up with decreasing \varepsilon ,
the relative error is zero in both the zeroth and first order estimators, implying that
the first order estimator is already equivalent to the optimal zero variance bias. We
also numerically observe that the Riccati matrix is indeed equal to zero (not shown).

4.2. Two-dimensional nonlinear nonequilibrium process. We now break
detailed balance by considering a drift b(x) that is not the gradient of a potential V (x).
In that case it is no longer true that the reaction path is merely a reverse relaxation
trajectory driven by the potential level sets, and the reaction path itself must be
computed by numerically solving the instanton equations (2.12), which is a well-
established problem in the literature [17, 38, 26, 28]. Here, we use the algorithm
from [30, section III.A]. Moreover, the optimal control is also no longer explicit like
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1321

Table 1
Relative error for Z\varepsilon for the Ornstein--Uhlenbeck test case, comparing the naive Monte Carlo

estimator with the zeroth and first order biased Monte Carlo estimators.

\varepsilon Naive estimator Zeroth order estimator First order estimator

1 0.81 2.73\cdot 10 - 12 3.15\cdot 10 - 12

0.5 1.31 6.12\cdot 10 - 12 1.05\cdot 10 - 11

0.1 9.28 5.04\cdot 10 - 12 3.08\cdot 10 - 13

0.05 40.38 1.03\cdot 10 - 11 3.74\cdot 10 - 12

0.01 291.82 8.71\cdot 10 - 12 1.2\cdot 10 - 12

in the Ornstein--Uhlenbeck case.
As an example, we take the system

(4.1)

\Biggl\{ 
dXt = (Y 3

t  - X3
t ) dt+

\surd 
\varepsilon dBX

t ,

dYt = ( - X3
t  - Y 3

t ) dt+
\surd 
\varepsilon dBY

t

for two independent Brownian motions (BX
t , B

Y
t )t\geq 0, The dynamics experience a non-

linear attractive force towards the unique fixed point (x, y) = (0, 0) with a nonlinear
swirl in clockwise direction that becomes stronger away from the origin. As a further
complication, we choose a finite time interval T for the transition to happen, and start
away from the fixed point.

As observable in (2.1) we take f(x, y) = x, biasing the dynamics towards large
values of the x-component of the process. We start at (x0, y0) = ( - 1, - 1), away from
the fixed point, and run the process for T = 10, which is long enough so that the
instanton is not a straight line, but short enough so that it does not completely relax
to the fixed point and then leave it again at a later time (as would be the case in
the limit T \rightarrow \infty ). The resulting event is therefore a complicated interplay between
the nonlinear dynamics and the conditioning on large x values, and the expected
distribution of end-points is far from the invariant measure.

Table 2
Relative error for Z\varepsilon for the two-dimensional test problem, comparing the naive Monte Carlo

estimator with the zeroth and first order biased Monte Carlo estimators.

\varepsilon Naive estimator Zeroth order estimator First order estimator
0.5 0.04 0.02 0.113
0.2 0.089 0.029 0.135
0.1 0.253 0.036 0.09

0.05 1.005 0.048 0.13
0.02 6.793 0.094 0.133
0.01 15.592 0.753 0.155

0.005 25.709 0.631 0.136

The numerical parameters are \Delta t = 10 - 2 and N = 106 experiments. The results
are shown in Table 2, where it can be seen that for \varepsilon \rightarrow 0 the relative error blows
up for the naive estimator, while it is roughly constant for the zeroth and first order
estimators, the later being smaller.

Figure 1 compares the different sampling procedures for \varepsilon = 0.01. In the naive
estimator, most trajectories cluster around the deterministic decay path, swirling in
clockwise direction into the origin, and consequently not reaching a large value of x.
With the zeroth order estimator, and to a different degree with the first order one, the
samples remain closer to the instanton (with different strengths in different regions).
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−1 0 1

x

−1.0

−0.5

0.0

0.5

1.0

y

Naive estimator

Instanton

−1 0 1

x

Instanton estimator

−1 0 1

x

Riccati estimator

Fig. 1. Nonlinear two-dimensional process with swirl as defined in (4.1) represented by arrows.
The red dashed line depicts the instanton. The heat map is a histogram of the trajectories of the
Monte Carlo experiment for \varepsilon = 0.01. For the naive estimator (left), most sample trajectories
follow the deterministic decay trajectory by gathering around the fixed point (0, 0), so that large
values for x are rarely observed. For the zeroth order control (center) and the first order one (right)
the sample trajectories are staying more closely around the instanton, but to a different degree at
different locations.

