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Abstract. If G is a graph and ~H is an oriented graph, we write G → ~H

to say that every orientation of the edges of G contains ~H as a subdigraph.
We consider the case in which G = G(n, p), the binomial random graph. We
determine the threshold p ~H = p ~H(n) for the property G(n, p) → ~H for the
cases in which ~H is an acyclic orientation of a complete graph or of a cycle.

A Ramsey-type property. For each (undirected) graph G and oriented graph ~H, we
write G → ~H to mean that every orientation of G contains a copy of ~H; the orientation Ramsey

number
orientation

Ramsey number ~R ( ~H) is inf{n : Kn → ~H }. This parameter has been investigated in a
number of articles [8, 12–16,19–25,29–32, among others], most of which concern a conjecture
of Sumner [32]. Sumner’s universal tournament conjecture states that ~R (~T ) 6 2e(~T ) for every
oriented tree ~T ; this has been confirmed for all sufficiently large trees by Kühn, Mycroft and
Osthus [19,20]; see also [1, 26].

Thresholds. Thresholds for Ramsey-type properties are widely studied as well (see, e.g., [17,
27] and the many references therein). We call p ~H = p ~H(n) a thresholdthreshold for G(n, p)→ ~H if

P
[
G(n, p)→ ~H

]
=

0 if p� p ~H

1 if p� p ~H ,

where a� b (or, equivalently, b� a) means limn→∞ an/bn → 0. As is customary, we speak of
‘the threshold p ~H ’, since p ~H is unique within constant factors. If ~H is acyclic, then the property
G(n, p)→ ~H is non-trivial and monotone, and hence [3] it has a threshold p ~H = p ~H(n). The
regularity method can be used to give an upper bound for p ~H = p ~H(n) (it suffices to combine
ideas from [17, Section 8.5] and, say, [10]). For an alternative approach giving the same upper
bound, based on the methods of [28], see [7]. For any graph or digraph G, the max. densitymaximum
density and (when v(G) > 3) the max. 2-densitymaximum 2-density of G are, respectively,

m(G) := max
J⊆G
v(J)>1

e(J)
v(J) and m2(G) := max

J⊆G
v(J)>3

e(J)− 1
v(J)− 2 .

Theorem 1. Let ~H be an acyclically oriented graph. There exists a constant C = C( ~H) such
that, if p > Cn−1/m2( ~H), then P

[
G(n, p)→ ~H

]→ 1 as n→∞.

Contribution. We determine the orientation Ramsey threshold for all acyclic orientations
of the complete graph Kt and cycle Ct, for each t > 3. We also determine the threshold for
certain oriented bipartite graphs. We call a digraph ~H anti-directedanti-directed if each vertex in ~H has
either no inneighbours or no outneighbours (so ~G is bipartite and all arcs point to the same
part).
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Theorem 2. If ~H is an acyclic orientation of Kt or Ct, then

p ~H(n) =

n
−1/m(K4) if t = 3

n−1/m2( ~H) if t > 4

is the threshold for G(n, p)→ ~H. Moreover, if ~H is an anti-directed orientation of a strictly
2-balanced graph H such that δ(H) > 2 and m2(H)− bm2(H)c 6 1/2, then

p ~H(n) = n−1/m2( ~H)

is the threshold for G(n, p)→ ~H.

In view of Theorem 1, to prove Theorem 2 (except for the case in which ~H is an orientation
of K3), it suffices to prove the so called 0-statement, that is, it is enough to show that
if p � n−1/m2( ~H), then G(n, p) → ~H holds with vanishing probability. Our proof of this
0-statement uses recent advances in the study of Ramsey-type thresholds: a framework
developed by Nenadov, Person, Škorić and Steger [27] (outlined below) and structural results
of Barros, Cavalar, Mota and Parczyk [2].

We need only a simplified version of the results in [27] (see Definitions 10 and 11 in [27]).
Let G and H be graphs, where δ(H) > 1. An edge e ∈ E(G) is H-closed edgeH-closed if e belongs to
at least two copies of H in G. A copy of H in G is H-closed copyH-closed if at least three of its edges
are H-closed, and G is H-closed graphH-closed if all vertices and edges of G lie in copies of H and every
copy of H in G is H-closed. Finally, G is an H-blockH-block if G is H-closed and for each proper
non-empty subset E′ ( E(G) there exists a copy H ′ of H in G such that E(H ′) ∩ E′ 6= ∅
and E(H ′) \ E′ 6= ∅.

Theorem 3 – [27, Corollary 13]. Let H be a strictly 2-balanced graph with at least 3 edges
such that H is not a matching. If p� n−1/m2(H), then with high probability every H-block F
of G(n, p) satisfies m(F ) < m2(H).

Since complete graphs and cycles are strictly 2-balanced, Theorem 3 reduces the proof of
the 0-statement of the case t > 4 in Theorem 2 to showing that G 6→ ~H for every graph G
whose H-blocks have maximum density strictly below m2(H). This is achieved for cycles
using results from [2], whereas for tournaments and anti-directed graphs, as well as for the
case t = 3 of Theorem 2 we use ad hoc methods (see Theorems 8, 12 and 13). Theorem 2 is
proved in Section 4.

Remark. Other Ramsey-type properties for directed graphs include requiring copies to be
induced [4, 9, 18] and allowing colourings plus orientations [5, 6].

