Orientation Ramsey thresholds for cycles and cliques¹

Gabriel Ferreira Barros Bruno Pasqualotto Cavalar² Yoshiharu Kohayakawa³ Tássio Naia⁴

Abstract. If G is a graph and \vec{H} is an oriented graph, we write $G \to \vec{H}$ to say that every orientation of the edges of G contains \vec{H} as a subdigraph. We consider the case in which G = G(n, p), the binomial random graph. We determine the threshold $p_{\vec{H}} = p_{\vec{H}}(n)$ for the property $G(n, p) \to \vec{H}$ for the cases in which \vec{H} is an acyclic orientation of a complete graph or of a cycle.

A Ramsey-type property. For each (undirected) graph G and oriented graph \vec{H} , we write $G \to \vec{H}$ to mean that every orientation of G contains a copy of \vec{H} ; the orientation Ramsey number $\vec{R}(\vec{H})$ is $\inf\{n : K_n \to \vec{H}\}$. This parameter has been investigated in a number of articles [8, 12–16, 19–25, 29–32, among others], most of which concern a conjecture of Sumner [32]. Summer's universal tournament conjecture states that $\vec{R}(\vec{T}) \leq 2e(\vec{T})$ for every oriented tree \vec{T} ; this has been confirmed for all sufficiently large trees by Kühn, Mycroft and Osthus [19, 20]; see also [1, 26].

Thresholds. Thresholds for Ramsey-type properties are widely studied as well (see, e.g., [17, 27] and the many references therein). We call $p_{\vec{H}} = p_{\vec{H}}(n)$ a *threshold* for $G(n, p) \to \vec{H}$ if

orientation Ramsey

numbei

$$\mathbb{P}\big[\,G(n,p)\to\vec{H}\,\big] = \begin{cases} 0 & \text{if } p \ll p_{\vec{H}} \\ 1 & \text{if } p \gg p_{\vec{H}}, \end{cases}$$

where $a \ll b$ (or, equivalently, $b \gg a$) means $\lim_{n\to\infty} a_n/b_n \to 0$. As is customary, we speak of 'the threshold $p_{\vec{H}}$ ', since $p_{\vec{H}}$ is unique within constant factors. If \vec{H} is acyclic, then the property $G(n,p) \to \vec{H}$ is non-trivial and monotone, and hence [3] it has a threshold $p_{\vec{H}} = p_{\vec{H}}(n)$. The regularity method can be used to give an upper bound for $p_{\vec{H}} = p_{\vec{H}}(n)$ (it suffices to combine ideas from [17, Section 8.5] and, say, [10]). For an alternative approach giving the same upper bound, based on the methods of [28], see [7]. For any graph or digraph G, the maximum density and (when $v(G) \ge 3$) the maximum 2-density of G are, respectively,

$$m(G) \coloneqq \max_{\substack{J \subseteq G \\ v(J) \ge 1}} \frac{e(J)}{v(J)} \quad \text{and} \quad m_2(G) \coloneqq \max_{\substack{J \subseteq G \\ v(J) \ge 3}} \frac{e(J) - 1}{v(J) - 2}.$$

Theorem 1. Let \vec{H} be an acyclically oriented graph. There exists a constant $C = C(\vec{H})$ such that, if $p \ge Cn^{-1/m_2(\vec{H})}$, then $\mathbb{P}[G(n,p) \to \vec{H}] \to 1$ as $n \to \infty$.

Contribution. We determine the orientation Ramsey threshold for all acyclic orientations of the complete graph K_t and cycle C_t , for each $t \ge 3$. We also determine the threshold for certain oriented bipartite graphs. We call a digraph \vec{H} anti-directed if each vertex in \vec{H} has either no inneighbours or no outneighbours (so \vec{G} is bipartite and all arcs point to the same part).

anti-directed

threshold

max. density

max. 2-density

¹This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.

²FAPESP 2018/05557-7. Part of this work was completed while he was a master's student at IME-USP.

³CNPq (311412/2018-1, 423833/2018-9) and FAPESP (2018/04876-1).

⁴FAPESP 2019/04375-5 and 2018/04876-1. FAPESP is the São Paulo Research Foundation. CNPq is the National Council for Scientific and Technological Development of Brazil.

Theorem 2. If \vec{H} is an acyclic orientation of K_t or C_t , then

$$p_{\vec{H}}(n) = \begin{cases} n^{-1/m(K_4)} & \text{if } t = 3\\ n^{-1/m_2(\vec{H})} & \text{if } t \ge 4 \end{cases}$$

is the threshold for $G(n, p) \to \vec{H}$. Moreover, if \vec{H} is an anti-directed orientation of a strictly 2-balanced graph H such that $\delta(H) \ge 2$ and $m_2(H) - \lfloor m_2(H) \rfloor \le 1/2$, then

$$p_{\vec{n}}(n) = n^{-1/m_2(\vec{H})}$$

is the threshold for $G(n, p) \to \vec{H}$.

In view of Theorem 1, to prove Theorem 2 (except for the case in which \vec{H} is an orientation of K_3), it suffices to prove the so called 0-statement, that is, it is enough to show that if $p \ll n^{-1/m_2(\vec{H})}$, then $G(n,p) \to \vec{H}$ holds with vanishing probability. Our proof of this 0-statement uses recent advances in the study of Ramsey-type thresholds: a framework developed by Nenadov, Person, Škorić and Steger [27] (outlined below) and structural results of Barros, Cavalar, Mota and Parczyk [2].

We need only a simplified version of the results in [27] (see Definitions 10 and 11 in [27]). Let G and H be graphs, where $\delta(H) > 1$. An edge $e \in E(G)$ is *H*-closed if e belongs to at least two copies of H in G. A copy of H in G is *H*-closed if at least three of its edges are *H*-closed, and G is *H*-closed if all vertices and edges of G lie in copies of H and every copy of H in G is *H*-closed. Finally, G is an *H*-block if G is *H*-closed and for each proper non-empty subset $E' \subsetneq E(G)$ there exists a copy H' of H in G such that $E(H') \cap E' \neq \emptyset$ and $E(H') \setminus E' \neq \emptyset$.

H-closed edge H-closed copy H-closed graph H-block

Theorem 3 – [27, Corollary 13]. Let H be a strictly 2-balanced graph with at least 3 edges such that H is not a matching. If $p \ll n^{-1/m_2(H)}$, then with high probability every H-block Fof G(n,p) satisfies $m(F) < m_2(H)$.

Since complete graphs and cycles are strictly 2-balanced, Theorem 3 reduces the proof of the 0-statement of the case $t \ge 4$ in Theorem 2 to showing that $G \not\rightarrow \vec{H}$ for every graph Gwhose H-blocks have maximum density strictly below $m_2(H)$. This is achieved for cycles using results from [2], whereas for tournaments and anti-directed graphs, as well as for the case t = 3 of Theorem 2 we use ad hoc methods (see Theorems 8, 12 and 13). Theorem 2 is proved in Section 4.

Remark. Other Ramsey-type properties for directed graphs include requiring copies to be induced [4,9,18] and allowing colourings plus orientations [5,6].