Figure 2 (left) shows Z\varepsilon , Z
0, and Z1

\varepsilon as a function of \varepsilon . While Z0 captures the
constant, \varepsilon -independent limiting value of Z\varepsilon , the departure of Z\varepsilon from this constant
is captured accurately by the first order approximation Z1

\varepsilon for a prolonged interval
in \varepsilon . As expected, for larger values of \varepsilon , higher order effects come into play, degrading
the accuracy of the expansion, which could be improved by considering higher order
terms (see Remark 3.2). Finally, Figure 2 (right) shows the evolution of the 2 \times 
2 matrix (Kt)t\in [0,T ] along the instanton trajectory which is used to compute the
approximate optimal bias via (3.4)--(3.6).

10−3 10−2 10−1 100

ε

−0.2

0.0

0.2

0.4

0.6

Z

Zeroth order (Z0)

First order (Z1
ε )

Monte-Carlo (Zε)

0 2 4 6 8 10

t

−0.50

−0.25

0.00

0.25

0.50

K
ij

K00

K11

K01

K10

Fig. 2. Left: Validity of the approximation of Z\varepsilon in the two-dimensional problem. In the limit
of small \varepsilon , the Monte Carlo estimator agrees with the constant zeroth order (2.13). For larger values
of \varepsilon , the values of Z\varepsilon depart from the constant Z0. The first order approximation Z1

\varepsilon captures this
departure for at least an order of magnitude in \varepsilon . For still larger values, Z1

\varepsilon and Z\varepsilon diverge as
expected. Right: Evolution of the four components of Kt in the two-dimensional problem.

4.3. Double-well potential. We next consider a one-dimensional double-well
potential with V (x) = 1

4 (x
2  - 1)2, which has locally stable fixed points at x = \pm 1,

and set b(x) =  - \nabla V (x) and f(x) = x. We are starting the process in the left fixed
point x0 =  - 1, so that a typical fluctuation leading to high values of f corresponds to
a trajectory crossing to the right well, which becomes a rare event in the low \varepsilon limit.

This example is more complicated than the previous ones because two fixed points
exist. As a consequence, in the nonconvex regions of the potential, straying from the
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1323

globally optimal path is amplified by the dynamics because forward trajectories are
spreading. Interestingly, this problem is more or less pronounced depending on the
given time interval T : for shorter transition times, the kinetic term \.\phi 2 in the Freidlin--
Wentzell action dominates, and the dynamics become comparably unimportant. In
order to illustrate this phenomenon in our numerical experiments, we choose several
values for the final time T .

0 1 2 3 4

t

−2

−1

0

1

2

x

Naive estimator

MC mean ± std

Instanton

0 1 2 3 4

t

Instanton estimator

0 1 2 3 4

t

Riccati estimator

Fig. 3. One-dimensional double-well process for \varepsilon = 0.01. The red dashed line depicts the
instanton, while the black solid line and surrounding gray shading displays the (first order biased)
Monte Carlo estimator mean and one standard deviation region around it. The heat map is a
histogram of all trajectories. The black streamlines display the total drift field, i.e., the sum of the
drift b(x) and the bias, respectively equal to zero, D\nabla g0(t, x), and D\nabla g1(t, x) in the plots from left
to right. For the naive estimator (left), almost no sample trajectory leaves the lower basin, leading
to a bad estimate of the expectation. For the instanton estimator (center), many sample trajectories
transition to the upper basin, with a wide variance. In the Riccati first order estimator (right),
trajectories are staying more closely around the instanton trajectory, which is the optimal one in
the small temperature limit.

