Orientation Ramsey thresholds for cycles and cliques ${ }^{1}$

Gabriel Ferreira Barros Bruno Pasqualotto Cavalar ${ }^{2}$
Yoshiharu Kohayakawa ${ }^{3}$ Tássio Naia ${ }^{4}$

Abstract

If G is a graph and \vec{H} is an oriented graph, we write $G \rightarrow \vec{H}$ to say that every orientation of the edges of G contains \vec{H} as a subdigraph. We consider the case in which $G=G(n, p)$, the binomial random graph. We determine the threshold $p_{\vec{H}}=p_{\vec{H}}(n)$ for the property $G(n, p) \rightarrow \vec{H}$ for the cases in which \vec{H} is an acyclic orientation of a complete graph or of a cycle.

A Ramsey-type property. For each (undirected) graph G and oriented graph \vec{H}, we write $G \rightarrow \vec{H}$ to mean that every orientation of G contains a copy of \vec{H}; the orientation Ramsey number $\vec{R}(\vec{H})$ is $\inf \left\{n: K_{n} \rightarrow \vec{H}\right\}$. This parameter has been investigated in a number of articles $[8,12-16,19-25,29-32$, among others], most of which concern a conjecture of Sumner [32]. Sumner's universal tournament conjecture states that $\vec{R}(\vec{T}) \leqslant 2 e(\vec{T})$ for every oriented tree \vec{T}; this has been confirmed for all sufficiently large trees by Kühn, Mycroft and Osthus [19, 20]; see also [1, 26].

Thresholds. Thresholds for Ramsey-type properties are widely studied as well (see, e.g., [17, 27] and the many references therein). We call $p_{\vec{H}}=p_{\vec{H}}(n)$ a threshold for $G(n, p) \rightarrow \vec{H}$ if

$$
\mathbb{P}[G(n, p) \rightarrow \vec{H}]= \begin{cases}0 & \text { if } p \ll p_{\vec{H}} \\ 1 & \text { if } p \gg p_{\vec{H}}\end{cases}
$$

where $a \ll b$ (or, equivalently, $b \gg a$) means $\lim _{n \rightarrow \infty} a_{n} / b_{n} \rightarrow 0$. As is customary, we speak of 'the threshold $p_{\vec{H}}$ ', since $p_{\vec{H}}$ is unique within constant factors. If \vec{H} is acyclic, then the property $G(n, p) \rightarrow \vec{H}$ is non-trivial and monotone, and hence [3] it has a threshold $p_{\vec{H}}=p_{\vec{H}}(n)$. The regularity method can be used to give an upper bound for $p_{\vec{H}}=p_{\vec{H}}(n)$ (it suffices to combine ideas from [17, Section 8.5] and, say, [10]). For an alternative approach giving the same upper bound, based on the methods of [28], see [7]. For any graph or digraph G, the maximum density and (when $v(G) \geqslant 3$) the maximum 2-density of G are, respectively,

$$
m(G):=\max _{\substack{J \subseteq G \\ v(J) \geqslant 1}} \frac{e(J)}{v(J)} \quad \text { and } \quad m_{2}(G):=\max _{\substack{J \subseteq G \\ v(\bar{J}) \geqslant 3}} \frac{e(J)-1}{v(J)-2}
$$

Theorem 1. Let \vec{H} be an acyclically oriented graph. There exists a constant $C=C(\vec{H})$ such that, if $p \geqslant C n^{-1 / m_{2}(\vec{H})}$, then $\mathbb{P}[G(n, p) \rightarrow \vec{H}] \rightarrow 1$ as $n \rightarrow \infty$.

Contribution. We determine the orientation Ramsey threshold for all acyclic orientations of the complete graph K_{t} and cycle C_{t}, for each $t \geqslant 3$. We also determine the threshold for certain oriented bipartite graphs. We call a digraph \vec{H} anti-directed if each vertex in \vec{H} has either no inneighbours or no outneighbours (so \vec{G} is bipartite and all arcs point to the same part).

[^0]orientation Ramsey number

Theorem 2. If \vec{H} is an acyclic orientation of K_{t} or C_{t}, then

$$
p_{\vec{H}}(n)= \begin{cases}n^{-1 / m_{(}\left(K_{4}\right)} & \text { if } t=3 \\ n^{-1 / m_{2}(\vec{H})} & \text { if } t \geqslant 4\end{cases}
$$

is the threshold for $G(n, p) \rightarrow \vec{H}$. Moreover, if \vec{H} is an anti-directed orientation of a strictly 2-balanced graph H such that $\delta(H) \geqslant 2$ and $m_{2}(H)-\left\lfloor m_{2}(H)\right\rfloor \leqslant 1 / 2$, then

$$
p_{\vec{H}}(n)=n^{-1 / m_{2}(\vec{H})}
$$

is the threshold for $G(n, p) \rightarrow \vec{H}$.
In view of Theorem 1, to prove Theorem 2 (except for the case in which \vec{H} is an orientation of K_{3}), it suffices to prove the so called 0 -statement, that is, it is enough to show that if $p \ll n^{-1 / m_{2}(\vec{H})}$, then $G(n, p) \rightarrow \vec{H}$ holds with vanishing probability. Our proof of this 0 -statement uses recent advances in the study of Ramsey-type thresholds: a framework developed by Nenadov, Person, Škorić and Steger [27] (outlined below) and structural results of Barros, Cavalar, Mota and Parczyk [2].

We need only a simplified version of the results in [27] (see Definitions 10 and 11 in [27]). Let G and H be graphs, where $\delta(H)>1$. An edge $e \in E(G)$ is H-closed if e belongs to at least two copies of H in G. A copy of H in G is H-closed if at least three of its edges are H-closed, and G is H-closed if all vertices and edges of G lie in copies of H and every copy of H in G is H-closed. Finally, G is an H-block if G is H-closed and for each proper non-empty subset $E^{\prime} \subsetneq E(G)$ there exists a copy H^{\prime} of H in G such that $E\left(H^{\prime}\right) \cap E^{\prime} \neq \varnothing$ and $E\left(H^{\prime}\right) \backslash E^{\prime} \neq \varnothing$.

Theorem $3-[27$, Corollary 13]. Let H be a strictly 2 -balanced graph with at least 3 edges such that H is not a matching. If $p \ll n^{-1 / m_{2}(H)}$, then with high probability every H-block F of $G(n, p)$ satisfies $m(F)<m_{2}(H)$.

Since complete graphs and cycles are strictly 2-balanced, Theorem 3 reduces the proof of the 0 -statement of the case $t \geqslant 4$ in Theorem 2 to showing that $G \nrightarrow \vec{H}$ for every graph G whose H-blocks have maximum density strictly below $m_{2}(H)$. This is achieved for cycles using results from [2], whereas for tournaments and anti-directed graphs, as well as for the case $t=3$ of Theorem 2 we use ad hoc methods (see Theorems 8, 12 and 13). Theorem 2 is proved in Section 4.

Remark. Other Ramsey-type properties for directed graphs include requiring copies to be induced $[4,9,18]$ and allowing colourings plus orientations [5, 6].