1 Auxiliary definitions and results

We follow standard notation (see, e.g., [11,17]). A k-path is a path with k vertices; k-cycles are defined similarly. A directed k-path is an oriented path $v_1 \to \cdots \to v_k$. A directed k-cycle is oriented as $v_1 \to \cdots \to v_k \to v_1$. Let \vec{G} be an oriented graph. A maximal directed path in \vec{G} is called a block. A path or block is long if it has at least 3 edges. The following exercise is left to the reader.

directed path or cycle

block, long

Lemma 4. If G is a graph, then $\delta(J) \leq 2m(G)$ for each $J \subseteq G$ (i.e., G is 2m(G)-degenerate).

Let G and H be graphs, and let \vec{H} be an orientation of H. We denote by $\mathcal{C}_H(G)$ the edge intersection graph of H in G, whose vertices correspond to copies of H in G and whose edges join distinct copies which share a common edge in G. An H-component is a subgraph of G formed by the union of all copies of H in some connected component of $\mathcal{C}_H(G)$. Note that $G \not\Rightarrow \vec{H}$ if and only if each H-component of G admits an \vec{H} -free orientation. Let G and H be graphs and let C be an H-component of G. If H_1 is an arbitrary copy of H in C, then there exists a sequence $H_1 \subseteq H_2 \subseteq \cdots \subseteq H_t = C$ with the following property. For each $i \in [t-1]$, there exists a copy H' of H such that $H' \not\subseteq H_i$, $E(H') \cap E(H_i) \neq \emptyset$ and $H_{i+1} = H_i \cup H'$. We say that (H_1, \ldots, H_t) constructs C, and call (H_1, \ldots, H_t) a construction sequence of C. For each $i \in [t-1]$, we say that a vertex or edge of H_{i+1} is new in H_{i+1} if it is not contained in H_i , and say that $F \subseteq H_{i+1}$ is new (in H_{i+1}) if F contains a new edge in H_{i+1} . Moreover, if H'_1 is a copy of H in H_i , then there exists a construction sequence (H'_1, \ldots, H'_j) of H_i starting with H'_1 , and hence a construction sequence $(H'_1, \ldots, H'_j, H_{i+1}, \ldots, H_t)$ of C.

Let G be a graph and suppose $E \subseteq E(G)$. We write G[E] for the subgraph of G consisting of the edges in E and the vertices in G which are incident with those edges. We call H strictly 2-balanced if $m_2(F) < m_2(H)$ for each proper subgraph $F \subseteq H$.

Lemma 5 – [27, Lemma 14]. Let G and H be graphs. If G is H-closed, then E(G) admits a partition $\{E_1, \ldots, E_k\}$ such that $G[E_1], \ldots, G[E_k]$ are H-blocks and each copy of H in G lies entirely in one of these H-blocks.

Let \vec{H} be an orientation of a graph H. We say \vec{H} is 2-Ramsey-avoidable if for all 2-Ra $e, f \in E(H)$, every orientation of e, f can be extended to an \vec{H} -free orientation of H.

Remark 6. Let $k \ge 4$. If \vec{H} is either an orientation of C_k , a transitive tournament TT_k , or an anti-directed orientation of a graph H with $\delta(H) > 1$, then \vec{H} is 2-Ramsey-avoidable.

Proof. Let H be the underlying graph of \vec{H} . In each of the following cases, let $e, f \in E(H)$ be chosen and oriented arbitrarily; it suffices to complete an \vec{H} -free orientation of H.

Suppose \vec{H} is an orientation of C_k . Note that we can complete the orientation of e, f to orientations $\vec{C_1}, \vec{C_2}$ of C_k such that $\vec{C_1}$ has a block of length at least $k - 1 \ge 3$ and $\vec{C_2}$ has no long block. If \vec{H} has a block of length at least k - 1, then we pick $\vec{C_2}$, else we pick $\vec{C_1}$.

If $\vec{H} \simeq \text{TT}_k$, we complete the orientation of K_k so that it contains a directed triangle (some triangle in H has at most one edge already oriented).

In the remaining case (anti-directed graph), we complete the orientation of H forming a directed 3-path (since $k \ge 4$, some $v \in V(H)$ is incident with precisely one of e, f, while $\delta(H) > 1$ implies some other edge incident with v has not been oriented).

Remark 6 will be used with the next lemma and Theorem 3 to establish our main results. Lemma 7. Let G be a graph and let \vec{H} be 2-Ramsey-avoidable. If $B \not\rightarrow \vec{H}$ for each H-block B of G, then $G \not\rightarrow \vec{H}$.

Proof. Let H be the underlying graph of \vec{H} . To show that G admits an \vec{H} -free orientation, we may assume each edge of G lies in a copy of H (the orientation of other edges is irrelevant).

Let $G_0 = G$ and, for each i = 1, 2, ... proceed as follows. If G_{i-1} is *H*-closed, then stop, set $m \coloneqq i-1$ and $F \coloneqq G_m$. Otherwise, some copy F_i of *H* in G_{i-1} has at most two *H*-closed edges in G_{i-1} . Form G_i by deleting from G_{i-1} each non-*H*-closed edge of F_i , and then each isolated vertex. Note that $G_{i-1} = G_i \cup F_i$ and that each $e \in E(G_i)$ lies in some copy of *H*.

H-component

constructs, construction seq. new vertex or edge

new graph

G[E]

strictly 2-balanced

2-Ramsey-avoidable

Note that F is H-closed. By Lemma 5, F can be partitioned into a collection \mathcal{B} of edgedisjoint H-blocks such that each copy of H in F lies entirely in some $B \in \mathcal{B}$. By assumption, $B \not\rightarrow \vec{H}$ for each $B \in \mathcal{B}$, so F admits a \vec{H} -free orientation \vec{F} (the disjoint union of \vec{H} -free orientations of each $B \in \mathcal{B}$).

Finally, we extend $\vec{G}_m \coloneqq \vec{F}$ to an \vec{H} -free orientation \vec{G}_0 of G. For each $i = m, m-1, \ldots, 1$, let \vec{G}_{i-1} extend \vec{G}_i by orienting the edges $E(F_i) \setminus E(G_i)$ so that F_i is \vec{H} -free (this is possible because \vec{H} is 2-Ramsey-avoidable). Clearly, no copy of H in G induces \vec{H} in \vec{G} , so $G \not\rightarrow \vec{H}$. \Box

2 Transitive triangles

Let TT_3 be the transitive triangle. In this section we show that the upper bound for $p_{TT_3}(n)$ given in Theorem 1 is not tight.

Theorem 8. The function $p_{TT_3}(n) = n^{-1/m(K_4)}$ is the threshold for $G(n, p) \to TT_3$.

Let W_5 be the graph we obtain by adding to C_4 a new universal vertex.

Proposition 9. If G is a K_3 -component such that $uw, vw \in E(G)$ and $uv \notin E(G)$, then there exists $J \subseteq G$ such that either v(J) = 6 and e(J) = 9 or J + uv is isomorphic to K_4 or W_5 .

Proof. Let $F_1 \cdots F_s$ be a shortest path in $\mathcal{C}_{K_3}(G)$ such that $uw \in E(F_1)$ and $vw \in E(F_s)$. It suffices to show the following.

- If s = 2, then $J \coloneqq F_1 \cup \cdots \cup F_s$ satisfies $J + uv \simeq K_4$.
- If s = 3, then $J := F_1 \cup \cdots \cup F_s$ satisfies $J + uv \simeq W_5$.
- If $s \ge 4$, then $J := F_1 \cup F_2 \cup F_3 \cup F_4$ satisfies v(J) = 6 and e(J) = 9.