1 Auxiliary definitions and results

We follow standard notation (see, e.g., [11,17]). A k-path is a path with k vertices; k-cycles
are defined similarly. A directed path

or cycle
directed k-path is an oriented path v1 → · · · → vk. A directed k-cycle

is oriented as v1 → · · · → vk → v1. Let ~G be an oriented graph. A maximal directed path
in ~G is called a block. A path or block is block, longlong if it has at least 3 edges. The following exercise
is left to the reader.
Lemma 4. If G is a graph, then δ(J) 6 2m(G) for each J ⊆ G (i.e., G is 2m(G)-degenerate).
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Let G and H be graphs, and let ~H be an orientation of H. We denote by CH(G) the edge
intersection graph of H in G, whose vertices correspond to copies of H in G and whose edges
join distinct copies which share a common edge in G. An H-componentH-component is a subgraph of G
formed by the union of all copies of H in some connected component of CH(G). Note that
G 6→ ~H if and only if each H-component of G admits an ~H-free orientation. Let G and H be
graphs and let C be an H-component of G. If H1 is an arbitrary copy of H in C, then there
exists a sequence H1 ⊆ H2 ⊆ · · · ⊆ Ht = C with the following property. For each i ∈ [t− 1],
there exists a copy H ′ of H such that H ′ 6⊆ Hi, E(H ′)∩E(Hi) 6= ∅ and Hi+1 = Hi ∪H ′. We
say that (H1, . . . ,Ht) constructs C, and call (H1, . . . ,Ht) a constructs,

construction seq.
construction sequence of C. For

each i ∈ [t − 1], we say that a vertex or edge of Hi+1 is new vertex or edgenew in Hi+1 if it is not contained
in Hi, and say that F ⊆ Hi+1 is new graphnew (in Hi+1) if F contains a new edge in Hi+1. Moreover, if
H ′1 is a copy of H in Hi, then there exists a construction sequence (H ′1, . . . ,H ′j) of Hi starting
with H ′1, and hence a construction sequence (H ′1, . . . ,H ′j , Hi+1, . . . ,Ht) of C.

Let G be a graph and suppose E ⊆ E(G). We write G[E]G[E] for the subgraph of G consisting
of the edges in E and the vertices in G which are incident with those edges. We call H strictly 2-balancedstrictly
2-balanced if m2(F ) < m2(H) for each proper subgraph F ⊆ H.
Lemma 5 – [27, Lemma 14]. Let G and H be graphs. If G is H-closed, then E(G) admits a
partition {E1, . . . , Ek} such that G[E1], . . . , G[Ek] are H-blocks and each copy of H in G lies
entirely in one of these H-blocks.

Let ~H be an orientation of a graph H. We say ~H is 2-Ramsey-avoidable2-Ramsey-avoidable if for all
e, f ∈ E(H), every orientation of e, f can be extended to an ~H-free orientation of H.

Remark 6. Let k > 4. If ~H is either an orientation of Ck, a transitive tournament TTk, or an
anti-directed orientation of a graph H with δ(H) > 1, then ~H is 2-Ramsey-avoidable.

Proof. Let H be the underlying graph of ~H. In each of the following cases, let e, f ∈ E(H)
be chosen and oriented arbitrarily; it suffices to complete an ~H-free orientation of H.

Suppose ~H is an orientation of Ck. Note that we can complete the orientation of e, f to
orientations ~C1, ~C2 of Ck such that ~C1 has a block of length at least k − 1 > 3 and ~C2 has no
long block. If ~H has a block of length at least k − 1, then we pick ~C2, else we pick ~C1.

If ~H ' TTk, we complete the orientation of Kk so that it contains a directed triangle
(some triangle in H has at most one edge already oriented).

In the remaining case (anti-directed graph), we complete the orientation of H forming
a directed 3-path (since k > 4, some v ∈ V (H) is incident with precisely one of e, f , while
δ(H) > 1 implies some other edge incident with v has not been oriented).

Remark 6 will be used with the next lemma and Theorem 3 to establish our main results.
Lemma 7. Let G be a graph and let ~H be 2-Ramsey-avoidable2-Ramsey-avoidable. If B 6→ ~H for each H-block
B of G, then G 6→ ~H.

Proof. Let H be the underlying graph of ~H. To show that G admits an ~H-free orientation, we
may assume each edge of G lies in a copy of H (the orientation of other edges is irrelevant).

Let G0 = G and, for each i = 1, 2, . . . proceed as follows. If Gi−1 is H-closed, then stop,
set m := i− 1 and F := Gm. Otherwise, some copy Fi of H in Gi−1 has at most two H-closed
edges in Gi−1. Form Gi by deleting from Gi−1 each non-H-closed edge of Fi, and then each
isolated vertex. Note that Gi−1 = Gi ∪ Fi and that each e ∈ E(Gi) lies in some copy of H.

3



Note that F is H-closed. By Lemma 5, F can be partitioned into a collection B of edge-
disjoint H-blocks such that each copy of H in F lies entirely in some B ∈ B. By assumption,
B 6→ ~H for each B ∈ B, so F admits a ~H-free orientation ~F (the disjoint union of ~H-free
orientations of each B ∈ B).

Finally, we extend ~Gm := ~F to an ~H-free orientation ~G0 of G. For each i = m,m−1, . . . , 1,
let ~Gi−1 extend ~Gi by orienting the edges E(Fi) \ E(Gi) so that Fi is ~H-free (this is possible
because ~H is 2-Ramsey-avoidable). Clearly, no copy of H in G induces ~H in ~G, so G 6→ ~H.