1 Auxiliary definitions and results

We follow standard notation (see, e.g., [11,17]). A k-path is a path with k vertices; k-cycles are defined similarly. A directed k-path is an oriented path $v_{1} \rightarrow \cdots \rightarrow v_{k}$. A directed k-cycle is oriented as $v_{1} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1}$. Let \vec{G} be an oriented graph. A maximal directed path in \vec{G} is called a block. A path or block is long if it has at least 3 edges. The following exercise
directed path or cycle
block, long is left to the reader.
| Lemma 4. If G is a graph, then $\delta(J) \leqslant 2 m(G)$ for each $J \subseteq G$ (i.e., G is $2 m(G)$-degenerate). |

Let G and H be graphs, and let \vec{H} be an orientation of H. We denote by $\mathcal{C}_{H}(G)$ the edge intersection graph of H in G, whose vertices correspond to copies of H in G and whose edges join distinct copies which share a common edge in G. An H-component is a subgraph of G formed by the union of all copies of H in some connected component of $\mathfrak{C}_{H}(G)$. Note that $G \nrightarrow \vec{H}$ if and only if each H-component of G admits an \vec{H}-free orientation. Let G and H be graphs and let C be an H-component of G. If H_{1} is an arbitrary copy of H in C, then there exists a sequence $H_{1} \subseteq H_{2} \subseteq \cdots \subseteq H_{t}=C$ with the following property. For each $i \in[t-1]$, there exists a copy H^{\prime} of H such that $H^{\prime} \nsubseteq H_{i}, E\left(H^{\prime}\right) \cap E\left(H_{i}\right) \neq \varnothing$ and $H_{i+1}=H_{i} \cup H^{\prime}$. We say that $\left(H_{1}, \ldots, H_{t}\right)$ constructs C, and call $\left(H_{1}, \ldots, H_{t}\right)$ a construction sequence of C. For each $i \in[t-1]$, we say that a vertex or edge of H_{i+1} is new in H_{i+1} if it is not contained in H_{i}, and say that $F \subseteq H_{i+1}$ is new (in H_{i+1}) if F contains a new edge in H_{i+1}. Moreover, if H_{1}^{\prime} is a copy of H in H_{i}, then there exists a construction sequence ($H_{1}^{\prime}, \ldots, H_{j}^{\prime}$) of H_{i} starting with H_{1}^{\prime}, and hence a construction sequence $\left(H_{1}^{\prime}, \ldots, H_{j}^{\prime}, H_{i+1}, \ldots, H_{t}\right)$ of C.

Let G be a graph and suppose $E \subseteq E(G)$. We write $G[E]$ for the subgraph of G consisting of the edges in E and the vertices in G which are incident with those edges. We call H strictly 2-balanced if $m_{2}(F)<m_{2}(H)$ for each proper subgraph $F \subseteq H$.

Lemma 5 - [27, Lemma 14]. Let G and H be graphs. If G is H-closed, then $E(G)$ admits a partition $\left\{E_{1}, \ldots, E_{k}\right\}$ such that $G\left[E_{1}\right], \ldots, G\left[E_{k}\right]$ are H-blocks and each copy of H in G lies entirely in one of these H-blocks.

Let \vec{H} be an orientation of a graph H. We say \vec{H} is 2-Ramsey-avoidable if for all $e, f \in E(H)$, every orientation of e, f can be extended to an \vec{H}-free orientation of H.
Remark 6. Let $k \geqslant 4$. If \vec{H} is either an orientation of C_{k}, a transitive tournament TT_{k}, or an anti-directed orientation of a graph H with $\delta(H)>1$, then \vec{H} is 2-Ramsey-avoidable.

Proof. Let H be the underlying graph of \vec{H}. In each of the following cases, let $e, f \in E(H)$ be chosen and oriented arbitrarily; it suffices to complete an \vec{H}-free orientation of H.

Suppose \vec{H} is an orientation of C_{k}. Note that we can complete the orientation of e, f to orientations \vec{C}_{1}, \vec{C}_{2} of C_{k} such that \vec{C}_{1} has a block of length at least $k-1 \geqslant 3$ and \vec{C}_{2} has no long block. If \vec{H} has a block of length at least $k-1$, then we pick \vec{C}_{2}, else we pick \vec{C}_{1}.

If $\vec{H} \simeq \mathrm{TT}_{k}$, we complete the orientation of K_{k} so that it contains a directed triangle (some triangle in H has at most one edge already oriented).

In the remaining case (anti-directed graph), we complete the orientation of H forming a directed 3 -path (since $k \geqslant 4$, some $v \in V(H)$ is incident with precisely one of e, f, while $\delta(H)>1$ implies some other edge incident with v has not been oriented).

Remark 6 will be used with the next lemma and Theorem 3 to establish our main results.
Lemma 7. Let G be a graph and let \vec{H} be 2-Ramsey-avoidable. If $B \nrightarrow \vec{H}$ for each H-block B of G, then $G \nrightarrow \vec{H}$.

Proof. Let H be the underlying graph of \vec{H}. To show that G admits an \vec{H}-free orientation, we may assume each edge of G lies in a copy of H (the orientation of other edges is irrelevant).

Let $G_{0}=G$ and, for each $i=1,2, \ldots$ proceed as follows. If G_{i-1} is H-closed, then stop, set $m:=i-1$ and $F:=G_{m}$. Otherwise, some copy F_{i} of H in G_{i-1} has at most two H-closed edges in G_{i-1}. Form G_{i} by deleting from G_{i-1} each non- H-closed edge of F_{i}, and then each isolated vertex. Note that $G_{i-1}=G_{i} \cup F_{i}$ and that each $e \in E\left(G_{i}\right)$ lies in some copy of H.
\qquad

Note that F is H-closed. By Lemma $5, F$ can be partitioned into a collection \mathcal{B} of edgedisjoint H-blocks such that each copy of H in F lies entirely in some $B \in \mathcal{B}$. By assumption, $B \nrightarrow \vec{H}$ for each $B \in \mathcal{B}$, so F admits a \vec{H}-free orientation \vec{F} (the disjoint union of \vec{H}-free orientations of each $B \in \mathcal{B}$).

Finally, we extend $\vec{G}_{m}:=\vec{F}$ to an \vec{H}-free orientation \vec{G}_{0} of G. For each $i=m, m-1, \ldots, 1$, let \vec{G}_{i-1} extend \vec{G}_{i} by orienting the edges $E\left(F_{i}\right) \backslash E\left(G_{i}\right)$ so that F_{i} is \vec{H}-free (this is possible because \vec{H} is 2-Ramsey-avoidable). Clearly, no copy of H in G induces \vec{H} in \vec{G}, so $G \nrightarrow \vec{H}$.

2 Transitive triangles

Let TT_{3} be the transitive triangle. In this section we show that the upper bound for $p_{\mathrm{TT}_{3}}(n)$ given in Theorem 1 is not tight.
| Theorem 8. The function $p_{\mathrm{TT}_{3}}(n)=n^{-1 / m\left(K_{4}\right)}$ is the threshold for $G(n, p) \rightarrow \mathrm{TT}_{3}$.

Let W_{5} be the graph we obtain by adding to C_{4} a new universal vertex.
Proposition 9. If G is a K_{3}-component such that $u w, v w \in E(G)$ and $u v \notin E(G)$, then there exists $J \subseteq G$ such that either $v(J)=6$ and $e(J)=9$ or $J+u v$ is isomorphic to K_{4} or W_{5}.

Proof. Let $F_{1} \cdots F_{s}$ be a shortest path in $\mathcal{C}_{K_{3}}(G)$ such that $u w \in E\left(F_{1}\right)$ and $v w \in E\left(F_{s}\right)$. It suffices to show the following.

- If $s=2$, then $J:=F_{1} \cup \cdots \cup F_{s}$ satisfies $J+u v \simeq K_{4}$.
- If $s=3$, then $J:=F_{1} \cup \cdots \cup F_{s}$ satisfies $J+u v \simeq W_{5}$.
- If $s \geqslant 4$, then $J:=F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$ satisfies $v(J)=6$ and $e(J)=9$.

It is simple to check that the following hold by the choice of $F_{1} \cdots F_{s}$.
(i) $\left|E\left(F_{i}\right) \cap E\left(F_{i-1}\right)\right|=1$ for all $i \in[s] \backslash\{1\}$;
(ii) $\left|E\left(F_{i}\right) \cap \bigcup_{j<i} E\left(F_{j}\right)\right|=1$ for each $i \in[s] \backslash\{1\}$; and
(iii) Each $e \in E(G)$ belongs to at most two triangles in $F_{1} \cup \cdots \cup F_{s}$.

The statement for $s=2$ follows by (i) since $F_{1} \simeq K_{3}$. If $s=3$, then $v(J)=5$ (by (i) and (ii)), so $J+u v \simeq W_{5}$. By (i), for each $i \in[s] \backslash\{1\}$ we have $\left|V\left(F_{i}\right) \backslash \bigcup_{j \in[i-1]} V\left(F_{j}\right)\right| \leqslant 1$, so $v\left(F_{1} \cup \cdots \cup F_{s}\right) \leqslant s+2$. Moreover, (ii) implies $e\left(F_{i}\right)=2 i+1$ for each $i \in[s]$. If $s=4$, then $e(J)=9$. Clearly $5 \leqslant v(J) \leqslant 6$; note that $v(J) \neq 5$ as otherwise there exists $e \in E(J)$ which belongs to three distinct triangles in J, contradicting (iii).