It is simple to check that the following hold by the choice of $F_1 \cdots F_s$.

- (i) $|E(F_i) \cap E(F_{i-1})| = 1$ for all $i \in [s] \setminus \{1\}$;
- (ii) $|E(F_i) \cap \bigcup_{j < i} E(F_j)| = 1$ for each $i \in [s] \setminus \{1\}$; and
- (iii) Each $e \in E(G)$ belongs to at most two triangles in $F_1 \cup \cdots \cup F_s$.

The statement for s = 2 follows by (i) since $F_1 \simeq K_3$. If s = 3, then v(J) = 5 (by (i) and (ii)), so $J + uv \simeq W_5$. By (i), for each $i \in [s] \setminus \{1\}$ we have $|V(F_i) \setminus \bigcup_{j \in [i-1]} V(F_j)| \leq 1$, so $v(F_1 \cup \cdots \cup F_s) \leq s + 2$. Moreover, (ii) implies $e(F_i) = 2i + 1$ for each $i \in [s]$. If s = 4, then e(J) = 9. Clearly $5 \leq v(J) \leq 6$; note that $v(J) \neq 5$ as otherwise there exists $e \in E(J)$ which belongs to three distinct triangles in J, contradicting (iii).

Let (H_1, \ldots, H_t) be a K_3 -component. For each $i \in [t-1]$, either (A) there are two new edges in H_{i+1} and one new vertex in H_{i+1} ; (B) there are two new edges in H_{i+1} and $V(H_{i+1}) = V(H_i)$; or (C) there is exactly one new edge in H_{i+1} and $V(H_{i+1}) = V(H_i)$. A graph H is *AB*-constructible if no construction sequence of a K_3 -component of H contains a step of type (C).

Proposition 10. If a graph H is AB-constructible, then $H \not\rightarrow TT_3$.

Proof. We may assume that H is itself a single K_3 -component (H_1, \ldots, H_t) , as edges which do not belong to a copy of K_3 in H can be arbitrarily oriented and distinct K_3 -components may be independently oriented. First note that, at each step, exactly one new copy of K_3 is

AB-constructible

added. This is clearly true for steps of type (A). Moreover, it is easy to see that if $H_{\alpha+1}$ is created by a step of type (B) and the new edges create two distinct copies of K_3 in $H_{\alpha+1}$, then H admits a construction sequence with a step of type (C), a contradiction. We orient H_1 forming a directed triangle and, for each $\alpha \in [t-1]$, orient the two new edges in $H_{\alpha+1}$ so as to form a new directed triangle. The resulting orientation is TT₃-free.

Our final ingredient is the following classical result (see, e.g., [17]). Theorem 11 - [17]. Let H be a fixed graph. Then

$$\lim_{n \to \infty} \mathbb{P}[H \subseteq G(n, p)] = \begin{cases} 1, \text{ if } p \gg n^{-1/m(H)}, \\ 0, \text{ if } p \ll n^{-1/m(H)}. \end{cases}$$

Proof of Theorem 8. If $p \gg n^{-2/3}$, then $K_4 \subseteq G(n, p)$ with high probability by Theorem 11; hence $G(n, p) \to TT_3$ with high probability (as $K_4 \to TT_3$).

Now suppose that $p \ll n^{-2/3}$. Let \mathcal{E} be the event that G(n, p) is not AB-constructible. By Proposition 10, it suffices to show that $\mathbb{P}[\mathcal{E}] = o(1)$. Let \mathcal{J} be set of all nonisomorphic graphs of order 6 and size 9. By Proposition 9, every K_3 -component of G(n, p) which is not AB-constructible contains either K_4 , W_5 or some $J \in \mathcal{J}$. Using Markov's inequality, we have

$$\mathbb{P}[\mathcal{E}] \leqslant \mathbb{P}[K_4 \subseteq G(n,p)] + \mathbb{P}[W_5 \subseteq G(n,p)] + \sum_{J \in \mathcal{J}} \mathbb{P}[J \subseteq G(n,p)]$$
$$\leqslant \sum_{J \in \{K_4, W_5\} \cup \mathcal{J}} \mathbb{E}\left[\left| \{J' \subseteq G(n,p) : J' \simeq J\} \right| \right] \leqslant n^4 p^6 + n^5 p^8 + |\mathcal{J}| n^6 p^9.$$

Since $p \ll n^{-2/3}$ and $|\mathcal{J}| = \Theta(1)$, we have $\mathbb{P}[\mathcal{E}] = o(1)$.

3 Graphs with low maximum 2-density

The following sections show that $G \not\rightarrow \vec{H}$ for some classes of oriented graphs, when \vec{H} has at least four vertices and $m(G) < m_2(\vec{H})$.

3.1 Transitive Tournaments

We denote a tournament on k vertices by T_k , writing TT_k if it is transitive.

Theorem 12. If $k \ge 4$ and G is a graph with $m(G) < m_2(K_k)$, then $G \not\to TT_k$.

Proof. The proof is by induction on n := v(G). The case n = 1 is trivial. Assume $n \ge 2$ and that $G' \not\rightarrow \operatorname{TT}_k$ whenever $m(G') < m_2(K_k)$ and v(G') < n. By Lemma 4, $\deg_G(u) \le k$ for some $u \in V(G)$. Let G' = G - u, so $m(G') < m_2(K_k)$ and G' admits a TT₃-free orientation \vec{G} . We shall extend \vec{G} to an orientation of G such that each T_k containing u has a directed cycle.

We may assume that u lies in some copy of K_k , say K; so $\deg(u) \ge k - 1$. If K is the only copy of K_k containing u, then choose two vertices $v, w \in V(K - u)$ and orient the edges uv and uw so that $\{u, v, w\}$ induces a directed triangle. Otherwise let K' be some K_k containing u other than K. Hence we must have $\deg(u) = k$. Let v be the unique vertex in $V(K) \setminus V(K')$, and w be the unique vertex in $V(K') \setminus V(K)$. Since $k - 2 \ge 2$, there are at least two vertices x and y in $V(K \cap K') \setminus \{u\}$. Orient the edges uv, ux, uw and uy so that each of $\{u, v, x\}$ and $\{u, w, y\}$ induces a directed triangle. Since every K_k containing u has at least three vertices in $\{v, w, x, y\}$, the partial orientation of each K_k contains a directed cycle. Any remaining un-oriented edge may be arbitrarily oriented.

 T_k, TT_k

3.2 Anti-directed digraphs

We now turn to anti-directed orientations of $K_{t,t}$, C_{2t} and other bipartite graphs.

Theorem 13. Let G and H be graphs, where $\delta(H) \ge 2$. If \vec{H} is an anti-directed orientation of H and $m(G) < \delta(H) - 1/2$, then $G \not\rightarrow \vec{H}$.