2 Transitive triangles

Let TT3 be the transitive triangle. In this section we show that the upper bound for pTT3(n)
given in Theorem 1 is not tight.

Theorem 8. The function pTT3(n) = n−1/m(K4) is the threshold for G(n, p)→ TT3.

Let W5 be the graph we obtain by adding to C4 a new universal vertex.
Proposition 9. If G is a K3-component such that uw, vw ∈ E(G) and uv /∈ E(G), then there
exists J ⊆ G such that either v(J) = 6 and e(J) = 9 or J + uv is isomorphic to K4 or W5.

Proof. Let F1 · · ·Fs be a shortest path in CK3(G) such that uw ∈ E(F1) and vw ∈ E(Fs). It
suffices to show the following.

• If s = 2, then J := F1 ∪ · · · ∪ Fs satisfies J + uv ' K4.

• If s = 3, then J := F1 ∪ · · · ∪ Fs satisfies J + uv 'W5.

• If s > 4, then J := F1 ∪ F2 ∪ F3 ∪ F4 satisfies v(J) = 6 and e(J) = 9.

It is simple to check that the following hold by the choice of F1 · · ·Fs.

(i) |E(Fi) ∩ E(Fi−1)| = 1 for all i ∈ [s] \ {1};

(ii)
∣∣E(Fi) ∩

⋃
j<iE(Fj)

∣∣ = 1 for each i ∈ [s] \ {1}; and

(iii) Each e ∈ E(G) belongs to at most two triangles in F1 ∪ · · · ∪ Fs.

The statement for s = 2 follows by (i) since F1 ' K3. If s = 3, then v(J) = 5 (by (i) and (ii)),
so J + uv ' W5. By (i), for each i ∈ [s] \ {1} we have |V (Fi) \

⋃
j∈[i−1] V (Fj)| 6 1, so

v(F1 ∪ · · · ∪ Fs) 6 s+ 2. Moreover, (ii) implies e(Fi) = 2i+ 1 for each i ∈ [s]. If s = 4, then
e(J) = 9. Clearly 5 6 v(J) 6 6; note that v(J) 6= 5 as otherwise there exists e ∈ E(J) which
belongs to three distinct triangles in J , contradicting (iii).

Let (H1, . . . ,Ht) be a K3-component. For each i ∈ [t − 1], either (A) there are two
new edges in Hi+1 and one new vertex in Hi+1; (B) there are two new edges in Hi+1

and V (Hi+1) = V (Hi); or (C) there is exactly one new edge in Hi+1 and V (Hi+1) = V (Hi).
A graph H is AB-constructibleAB-constructible if no construction sequence of a K3-component of H contains
a step of type (C).
Proposition 10. If a graph H is AB-constructible, then H 6→ TT3.

Proof. We may assume that H is itself a single K3-component (H1, . . . ,Ht), as edges which
do not belong to a copy of K3 in H can be arbitrarily oriented and distinct K3-components
may be independently oriented. First note that, at each step, exactly one new copy of K3 is
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added. This is clearly true for steps of type (A). Moreover, it is easy to see that if Hα+1 is
created by a step of type (B) and the new edges create two distinct copies of K3 in Hα+1,
then H admits a construction sequence with a step of type (C), a contradiction. We orient
H1 forming a directed triangle and, for each α ∈ [t− 1], orient the two new edges in Hα+1 so
as to form a new directed triangle. The resulting orientation is TT3-free.

Our final ingredient is the following classical result (see, e.g., [17]).
Theorem 11 – [17]. Let H be a fixed graph. Then

lim
n→∞

P[H ⊆ G(n, p)] =

1, if p� n−1/m(H),

0, if p� n−1/m(H).

Proof of Theorem 8. If p� n−2/3, then K4 ⊆ G(n, p) with high probability by Theorem 11;
hence G(n, p)→ TT3 with high probability (as K4 → TT3).

Now suppose that p � n−2/3. Let E be the event that G(n, p) is not AB-constructible.
By Proposition 10, it suffices to show that P[E] = o(1). Let J be set of all nonisomorphic
graphs of order 6 and size 9. By Proposition 9, every K3-component of G(n, p) which is not
AB-constructible contains either K4, W5 or some J ∈ J. Using Markov’s inequality, we have

P[E] 6 P[K4 ⊆ G(n, p)] + P[W5 ⊆ G(n, p)] +
∑
J∈J

P[J ⊆ G(n, p)]

6
∑

J∈{K4,W5}∪J
E
[ |{J ′ ⊆ G(n, p) : J ′ ' J}| ] 6 n4p6 + n5p8 + |J|n6p9.

Since p� n−2/3 and |J| = Θ(1), we have P[E] = o(1).

3 Graphs with low maximum 2-density

The following sections show that G 6→ ~H for some classes of oriented graphs, when ~H has at
least four vertices and m(G) < m2( ~H).

3.1 Transitive Tournaments

We denote a tournament on k vertices by Tk, writing Tk, TTkTTk if it is transitive.

Theorem 12. If k > 4 and G is a graph with m(G) < m2(Kk), then G 6→ TTk.