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a K_{3}-component. For each $i \in[t-1]$, either (A) there are two new edges in H_{i+1} and one new vertex in $H_{i+1} ;(B)$ there are two new edges in H_{i+1} and $V\left(H_{i+1}\right)=V\left(H_{i}\right)$; or (C) there is exactly one new edge in H_{i+1} and $V\left(H_{i+1}\right)=V\left(H_{i}\right)$. A graph H is $A B$-constructible if no construction sequence of a K_{3}-component of H contains a step of type (C).
| Proposition 10. If a graph H is $A B$-constructible, then $H \nrightarrow \mathrm{TT}_{3}$.

Proof. We may assume that H is itself a single K_{3}-component $\left(H_{1}, \ldots, H_{t}\right)$, as edges which do not belong to a copy of K_{3} in H can be arbitrarily oriented and distinct K_{3}-components may be independently oriented. First note that, at each step, exactly one new copy of K_{3} is
added. This is clearly true for steps of type (A). Moreover, it is easy to see that if $H_{\alpha+1}$ is created by a step of type (B) and the new edges create two distinct copies of K_{3} in $H_{\alpha+1}$, then H admits a construction sequence with a step of type (C), a contradiction. We orient H_{1} forming a directed triangle and, for each $\alpha \in[t-1]$, orient the two new edges in $H_{\alpha+1}$ so as to form a new directed triangle. The resulting orientation is TT_{3}-free.

Our final ingredient is the following classical result (see, e.g., [17]).
Theorem 11 - [17]. Let H be a fixed graph. Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}[H \subseteq G(n, p)]=\left\{\begin{array}{l}
1, \text { if } p \gg n^{-1 / m(H)} \\
0, \text { if } p \ll n^{-1 / m(H)}
\end{array}\right.
$$

Proof of Theorem 8. If $p \gg n^{-2 / 3}$, then $K_{4} \subseteq G(n, p)$ with high probability by Theorem 11; hence $G(n, p) \rightarrow \mathrm{TT}_{3}$ with high probability (as $\left.K_{4} \rightarrow \mathrm{TT}_{3}\right)$.

Now suppose that $p \ll n^{-2 / 3}$. Let \mathcal{E} be the event that $G(n, p)$ is not $A B$-constructible. By Proposition 10 , it suffices to show that $\mathbb{P}[\mathcal{E}]=\mathrm{o}(1)$. Let \mathcal{J} be set of all nonisomorphic graphs of order 6 and size 9. By Proposition 9, every K_{3}-component of $G(n, p)$ which is not $A B$-constructible contains either K_{4}, W_{5} or some $J \in \mathcal{J}$. Using Markov's inequality, we have

$$
\begin{aligned}
\mathbb{P}[\mathcal{E}] & \leqslant \mathbb{P}\left[K_{4} \subseteq G(n, p)\right]+\mathbb{P}\left[W_{5} \subseteq G(n, p)\right]+\sum_{J \in \mathcal{J}} \mathbb{P}[J \subseteq G(n, p)] \\
& \leqslant \sum_{J \in\left\{K_{4}, W_{5}\right\} \cup \mathcal{Z}} \mathbb{E}\left[\left|\left\{J^{\prime} \subseteq G(n, p): J^{\prime} \simeq J\right\}\right|\right] \leqslant n^{4} p^{6}+n^{5} p^{8}+|\mathcal{J}| n^{6} p^{9}
\end{aligned}
$$

Since $p \ll n^{-2 / 3}$ and $|\mathcal{J}|=\Theta(1)$, we have $\mathbb{P}[\mathcal{E}]=o(1)$.

3 Graphs with low maximum 2-density

The following sections show that $G \nrightarrow \vec{H}$ for some classes of oriented graphs, when \vec{H} has at least four vertices and $m(G)<m_{2}(\vec{H})$.

3.1 Transitive Tournaments

We denote a tournament on k vertices by T_{k}, writing TT_{k} if it is transitive.
| Theorem 12. If $k \geqslant 4$ and G is a graph with $m(G)<m_{2}\left(K_{k}\right)$, then $G \nrightarrow \mathrm{TT}_{k}$.

Proof. The proof is by induction on $n:=v(G)$. The case $n=1$ is trivial. Assume $n \geqslant 2$ and that $G^{\prime} \nrightarrow \mathrm{TT}_{k}$ whenever $m\left(G^{\prime}\right)<m_{2}\left(K_{k}\right)$ and $v\left(G^{\prime}\right)<n$. By Lemma 4, $\operatorname{deg}_{G}(u) \leqslant k$ for some $u \in V(G)$. Let $G^{\prime}=G-u$, so $m\left(G^{\prime}\right)<m_{2}\left(K_{k}\right)$ and G^{\prime} admits a TT_{3}-free orientation \vec{G}. We shall extend \vec{G} to an orientation of G such that each T_{k} containing u has a directed cycle.

We may assume that u lies in some copy of K_{k}, say K; so $\operatorname{deg}(u) \geqslant k-1$. If K is the only copy of K_{k} containing u, then choose two vertices $v, w \in V(K-u)$ and orient the edges $u v$ and $u w$ so that $\{u, v, w\}$ induces a directed triangle. Otherwise let K^{\prime} be some K_{k} containing u other than K. Hence we must have $\operatorname{deg}(u)=k$. Let v be the unique vertex in $V(K) \backslash V\left(K^{\prime}\right)$, and w be the unique vertex in $V\left(K^{\prime}\right) \backslash V(K)$. Since $k-2 \geqslant 2$, there are at least two vertices x and y in $V\left(K \cap K^{\prime}\right) \backslash\{u\}$. Orient the edges $u v, u x, u w$ and $u y$ so that each of $\{u, v, x\}$ and $\{u, w, y\}$ induces a directed triangle. Since every K_{k} containing u has at least three vertices in $\{v, w, x, y\}$, the partial orientation of each K_{k} contains a directed cycle. Any remaining un-oriented edge may be arbitrarily oriented.

3.2 Anti-directed digraphs

We now turn to anti-directed orientations of $K_{t, t}, C_{2 t}$ and other bipartite graphs.
Theorem 13. Let G and H be graphs, where $\delta(H) \geqslant 2$. If \vec{H} is an anti-directed orientation of H and $m(G)<\delta(H)-1 / 2$, then $G \nrightarrow \vec{H}$.

Proof. We proceed by induction on $v(G)$. If $v(G) \leqslant 2$, then $G \nrightarrow \vec{H}$. Let $\delta:=\delta(H)$. By Lemma 4, there exists $v \in V(G)$ with $\operatorname{deg}(v)=\delta(G) \leqslant 2 \delta-2$. By induction, $G-v \nrightarrow \vec{H}$. Fix an \vec{H}-free orientation of $G-v$, orient $\lfloor\delta(G) / 2\rfloor$ edges incident with v towards v and the remaining $\lceil\delta(G) / 2\rceil$ edges away from v. Note that any copy of H in G containing v necessarily has two edges incident with v oriented in opposite directions, since $\delta(H) \geqslant 2$ and $\lceil\delta(G) / 2\rceil \leqslant \delta(H)-1$.

Corollary 14. Let G and H be graphs such that H is strictly 2-balanced, $\delta(H) \geqslant 2$ and $m_{2}(H)-$ $\left\lfloor m_{2}(H)\right\rfloor \leqslant 1 / 2$. If \vec{H} is an anti-directed orientation of H and $m(G)<m_{2}(H)$, then $G \nrightarrow \vec{H}$.