Proof. We proceed by induction on v(G). If $v(G) \leq 2$, then $G \not\rightarrow \vec{H}$. Let $\delta := \delta(H)$. By Lemma 4, there exists $v \in V(G)$ with $\deg(v) = \delta(G) \leq 2\delta - 2$. By induction, $G - v \not\rightarrow \vec{H}$. Fix an \vec{H} -free orientation of G - v, orient $\lfloor \delta(G)/2 \rfloor$ edges incident with v towards v and the remaining $\lceil \delta(G)/2 \rceil$ edges away from v. Note that any copy of H in G containing v necessarily has two edges incident with v oriented in opposite directions, since $\delta(H) \geq 2$ and $\lceil \delta(G)/2 \rceil \leq \delta(H) - 1$.

Corollary 14. Let G and H be graphs such that H is strictly 2-balanced, $\delta(H) \ge 2$ and $m_2(H) - \lfloor m_2(H) \rfloor \le 1/2$. If \vec{H} is an anti-directed orientation of H and $m(G) < m_2(H)$, then $G \not\to \vec{H}$.

Proof. We have (e(H - u) - 1)/(v(H - u) - 2) < (e(H) - 1)/(v(H) - 2) for all $u \in V(H)$, since H is strictly 2-balanced. It follows that $m_2(H) < \delta(H)$, so $\lfloor m_2(H) \rfloor + 1 \leq \delta(H)$. Since $m(G) < m_2(H) \leq \lfloor m_2(H) \rfloor + 1/2 \leq \delta(H) - 1/2$, we can apply Theorem 13. \Box

3.3 Cycles

We now consider orientations of ℓ -cycles, where $\ell \ge 4$. The main results are Theorems 17 and 23, which deal with the cases $\ell \ge 5$ and $\ell = 4$, respectively. (We also include a simple proof for the case $\ell \ge 8$, see Theorem 16.)

Lemma 15. Let \vec{C} be an oriented cycle with a long block. If G is a graph and $m(G) < m_2(\vec{C})$, then $G \not\rightarrow \vec{C}$.

Proof. Note that $v(\vec{C}) \ge 4$, so $m_2(\vec{C}) \le m_2(C_4) = 3/2$. By Lemma 4, G is 2-degenerate, hence $\chi(G) \le 3$. Fix a proper colouring $c: V(G) \to \{1, 2, 3\}$, and orient each edge towards its endvertex with the largest colour. This orientation contains no long block, so $G \not\to \vec{C}$. \Box

While the next result is superseded by Theorem 17, its proof is much simpler.

Theorem 16. Let \vec{C} be an orientation of C_{ℓ} , where $\ell \ge 8$. If G is a graph and $m(G) < m_2(\vec{C})$, then $G \not\rightarrow \vec{C}$.

Proof. Let $\ell = e(\vec{C})$. If \vec{C} contains a long block, then the theorem holds by Lemma 15, so we assume that the longest block of \vec{C} has length at most 2.

Suppose, looking for a contradiction, that the statement is false. Without loss of generality let G be a minimal counterexample (with respect to the subgraph relation). That is, $m(G) < m_2(\vec{C})$ and $G \to \vec{C}$, and $G' \not\to \vec{C}$ for each proper subgraph $G' \subseteq G$. Let W be the set of vertices in G with degree 2.

If there exists an edge uv joining vertices $u, v \in W$, then (since G is minimal) uv lies in an ℓ -cycle. Moreover, $G \setminus \{u, v\} \not\rightarrow \vec{C}$; so there exists an orientation \vec{G} of $G \setminus \{u, v\}$ which avoids \vec{C} . Note that each ℓ -cycle in G is either completely oriented in \vec{G} (while avoiding \vec{C}), or contains the three (not yet oriented) edges incident with either u or v. We extend \vec{G} by orienting these edges so that they form a directed path or cycle. Since, by assumption, the length of any block of \vec{C} is at most two, it follows that \vec{G} is an orientation of G avoiding \vec{C} , a contradiction.

Hence no edge of G lies in W. By the minimality of G, every vertex $v \in V(G)$ lies an ℓ -cycle, so $\delta(G) \ge 2$. Let $n \coloneqq v(G)$. Since each vertex of W has degree 2,

$$2|W| + 3(n - |W|) \leq \sum_{v \in V(G)} d(v) = 2e(G) \leq 2m(G)n < 2n\frac{\ell - 1}{\ell - 2}.$$

It follows that $|W| \ge n(1-2/(\ell-2))$ and

$$2\left(1-\frac{2}{\ell-2}\right)n \leqslant 2|W| \leqslant e(G) \leqslant m(G)n = \left(1+\frac{1}{\ell-2}\right)n,$$

which is a contradiction for $\ell \ge 8$.

3.3.1Cycles of length at least 5

We now generalise Theorem 16 for oriented cycles with at least 5 vertices.

Theorem 17. Let \vec{C} be an orientation of C_{ℓ} , where $\ell \ge 5$. If G is a graph and $m(G) < m_2(C_{\ell})$, then $G \not\rightarrow \vec{C}$.

Barros, Cavalar, Mota and Parczyk [2] obtained a detailed characterisation of the construction sequences of C_{ℓ} -components; we state their result below in a slightly modified form (the original has $\ell \ge 5$) in place of $\ell \ge 4$, but the same proof holds).

Proposition 18 – [2, **Proposition 7**]. Let $\ell \ge 4$ be an integer, G be a graph with $m(G) < m_2(C_\ell)$ and (H_1, \ldots, H_t) be a C_{ℓ} -component of G. The following holds for every $1 \leq i \leq t-1$. If C is an ℓ -cycle added to H_i to form H_{i+1} , then there exists a labelling $C = u_1 u_2 \cdots u_\ell u_1$ such that exactly one of the following occurs, where $2 \leq j \leq \ell$ and $3 \leq k \leq \ell - 1$.

 $(A_j) \ u_1 u_2 \cdots u_j$ is a *j*-path in H_i and $u_{j+1}, \ldots, u_\ell \notin V(H_i)$;

 $(B_k) \ u_1 u_2 \in E(H_i), \ u_2 u_3 \notin E(H_i), \ \{u_3, \dots, u_\ell\} \setminus \{u_k\} \subseteq V(H_{i+1}) \setminus V(H_i), \ u_k \in V(H_i).$

If (H_1, \ldots, H_t) constructs a C_{ℓ} -component, then for each $i \in [t-1]$ the new edges in H_{i+1} form a path (by Proposition 18). We denote this path by Q_i , write x_i, z_i for its endvertices and y_i for the sole internal vertex of Q_i in H_i , if it exists. (Again by Proposition 18, $V(Q_i) \cap V(H_i)$) is either $\{x_i, z_i\}$ or $\{x_i, y_i, z_i\}$.) We write type(i) to denote the operation $((A_i)$ or (B_k) , type(i)where $2 \leq j \leq \ell$ and $3 \leq k \leq \ell - 1$) which constructs H_{i+1} from H_i .

Proposition 19–[2]. Let $\ell \ge 5$. If $G = (H_1, \ldots, H_t)$ is a C_ℓ -component and $m(G) < m_2(C_\ell)$, then for all distinct $i, j \in [t-1]$ and each $k \in \{3, \ldots, \ell-1\}$ we have the following.

- If $type(i) = (A_{\ell})$, then every other step is of type (A_2) or (A_3) .
- If type $(i) = (A_{\ell-1})$, then every other step is of type (A_2) , (A_3) or $(A_{\ell-1})$.
- If $type(i) = type(j) = (A_{\ell-1})$, then $\ell = 5$ and every other step is of type (A_2) .
- If $type(i) = (B_k)$, then every other step is of type (A_2) .