Proof. The proof is by induction on n := v(G). The case n = 1 is trivial. Assume n > 2 and
that G′ 6→ TTk whenever m(G′) < m2(Kk) and v(G′) < n. By Lemma 4, degG(u) 6 k for
some u ∈ V (G). Let G′ = G−u, so m(G′) < m2(Kk) and G′ admits a TT3-free orientation ~G.
We shall extend ~G to an orientation of G such that each Tk containing u has a directed cycle.

We may assume that u lies in some copy of Kk, say K; so deg(u) > k − 1. If K is the
only copy of Kk containing u, then choose two vertices v, w ∈ V (K − u) and orient the
edges uv and uw so that {u, v, w} induces a directed triangle. Otherwise let K ′ be some Kk

containing u other than K. Hence we must have deg(u) = k. Let v be the unique vertex
in V (K) \ V (K ′), and w be the unique vertex in V (K ′) \ V (K). Since k − 2 > 2, there are at
least two vertices x and y in V (K ∩K ′) \ {u}. Orient the edges uv, ux, uw and uy so that
each of {u, v, x} and {u,w, y} induces a directed triangle. Since every Kk containing u has at
least three vertices in {v, w, x, y}, the partial orientation of each Kk contains a directed cycle.
Any remaining un-oriented edge may be arbitrarily oriented.
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3.2 Anti-directed digraphs

We now turn to anti-directed orientations of Kt,t, C2t and other bipartite graphs.

Theorem 13. Let G and H be graphs, where δ(H) > 2. If ~H is an anti-directed orientation
of H and m(G) < δ(H)− 1/2, then G 6→ ~H.

Proof. We proceed by induction on v(G). If v(G) 6 2, then G 6→ ~H. Let δ := δ(H).
By Lemma 4, there exists v ∈ V (G) with deg(v) = δ(G) 6 2δ − 2. By induction, G− v 6→ ~H.
Fix an ~H-free orientation of G − v, orient bδ(G)/2c edges incident with v towards v and
the remaining dδ(G)/2e edges away from v. Note that any copy of H in G containing v
necessarily has two edges incident with v oriented in opposite directions, since δ(H) > 2
and dδ(G)/2e 6 δ(H)− 1.

Corollary 14. LetG andH be graphs such thatH is strictly 2-balanced, δ(H) > 2 andm2(H)−
bm2(H)c 6 1/2. If ~H is an anti-directed orientation of H and m(G) < m2(H), then G 6→ ~H.

Proof. We have (e(H − u) − 1)/(v(H − u) − 2) < (e(H) − 1)/(v(H) − 2) for all u ∈ V (H),
since H is strictly 2-balanced. It follows that m2(H) < δ(H), so bm2(H)c + 1 6 δ(H).
Since m(G) < m2(H) 6 bm2(H)c+ 1/2 6 δ(H)− 1/2, we can apply Theorem 13.

3.3 Cycles

We now consider orientations of `-cycles, where ` > 4. The main results are Theorems 17 and 23,
which deal with the cases ` > 5 and ` = 4, respectively. (We also include a simple proof for
the case ` > 8, see Theorem 16.)

Lemma 15. Let ~C be an oriented cycle with a long block. If G is a graph and m(G) < m2(~C),
then G 6→ ~C.

Proof. Note that v(~C) > 4, so m2(~C) 6 m2(C4) = 3/2. By Lemma 4, G is 2-degenerate,
hence χ(G) 6 3. Fix a proper colouring c : V (G)→ {1, 2, 3}, and orient each edge towards its
endvertex with the largest colour. This orientation contains no long block, so G 6→ ~C.

While the next result is superseded by Theorem 17, its proof is much simpler.

Theorem 16. Let ~C be an orientation of C`, where ` > 8. If G is a graph and m(G) < m2(~C),
then G 6→ ~C.

Proof. Let ` = e(~C). If ~C contains a long block, then the theorem holds by Lemma 15, so we
assume that the longest block of ~C has length at most 2.

Suppose, looking for a contradiction, that the statement is false. Without loss of gener-
ality let G be a minimal counterexample (with respect to the subgraph relation). That is,
m(G) < m2(~C) and G → ~C, and G′ 6→ ~C for each proper subgraph G′ ⊆ G. Let W be the
set of vertices in G with degree 2.

If there exists an edge uv joining vertices u, v ∈W , then (since G is minimal) uv lies in
an `-cycle. Moreover, G \ {u, v} 6→ ~C; so there exists an orientation ~G of G \ {u, v} which
avoids ~C. Note that each `-cycle in G is either completely oriented in ~G (while avoiding ~C),
or contains the three (not yet oriented) edges incident with either u or v. We extend ~G by
orienting these edges so that they form a directed path or cycle. Since, by assumption, the
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length of any block of ~C is at most two, it follows that ~G is an orientation of G avoiding ~C, a
contradiction.

Hence no edge of G lies in W . By the minimality of G, every vertex v ∈ V (G) lies an
`-cycle, so δ(G) > 2. Let n := v(G). Since each vertex of W has degree 2,

2|W |+ 3(n− |W |) 6
∑

v∈V (G)
d(v) = 2e(G) 6 2m(G)n < 2n`− 1

`− 2 .

It follows that |W | > n(1− 2/(`− 2)) and

2
(

1− 2
`− 2

)
n 6 2|W | 6 e(G) 6 m(G)n =

(
1 + 1

`− 2

)
n,

which is a contradiction for ` > 8.

3.3.1 Cycles of length at least 5

We now generalise Theorem 16 for oriented cycles with at least 5 vertices.