Again, we compute the instanton via the algorithm from [30, section III.A]. The
sampling procedure, where numerical parameters are set to \Delta t = 10 - 2, T = 4, and
N = 106, is depicted in Figure 3. The heat maps display histograms of the sample
trajectories. While for the naive estimator only very few manage to transition to the
upper basin, many more are driven across the barrier with the instanton drift active.
In the first order case, the trajectories are kept in a tube around the instanton, so that
a majority of trajectories explore the space around the optimal trajectory at small
temperature. We note, however, that the force field has a surprising behavior far from
the instanton, which we expect given the estimate (3.8). The corresponding relative
errors are listed in Table 3. In particular, while the relative error explodes with \varepsilon \rightarrow 0
for the naive estimator, it remains roughly constant for the zeroth order estimator and
decreases significantly for the first order one. For T = 8 (all other parameters being
the same), the observation is quite different. In fact, as shown in Table 4, for this time
and even longer ones, variance reduction is no longer clearly obtained. This illustrates
that the performance of our approximation of the optimal bias obtained here, which
is reached under strong assumptions (uniqueness of the instanton in particular; see
the beginning of section 3.1 and Remark 3.3), may be deteriorated in nonconvex cases
for a large final time T .

However, the fact that the relative error ceases to decrease for \varepsilon \rightarrow 0 in the
first order approximation does not necessarily mean that the approximation Z1

\varepsilon fails
as well. In fact, as shown in Figure 4, Z\varepsilon is well approximated by Z0 and Z1

\varepsilon up
to T = 8. The constant value of the zeroth order term correctly approximates the
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1324 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

limiting value of the numerical experiment, and the departure from that constant is
correctly captured by the first order correction.

Table 3
Relative error for Z\varepsilon for the double-well test case, T = 4, comparing the naive Monte Carlo

estimator with the zeroth and first order biased Monte Carlo estimators.

\varepsilon Naive estimator Zeroth order estimator First order estimator
1 0.96 1.34 13.6

0.5 2.11 2.55 14.8
0.1 81.21 8.98 25.3

0.05 800.99 6.57 5.58
0.01 343.97 7.21 1.71

0.005 835.89 5.26 0.456

Table 4
Relative error for the double-well test case, T = 8, comparing the naive Monte Carlo estimator

with the zeroth and first order biased Monte Carlo estimators.

\varepsilon Naive estimator Zeroth Order estimator First order estimator
1 0.89 1.53 67.9

0.5 1.65 3.14 50.1
0.1 32.66 167.0 47.1

0.05 656.07 42.0 177.0
0.01 541.15 144. 15.6

0.005 721.8 29.1 33.1

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Z

T = 1

Zeroth order (Z0)

First order (Z1
ε )

Monte-Carlo (Zε)

10−2 10−1 100

ε

−0.4

−0.2

0.0

Z

T = 2

0.0

0.2

0.4

Z

T = 4

10−2 10−1 100

ε

0.2

0.4

0.6

0.8

1.0

Z

T = 8

Fig. 4. One-dimensional double-well process, validity of the approximation of the free energy Z\varepsilon .
For \varepsilon \rightarrow 0, the constant approximation predicts the right limiting value Z0. Departure from this
constant value is correctly approximated by the first order approximation Z1

\varepsilon . The Monte Carlo
estimated values are obtained using trajectories biased to first order as above.

5. Discussion. In this paper, we studied the task of computing a free energy-like
quantity as it commonly arises in statistical physics. For this, we consider the optimal
control problem associated with finding the optimal bias to reduce the variance of an
importance sampling Monte Carlo estimator. We propose a new methodology to
approximate the solution to the optimal stochastic control problem. From a physics
perspective, it corresponds to designing a nonhomogeneous Taylor expansion around
the instanton of the dynamics. From a PDE standpoint, it is an expansion around
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APPROXIMATE CONTROLS VIA INSTANTON EXPANSION 1325

the characteristic curve of the zero-temperature limit of the HJB equation associated
with the optimal control. Our approach differs from the more standard technique
of expanding the solution in the temperature parameter (sometimes called WKB
ansatz) since here the temperature appears only implicitly through the distance to
the instanton of typical reacting trajectories, and the expansion is defined through
solutions to ordinary differential equations instead of PDEs.