Proof. We have $(e(H-u)-1) /(v(H-u)-2)<(e(H)-1) /(v(H)-2)$ for all $u \in V(H)$, since H is strictly 2 -balanced. It follows that $m_{2}(H)<\delta(H)$, so $\left\lfloor m_{2}(H)\right\rfloor+1 \leqslant \delta(H)$. Since $m(G)<m_{2}(H) \leqslant\left\lfloor m_{2}(H)\right\rfloor+1 / 2 \leqslant \delta(H)-1 / 2$, we can apply Theorem 13.

3.3 Cycles

We now consider orientations of ℓ-cycles, where $\ell \geqslant 4$. The main results are Theorems 17 and 23 , which deal with the cases $\ell \geqslant 5$ and $\ell=4$, respectively. (We also include a simple proof for the case $\ell \geqslant 8$, see Theorem 16.)

Lemma 15. Let \vec{C} be an oriented cycle with a long block. If G is a graph and $m(G)<m_{2}(\vec{C})$, then $G \nrightarrow \vec{C}$.

Proof. Note that $v(\vec{C}) \geqslant 4$, so $m_{2}(\vec{C}) \leqslant m_{2}\left(C_{4}\right)=3 / 2$. By Lemma 4, G is 2-degenerate, hence $\chi(G) \leqslant 3$. Fix a proper colouring $c: V(G) \rightarrow\{1,2,3\}$, and orient each edge towards its endvertex with the largest colour. This orientation contains no long block, so $G \nrightarrow \vec{C}$.

While the next result is superseded by Theorem 17, its proof is much simpler.
Theorem 16. Let \vec{C} be an orientation of C_{ℓ}, where $\ell \geqslant 8$. If G is a graph and $m(G)<m_{2}(\vec{C})$, then $G \nrightarrow \vec{C}$.

Proof. Let $\ell=e(\vec{C})$. If \vec{C} contains a long block, then the theorem holds by Lemma 15 , so we assume that the longest block of \vec{C} has length at most 2 .

Suppose, looking for a contradiction, that the statement is false. Without loss of generality let G be a minimal counterexample (with respect to the subgraph relation). That is, $m(G)<m_{2}(\vec{C})$ and $G \rightarrow \vec{C}$, and $G^{\prime} \nrightarrow \vec{C}$ for each proper subgraph $G^{\prime} \subseteq G$. Let W be the set of vertices in G with degree 2 .

If there exists an edge $u v$ joining vertices $u, v \in W$, then (since G is minimal) $u v$ lies in an ℓ-cycle. Moreover, $G \backslash\{u, v\} \nrightarrow \vec{C}$; so there exists an orientation \vec{G} of $G \backslash\{u, v\}$ which avoids \vec{C}. Note that each ℓ-cycle in G is either completely oriented in \vec{G} (while avoiding \vec{C}), or contains the three (not yet oriented) edges incident with either u or v. We extend \vec{G} by orienting these edges so that they form a directed path or cycle. Since, by assumption, the
length of any block of \vec{C} is at most two, it follows that \vec{G} is an orientation of G avoiding \vec{C}, a contradiction.

Hence no edge of G lies in W. By the minimality of G, every vertex $v \in V(G)$ lies an ℓ-cycle, so $\delta(G) \geqslant 2$. Let $n:=v(G)$. Since each vertex of W has degree 2,

$$
2|W|+3(n-|W|) \leqslant \sum_{v \in V(G)} d(v)=2 e(G) \leqslant 2 m(G) n<2 n \frac{\ell-1}{\ell-2} .
$$

It follows that $|W| \geqslant n(1-2 /(\ell-2))$ and

$$
2\left(1-\frac{2}{\ell-2}\right) n \leqslant 2|W| \leqslant e(G) \leqslant m(G) n=\left(1+\frac{1}{\ell-2}\right) n,
$$

which is a contradiction for $\ell \geqslant 8$.

3.3.1 Cycles of length at least 5

We now generalise Theorem 16 for oriented cycles with at least 5 vertices.
Theorem 17. Let \vec{C} be an orientation of C_{ℓ}, where $\ell \geqslant 5$. If G is a graph and $m(G)<m_{2}\left(C_{\ell}\right)$, then $G \nrightarrow \vec{C}$.

Barros, Cavalar, Mota and Parczyk [2] obtained a detailed characterisation of the construction sequences of C_{ℓ}-components; we state their result below in a slightly modified form (the original has ' $\ell \geqslant 5$ ' in place of ' $\ell \geqslant 4$ ', but the same proof holds).
Proposition 18-[2, Proposition 7]. Let $\ell \geqslant 4$ be an integer, G be a graph with $m(G)<m_{2}\left(C_{\ell}\right)$ and $\left(H_{1}, \ldots, H_{t}\right)$ be a C_{ℓ}-component of G. The following holds for every $1 \leqslant i \leqslant t-1$. If C is an ℓ-cycle added to H_{i} to form H_{i+1}, then there exists a labelling $C=u_{1} u_{2} \cdots u_{\ell} u_{1}$ such that exactly one of the following occurs, where $2 \leqslant j \leqslant \ell$ and $3 \leqslant k \leqslant \ell-1$.
$\left(A_{j}\right) u_{1} u_{2} \cdots u_{j}$ is a j-path in H_{i} and $u_{j+1}, \ldots, u_{\ell} \notin V\left(H_{i}\right)$;
$\left(B_{k}\right) u_{1} u_{2} \in E\left(H_{i}\right), u_{2} u_{3} \notin E\left(H_{i}\right),\left\{u_{3}, \ldots, u_{\ell}\right\} \backslash\left\{u_{k}\right\} \subseteq V\left(H_{i+1}\right) \backslash V\left(H_{i}\right), u_{k} \in V\left(H_{i}\right)$.
If (H_{1}, \ldots, H_{t}) constructs a C_{ℓ}-component, then for each $i \in[t-1]$ the new edges in H_{i+1} form a path (by Proposition 18). We denote this path by Q_{i}, write x_{i}, z_{i} for its endvertices and Q_{i}, x_{i}, z_{i} y_{i} for the sole internal vertex of Q_{i} in H_{i}, if it exists. (Again by Proposition 18, $V\left(Q_{i}\right) \cap V\left(H_{i}\right) \quad y_{i}$ is either $\left\{x_{i}, z_{i}\right\}$ or $\left\{x_{i}, y_{i}, z_{i}\right\}$.) We write type (i) to denote the operation $\left(\left(A_{j}\right)\right.$ or $\left(B_{k}\right)$, type((i) where $2 \leqslant j \leqslant \ell$ and $3 \leqslant k \leqslant \ell-1$) which constructs H_{i+1} from H_{i}.
Proposition 19- [2]. Let $\ell \geqslant 5$. If $G=\left(H_{1}, \ldots, H_{t}\right)$ is a C_{ℓ}-component and $m(G)<m_{2}\left(C_{\ell}\right)$, then for all distinct $i, j \in[t-1]$ and each $k \in\{3, \ldots, \ell-1\}$ we have the following.

- If type $(i)=\left(A_{\ell}\right)$, then every other step is of type $\left(A_{2}\right)$ or $\left(A_{3}\right)$.
- If type $(i)=\left(A_{\ell-1}\right)$, then every other step is of type $\left(A_{2}\right),\left(A_{3}\right)$ or $\left(A_{\ell-1}\right)$.
- If type $(i)=\operatorname{type}(j)=\left(A_{\ell-1}\right)$, then $\ell=5$ and every other step is of type $\left(A_{2}\right)$.
- If type $(i)=\left(B_{k}\right)$, then every other step is of type $\left(A_{2}\right)$.

We also use the following results.
Remark 20. Let G be a C_{5}-component. If G can be constructed solely by steps of type (A_{2}), then every cycle in G has length congruent to $2(\bmod 3)$.