We also use the following results.

Remark 20. Let G be a C_5 -component. If G can be constructed solely by steps of type $(A_2)_{ij}$ then every cycle in G has length congruent to 2 (mod 3).

 Q_i, x_i, z_i

Proof. The proof is by induction on $i \in [t]$ where (H_1, \ldots, H_t) is the construction sequence of G. The base holds because H_1 is a 5-cycle. Now suppose every cycle in H_i has length congruent to 2 (mod 3), where $i \ge 1$. We form H_{i+1} by a step of type (A_2) , i.e., by adding an 5-path P joining the endvertices of an edge uv of H_i . Any new cycle C is formed by an uv-path P' in H_i , together with P. If P' = uv, then C has length 5, and the claim holds. On the other hand, if $uv \notin E(P')$, then $C = P' \cup P$, but since $C' \coloneqq P' + uv$ is a cycle in H_i , it follows that $e(C') \equiv 2 \pmod{3}$, so $e(C) = e(P') + e(P) = e(C') - 1 + e(P) \equiv 2 \pmod{3}$. \Box

Remark 21. Let G be a C_5 -component. If G is constructed solely by steps of the types (A_2) and (A_3) , then G contains no C_3 and no C_4 .

Proof. Let (H_1, \ldots, H_t) be a construction sequence of G. Note that $C_3 \not\subseteq G$: indeed, $H_1 \simeq C_5$, so $C_3 \not\subseteq H_1$; moreover, for each $i \in [t-1]$ we have $H_{i+1} = H_i \cup Q_i$ and Q_i is a path of length at least 3 which is internally disjoint from H_i , so $C_3 \not\subseteq H_{i+1}$.

Similarly $C_4 \nsubseteq H_1$, and if $H_i \cup Q_i$ contains a C_4 , then type $(i) = (A_3)$, so x_i and z_i are connected by a path $x_i w z_i$ in H_i (which, together with Q_i , creates a C_5). But then $x_i w z_i x_i$ is a C_3 in G, a contradiction.

We are now in position to prove the main result of this section.

Proof of Theorem 17. Let G be a graph with $m(G) < (\ell - 1)/(\ell - 2)$, where $\ell \ge 5$, and let \vec{C} be an oriented ℓ -cycle. By Lemma 15, if \vec{C} contains a long block, then $G \not\rightarrow \vec{C}$, so we may assume that every block of \vec{C} has length at most two. We will show that the C_{ℓ} -components of G admit an orientation in which every ℓ -cycle has a long block. It suffices to consider one such component F, as C_{ℓ} -components can be independently oriented (they do not share edges) and remaining edges can be arbitrarily oriented (each ℓ -cycle in G lies in some C_{ℓ} -component).

Let $F = (H_1, \ldots, H_t)$ be a C_{ℓ} -component of G. Hence, for all $i \in [t-1]$, each ℓ -cycle $C \subseteq H_{i+1}$ which did not exist in H_i contains either the path $x_i Q_i y_i$ or $y_i Q_i z_i$ (if Q_i intersects H_i in three vertices) or the whole path Q_i .

--→ Case 0. For each $i \in [t-1]$ we have type $(i) \notin \{(A_{\ell-1}), (A_{\ell}), (B_3), \dots, (B_{\ell-1})\}$.

For each $i \in [t-1]$, every new cycle in H_{i+1} contains Q_i and $e(Q_i) \ge 3$. We construct an orientation of F which avoids \vec{C} as follows. Fix a directed orientation of H_1 , and for each $i \in [t-1]$ fix a directed orientation of Q_i . Clearly H_1 does not contain \vec{C} , and for each $i \in [t-1]$ every new ℓ -cycle in H_{i+1} contains a long block (since Q_i is directed), so $F \not\rightarrow \vec{C}$.

--- Case 1. There is precisely one index $i \in [t-1]$ such that type $(i) = (A_{\ell-1})$.

Let $Q_i = x_i v z_i$ and let C be an ℓ -cycle in H_i containing z_i . We may assume that $H_1 = C$. Note that $e(Q_j) \ge 3$ for each $j \in [t-1] \setminus \{i\}$ since (by Proposition 19) type $(j) \in \{(A_2), (A_3)\}$. We orient F as follows.

Firstly, orient H_1 so that z_i is the origin of a long block, and so that z_i has no inneighbours in H_1 . Secondly, for each $j \in [i-1]$, orient Q_j forming a directed path, while ensuring that z_i has no inneighbours in H_{j+1} . (This is possible since, if Q_j contains z_i , then z_i is an endvertex of Q_j .) Orient Q_i as a directed path from x_i to z_i . Finally, for each $j \in [t-1] \setminus [i]$ orient Q_j so as to form a directed path.

Clearly, the orientation of H_1 avoids \vec{C} . Since $e(Q_j) \ge 3$ for each $j \in [t-1] \setminus \{i\}$, each new ℓ -cycle in H_{j+1} has a long block (as it contains Q_j). Finally, every new cycle C in H_{i+1} must contain Q_i as well as some edge $z_i z \in E(H_i)$. As z_i has no inneighbours in H_i , the edge

Figure 1: Orientations in Case 2. Left: orientation of H_1 ; note H_1 has a long block starting from z_i (since $\ell \ge 5$). Centre and right: orientations of Q_α (where $\alpha \ne i$); in the figure, $a \notin \{z_i\} \cup N, r \in N$ and $q \in \{z_i\} \cup N$, where $N \coloneqq N_{H_i}(z_i)$.

 $z_i z$ extends the directed path $x_i \to v \to z_i$, forming a long block in C. This shows that every ℓ -cycle has a long block, so $F \not\to \vec{C}$.

--- Case 2. There exists $i \in [t-1]$ such that $type(i) = (A_{\ell})$.

Let $\alpha \in [t-1]$. By Proposition 19, if $\alpha \neq i$, then type $(\alpha) \in \{(A_2), (A_3)\}$, so $e(Q_\alpha) \geq 3$. We may assume that H_1 is an ℓ -cycle in H_i containing z_i . We orient the edges of F as follows. Let N be the set of neighbours of z_i in H_i .

First orient H_1 with two blocks, each with length at least 2 and origin z_i (see Figure 1). Next, for each $j \in [i-1]$, we do the following. If no endvertex of Q_j lies in $\{z_i\} \cup N$, fix an arbitrary directed orientation of Q_j . If a single endvertex q of Q_j lies in $\{z_i\} \cup N$, then orient Q_j to form a directed path with origin q. If both endvertices q, r of Q_j lie in $\{z_i\} \cup N$, where we assume $r \neq z_i$, then orient Q_j so that it has precisely two blocks, starting from q and r, and so that the latter has precisely one arc. Finally, orient $x_i \to z_i$, and for each $j \in [t-1] \setminus [i]$ fix a directed orientation of Q_j (see Figure 1).

