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Abstract

Let D be a digraph, let p ≥ 1 be an integer, and let f : V (D) → N
p
0 be a vector

function with f = (f1, f2, . . . , fp). We say that D has an f -partition if there is a
partition (D1, D2, . . . , Dp) into induced subdigraphs of D such that for all i ∈ [1, p],
the digraph Di is weakly fi-degenerate, that is, in every non-empty subdigraph D′ of
Di there is a vertex v such that min{d+D′(v), d

−

D′(v)} < fi(v). In this paper, we prove
that the condition f1(v)+f2(v)+ . . .+fp(v) ≥ max{d+D(v), d

−

D(v)} for all v ∈ V (D) is
almost sufficient for the existence of an f -partition and give a full characterization of
the bad pairs (D, f). Moreover, we describe a polynomial time algorithm that (under
the previous conditions) either verifies that (D, f) is a bad pair or finds an f -partition.
Among other applications, this leads to a generalization of Brooks’ Theorem as well
as the list-version of Brooks’ Theorem for digraphs, where a coloring of digraph is
a partition of the digraph into acyclic induced subdigraphs. We furthermore obtain
a result bounding the s-degenerate chromatic number of a digraph in terms of the
maximum of maximum in-degree and maximum out-degree.
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Most of our terminology is defined as in [6] and similar to the papers [4, 5] (see also
Section 2). Throughout this paper, for 0 ≤ ℓ ≤ k, let [ℓ, k] = {i ∈ N0 | ℓ ≤ i ≤ k}.

1 Introduction

Even though most people would define a k-coloring of an (undirected) graph G as a
function that assigns colors from a color set of cardinality k to the vertices of G such
that the same-colored vertices induce edgeless subgraphs of G, this is nothing else than
a partition of G into vertex disjoint induced subgraphs (G1, G2, . . . , Gk) such that Gi is
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edgeless for all i ∈ [1, k]. Naturally, both ways how to regard a coloring have their benefits.
In this paper, we examine a more general approach regarding the latter definition that
will allow us to obtain various well-known coloring results. But first of all, we need
to clarify what digraph coloring refers to. A coloring and k-coloring of a digraph D
is a function ϕ : V (D) → [1, k] such that each color class ϕ−1(i) induces an acyclic
subdigraph of D, that is, a subdigraph that does not contain any directed cycle. The
dichromatic number

→

χ(D) of a digraph D is the least integer k such that D admits a k-
coloring. This digraph coloring concept was originally introduced by Neumann-Lara [30]
in 1982; however, it took over twenty years until it was rediscovered by Mohar [27] in
2003. Ever since, it has attracted much attention amongst graph theorists (see, e.g.,
[2, 3, 4, 5, 16, 17, 18, 19, 20, 22, 28, 29]). Although this coloring concept might not seem
intuitive at first sight, there are various factors stressing why it is especially reasonable.
First of all, the dichromatic number of a bidirected graph and the chromatic number
of its underlying (undirected) graph coincide. Consequently, many theorems on digraph
coloring are generalizations of theorems on coloring of undirected graphs. Moreover, it
has been shown that plenty of well-known theorems in graph coloring indeed have digraph
counterparts. For example, Harutyunyan and Mohar [20] proved that there exist digraphs
D of maximum total degree ∆ and arbitrary large digirth such that

→

χ(D) ≥ c∆
log∆ for some

constant c, thereby obtaining the analogue of a famous result of Bollobás [9], respectively
Kostochka and Mazurova [23]. Moreover, Andres and Hochstättler [1] obtained the digraph
analogue of Chudnovsky, Robertson, Seymour, and Thomas’ celebrated Strong Perfect
Graph Theorem [12]. In this paper, we will mainly focus on the analogue to Brooks’ famous
theorem [10], which was discovered by Mohar in 2010 [29]. Note that, given a digraph
D, its maximum out-degree (respectively in-degree) is denoted by ∆+(D) (respectively
∆−(D)).