With this new tool at our disposal, we achieve two goals. First, we use our
approximation to reduce the variance with a standard tilting procedure, replacing the
optimal control with our expansion computed offline from simple ordinary differential
equations. This approach therefore yields a very efficient method to approximate the
optimal control close to the most likely realization given by the instanton, which is
exactly the right regime in the low temperature limit. Next, we derive a new formula
for expanding the free energy in the small temperature parameter, which refines the
Freidlin--Wentzell asymptotics. We explicitly compute the first order term of the series
and explain how to pursue the expansion to any order.

Finally, we propose a series of examples to illustrate the validity of our method-
ology. We demonstrate how the suggested approximate optimal control reduces vari-
ance in a set of numerical examples, and how the free energy expansion extends the
Freidlin--Wentzell asymptotics. We further show some limitations of our approach,
in particular concerning variance reduction in a nonconvex setup and for large final
times.

As one can note, the theoretical arguments we use are based on quite strin-
gent conditions: well-posedness and smoothness of the solution to the HJB problem,
uniqueness of the instanton, various boundedness assumptions hidden in the expan-
sion analysis, etc. This raises a number of questions on how in its current state the
approach may fail, for instance when several solutions exist to the characteristic equa-
tion and the HJB equation only has a weak, nonsmooth solution. We know that this
situation naturally arises in many contexts, which can be interpreted as a nonconvex-
ity of the rate function from a large deviations perspective, the creation of shocks from
a PDE point of view, or caustics from the physicist's viewpoint. On the other hand,
from a computational perspective, even though we could quantify the closeness of the
expansion to the optimal control, it is yet difficult to assess that the tilted estimator
indeed reduces the variance in simulations in general [56, 25, 2, 33]. Our proposed
control is therefore only the first step in the direction of rigorously establishing how
and when the optimal control can be expanded around the instanton, improving on
existing suggestions to use the instanton as an approximation for the optimal tilt as a
mere heuristic in importance sampling, for instance in cloning algorithms [60, 30] or in
instanton biased importance sampling motivated from path integral techniques [19].
Our results suggest that the approximation is built in such a way that variance is
indeed reduced in the small temperature limit for simple systems, but this remains
to be proved rigorously, and under which precise conditions. Although studying such
issues possibly requires a significant effort, we hope the possible applications in both
numerical and theoretical directions will motivate further research in this direction.

Appendix A. Proofs of section 2.2. We first prove an integration by part
formula by showing that, given the dynamics (2.2) and (2.6), the expectation in (2.1)
rewrites

(A.1) A\varepsilon = eg(0,x0)\BbbE x0

\Biggl[ 
exp

\Biggl( 
1

\varepsilon 

\bigl[ 
f( \widetilde X\varepsilon 

T ) - g(T, \widetilde X\varepsilon 
T )
\bigr] 
+

1

\varepsilon 

\int T

0

\alpha (t, \widetilde X\varepsilon 
t ) dt

\Biggr) \Biggr] 
,
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1326 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

where

(A.2) \alpha (t, x) = \partial tg(t, x) + \scrL g(t, x) + 1

2
| \sigma \nabla g| 2(t, x).

The proof of this formula relies on the Girsanov theorem and the gradient struc-
ture of the drift. We first write the Girsanov formula for the path change of mea-
sure [41, 54] between the processes (X\varepsilon 

t )t\geq 0 and ( \widetilde X\varepsilon 
t )t\geq 0 (provided technical condi-

tions are met):

(A.3) A\varepsilon = \BbbE x0

\Bigl[ 
e

1
\varepsilon f(X

\varepsilon 
T )
\Bigr] 
= \BbbE x0

\Bigl[ 
e

1
\varepsilon f(

\widetilde X\varepsilon 
T ) - 1

2\varepsilon 

\int T
0

| \sigma \nabla g| 2(t, \widetilde X\varepsilon 
t ) dt - 1\surd 

\varepsilon 

\int T
0

\sigma \nabla g(t, \widetilde X\varepsilon 
t ) dBt

\Bigr] 
.