Let us check that every ℓ -cycle in F has a long block. This is clearly true in H_1 . Now suppose $\alpha \in [t-1] \setminus \{i\}$. Note that each new cycle in $H_{\alpha+1}$ contains Q_{α} and that $e(Q_{\alpha}) \ge 3$ since type $(\alpha) \in \{(A_2), (A_3)\}$. Moreover, Q_{α} has a block of length at least $e(Q_{\alpha}) - 1$ if $\alpha < i$, and a block of length at least $e(Q_{\alpha})$ if $\alpha > i$. Hence, if $e(Q_{\alpha}) \ge 4$ or if $\alpha > i$, then Q_{α} has a long block. So we may suppose that $\ell = 5$, $e(Q_{\alpha}) = 3$ and $\alpha \in [i-1]$. Hence type $(\alpha) = (A_3)$ and there is precisely one new 5-cycle C in $H_{\alpha+1}$ (as otherwise two 3-paths joining x_{α} and z_{α} , would form a 4-cycle in H_{α} , contradicting Remark 21). If $|\{x_{\alpha}, z_{\alpha}\} \cap (\{z_i\} \cup N)| \le 1$, then C has a long block containing Q_{α} . Otherwise, $\{x_{\alpha}, z_{\alpha}\} \subseteq \{z_i\} \cup N$. Note that $x_{\alpha}z_{\alpha} \subseteq H_{\alpha}$ for some $z \in V(H_{\alpha})$ since $C \subseteq H_{\alpha+1}$; if $z_i \in \{x_{\alpha}, z_{\alpha}\}$, then $x_{\alpha}z_{\alpha} \in E(H_i)$, so $x_{\alpha}z_{\alpha}z_{\alpha}z_{\alpha}$ is a triangle in H_i , contradicting Remark 21. Therefore $z_i \notin \{x_{\alpha}, z_{\alpha}\}$, so $C = Q_{\alpha} \cup x_{\alpha}z_i z_{\alpha}$ (since $z \neq z_i$ implies $x_{\alpha}z_{\alpha}z_i x_{\alpha}$ is a 4-cycle in H_i , which contradicts Remark 21). Since Q_{α} has a directed 3-path from either x_{α} or z_{α} to a vertex $w \in V(Q_{\alpha}) \setminus V(H_{\alpha})$, and both x_{α} and z_{α}

To conclude Case 2, we consider the new ℓ -cycles in H_{i+1} . Each of these cycles contains the arc $x_i \to z_i$, so it suffices to show that every 3-path $z_i z w$ in H_i is directed from z_i to w. Note that for each $j \in [i-1]$ and each pair of distinct new edges e_1, e_2 in H_{j+1} , there exist distinct new vertices $v_1 \in e_1, v_2 \in e_2$ in H_{j+1} . It follows that either $z_i z w \subseteq H_1$; or $z w \subseteq Q_\alpha$ and z is an endvertex of Q_α for some $\alpha \in [i-1]$; or $z_i z w \subseteq Q_\beta$ and z_i is an endvertex of Q_β for some $\beta \in [i-1]$. In each of these cases $z_i z w$ has the required orientation.

Since every ℓ -cycle of F is a long block and $F \not\rightarrow \vec{C}$.

--> Case 3. There exist $i, j \in [t-1]$ such that $type(i) = type(j) = (A_{\ell-1})$.

By Proposition 19 we have $\ell = 5$ and type $(\alpha) = (A_2)$ for each $\alpha \in [t-1] \setminus \{i, j\}$. We may suppose i < j. Let $P = x_i u_2 u_3 z_i \subseteq H_i$ and $Q = x_j v_2 v_3 z_j \subseteq H_j$, and let $Q_i = x_i u_5 z_i$ and

Figure 2: Unions of distinct 4-paths with common endvertices.

 $Q_j = x_j v_5 z_j$. By Remark 20, every cycle in H_i has length congruent to 2 modulo 3, so H_i contains no C_3 , no C_4 and no C_6 . In particular, since the union of internally disjoint 4-paths with common ends contains C_3, C_4 or C_6 cycle of length 3, 4 or 6 (see Figure 2), we conclude that P is the unique 4-path between x_i and z_i in H_i , and hence the unique such path in H_{i+1} . The argument splits into three cases according to how the 5-cycles in H_i intersect P.

 \rightarrow Case (a). There exists a 5-cycle C in H_i containing P.

We may assume $H_1 = C$ and i = 1. Let $C = x_i u_2 u_3 z_i x x_i$ (so $H_2 = H_{i+1} = C \cup x_i u_5 z_i$). We first prove that

$$H_i$$
 contains no C_3 , no C_6 , and precisely one C_4 . (1)

Crucially, note that a step of type (A_2) cannot create a C_3 or a C_4 . Therefore, since $H_1 \simeq C_5$, each C_3 and each C_4 in H_j were created in the *i*-th step resulting in H_{i+1} . Since H_{i+1} is the union of C and $z_i u_5 x_i$, we conclude that $C_3 \nsubseteq H_{i+1}$, so $C_3 \nsubseteq H_j$; moreover, the unique $C_4 \subseteq H_j$ is $x_i x z_i u_5 x_i$. It remains to show that H_j contains no C_6 . Suppose, looking for a contradiction, that $\alpha \in [j-1]$ is the smallest index such that $H_{\alpha+1}$ has a 6-cycle C'. Note that H_{i+1} contains no C_6 , so $\alpha > i$. Since type $(\alpha) = (A_2)$, it follows that C' contains a path *abcde* whose edges are new in $H_{\alpha+1}$, so C' = abcdefa for some $f \in V(H_{\alpha})$. Moreover, *abcdea* is a (new) 5-cycle in $H_{\alpha+1}$. We conclude that aefa is a 3-cycle in H_{α} , a contradiction since $C_3 \nsubseteq H_j$. This proves (1).

Claim 22. There exists $e \in E(H_j)$ with $e \cap \{x_j, z_j\} \neq \emptyset$ which lies in every 4-path from x_j to z_j in H_j .

Proof. By (1), each 4-path between x_j and z_j in H_j other than Q intersects $x_jv_2v_3z_j$ (i.e., Q) in precisely one edge h; moreover, $h \neq v_2v_3$ (as $C_3 \notin H_j$, see Figure 2). If Claim 22 is false, then there are paths $x_jxv_3z_j$ and $x_jv_2yz_j$ in H_j with $x \neq v_2$ and $y \neq v_3$. But this contradicts (1), because then either H_j has a 3-cycle $x_jxv_2x_j$ (if x = y) or H_j contains two distinct 4-cycles $x_jxv_3v_2x_j$ and $v_2v_3z_jyv_2$ (if $x \neq y$).

We now return to the proof of *Case* (a), describing the orientation of F. Let e be the edge common to all 4-paths between x_j and z_j in H_j (as per Claim 22). Orient H_1 so that it is a directed cycle. For every $\alpha \in [t-1] \setminus \{j\}$, orient the new edges to form a directed path. Finally, orient $x_j v_5 z_j$ so that the path it forms with e is directed.

Let us check that every 5-cycle in F has a long block. Clearly, the two 5-cycles in H_2 have each a long block. For each $\alpha \in [t-1] \setminus \{i, j\}$, each new 5-cycle in $H_{\alpha+1}$ contains Q_{α} and hence has a long block $(e(Q_{\alpha}) \ge 3 \text{ since type}(\alpha) = (A_2))$. Finally, every new 5-cycle in H_{j+1} contains the directed path formed by e and $x_j v_5 z_j$. We conclude that $F \not\rightarrow \vec{C}$.

 \rightarrow Case (b). There exists a 5-cycle C in H_i containing precisely two edges of P.