Proof. The proof is by induction on $i \in[t]$ where $\left(H_{1}, \ldots, H_{t}\right)$ is the construction sequence of G. The base holds because H_{1} is a 5 -cycle. Now suppose every cycle in H_{i} has length congruent to $2(\bmod 3)$, where $i \geqslant 1$. We form H_{i+1} by a step of type $\left(A_{2}\right)$, i.e., by adding an 5 -path P joining the endvertices of an edge $u v$ of H_{i}. Any new cycle C is formed by an $u v$-path P^{\prime} in H_{i}, together with P. If $P^{\prime}=u v$, then C has length 5 , and the claim holds. On the other hand, if $u v \notin E\left(P^{\prime}\right)$, then $C=P^{\prime} \cup P$, but since $C^{\prime}:=P^{\prime}+u v$ is a cycle in H_{i}, it follows that $e\left(C^{\prime}\right) \equiv 2(\bmod 3)$, so $e(C)=e\left(P^{\prime}\right)+e(P)=e\left(C^{\prime}\right)-1+e(P) \equiv 2(\bmod 3)$.

Remark 21. Let G be a C_{5}-component. If G is constructed solely by steps of the types $\left(A_{2}\right)$ and $\left(A_{3}\right)$, then G contains no C_{3} and no C_{4}.

Proof. Let $\left(H_{1}, \ldots, H_{t}\right)$ be a construction sequence of G. Note that $C_{3} \nsubseteq G$: indeed, $H_{1} \simeq C_{5}$, so $C_{3} \nsubseteq H_{1}$; moreover, for each $i \in[t-1]$ we have $H_{i+1}=H_{i} \cup Q_{i}$ and Q_{i} is a path of length at least 3 which is internally disjoint from H_{i}, so $C_{3} \nsubseteq H_{i+1}$.

Similarly $C_{4} \nsubseteq H_{1}$, and if $H_{i} \cup Q_{i}$ contains a C_{4}, then type $(i)=\left(A_{3}\right)$, so x_{i} and z_{i} are connected by a path $x_{i} w z_{i}$ in H_{i} (which, together with Q_{i}, creates a C_{5}). But then $x_{i} w z_{i} x_{i}$ is a C_{3} in G, a contradiction.

We are now in position to prove the main result of this section.
Proof of Theorem 17. Let G be a graph with $m(G)<(\ell-1) /(\ell-2)$, where $\ell \geqslant 5$, and let \vec{C} be an oriented ℓ-cycle. By Lemma 15 , if \vec{C} contains a long block, then $G \nrightarrow \vec{C}$, so we may assume that every block of \vec{C} has length at most two. We will show that the C_{ℓ}-components of G admit an orientation in which every ℓ-cycle has a long block. It suffices to consider one such component F, as C_{ℓ}-components can be independently oriented (they do not share edges) and remaining edges can be arbitrarily oriented (each ℓ-cycle in G lies in some C_{ℓ}-component).

Let $F=\left(H_{1}, \ldots, H_{t}\right)$ be a C_{ℓ}-component of G. Hence, for all $i \in[t-1]$, each ℓ-cycle $C \subseteq H_{i+1}$ which did not exist in H_{i} contains either the path $x_{i} Q_{i} y_{i}$ or $y_{i} Q_{i} z_{i}$ (if Q_{i} intersects H_{i} in three vertices) or the whole path Q_{i}.
\rightarrow Case 0. For each $i \in[t-1]$ we have type $(i) \notin\left\{\left(A_{\ell-1}\right),\left(A_{\ell}\right),\left(B_{3}\right), \ldots,\left(B_{\ell-1}\right)\right\}$.
For each $i \in[t-1]$, every new cycle in H_{i+1} contains Q_{i} and $e\left(Q_{i}\right) \geqslant 3$. We construct an orientation of F which avoids \vec{C} as follows. Fix a directed orientation of H_{1}, and for each $i \in[t-1]$ fix a directed orientation of Q_{i}. Clearly H_{1} does not contain \vec{C}, and for each $i \in[t-1]$ every new ℓ-cycle in H_{i+1} contains a long block (since Q_{i} is directed), so $F \nrightarrow \vec{C}$.
\rightarrow Case 1. There is precisely one index $i \in[t-1]$ such that type $(i)=\left(A_{\ell-1}\right)$.
Let $Q_{i}=x_{i} v z_{i}$ and let C be an ℓ-cycle in H_{i} containing z_{i}. We may assume that $H_{1}=C$. Note that $e\left(Q_{j}\right) \geqslant 3$ for each $j \in[t-1] \backslash\{i\}$ since (by Proposition 19) type $(j) \in\left\{\left(A_{2}\right),\left(A_{3}\right)\right\}$. We orient F as follows.

Firstly, orient H_{1} so that z_{i} is the origin of a long block, and so that z_{i} has no inneighbours in H_{1}. Secondly, for each $j \in[i-1]$, orient Q_{j} forming a directed path, while ensuring that z_{i} has no inneighbours in H_{j+1}. (This is possible since, if Q_{j} contains z_{i}, then z_{i} is an endvertex of Q_{j}.) Orient Q_{i} as a directed path from x_{i} to z_{i}. Finally, for each $j \in[t-1] \backslash[i]$ orient Q_{j} so as to form a directed path.

Clearly, the orientation of H_{1} avoids \vec{C}. Since $e\left(Q_{j}\right) \geqslant 3$ for each $j \in[t-1] \backslash\{i\}$, each new ℓ-cycle in H_{j+1} has a long block (as it contains Q_{j}). Finally, every new cycle C in H_{i+1} must contain Q_{i} as well as some edge $z_{i} z \in E\left(H_{i}\right)$. As z_{i} has no inneighbours in H_{i}, the edge

Figure 1: Orientations in Case 2. Left: orientation of H_{1}; note H_{1} has a long block starting from z_{i} (since $\ell \geqslant 5$). Centre and right: orientations of Q_{α} (where $\alpha \neq i$); in the figure, $a \notin\left\{z_{i}\right\} \cup N, r \in N$ and $q \in\left\{z_{i}\right\} \cup N$, where $N:=N_{H_{i}}\left(z_{i}\right)$.
$z_{i} z$ extends the directed path $x_{i} \rightarrow v \rightarrow z_{i}$, forming a long block in C. This shows that every ℓ-cycle has a long block, so $F \nrightarrow \vec{C}$.
\rightarrow Case 2. There exists $i \in[t-1]$ such that type $(i)=\left(A_{\ell}\right)$.
Let $\alpha \in[t-1]$. By Proposition 19, if $\alpha \neq i$, then type $(\alpha) \in\left\{\left(A_{2}\right),\left(A_{3}\right)\right\}$, so $e\left(Q_{\alpha}\right) \geqslant 3$. We may assume that H_{1} is an ℓ-cycle in H_{i} containing z_{i}. We orient the edges of F as follows. Let N be the set of neighbours of z_{i} in H_{i}.

First orient H_{1} with two blocks, each with length at least 2 and origin z_{i} (see Figure 1). Next, for each $j \in[i-1]$, we do the following. If no endvertex of Q_{j} lies in $\left\{z_{i}\right\} \cup N$, fix an arbitrary directed orientation of Q_{j}. If a single endvertex q of Q_{j} lies in $\left\{z_{i}\right\} \cup N$, then orient Q_{j} to form a directed path with origin q. If both endvertices q, r of Q_{j} lie in $\left\{z_{i}\right\} \cup N$, where we assume $r \neq z_{i}$, then orient Q_{j} so that it has precisely two blocks, starting from q and r, and so that the latter has precisely one arc. Finally, orient $x_{i} \rightarrow z_{i}$, and for each $j \in[t-1] \backslash[i]$ fix a directed orientation of Q_{j} (see Figure 1).