We now use It\^o's formula over a trajectory of ( \widetilde X\varepsilon 
t )t\geq 0 using the generator (2.3):

dg(t, \widetilde X\varepsilon 
t ) =

\bigl( 
\partial tg + \scrL g +\nabla g \cdot D\nabla g

\bigr) 
(t, \widetilde X\varepsilon 

t ) dt+
\surd 
\varepsilon \sigma \nabla g(t, \widetilde X\varepsilon 

t ) dBt.

Integrating in time and dividing by \varepsilon , the above equation becomes

 - 1\surd 
\varepsilon 

\int T

0

\sigma \nabla g(t, \widetilde X\varepsilon 
t ) dBt = - g(T, \widetilde X\varepsilon 

T ) - g(0, \widetilde X0)

\varepsilon 

+
1

\varepsilon 

\int T

0

\bigl( 
\partial tg + \scrL g + | \sigma \nabla g| 2

\bigr) 
(t, \widetilde X\varepsilon 

t ) dt.

Inserting this equality into (A.3) leads to (A.1).
We next turn to the derivation of the optimal control (2.8). We first note, using

the Feynman--Kac formula [40, Theorem 21.1], that \psi \varepsilon is the solution to the following
backward PDE:

(A.4)

\Biggl\{ 
\partial t\psi \varepsilon + \scrL \psi \varepsilon = 0,

\psi \varepsilon (T, x) = e
1
\varepsilon f(x) \forall x \in \BbbR d.

Defining g\varepsilon = \varepsilon log\psi \varepsilon , we see that the time derivative of g\varepsilon reads

\partial tg\varepsilon = \varepsilon 
\partial t\psi \varepsilon 

\psi \varepsilon 
= \varepsilon 

 - \scrL \psi \varepsilon 

\psi \varepsilon 

=  - \varepsilon e - g\varepsilon /\varepsilon \scrL eg\varepsilon /\varepsilon = \varepsilon 
\Bigl( 
 - \varepsilon  - 1b \cdot \nabla g\varepsilon  - e - g\varepsilon /\varepsilon 

\sigma \sigma T

2
:
\bigl( 
\nabla (eg\varepsilon /\varepsilon \nabla g\varepsilon )

\bigr) \Bigr) 
=
\Bigl( 
 - \scrL g\varepsilon  - 

1

2
| \sigma \nabla g\varepsilon | 2

\Bigr) 
.

Using the terminal condition in (A.4) shows that g\varepsilon is the solution to

(A.5)

\left\{   \partial tg\varepsilon + \scrL g\varepsilon +
1

2
| \sigma \nabla g\varepsilon | 2 = 0,

g\varepsilon (T, x) = f(x) \forall x \in \BbbR d.

As a result, (A.5) ensures that \alpha (t, x) = 0. Together with the terminal condition, this
shows that (2.8) defines a zero-variance control since the estimator is deterministic.

Appendix B. Proof of (3.6)--(3.8). The idea is to rewrite the Feynman--Kac
mode \psi \varepsilon defined in (2.7) with the integration by part (A.1) presented in Appendix A in

order to exhibit the leading behavior in \varepsilon . Consider the dynamics ( \widetilde X\varepsilon 
t )t\in [0,T ] defined

D
ow

nl
oa

de
d 

08
/3

1/
21

 to
 3

5.
17

6.
47

.6
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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in (2.6) with g1 given by (3.4). Using the Girsanov theorem like in Appendix A,
starting from any t \geq 0 and x \in \BbbR d, we have

(B.1)
\psi \varepsilon (t, x) =\BbbE t,x

\Bigl[ 
e

1
\varepsilon (f(

\widetilde X\varepsilon 
T ) - g1(T, \widetilde X\varepsilon 

T )+g1(t, \widetilde X\varepsilon 
t ))+

1
\varepsilon 

\int T
t

\alpha (s, \widetilde X\varepsilon 
s ) ds

\Bigr] 
= e

g1(t,x)
\varepsilon \BbbE t,x

\Bigl[ 
e

1
\varepsilon (f(

\widetilde X\varepsilon 
T ) - g1(T, \widetilde X\varepsilon 

T ))+ 1
\varepsilon 

\int T
t

\alpha (s, \widetilde X\varepsilon 
s ) ds

\Bigr] 
,

where the function \alpha is defined in (A.2). We now perform an expansion in \varepsilon inside the

expectation in (B.1). First, the process ( \widetilde X\varepsilon 
t )t\in [0,T ] admits the following expansion:

(B.2) \widetilde X\varepsilon 
t = \phi t +

\surd 
\varepsilon \zeta t + \varepsilon \beta t +O

\bigl( 
\varepsilon 3/2

\bigr) 
,

where \left\{   d\zeta t = (\nabla b(\phi t)\zeta t +Kt\zeta t) dt+ \sigma dBt,

d\beta t =
\bigl( 
\nabla b(\phi t)\beta t +

1

2
\zeta t \cdot \nabla 2b(\phi t)\zeta t +Kt\beta t

\bigr) 
dt.

This follows by expanding ( \widetilde X\varepsilon 
t )t\in [0,T ] around the path (\phi t)t\in [0,T ] and identifying the

terms of different orders in \varepsilon (by Taylor-expanding the drift b). Note that we will
actually not need the precise expression for the processes (\zeta t)t\in [0,T ] and (\beta t)t\in [0,T ] in
what follows.

We now come back to (B.1) by first considering the terminal terms. Using (B.2),
we obtain

f( \widetilde X\varepsilon 
T ) = f(\phi T ) +

\surd 
\varepsilon \nabla f(\phi T ) \cdot \zeta T

+ \varepsilon 

\biggl[ 
\nabla f(\phi T ) \cdot \beta T +

1

2
\zeta T \cdot \nabla 2f(\phi T )\zeta T

\biggr] 
+O

\bigl( 
\varepsilon 3/2

\bigr) 
,

g1(T, \widetilde X\varepsilon 
T ) =

\surd 
\varepsilon \theta T \cdot \zeta T + \varepsilon 

\biggl[ 
\theta T \cdot \beta T +

1

2
\zeta T \cdot KT \zeta T

\biggr] 
+O

\bigl( 
\varepsilon 3/2

\bigr) 
.

The terminal conditions for (\theta t)t\in [0,T ] and (Kt)t\in [0,T ] lead to

(B.3) f( \widetilde X\varepsilon 
T ) - g1(T, \widetilde X\varepsilon 

T ) = f(\phi T ) + O
\bigl( 
\varepsilon 3/2

\bigr) 
.

It remains to study the integral part in (B.1), for which we expand the Girsanov
weight \alpha with (B.2). We have
(B.4)

\alpha (t, \widetilde X\varepsilon 
t ) = \partial tg

1(t, \widetilde X\varepsilon 
t ) + b( \widetilde X\varepsilon 

t ) \cdot \nabla g1(t, \widetilde X\varepsilon 
t ) +

\varepsilon 

2
D : \nabla 2g1(t, \widetilde X\varepsilon 

t ) +
1

2
| \sigma \nabla g1(t, \widetilde X\varepsilon 

t )| 2.

First, we notice that (we omit below the dependency of \phi t, \theta t, and Kt on time for
concision)

\partial tg
1(t, x) = \.\theta \cdot (x - \phi ) - \theta \cdot \.\phi +

1

2
(x - \phi ) \cdot \.K(x - \phi ) - (x - \phi ) \cdot K \.\phi ,

\nabla g1(t, x) = \theta +K(x - \phi ).

As a result, (B.4) reads

\alpha (t, \widetilde X\varepsilon 
t ) =

\.\theta \cdot ( \widetilde X\varepsilon 
t  - \phi ) - \theta \.\phi +

1

2
( \widetilde X\varepsilon 

t  - \phi ) \cdot \.K( \widetilde X\varepsilon 
t  - \phi ) - 1

2
( \widetilde X\varepsilon 

t  - \phi ) \cdot K \.\phi 

 - 1

2
( \widetilde X\varepsilon 

t  - \phi ) \cdot KT \.\phi +
\varepsilon 

2
D : K

+ b( \widetilde X\varepsilon 
t ) \cdot 

\bigl( 
\theta +K( \widetilde X\varepsilon 

t  - \phi )
\bigr) 
+

1

2

\bigm| \bigm| \sigma \bigl( \theta +K( \widetilde X\varepsilon 
t  - \phi )