We may assume that no 5-cycle in H_i contains all edges of P, otherwise we would be done by *Case (a)*. Note that C cannot avoid u_2u_3 , since $C_3 \notin H_i$. We may therefore assume that C is a 5-cycle in H_i with $z_iu_3u_2 \subseteq C$ and that $H_1 = C$. Let $\alpha \in [t-1]$ be such that u_2x_i is new in $H_{\alpha+1}$, and let C_{α} be a new 5-cycle in $H_{\alpha+1}$ containing u_2x_i . Note that $\operatorname{type}(\alpha) = (A_2)$, so $Q_{\alpha} = u_2x_ixyv$, where $u_2, v \in V(H_{\alpha})$ and $x_i, x, y \notin V(H_{\alpha})$. We modify the construction sequence of F, to a construction sequence of Fwhere the *i*-th step is omitted and the α -th step is replaced by consecutive steps adding, in this order, $u_2x_iu_5z_i$ and x_ixyv . In the new sequence, $\operatorname{type}(\alpha) = \operatorname{type}(\alpha + 1) = (A_3)$, $\operatorname{type}(j) = (A_4) = (A_{\ell-1})$ and each other step remains of type (A_2) . By the argument in Case 2, $F \neq \vec{C}$.

 $-\rightarrow$ Case (c). Every 5-cycle in H_i contains at most one edge of P.

This is similar to the preceding case. Let $C = H_1$ be a 5-cycle containing $z_i u_3$. We first show that if $u_2 u_3$ is new in $H_{\alpha+1}$ and $u_2 x_i$ is new $H_{\beta+1}$, then $\alpha < \beta < i$. Indeed, $\alpha, \beta < i$ by definition, and $\alpha \neq \beta$ as otherwise the new cycles in $H_{\alpha+1}$ would contain two edges of P. Moreover, type $(\alpha) = type(\beta) = (A_2)$ by Proposition 19, so each new edge in $H_{\alpha+1}$ and $H_{\beta+1}$ must contain at least one new endvertex. Hence $\alpha < \beta$.

Let $Q_{\beta} = u_2 x_i xyv$, where $u_2, v \in V(H_{\beta})$ and $x_i, x, y \notin V(H_{\beta})$. As in *Case* (b), we define an alternative construction sequence of F, where the *i*-th step is omitted and the β -th step is replaced by consecutive steps adding $u_2 x_i u_5 z_i$ and $x_i xyv$ (in this order). By Case 2, $F \not\rightarrow \vec{C}$.

--- Case 4. There exists $i \in [t-1]$ such that $type(i) = (B_j)$, where $3 \leq j \leq \ell - 1$.

By Proposition 19, for each $\alpha \in [t-1] \setminus \{i\}$ we have type $(\alpha) = (A_2)$, and thus $e(Q_\alpha) \ge 3$. Recall that $y_i \in V(Q_i) \cap H_i$. Note that no new cycle in H_{i+1} avoids both $x_i Q_i y_i$ and $y_i Q_i z_i$.

If a new ℓ -cycle in H_{i+1} contains $x_i Q_i y_i$ but not $y_i Q_i z_i$, then some construction sequence of F satisfies the hypothesis of one of the previous cases (by replacing the *i*-th step in (H_1, \ldots, H_t) by consecutive steps adding $x_i Q_i y_i$ and $y_i Q_i z_i$), and $F \not\rightarrow \vec{C}$. We argue similarly if a new ℓ -cycle in H_{i+1} avoids $x_i Q_i y_i$.

If every new ℓ -cycle in H_{i+1} contains all of Q_i , then for each $\alpha \in [t-1]$ every new cycle in $H_{\alpha+1}$ contains Q_{α} . We fix a directed orientation of H_1 and orient Q_{α} as a directed path for each $\alpha \in [t-1]$. Then H_1 has a long block and for each $\alpha \in [t-1]$ the new ℓ -cycles in $H_{\alpha+1}$ have a long block as well (since $e(Q_{\alpha}) \geq 3$). Therefore $F \not\rightarrow \vec{C}$.

3.3.2 Cycles of length 4

To conclude this section we consider orientations of 4-cycles.

Theorem 23. Let \vec{C} be an orientation of C_4 . If G is a graph and $m(G) < m_2(C_4)$, then $G \not\rightarrow \vec{C}$.

To prove Theorem 23 we use the following proposition.

Proposition 24. Let $G = (H_1, \ldots, H_t)$ be a C_4 -component such that $m(G) < m_2(C_4)$. If $type(i) = (B_3)$ for some *i*, then $type(j) = (A_2)$ for each $j \in [t-1] \setminus \{i\}$.

Proof. For each $j \in [t-1]$, let v_j and e_j be respectively the number of new vertices and new edges in H_{j+1} , By Proposition 18 we have $e_j \ge 3v_j/2$ and $e_j > v_j$ for each $j \in [t-1]$. Suppose type $(i) = (B_3)$ and fix $j \in [t-1] \setminus \{i\}$. We have

$$\frac{3}{2} = m_2(C_4) > m(G) = \frac{4 + \sum_{\alpha \in [t-1]} e_\alpha}{4 + \sum_{\alpha \in [t-1]} v_\alpha} \ge \frac{4 + 3 + e_j + \sum_{\alpha \in [t-1] \setminus \{i,j\}} 3v_\alpha/2}{4 + 1 + v_j + \sum_{\alpha \in [t-1] \setminus \{i,j\}} v_\alpha},$$

so $v_j > 2(e_j - v_j) - 1$. Hence $v_j \ge 2$ (because $v_j < e_j$) and type $(j) = (A_2)$.

Proof of Theorem 23. If \vec{C} is anti-directed or contains a long block, then $G \not\rightarrow \vec{C}$ by Corollary 14 and Theorem 15, respectively. We may therefore assume \vec{C} has precisely two

blocks of length 2; we may also assume that G is a C_4 -component with construction sequence (H_1, \ldots, H_t) , because distinct C_4 -components can be independently oriented and edges in no C_4 -component can be arbitrarily oriented.

If there is no step of type B_3 , then G is bipartite. (Indeed, $H_1 \simeq C_4$ and steps of type $(A_2), (A_3)$, or (A_4) preserve bipartiteness.) Fix a proper 2-colouring of G and orient every edge towards the same colour class. This avoids directed paths with length 2, so $G \not\rightarrow \vec{C}$.

On the other hand, if type $(i) = (B_3)$, then every other step is of type (A_2) by Proposition 24. Let $u_1u_2u_3u_4u_1$ be the new cycle in H_{i+1} , where $u_1u_2 \in H_i$ (and $u_2u_3, u_3u_4, u_4u_1 \notin E(H_i)$, $u_1, u_2, u_3 \in V(H_i), u_4 \notin V(H_i)$). We may assume that H_1 is a 4-cycle $u_1u_2abu_1$.

If every new 4-cycle in H_{i+1} contains $u_2u_3u_4u_1$, we orient H_1 as a directed cycle and the new edges in each step as directed paths. Clearly H_1 has a long block and, for each $\alpha \in [t-1]$, every new 4-cycle in $H_{\alpha+1}$ contains a long block (formed by Q_{α}), so $G \not\rightarrow \vec{C}$.