Theorem 17. Let ~C be an orientation of C`, where ` > 5. If G is a graph and m(G) < m2(C`),
then G 6→ ~C.

Barros, Cavalar, Mota and Parczyk [2] obtained a detailed characterisation of the con-
struction sequences of C`-components; we state their result below in a slightly modified form
(the original has ‘` > 5’ in place of ‘` > 4’, but the same proof holds).
Proposition 18 – [2, Proposition 7]. Let ` > 4 be an integer, G be a graph with m(G) < m2(C`)
and (H1, . . . ,Ht) be a C`-component of G. The following holds for every 1 6 i 6 t− 1. If C
is an `-cycle added to Hi to form Hi+1, then there exists a labelling C = u1u2 · · ·u`u1 such
that exactly one of the following occurs, where 2 6 j 6 ` and 3 6 k 6 `− 1.

(Aj) u1u2 · · ·uj is a j-path in Hi and uj+1, . . . , u` /∈ V (Hi);

(Bk) u1u2 ∈ E(Hi), u2u3 /∈ E(Hi), {u3, . . . , u`} \ {uk} ⊆ V (Hi+1) \ V (Hi), uk ∈ V (Hi).

If (H1, . . . ,Ht) constructs a C`-component, then for each i ∈ [t− 1] the new edges in Hi+1

form a path (by Proposition 18). We denote this path by Qi, write Qi, xi, zixi, zi for its endvertices and
yiyi for the sole internal vertex of Qi in Hi, if it exists. (Again by Proposition 18, V (Qi)∩V (Hi)

is either {xi, zi} or {xi, yi, zi}.) We write type(i)type(i) to denote the operation ((Aj) or (Bk),
where 2 6 j 6 ` and 3 6 k 6 `− 1) which constructs Hi+1 from Hi.
Proposition 19 – [2]. Let ` > 5. If G = (H1, . . . ,Ht) is a C`-component and m(G) < m2(C`),
then for all distinct i, j ∈ [t− 1] and each k ∈ {3, . . . , `− 1} we have the following.

• If type(i) = (A`), then every other step is of type (A2) or (A3).

• If type(i) = (A`−1), then every other step is of type (A2), (A3) or (A`−1).

• If type(i) = type(j) = (A`−1), then ` = 5 and every other step is of type (A2).

• If type(i) = (Bk), then every other step is of type (A2).

We also use the following results.
Remark 20. Let G be a C5-component. If G can be constructed solely by steps of type (A2),
then every cycle in G has length congruent to 2 (mod 3).
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Proof. The proof is by induction on i ∈ [t] where (H1, . . . ,Ht) is the construction sequence
of G. The base holds because H1 is a 5-cycle. Now suppose every cycle in Hi has length
congruent to 2 (mod 3), where i > 1. We form Hi+1 by a step of type (A2), i.e., by adding
an 5-path P joining the endvertices of an edge uv of Hi. Any new cycle C is formed by an
uv-path P ′ in Hi, together with P . If P ′ = uv, then C has length 5, and the claim holds. On
the other hand, if uv /∈ E(P ′), then C = P ′ ∪ P , but since C ′ := P ′ + uv is a cycle in Hi, it
follows that e(C ′) ≡ 2 (mod 3), so e(C) = e(P ′) + e(P ) = e(C ′)− 1 + e(P ) ≡ 2 (mod 3).

Remark 21. Let G be a C5-component. If G is constructed solely by steps of the types
(A2) and (A3), then G contains no C3 and no C4.

Proof. Let (H1, . . . ,Ht) be a construction sequence of G. Note that C3 * G: indeed, H1 ' C5,
so C3 * H1; moreover, for each i ∈ [t− 1] we have Hi+1 = Hi ∪Qi and Qi is a path of length
at least 3 which is internally disjoint from Hi, so C3 * Hi+1.

Similarly C4 * H1, and if Hi ∪ Qi contains a C4, then type(i) = (A3), so xi and zi are
connected by a path xiwzi in Hi (which, together with Qi, creates a C5). But then xiwzixi is
a C3 in G, a contradiction.

We are now in position to prove the main result of this section.

Proof of Theorem 17. Let G be a graph with m(G) < (`− 1)/(`− 2), where ` > 5, and let ~C
be an oriented `-cycle. By Lemma 15, if ~C contains a long block, then G 6→ ~C, so we may
assume that every block of ~C has length at most two. We will show that the C`-components
of G admit an orientation in which every `-cycle has a long block. It suffices to consider one
such component F , as C`-components can be independently oriented (they do not share edges)
and remaining edges can be arbitrarily oriented (each `-cycle in G lies in some C`-component).

Let F = (H1, . . . ,Ht) be a C`-component of G. Hence, for all i ∈ [t − 1], each `-cycle
C ⊆ Hi+1 which did not exist inHi contains either the path xiQiyi or yiQizi (ifQi intersectsHi

in three vertices) or the whole path Qi.
99K Case 0. For each i ∈ [t− 1] we have type(i) /∈ {(A`−1), (A`), (B3), . . . , (B`−1)}.

For each i ∈ [t − 1], every new cycle in Hi+1 contains Qi and e(Qi) > 3. We construct
an orientation of F which avoids ~C as follows. Fix a directed orientation of H1, and for
each i ∈ [t − 1] fix a directed orientation of Qi. Clearly H1 does not contain ~C, and for
each i ∈ [t−1] every new `-cycle in Hi+1 contains a long block (since Qi is directed), so F 6→ ~C.