\bigr) \bigm| \bigm| 2,
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1328 GR\'EGOIRE FERR\'E AND TOBIAS GRAFKE

which may be reorganized as follows (using (2.12) for estimating the time derivatives
of \phi and \theta ):

\alpha (t, \widetilde X\varepsilon 
t ) =  - | \sigma \theta | 2 + \varepsilon 

2
D : K +

1

2
| \sigma \theta | 2 + 1

2
\theta \cdot DK( \widetilde X\varepsilon 

t  - \phi ) +
1

2
\theta \cdot DKT( \widetilde X\varepsilon 

t  - \phi )

+
1

2

\bigm| \bigm| \sigma K( \widetilde X\varepsilon 
t  - \phi )

\bigm| \bigm| 2 + \theta 
\bigl( 
b( \widetilde X\varepsilon 

t ) - b(\phi )
\bigr) 

 - \theta \cdot \nabla b(\phi )( \widetilde X\varepsilon 
t  - \phi ) +

1

2
( \widetilde X\varepsilon 

t  - \phi ) \cdot \.K( \widetilde X\varepsilon 
t  - \phi )

+
1

2

\bigl( 
b( \widetilde X\varepsilon 

t ) - b(\phi )
\bigr) 
\cdot K( \widetilde X\varepsilon 

t  - \phi )

+
1

2
( \widetilde X\varepsilon 

t  - \phi ) \cdot KT
\bigl( 
b( \widetilde X\varepsilon 

t ) - b(\phi )
\bigr) 
 - 1

2
\theta \cdot DK( \widetilde X\varepsilon 

t  - \phi )

 - 1

2
\theta \cdot DKT( \widetilde X\varepsilon 

t  - \phi )

=  - 1

2
| \sigma \theta | 2 + \varepsilon 

2
D : K +

1

2

\bigm| \bigm| \sigma K( \widetilde X\varepsilon 
t  - \phi )

\bigm| \bigm| 2 + \theta 
\bigl( 
b( \widetilde X\varepsilon 

t ) - b(\phi )
\bigr) 

 - \theta \cdot \nabla b(\phi )( \widetilde X\varepsilon 
t  - \phi )

+
1

2
( \widetilde X\varepsilon 

t  - \phi ) \cdot \.K( \widetilde X\varepsilon 
t  - \phi ) +

1

2

\bigl( 
b( \widetilde X\varepsilon 

t ) - b(\phi )
\bigr) 
\cdot K( \widetilde X\varepsilon 

t  - \phi )

+
1

2
( \widetilde X\varepsilon 

t  - \phi ) \cdot KT
\bigl( 
b( \widetilde X\varepsilon 

t ) - b(\phi )
\bigr) 
.

Inserting the expansion (B.2) then leads to

\alpha (t, \widetilde X\varepsilon 
t ) =  - 1

2
| \sigma \theta | 2 + \varepsilon 

2
D : K +

\varepsilon 

2
| \sigma \zeta tK| 2 +\surd 

\varepsilon \theta \cdot \nabla b(\phi )\zeta t + \varepsilon \theta \cdot \nabla b(\phi )\beta t

+
\varepsilon 

2
\zeta t \cdot \theta \nabla 2b(\phi )\zeta t

 - \theta \cdot \nabla b(\phi )(\surd \varepsilon \zeta t + \varepsilon \beta t) +
\varepsilon 

2
\zeta t \cdot \.K\zeta t +

1

2
\varepsilon \zeta t \cdot \nabla b(\phi )K\zeta t

+
1

2
\varepsilon \zeta t \cdot KT\nabla b(\phi )\zeta t.

Now, we may identify the terms of various orders in
\surd 
\varepsilon in the above equation. The

leading order is equal to  - | \sigma \theta | 2/2, as expected. At order \surd \varepsilon we have

\theta \cdot \nabla b(\phi )\zeta t  - \theta \cdot \nabla b(\phi )\zeta t = 0.