Finally, if a 4-cycle in H_i contains u_2u_3 but avoids $u_3u_4u_1$, then we may replace the *i*-th step (of type (B_3)) by one (A_4) -step (adding u_2u_3) and one (A_3) -step (adding $u_3u_4u_1$). This yields a construction sequence free from (B_3) , which implies (as argued above) that G is bipartite and $G \not\rightarrow \vec{C}$. Similarly, if H_i contains a new 4-cycle which avoids u_2u_3 , then we may replace the *i*-th step by one (A_3) -step (adding $u_3u_4u_1$) and one (A_4) -step (adding u_2u_3), and also conclude that $G \not\rightarrow \vec{C}$.

4 Proof of the main theorem (Theorem 2)

Theorem 8 establishes the case t = 3 of Theorem 2. We may therefore suppose \vec{H} is either an acyclic orientation of $H \in \{K_t, C_t\}$, with $t \ge 4$, or that \vec{H} is an anti-directed orientation of a strictly 2-balanced graph H with $\delta(H) \ge 2$. In each one of these cases \vec{H} is 2-Ramsey-avoidable (by Remark 6), so (by Theorems 1 and 3 together with Lemmas 5 and 7) it suffices to show that $G \not\rightarrow \vec{H}$ whenever $m(G) < m_2(H)$. Indeed, this follows by Theorem 12 (when H is complete), Theorems 17 and 23 (when H is a cycle) and by Corollary 14 otherwise.

5 Concluding remarks

We have shown that if \vec{H} is an oriented clique or cycle, then the threshold for $G(n, p) \to \vec{H}$ is $n^{-1/m_2(\vec{H})}$ if and only if $\vec{H} \neq \text{TT}_3$. Interestingly, TT_3 is not the only exception. For instance, let \vec{G} be the digraph obtained from an oriented tree \vec{T} of order $n^{1/2-\varepsilon}$, for any fixed $\varepsilon > 0$, by identifying with each $v \in V(\vec{T})$ the source of a distinct copy \vec{H}_v of TT₃. It can be shown that $p_{\vec{G}} \ll n^{-1/m_2(\vec{G})} = n^{-1/m_2(\text{TT}_3)}$. In a forthcoming paper, the authors describe a richer class of digraphs with this property.

References

- [1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, algorithms and applications, Springer-Verlag, London, 2001.
- [2] G.F. Barros, B.P. Cavalar, G.O. Mota, and O. Parczyk, Anti-Ramsey threshold of cycles, arXiv:2006.02079, submitted.
- [3] B. Bollobás and A. Thomason, *Threshold functions*, Combinatorica 7 (1987), no. 1, 35–38.
- [4] G. R. Brightwell and Y. Kohayakawa, Ramsey properties of orientations of graphs, Random Structures & Algorithms 4 (1993), no. 4, 413–428.
- [5] M. Bucić, S. Heberle, S. Letzter, and B. Sudakov, Monochromatic trees in random tournaments, Combinatorics, Probability and Computing 29 (2020), no. 3, 318–345.

- [6] M. Bucić, S. Letzter, and B. Sudakov, *Directed Ramsey number for trees*, Journal of Combinatorial Theory, Series B 137 (2019), 145–177.
- [7] B. P. Cavalar, *Ramsey-type problems in orientations of graphs*, arXiv:1903.02099.
- [8] F.R.K. Chung, A note on subtrees in tournaments, Bell Laboratories Internal Memorandum, 1982.
- [9] M. Cochand and P. Duchet, A few remarks on orientation of graphs and Ramsey theory, Irregularities of Partitions, Springer, 1989, pp. 39–46.
- [10] D. Conlon, W. T. Gowers, W. Samotij, and M. Schacht, On the KLR conjecture in random graphs, Israel J. Math. 203 (2014), no. 1, 535–580.
- [11] R. Diestel, Graph theory, second ed., Graduate Texts in Mathematics, vol. 173, Springer-Verlag, New York, 2000.
- [12] F. Dross and F. Havet, On the unavoidability of oriented trees, arXiv:1812.05167, submitted.
- [13] A. El Sahili, Trees in tournaments, Journal of Combinatorial Theory, Series B 92 (2004), no. 1, 183–187.
- [14] P. Erdős and L. Moser, On the representation of directed graphs as unions of orderings, Publ. Math. Inst. Hung. Acad. Sci. 9 (1964), 125–132.
- [15] R. Häggkvist and A. Thomason, Trees in tournaments, Combinatorica 11 (1991), no. 2, 123–130.
- [16] F. Havet, Trees in tournaments, Discrete mathematics **243** (2002), no. 1, 121–134.
- [17] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience, New York, 2000.
- [18] Y. Kohayakawa, T. Łuczak, and V. Rödl, Ramsey-type results for oriented trees, Journal of Graph Theory 22 (1996), no. 1, 1–8.
- [19] D. Kühn, R. Mycroft, and D. Osthus, A proof of Sumner's universal tournament conjecture for large tournaments, Proceedings of the London Mathematical Society 102 (2010), no. 4, 731–766.
- [20] _____, An approximate version of Sumner's universal tournament conjecture., Journal of Combinatorial Theory, Series B 101 (2011), no. 6, 415–447.
- [21] N. Linial, M. Saks, and V. T. Sós, Largest digraphs contained in all n-tournaments, Combinatorica 3 (1983), 101–104.
- [22] X. Lu, On claws belonging to every tournament, Combinatorica 11 (1991), 173–179.
- [23] _____, Claws contained in all n-tournaments, Discrete Mathematics **119** (1993), 107–111.
- [24] X. Lu, D.-W. Wang, and C.-K. Wong, On avoidable and unavoidable claws, Discrete Mathematics 184 (1998), 259–265.
- [25] R. Mycroft and T. Naia, Unavoidable trees in tournaments, Random Structures & Algorithms 53 (2018), no. 2, 352–385.
- [26] T. Naia, Large structures in dense directed graphs, Ph.D. thesis, University of Birmingham, 2018.
- [27] R. Nenadov, Y. Person, N. Škorić, and A. Steger, An algorithmic framework for obtaining lower bounds for random Ramsey problems, Journal of Combinatorial Theory, Series B 124 (2017), 1–38.
- [28] R. Nenadov and A. Steger, A short proof of the random Ramsey theorem, Combinatorics, Probability and Computing 25 (2016), no. 1, 130–144.
- [29] L. Rédei, Ein kombinatorischer Satz, Acta Litteraria Szeged 7 (1934), 39–43.
- [30] R. Stearns, *The voting problem*, The American Mathematical Monthly **66** (1959), no. 9, 761–763.
- [31] A. Thomason, Paths and cycles in tournaments, Transactions of the American Mathematical Society 296 (1986), 167–180.
- [32] N. Wormald, Subtrees of large tournaments, Combinatorial Mathematics X (L. R. A. Casse, ed.), Lecture Notes in Mathematics, vol. 1036, Springer, Berlin (Heidelberg), 1983, pp. 417–419.

GABRIEL FERREIRA BARROS, YOSHIHARU KOHAYAKAWA, TÁSSIO NAIA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE DE SÃO PAULO, SÃO PAULO, BRAZIL {gbarros, yoshi, tassio}@ime.usp.br

BRUNO PASQUALOTTO CAVALAR UNIVERSITY OF WARWICK, UNITED KINGDOM bruno.pasqualotto-cavalar@warwick.ac.uk