99K Case 1. There is precisely one index i ∈ [t− 1] such that type(i) = (A`−1).
Let Qi = xivzi and let C be an `-cycle in Hi containing zi. We may assume that H1 = C.

Note that e(Qj) > 3 for each j ∈ [t− 1]\{i} since (by Proposition 19) type(j) ∈ {(A2), (A3)}.
We orient F as follows.

Firstly, orient H1 so that zi is the origin of a long block, and so that zi has no inneighbours
in H1. Secondly, for each j ∈ [i − 1], orient Qj forming a directed path, while ensuring
that zi has no inneighbours in Hj+1. (This is possible since, if Qj contains zi, then zi is
an endvertex of Qj .) Orient Qi as a directed path from xi to zi. Finally, for each j ∈ [t−1]\ [i]
orient Qj so as to form a directed path.

Clearly, the orientation of H1 avoids ~C. Since e(Qj) > 3 for each j ∈ [t− 1] \ {i}, each
new `-cycle in Hj+1 has a long block (as it contains Qj). Finally, every new cycle C in Hi+1

must contain Qi as well as some edge ziz ∈ E(Hi). As zi has no inneighbours in Hi, the edge
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·
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· · ·· · ·

q r

· · ·

Figure 1: Orientations in Case 2. Left: orientation of H1; note H1 has a long block starting
from zi (since ` > 5). Centre and right: orientations of Qα (where α 6= i); in the figure,
a /∈ {zi} ∪N , r ∈ N and q ∈ {zi} ∪N , where N := NHi(zi).

ziz extends the directed path xi → v → zi, forming a long block in C. This shows that every
`-cycle has a long block, so F 6→ ~C.

99K Case 2. There exists i ∈ [t− 1] such that type(i) = (A`).
Let α ∈ [t− 1]. By Proposition 19, if α 6= i, then type(α) ∈ {(A2), (A3)}, so e(Qα) > 3.

We may assume that H1 is an `-cycle in Hi containing zi. We orient the edges of F as follows.
Let N be the set of neighbours of zi in Hi.

First orient H1 with two blocks, each with length at least 2 and origin zi (see Figure 1).
Next, for each j ∈ [i− 1], we do the following. If no endvertex of Qj lies in {zi} ∪N , fix
an arbitrary directed orientation of Qj . If a single endvertex q of Qj lies in {zi} ∪ N ,
then orient Qj to form a directed path with origin q. If both endvertices q, r of Qj lie
in {zi} ∪ N , where we assume r 6= zi, then orient Qj so that it has precisely two blocks,
starting from q and r, and so that the latter has precisely one arc. Finally, orient xi → zi,
and for each j ∈ [t− 1] \ [i] fix a directed orientation of Qj (see Figure 1).

Let us check that every `-cycle in F has a long block. This is clearly true in H1. Now
suppose α ∈ [t− 1] \ {i}. Note that each new cycle in Hα+1 contains Qα and that e(Qα) > 3
since type(α) ∈ {(A2), (A3)}. Moreover, Qα has a block of length at least e(Qα)− 1 if α < i,
and a block of length at least e(Qα) if α > i. Hence, if e(Qα) > 4 or if α > i, then Qα has a
long block. So we may suppose that ` = 5, e(Qα) = 3 and α ∈ [i− 1]. Hence type(α) = (A3)
and there is precisely one new 5-cycle C in Hα+1 (as otherwise two 3-paths joining xα and zα,
would form a 4-cycle in Hα, contradicting Remark 21). If

∣∣{xα, zα} ∩ ({zi} ∪N)
∣∣ 6 1, then

C has a long block containing Qα. Otherwise, {xα, zα} ⊆ {zi} ∪N . Note that xαzzα ⊆ Hα

for some z ∈ V (Hα) since C ⊆ Hα+1; if zi ∈ {xα, zα}, then xαzα ∈ E(Hi), so xαzαzxα is
a triangle in Hi, contradicting Remark 21. Therefore zi /∈ {xα, zα}, so C = Qα ∪ xαzizα
(since z 6= zi implies xαzzαzixα is a 4-cycle in Hi, which contradicts Remark 21). Since Qα has
a directed 3-path from either xα or zα to a vertex w ∈ V (Qα) \ V (Hα), and both xα and zα
are outneighbours of zi, it follows that C has a long block.

To conclude Case 2, we consider the new `-cycles in Hi+1. Each of these cycles contains
the arc xi → zi, so it suffices to show that every 3-path zizw in Hi is directed from zi to w.
Note that for each j ∈ [i− 1] and each pair of distinct new edges e1, e2 in Hj+1, there exist
distinct new vertices v1 ∈ e1, v2 ∈ e2 in Hj+1. It follows that either zizw ⊆ H1; or zw ⊆ Qα
and z is an endvertex of Qα for some α ∈ [i− 1]; or zizw ⊆ Qβ and zi is an endvertex of Qβ
for some β ∈ [i− 1]. In each of these cases zizw has the required orientation.

Since every `-cycle of F is a long block and F 6→ ~C.
99K Case 3. There exist i, j ∈ [t− 1] such that type(i) = type(j) = (A`−1).

By Proposition 19 we have ` = 5 and type(α) = (A2) for each α ∈ [t − 1] \ {i, j}. We
may suppose i < j. Let P = xiu2u3zi ⊆ Hi and Q = xjv2v3zj ⊆ Hj , and let Qi = xiu5zi and
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Figure 2: Unions of distinct 4-paths with common endvertices.