Let us check that every ℓ-cycle in F has a long block. This is clearly true in H_{1}. Now suppose $\alpha \in[t-1] \backslash\{i\}$. Note that each new cycle in $H_{\alpha+1}$ contains Q_{α} and that $e\left(Q_{\alpha}\right) \geqslant 3$ since type $(\alpha) \in\left\{\left(A_{2}\right),\left(A_{3}\right)\right\}$. Moreover, Q_{α} has a block of length at least $e\left(Q_{\alpha}\right)-1$ if $\alpha<i$, and a block of length at least $e\left(Q_{\alpha}\right)$ if $\alpha>i$. Hence, if $e\left(Q_{\alpha}\right) \geqslant 4$ or if $\alpha>i$, then Q_{α} has a long block. So we may suppose that $\ell=5, e\left(Q_{\alpha}\right)=3$ and $\alpha \in[i-1]$. Hence type $(\alpha)=\left(A_{3}\right)$ and there is precisely one new 5 -cycle C in $H_{\alpha+1}$ (as otherwise two 3 -paths joining x_{α} and z_{α}, would form a 4 -cycle in H_{α}, contradicting Remark 21). If $\left|\left\{x_{\alpha}, z_{\alpha}\right\} \cap\left(\left\{z_{i}\right\} \cup N\right)\right| \leqslant 1$, then C has a long block containing Q_{α}. Otherwise, $\left\{x_{\alpha}, z_{\alpha}\right\} \subseteq\left\{z_{i}\right\} \cup N$. Note that $x_{\alpha} z z_{\alpha} \subseteq H_{\alpha}$ for some $z \in V\left(H_{\alpha}\right)$ since $C \subseteq H_{\alpha+1}$; if $z_{i} \in\left\{x_{\alpha}, z_{\alpha}\right\}$, then $x_{\alpha} z_{\alpha} \in E\left(H_{i}\right)$, so $x_{\alpha} z_{\alpha} z x_{\alpha}$ is a triangle in H_{i}, contradicting Remark 21. Therefore $z_{i} \notin\left\{x_{\alpha}, z_{\alpha}\right\}$, so $C=Q_{\alpha} \cup x_{\alpha} z_{i} z_{\alpha}$ (since $z \neq z_{i}$ implies $x_{\alpha} z z_{\alpha} z_{i} x_{\alpha}$ is a 4 -cycle in H_{i}, which contradicts Remark 21). Since Q_{α} has a directed 3-path from either x_{α} or z_{α} to a vertex $w \in V\left(Q_{\alpha}\right) \backslash V\left(H_{\alpha}\right)$, and both x_{α} and z_{α} are outneighbours of z_{i}, it follows that C has a long block.

To conclude Case 2, we consider the new ℓ-cycles in H_{i+1}. Each of these cycles contains the arc $x_{i} \rightarrow z_{i}$, so it suffices to show that every 3 -path $z_{i} z w$ in H_{i} is directed from z_{i} to w. Note that for each $j \in[i-1]$ and each pair of distinct new edges e_{1}, e_{2} in H_{j+1}, there exist distinct new vertices $v_{1} \in e_{1}, v_{2} \in e_{2}$ in H_{j+1}. It follows that either $z_{i} z w \subseteq H_{1}$; or $z w \subseteq Q_{\alpha}$ and z is an endvertex of Q_{α} for some $\alpha \in[i-1]$; or $z_{i} z w \subseteq Q_{\beta}$ and z_{i} is an endvertex of Q_{β} for some $\beta \in[i-1]$. In each of these cases $z_{i} z w$ has the required orientation.

Since every ℓ-cycle of F is a long block and $F \nrightarrow \vec{C}$.
\rightarrow Case 3. There exist $i, j \in[t-1]$ such that type $(i)=\operatorname{type}(j)=\left(A_{\ell-1}\right)$.
By Proposition 19 we have $\ell=5$ and type $(\alpha)=\left(A_{2}\right)$ for each $\alpha \in[t-1] \backslash\{i, j\}$. We may suppose $i<j$. Let $P=x_{i} u_{2} u_{3} z_{i} \subseteq H_{i}$ and $Q=x_{j} v_{2} v_{3} z_{j} \subseteq H_{j}$, and let $Q_{i}=x_{i} u_{5} z_{i}$ and

Figure 2: Unions of distinct 4-paths with common endvertices.
$Q_{j}=x_{j} v_{5} z_{j}$. By Remark 20, every cycle in H_{i} has length congruent to 2 modulo 3 , so H_{i} contains no C_{3}, no C_{4} and no C_{6}. In particular, since the union of internally disjoint 4-paths with common ends contains C_{3}, C_{4} or C_{6} cycle of length 3,4 or 6 (see Figure 2), we conclude that P is the unique 4-path between x_{i} and z_{i} in H_{i}, and hence the unique such path in H_{i+1}. The argument splits into three cases according to how the 5 -cycles in H_{i} intersect P.
\rightarrow Case (a). There exists a 5 -cycle C in H_{i} containing P.
We may assume $H_{1}=C$ and $i=1$. Let $C=x_{i} u_{2} u_{3} z_{i} x x_{i}$ (so $H_{2}=H_{i+1}=C \cup x_{i} u_{5} z_{i}$). We first prove that

$$
\begin{equation*}
H_{j} \text { contains no } C_{3}, \text { no } C_{6} \text {, and precisely one } C_{4} \tag{1}
\end{equation*}
$$

Crucially, note that a step of type $\left(A_{2}\right)$ cannot create a C_{3} or a C_{4}. Therefore, since $H_{1} \simeq C_{5}$, each C_{3} and each C_{4} in H_{j} were created in the i-th step resulting in H_{i+1}. Since H_{i+1} is the union of C and $z_{i} u_{5} x_{i}$, we conclude that $C_{3} \nsubseteq H_{i+1}$, so $C_{3} \nsubseteq H_{j}$; moreover, the unique $C_{4} \subseteq H_{j}$ is $x_{i} x z_{i} u_{5} x_{i}$. It remains to show that H_{j} contains no C_{6}. Suppose, looking for a contradiction, that $\alpha \in[j-1]$ is the smallest index such that $H_{\alpha+1}$ has a 6 -cycle C^{\prime}. Note that H_{i+1} contains no C_{6}, so $\alpha>i$. Since type $(\alpha)=\left(A_{2}\right)$, it follows that C^{\prime} contains a path $a b c d e$ whose edges are new in $H_{\alpha+1}$, so $C^{\prime}=a b c d e f a$ for some $f \in V\left(H_{\alpha}\right)$. Moreover, $a b c d e a$ is a (new) 5 -cycle in $H_{\alpha+1}$. We conclude that aefa is a 3 -cycle in H_{α}, a contradiction since $C_{3} \nsubseteq H_{j}$. This proves (1).

Claim 22. There exists $e \in E\left(H_{j}\right)$ with $e \cap\left\{x_{j}, z_{j}\right\} \neq \varnothing$ which lies in every 4-path from x_{j} to z_{j} in H_{j}.

Proof. By (1), each 4-path between x_{j} and z_{j} in H_{j} other than Q intersects $x_{j} v_{2} v_{3} z_{j}$ (i.e., Q) in precisely one edge h; moreover, $h \neq v_{2} v_{3}$ (as $C_{3} \nsubseteq H_{j}$, see Figure 2). If Claim 22 is false, then there are paths $x_{j} x v_{3} z_{j}$ and $x_{j} v_{2} y z_{j}$ in H_{j} with $x \neq v_{2}$ and $y \neq v_{3}$. But this contradicts (1), because then either H_{j} has a 3 -cycle $x_{j} x v_{2} x_{j}$ (if $x=y$) or H_{j} contains two distinct 4-cycles $x_{j} x v_{3} v_{2} x_{j}$ and $v_{2} v_{3} z_{j} y v_{2}$ (if $x \neq y$).

We now return to the proof of Case (a), describing the orientation of F. Let e be the edge common to all 4-paths between x_{j} and z_{j} in H_{j} (as per Claim 22). Orient H_{1} so that it is a directed cycle. For every $\alpha \in[t-1] \backslash\{j\}$, orient the new edges to form a directed path. Finally, orient $x_{j} v_{5} z_{j}$ so that the path it forms with e is directed.

Let us check that every 5-cycle in F has a long block. Clearly, the two 5 -cycles in H_{2} have each a long block. For each $\alpha \in[t-1] \backslash\{i, j\}$, each new 5 -cycle in $H_{\alpha+1}$ contains Q_{α} and hence has a long block $\left(e\left(Q_{\alpha}\right) \geqslant 3\right.$ since type $\left.(\alpha)=\left(A_{2}\right)\right)$. Finally, every new 5 -cycle in H_{j+1} contains the directed path formed by e and $x_{j} v_{5} z_{j}$. We conclude that $F \nrightarrow \vec{C}$.
\rightarrow Case (b). There exists a 5 -cycle C in H_{i} containing precisely two edges of P.
We may assume that no 5-cycle in H_{i} contains all edges of P, otherwise we would be done by Case (a). Note that cannot avoid $u_{2} u_{3}$, since $C_{3} \nsubseteq H_{i}$. We may therefore assume that C is a 5 -cycle in H_{i} with $z_{i} u_{3} u_{2} \subseteq C$ and that $H_{1}=C$.