We now turn to the terms of order \varepsilon (excluding the term in D : Kt for now) that are
given by

1

2
\zeta t \cdot KDK\zeta t + \theta \cdot \nabla b(\phi )\beta t  - \theta \cdot \nabla b(\phi )\beta t

+
1

2
\zeta t \cdot \.K\zeta t +

1

2
\zeta t \cdot \theta \nabla 2b(\phi )\zeta t

+
1

2
\zeta t \cdot KT\nabla b(\phi )\zeta t +

1

2
\zeta t \cdot \nabla b(\phi )TK\zeta t.

We see that the terms proportional to \beta t cancel, while the quadratic product in \zeta t
factors out, so we have

(B.5) \.Kt +KtDKt +KT
t \nabla b(\phi ) +\nabla bT(\phi )K + \theta \cdot \nabla 2b(\phi ),
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which is equal to 0 since (Kt)t\in [0,T ] is the solution to (3.6). Gathering the above
results shows that (B.4) becomes, in the small \varepsilon limit,

(B.6) \alpha (t, \widetilde X\varepsilon 
t ) =  - 1

2
| \sigma \theta t| 2 +

\varepsilon 

2
D : Kt +O

\bigl( 
\varepsilon 3/2

\bigr) 
.

In order to use the above estimates in (B.1), we need (B.2) to hold. Such a
perturbative formula holds for the dynamics (2.6) provided it starts from the correct
initial condition at time t when computing (B.1)---in other words, if x is far from \phi t,
the error may well be large. One way to solve this problem is to note that (B.2) is
actually satisfied at any time when the process is started at time t from the value \phi t
of the instanton at that time. Introducing the shorthand notation

YT = e
1
\varepsilon (f(

\widetilde X\varepsilon 
T ) - g1(T, \widetilde X\varepsilon 

T ))+ 1
\varepsilon 

\int T
t

\alpha (s, \widetilde X\varepsilon 
s ) ds,

we may thus rewrite (B.1) as

(B.7) \psi \varepsilon (t, x) = e
g1(t,x)

\varepsilon \BbbE t,\phi t

\Bigl[ 
e

1
\varepsilon (f(

\widetilde X\varepsilon 
T ) - g1(T, \widetilde X\varepsilon 

T ))+ 1
\varepsilon 

\int T
t

\alpha (s, \widetilde X\varepsilon 
s ) ds

\Bigr] \BbbE t,x[YT ]

\BbbE t,\phi t [YT ]
.

In the first expectation starting from (t, \phi t) we can then perform the expansions as
above.

Plugging the estimates (B.3) and (B.6) into the first expectation in (B.7), we
obtain

\psi \varepsilon (t, x) = e
g1(t,x)

\varepsilon \BbbE t,\phi t

\biggl[ 
e

1
\varepsilon 

\bigl( 
f(\phi T ) - 1

2

\int T
t

| \sigma \theta s| 2 ds+ \varepsilon 
2

\int T
t

D:Ks ds+O(\varepsilon 3/2)
\bigr) \biggr] \BbbE t,x[YT ]

\BbbE t,\phi t [YT ]
.

Taking the logarithm and multiplying by \varepsilon then leads to

g\varepsilon (t, x) = \varepsilon log\psi \varepsilon (t, x) = g1(t, x)

+ f(\phi T ) - 
1

2

\int T

t

| \sigma \theta s| 2 ds+
\varepsilon 

2

\int T

t

D : Ks ds

+ \varepsilon log\BbbE t,\phi t

\Bigl[ 
e

1
\varepsilon O(\varepsilon 3/2)

\Bigr] 
+ \varepsilon [log\BbbE t,x[YT ] - log\BbbE t,\phi t

[YT ]] .

Assuming that (t, x) \rightarrow log\BbbE t,x[YT ] is smooth, we consider the Taylor expansion in x
around \phi t for the difference of logarithms in addition to the small \varepsilon limit. As a result,
the optimal control (2.8) admits the following expansion:

g\varepsilon (t, x) = g1(t, x) + f(\phi T ) - 
1

2

\int T

t

| \sigma \theta s| 2 ds+
\varepsilon 

2

\int T

t

D : Ks ds+ o(\varepsilon ) + \varepsilon o
\bigl( 
x - \phi t

\bigr) 
in the small \varepsilon regime and for x close to \phi t, where g

1 is defined in (3.4). This provides
the desired result.
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