Qj = xjv5zj . By Remark 20, every cycle in Hi has length congruent to 2 modulo 3, so Hi

contains no C3, no C4 and no C6. In particular, since the union of internally disjoint 4-paths
with common ends contains C3, C4 or C6 cycle of length 3, 4 or 6 (see Figure 2), we conclude
that P is the unique 4-path between xi and zi in Hi, and hence the unique such path in Hi+1.
The argument splits into three cases according to how the 5-cycles in Hi intersect P .

99K Case (a). There exists a 5-cycle C in Hi containing P .
We may assume H1 = C and i = 1. Let C = xiu2u3zixxi (so H2 = Hi+1 = C ∪ xiu5zi).

We first prove that

Hj contains no C3, no C6, and precisely one C4. (1)

Crucially, note that a step of type (A2) cannot create a C3 or a C4. Therefore, since H1 ' C5,
each C3 and each C4 in Hj were created in the i-th step resulting in Hi+1. Since Hi+1

is the union of C and ziu5xi, we conclude that C3 * Hi+1, so C3 * Hj ; moreover, the
unique C4 ⊆ Hj is xixziu5xi. It remains to show that Hj contains no C6. Suppose, looking
for a contradiction, that α ∈ [j − 1] is the smallest index such that Hα+1 has a 6-cycle C ′.
Note that Hi+1 contains no C6, so α > i. Since type(α) = (A2), it follows that C ′ contains a
path abcde whose edges are new in Hα+1, so C ′ = abcdefa for some f ∈ V (Hα). Moreover,
abcdea is a (new) 5-cycle in Hα+1. We conclude that aefa is a 3-cycle in Hα, a contradiction
since C3 * Hj . This proves (1).
Claim 22. There exists e ∈ E(Hj) with e ∩ {xj , zj} 6= ∅ which lies in every 4-path from
xj to zj in Hj .

Proof. By (1), each 4-path between xj and zj in Hj other than Q intersects xjv2v3zj (i.e., Q)
in precisely one edge h; moreover, h 6= v2v3 (as C3 * Hj , see Figure 2). If Claim 22 is
false, then there are paths xjxv3zj and xjv2yzj in Hj with x 6= v2 and y 6= v3. But this
contradicts (1), because then either Hj has a 3-cycle xjxv2xj (if x = y) or Hj contains two
distinct 4-cycles xjxv3v2xj and v2v3zjyv2 (if x 6= y). �

We now return to the proof of Case (a), describing the orientation of F . Let e be the edge
common to all 4-paths between xj and zj in Hj (as per Claim 22). Orient H1 so that it is
a directed cycle. For every α ∈ [t − 1] \ {j}, orient the new edges to form a directed path.
Finally, orient xjv5zj so that the path it forms with e is directed.

Let us check that every 5-cycle in F has a long block. Clearly, the two 5-cycles in H2 have
each a long block. For each α ∈ [t − 1] \ {i, j}, each new 5-cycle in Hα+1 contains Qα and
hence has a long block (e(Qα) > 3 since type(α) = (A2)). Finally, every new 5-cycle in Hj+1

contains the directed path formed by e and xjv5zj . We conclude that F 6→ ~C.
99K Case (b). There exists a 5-cycle C in Hi containing precisely two edges of P .

We may assume that no 5-cycle in Hi contains all edges of P , otherwise we would be done
by Case (a). Note that C cannot avoid u2u3, since C3 * Hi. We may therefore assume that
C is a 5-cycle in Hi with ziu3u2 ⊆ C and that H1 = C.
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Let α ∈ [t − 1] be such that u2xi is new in Hα+1, and let Cα be a new 5-cycle in Hα+1

containing u2xi. Note that type(α) = (A2), so Qα = u2xixyv, where u2, v ∈ V (Hα) and
xi, x, y /∈ V (Hα). We modify the construction sequence of F , to a construction sequence of F
where the i-th step is omitted and the α-th step is replaced by consecutive steps adding,
in this order, u2xiu5zi and xixyv. In the new sequence, type(α) = type(α + 1) = (A3),
type(j) = (A4) = (A`−1) and each other step remains of type (A2). By the argument in
Case 2, F 6→ ~C.

99K Case (c). Every 5-cycle in Hi contains at most one edge of P .
This is similar to the preceding case. Let C = H1 be a 5-cycle containing ziu3. We first

show that if u2u3 is new in Hα+1 and u2xi is new Hβ+1, then α < β < i. Indeed, α, β < i

by definition, and α 6= β as otherwise the new cycles in Hα+1 would contain two edges of P .
Moreover, type(α) = type(β) = (A2) by Proposition 19, so each new edge in Hα+1 and Hβ+1

must contain at least one new endvertex. Hence α < β.
Let Qβ = u2xixyv, where u2, v ∈ V (Hβ) and xi, x, y /∈ V (Hβ). As in Case (b), we define

an alternative construction sequence of F , where the i-th step is omitted and the β-th step is
replaced by consecutive steps adding u2xiu5zi and xixyv (in this order). By Case 2, F 6→ ~C.

99K Case 4. There exists i ∈ [t− 1] such that type(i) = (Bj), where 3 6 j 6 `− 1.
By Proposition 19, for each α ∈ [t− 1] \ {i} we have type(α) = (A2), and thus e(Qα) > 3.