Let $\alpha \in[t-1]$ be such that $u_{2} x_{i}$ is new in $H_{\alpha+1}$, and let C_{α} be a new 5 -cycle in $H_{\alpha+1}$ containing $u_{2} x_{i}$. Note that type $(\alpha)=\left(A_{2}\right)$, so $Q_{\alpha}=u_{2} x_{i} x y v$, where $u_{2}, v \in V\left(H_{\alpha}\right)$ and $x_{i}, x, y \notin V\left(H_{\alpha}\right)$. We modify the construction sequence of F, to a construction sequence of F where the i-th step is omitted and the α-th step is replaced by consecutive steps adding, in this order, $u_{2} x_{i} u_{5} z_{i}$ and $x_{i} x y v$. In the new sequence, type $(\alpha)=\operatorname{type}(\alpha+1)=\left(A_{3}\right)$, $\operatorname{type}(j)=\left(A_{4}\right)=\left(A_{\ell-1}\right)$ and each other step remains of type $\left(A_{2}\right)$. By the argument in Case $2, F \nrightarrow \vec{C}$.
\rightarrow Case (c). Every 5 -cycle in H_{i} contains at most one edge of P.
This is similar to the preceding case. Let $C=H_{1}$ be a 5 -cycle containing $z_{i} u_{3}$. We first show that if $u_{2} u_{3}$ is new in $H_{\alpha+1}$ and $u_{2} x_{i}$ is new $H_{\beta+1}$, then $\alpha<\beta<i$. Indeed, $\alpha, \beta<i$ by definition, and $\alpha \neq \beta$ as otherwise the new cycles in $H_{\alpha+1}$ would contain two edges of P. Moreover, type $(\alpha)=\operatorname{type}(\beta)=\left(A_{2}\right)$ by Proposition 19 , so each new edge in $H_{\alpha+1}$ and $H_{\beta+1}$ must contain at least one new endvertex. Hence $\alpha<\beta$.

Let $Q_{\beta}=u_{2} x_{i} x y v$, where $u_{2}, v \in V\left(H_{\beta}\right)$ and $x_{i}, x, y \notin V\left(H_{\beta}\right)$. As in Case (b), we define an alternative construction sequence of F, where the i-th step is omitted and the β-th step is replaced by consecutive steps adding $u_{2} x_{i} u_{5} z_{i}$ and $x_{i} x y v$ (in this order). By Case $2, F \nrightarrow \vec{C}$.
\rightarrow Case 4. There exists $i \in[t-1]$ such that type $(i)=\left(B_{j}\right)$, where $3 \leqslant j \leqslant \ell-1$.
By Proposition 19, for each $\alpha \in[t-1] \backslash\{i\}$ we have type $(\alpha)=\left(A_{2}\right)$, and thus $e\left(Q_{\alpha}\right) \geqslant 3$. Recall that $y_{i} \in V\left(Q_{i}\right) \cap H_{i}$. Note that no new cycle in H_{i+1} avoids both $x_{i} Q_{i} y_{i}$ and $y_{i} Q_{i} z_{i}$.

If a new ℓ-cycle in H_{i+1} contains $x_{i} Q_{i} y_{i}$ but not $y_{i} Q_{i} z_{i}$, then some construction sequence of F satisfies the hypothesis of one of the previous cases (by replacing the i-th step in $\left(H_{1}, \ldots, H_{t}\right)$ by consecutive steps adding $x_{i} Q_{i} y_{i}$ and $\left.y_{i} Q_{i} z_{i}\right)$, and $F \nrightarrow \vec{C}$. We argue similarly if a new ℓ-cycle in H_{i+1} avoids $x_{i} Q_{i} y_{i}$.

If every new ℓ-cycle in H_{i+1} contains all of Q_{i}, then for each $\alpha \in[t-1]$ every new cycle in $H_{\alpha+1}$ contains Q_{α}. We fix a directed orientation of H_{1} and orient Q_{α} as a directed path for each $\alpha \in[t-1]$. Then H_{1} has a long block and for each $\alpha \in[t-1]$ the new ℓ-cycles in $H_{\alpha+1}$ have a long block as well (since $e\left(Q_{\alpha}\right) \geqslant 3$). Therefore $F \nrightarrow \vec{C}$.

3.3.2 Cycles of length 4

To conclude this section we consider orientations of 4-cycles.
Theorem 23. Let \vec{C} be an orientation of C_{4}. If G is a graph and $m(G)<m_{2}\left(C_{4}\right)$, then $G \nrightarrow \vec{C}$.

To prove Theorem 23 we use the following proposition.
Proposition 24. Let $G=\left(H_{1}, \ldots, H_{t}\right)$ be a C_{4}-component such that $m(G)<m_{2}\left(C_{4}\right)$. If $\operatorname{type}(i)=\left(B_{3}\right)$ for some i, then type $(j)=\left(A_{2}\right)$ for each $j \in[t-1] \backslash\{i\}$.

Proof. For each $j \in[t-1]$, let v_{j} and e_{j} be respectively the number of new vertices and new edges in H_{j+1}, By Proposition 18 we have $e_{j} \geqslant 3 v_{j} / 2$ and $e_{j}>v_{j}$ for each $j \in[t-1]$. Suppose type $(i)=\left(B_{3}\right)$ and fix $j \in[t-1] \backslash\{i\}$. We have

$$
\frac{3}{2}=m_{2}\left(C_{4}\right)>m(G)=\frac{4+\sum_{\alpha \in[t-1]} e_{\alpha}}{4+\sum_{\alpha \in[t-1]} v_{\alpha}} \geqslant \frac{4+3+e_{j}+\sum_{\alpha \in[t-1] \backslash\{i, j\}} 3 v_{\alpha} / 2}{4+1+v_{j}+\sum_{\alpha \in[t-1] \backslash\{i, j\}} v_{\alpha}}
$$

so $v_{j}>2\left(e_{j}-v_{j}\right)-1$. Hence $v_{j} \geqslant 2$ (because $\left.v_{j}<e_{j}\right)$ and type $(j)=\left(A_{2}\right)$.
Proof of Theorem 23. If \vec{C} is anti-directed or contains a long block, then $G \nrightarrow \vec{C}$ by Corollary 14 and Theorem 15, respectively. We may therefore assume \vec{C} has precisely two
blocks of length 2 ; we may also assume that G is a C_{4}-component with construction sequence $\left(H_{1}, \ldots, H_{t}\right)$, because distinct C_{4}-components can be independently oriented and edges in no C_{4}-component can be arbitrarily oriented.

If there is no step of type B_{3}, then G is bipartite. (Indeed, $H_{1} \simeq C_{4}$ and steps of type $\left(A_{2}\right),\left(A_{3}\right)$, or $\left(A_{4}\right)$ preserve bipartiteness.) Fix a proper 2-colouring of G and orient every edge towards the same colour class. This avoids directed paths with length 2 , so $G \nrightarrow \vec{C}$.

On the other hand, if type $(i)=\left(B_{3}\right)$, then every other step is of type $\left(A_{2}\right)$ by Proposition 24 . Let $u_{1} u_{2} u_{3} u_{4} u_{1}$ be the new cycle in H_{i+1}, where $u_{1} u_{2} \in H_{i}$ (and $u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{1} \notin E\left(H_{i}\right)$, $\left.u_{1}, u_{2}, u_{3} \in V\left(H_{i}\right), u_{4} \notin V\left(H_{i}\right)\right)$. We may assume that H_{1} is a 4-cycle $u_{1} u_{2} a b u_{1}$.

If every new 4-cycle in H_{i+1} contains $u_{2} u_{3} u_{4} u_{1}$, we orient H_{1} as a directed cycle and the new edges in each step as directed paths. Clearly H_{1} has a long block and, for each $\alpha \in[t-1]$, every new 4 -cycle in $H_{\alpha+1}$ contains a long block (formed by Q_{α}), so $G \nrightarrow \vec{C}$.

Finally, if a 4-cycle in H_{i} contains $u_{2} u_{3}$ but avoids $u_{3} u_{4} u_{1}$, then we may replace the i-th step (of type $\left(B_{3}\right)$) by one $\left(A_{4}\right)$-step (adding $u_{2} u_{3}$) and one (A_{3})-step (adding $u_{3} u_{4} u_{1}$). This yields a construction sequence free from $\left(B_{3}\right)$, which implies (as argued above) that G is bipartite and $G \nrightarrow \vec{C}$. Similarly, if H_{i} contains a new 4 -cycle which avoids $u_{2} u_{3}$, then we may replace the i-th step by one $\left(A_{3}\right)$-step (adding $u_{3} u_{4} u_{1}$) and one $\left(A_{4}\right)$-step (adding $\left.u_{2} u_{3}\right)$, and also conclude that $G \nrightarrow \vec{C}$.

4 Proof of the main theorem (Theorem 2)

Theorem 8 establishes the case $t=3$ of Theorem 2. We may therefore suppose \vec{H} is either an acyclic orientation of $H \in\left\{K_{t}, C_{t}\right\}$, with $t \geqslant 4$, or that \vec{H} is an anti-directed orientation of a strictly 2-balanced graph H with $\delta(H) \geqslant 2$. In each one of these cases \vec{H} is 2-Ramsey-avoidable (by Remark 6), so (by Theorems 1 and 3 together with Lemmas 5 and 7) it suffices to show that $G \nrightarrow \vec{H}$ whenever $m(G)<m_{2}(H)$. Indeed, this follows by Theorem 12 (when H is complete), Theorems 17 and 23 (when H is a cycle) and by Corollary 14 otherwise.

5 Concluding remarks

We have shown that if \vec{H} is an oriented clique or cycle, then the threshold for $G(n, p) \rightarrow \vec{H}$ is $n^{-1 / m_{2}(\vec{H})}$ if and only if $\vec{H} \neq \mathrm{TT}_{3}$. Interestingly, TT_{3} is not the only exception. For instance, let \vec{G} be the digraph obtained from an oriented tree \vec{T} of order $n^{1 / 2-\varepsilon}$, for any fixed $\varepsilon>0$, by identifying with each $v \in V(\vec{T})$ the source of a distinct copy \vec{H}_{v} of TT_{3}. It can be shown that $p_{\vec{G}} \ll n^{-1 / m_{2}(\vec{G})}=n^{-1 / m_{2}\left(\mathrm{TT}_{3}\right)}$. In a forthcoming paper, the authors describe a richer class of digraphs with this property.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, algorithms and applications, Springer-Verlag, London, 2001.
[2] G.F. Barros, B. P. Cavalar, G. O. Mota, and O. Parczyk, Anti-Ramsey threshold of cycles, arXiv:2006.02079, submitted.
[3] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35-38.
[4] G. R. Brightwell and Y. Kohayakawa, Ramsey properties of orientations of graphs, Random Structures \& Algorithms 4 (1993), no. 4, 413-428.
[5] M. Bucić, S. Heberle, S. Letzter, and B. Sudakov, Monochromatic trees in random tournaments, Combinatorics, Probability and Computing 29 (2020), no. 3, 318-345.
[6] M. Bucić, S. Letzter, and B. Sudakov, Directed Ramsey number for trees, Journal of Combinatorial Theory, Series B 137 (2019), 145-177.
[7] B. P. Cavalar, Ramsey-type problems in orientations of graphs, arXiv:1903.02099.
[8] F.R.K. Chung, A note on subtrees in tournaments, Bell Laboratories Internal Memorandum, 1982.
[9] M. Cochand and P. Duchet, A few remarks on orientation of graphs and Ramsey theory, Irregularities of Partitions, Springer, 1989, pp. 39-46.
[10] D. Conlon, W. T. Gowers, W. Samotij, and M. Schacht, On the KŁR conjecture in random graphs, Israel J. Math. 203 (2014), no. 1, 535-580.
[11] R. Diestel, Graph theory, second ed., Graduate Texts in Mathematics, vol. 173, Springer-Verlag, New York, 2000.
[12] F. Dross and F. Havet, On the unavoidability of oriented trees, arXiv:1812.05167, submitted.
[13] A. El Sahili, Trees in tournaments, Journal of Combinatorial Theory, Series B 92 (2004), no. 1, 183-187.
[14] P. Erdős and L. Moser, On the representation of directed graphs as unions of orderings, Publ. Math. Inst. Hung. Acad. Sci. 9 (1964), 125-132.
[15] R. Häggkvist and A. Thomason, Trees in tournaments, Combinatorica 11 (1991), no. 2, 123-130.
[16] F. Havet, Trees in tournaments, Discrete mathematics 243 (2002), no. 1, 121-134.
[17] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience, New York, 2000.
[18] Y. Kohayakawa, T. Łuczak, and V. Rödl, Ramsey-type results for oriented trees, Journal of Graph Theory 22 (1996), no. 1, 1-8.
[19] D. Kühn, R. Mycroft, and D. Osthus, A proof of Sumner's universal tournament conjecture for large tournaments, Proceedings of the London Mathematical Society 102 (2010), no. 4, 731-766.
[20] , An approximate version of Sumner's universal tournament conjecture., Journal of Combinatorial Theory, Series B 101 (2011), no. 6, 415-447.
[21] N. Linial, M. Saks, and V. T. Sós, Largest digraphs contained in all n-tournaments, Combinatorica 3 (1983), 101-104.
[22] X. Lu, On claws belonging to every tournament, Combinatorica 11 (1991), 173-179.
[23] , Claws contained in all n-tournaments, Discrete Mathematics 119 (1993), 107-111.
[24] X. Lu, D.-W. Wang, and C.-K. Wong, On avoidable and unavoidable claws, Discrete Mathematics 184 (1998), 259-265.
[25] R. Mycroft and T. Naia, Unavoidable trees in tournaments, Random Structures \& Algorithms 53 (2018), no. 2, 352-385.
[26] T. Naia, Large structures in dense directed graphs, Ph.D. thesis, University of Birmingham, 2018.
[27] R. Nenadov, Y. Person, N. Škorić, and A. Steger, An algorithmic framework for obtaining lower bounds for random Ramsey problems, Journal of Combinatorial Theory, Series B 124 (2017), 1-38.
[28] R. Nenadov and A. Steger, A short proof of the random Ramsey theorem, Combinatorics, Probability and Computing 25 (2016), no. 1, 130-144.
[29] L. Rédei, Ein kombinatorischer Satz, Acta Litteraria Szeged 7 (1934), 39-43.
[30] R. Stearns, The voting problem, The American Mathematical Monthly 66 (1959), no. 9, 761-763.
[31] A. Thomason, Paths and cycles in tournaments, Transactions of the American Mathematical Society 296 (1986), 167-180.
[32] N. Wormald, Subtrees of large tournaments, Combinatorial Mathematics X (L. R. A. Casse, ed.), Lecture Notes in Mathematics, vol. 1036, Springer, Berlin (Heidelberg), 1983, pp. 417-419.

Gabriel Ferreira Barros, Yoshiharu Kohayakawa, Tássio Naia
Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
\{gbarros, yoshi, tassio\}@ime.usp.br

Bruno Pasqualotto Cavalar
University of Warwick, United Kingdom
bruno.pasqualotto-cavalar@warwick.ac.uk

[^0]: ${ }^{1}$ This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.
 ${ }^{2}$ FAPESP 2018/05557-7. Part of this work was completed while he was a master's student at IME-USP.
 ${ }^{3}$ CNPq (311412/2018-1, 423833/2018-9) and FAPESP (2018/04876-1).
 ${ }^{4}$ FAPESP 2019/04375-5 and 2018/04876-1. FAPESP is the São Paulo Research Foundation. CNPq is the National Council for Scientific and Technological Development of Brazil.