Recall that yi ∈ V (Qi) ∩Hi. Note that no new cycle in Hi+1 avoids both xiQiyi and yiQizi.
If a new `-cycle in Hi+1 contains xiQiyi but not yiQizi, then some construction sequence

of F satisfies the hypothesis of one of the previous cases (by replacing the i-th step in
(H1, . . . ,Ht) by consecutive steps adding xiQiyi and yiQizi), and F 6→ ~C. We argue similarly
if a new `-cycle in Hi+1 avoids xiQiyi.

If every new `-cycle in Hi+1 contains all of Qi, then for each α ∈ [t− 1] every new cycle
in Hα+1 contains Qα. We fix a directed orientation of H1 and orient Qα as a directed path for
each α ∈ [t− 1]. Then H1 has a long block and for each α ∈ [t− 1] the new `-cycles in Hα+1

have a long block as well (since e(Qα) > 3). Therefore F 6→ ~C.

3.3.2 Cycles of length 4

To conclude this section we consider orientations of 4-cycles.

Theorem 23. Let ~C be an orientation of C4. If G is a graph and m(G) < m2(C4), then
G 6→ ~C.

To prove Theorem 23 we use the following proposition.
Proposition 24. Let G = (H1, . . . ,Ht) be a C4-component such that m(G) < m2(C4). If
type(i) = (B3) for some i, then type(j) = (A2) for each j ∈ [t− 1] \ {i}.

Proof. For each j ∈ [t − 1], let vj and ej be respectively the number of new vertices and
new edges in Hj+1, By Proposition 18 we have ej > 3vj/2 and ej > vj for each j ∈ [t − 1].
Suppose type(i) = (B3) and fix j ∈ [t− 1] \ {i}. We have

3
2 = m2(C4) > m(G) =

4 +∑
α∈[t−1] eα

4 +∑
α∈[t−1] vα

>
4 + 3 + ej +∑

α∈[t−1]\{i,j} 3vα/2
4 + 1 + vj +∑

α∈[t−1]\{i,j} vα
,

so vj > 2(ej − vj)− 1. Hence vj > 2 (because vj < ej) and type(j) = (A2).

Proof of Theorem 23. If ~C is anti-directed or contains a long block, then G 6→ ~C by Corol-
lary 14 and Theorem 15, respectively. We may therefore assume ~C has precisely two
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blocks of length 2; we may also assume that G is a C4-component with construction se-
quence (H1, . . . ,Ht), because distinct C4-components can be independently oriented and edges
in no C4-component can be arbitrarily oriented.

If there is no step of type B3, then G is bipartite. (Indeed, H1 ' C4 and steps of
type (A2),(A3), or (A4) preserve bipartiteness.) Fix a proper 2-colouring of G and orient every
edge towards the same colour class. This avoids directed paths with length 2, so G 6→ ~C.

On the other hand, if type(i) = (B3), then every other step is of type (A2) by Proposition 24.
Let u1u2u3u4u1 be the new cycle in Hi+1, where u1u2 ∈ Hi (and u2u3, u3u4, u4u1 /∈ E(Hi),
u1, u2, u3 ∈ V (Hi), u4 /∈ V (Hi)). We may assume that H1 is a 4-cycle u1u2abu1.

If every new 4-cycle in Hi+1 contains u2u3u4u1, we orient H1 as a directed cycle and the
new edges in each step as directed paths. Clearly H1 has a long block and, for each α ∈ [t− 1],
every new 4-cycle in Hα+1 contains a long block (formed by Qα), so G 6→ ~C.

Finally, if a 4-cycle in Hi contains u2u3 but avoids u3u4u1, then we may replace the i-th
step (of type (B3)) by one (A4)-step (adding u2u3) and one (A3)-step (adding u3u4u1). This
yields a construction sequence free from (B3), which implies (as argued above) that G is
bipartite and G 6→ ~C. Similarly, if Hi contains a new 4-cycle which avoids u2u3, then we may
replace the i-th step by one (A3)-step (adding u3u4u1) and one (A4)-step (adding u2u3), and
also conclude that G 6→ ~C.

4 Proof of the main theorem (Theorem 2)

Theorem 8 establishes the case t = 3 of Theorem 2. We may therefore suppose ~H is either an
acyclic orientation of H ∈ {Kt, Ct}, with t > 4, or that ~H is an anti-directed orientation of a
strictly 2-balanced graph H with δ(H) > 2. In each one of these cases ~H is 2-Ramsey-avoidable
(by Remark 6), so (by Theorems 1 and 3 together with Lemmas 5 and 7) it suffices to show
that G 6→ ~H whenever m(G) < m2(H). Indeed, this follows by Theorem 12 (when H is
complete), Theorems 17 and 23 (when H is a cycle) and by Corollary 14 otherwise.

5 Concluding remarks

We have shown that if ~H is an oriented clique or cycle, then the threshold for G(n, p)→ ~H

is n−1/m2( ~H) if and only if ~H 6= TT3. Interestingly, TT3 is not the only exception. For
instance, let ~G be the digraph obtained from an oriented tree ~T of order n1/2−ε, for any fixed
ε > 0, by identifying with each v ∈ V (~T ) the source of a distinct copy ~Hv of TT3. It can be
shown that p ~G � n−1/m2( ~G) = n−1/m2(TT3). In a forthcoming paper, the authors describe a
richer class of digraphs with this property.
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