Theorem 1 (Mohar, 2010) Let D be a connected digraph. Then, D satisfies
→

χ(D) ≤
max{∆−(D),∆+(D)}+ 1 and equality holds if and only if D is

(a) a directed cycle of length ≥ 2, or

(b) a bidirected cycle of odd length ≥ 3, or

(c) a bidirected complete graph. ⋄

In fact, it turns out that it is possible to obtain a choosability version of Brooks’
Theorem for digraphs, i.e., a version regarding list-colorings. Given a digraph D, a color
set Γ, and a function L : V (D) → 2Γ (a so-called list-assignment), an L-coloring of
D is a function ϕ : V (D) → Γ such that ϕ(v) ∈ L(v) for all v ∈ V (D) and D[ϕ−1(α)]
contains no directed cycle for each α ∈ Γ (if such a coloring exists, we say that D is
L-colorable). Harutyunyan and Mohar [19] proved the following, thereby extending a
well-known theorem of Erdős, Rubin and Taylor [14] for undirected graphs. Note that
a block B of a digraph is a maximal connected subdigraph that does not contain a
separating vertex, i.e., the underlying graph G(B) of B is a block of the underlying graph
G(D) of D. By B(D) we denote the set of blocks of a digraph D. For v ∈ V (D), Bv(D)
denotes the set of blocks of D containing v.

Theorem 2 (Harutyunyan and Mohar, 2011) Let D be a connected digraph, and let
L be a list-assignment such that |L(v)| ≥ max{d+D(v), d

−
D(v)} for all v ∈ V (D). Suppose

that D is not L-colorable. Then, the following statements hold:
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(a) D is Eulerian and |L(v)| = d+D(v) = d−D(v) for all v ∈ V (D).

(b) If B ∈ B(D), then B is either a directed cycle of length ≥ 2, a bidirected complete
graph, or a bidirected cycle of odd length ≥ 5.

(c) For each B ∈ B(D) there is a set ΓB of ∆+(B) colors such that for every v ∈ V (D),
the sets ΓB with B ∈ Bv(D) are pairwise disjoint and L(v) =

⋃

B∈Bv(D) ΓB. ⋄

In the present paper, we will obtain a generalization of the two previously men-
tioned results by examining degenerate digraphs. The concept of digraph degeneracy
was introduced by Bokal et al. [7] in 2004. Given a positive integer k, a digraph D
is weakly k-degenerate if every non-empty subdigraph D′ contains a vertex v with
min{d+D′(v), d

−
D′(v)} < k. As a consequence, a digraph is acyclic if and only if it is weakly

1-degenerate and so a coloring of a digraph coincides with a partition of the digraph into
induced subdigraphs which all are weakly 1-degenerate. We shall extend this definition to
the case of variable degeneracy, based on the model of Borodin, Kostochka, and Toft [8]
for undirected graphs. Let D be a digraph and let h : V (D) → N0 be a function. Then,
D is weakly h-degenerate if every non-empty subdigraph D′ contains a vertex v with
min{d+D′(v), d

−
D′(v)} < h(v). Clearly, if h ≡ k is the constant function, then D is weakly

h-degenerate if and only if D is weakly k-degenerate.
We will connect the concept of degeneracy with partitions of digraphs. A parti-

tion and p-partition of a digraph D is a sequence (D1,D2, . . . ,Dp) of pairwise disjoint
induced subdigraphs of D such that V (D) = V (D1) ∪ V (D2) ∪ . . . ∪ V (Dp). Now let
f : V (D) → N

p
0 be a vector function. Then we denote by fi the i-th coordinate of f , i.e.

f = (f1, f2, . . . , fp). Then, an f -partition of D is a p-partition (D1,D2, . . . ,Dp) of D
such that Di is weakly fi-degenerate for i ∈ [1, p]. If D admits an f -partition, then we
also say that D is f -partitionable. The main aim of this paper is to determine under
which degree conditions D admits an f -partition. First of all, let us motivate why this is
worthwhile considering. To this end, let D be a digraph and let L be a list-assignment for
D. Moreover, let Γ =

⋃

v∈V (D) L(D) be the set of all colors appearing in some list. By

renaming the colors if necessary we may assume Γ = [1, p]. Let f : V (D) → N
p
0 be the

vector function with

fi(v) =

{

1 if i ∈ L(v), and

0 if i 6∈ L(v)

for i ∈ [1, p] (see also Figure 1).

{1, 2, 4}{1, 3}

{2, 4} {3, 4}

{1, 3, 4}{2, 3}

{1, 4} {2, 3, 4}

(D,L)

(1, 1, 0, 1)(1, 0, 1, 0)

(0, 1, 0, 1) (0, 0, 1, 1)

(1, 0, 1, 1)(0, 1, 1, 0)

(1, 0, 0, 1) (0, 1, 1, 1)

(D, f)

Figure 1: Transforming a list-assignment into a vector function
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If D is L-colorable, then it easy to confirm that the partition (D1,D2, . . . ,Dp) of D
whereDi is the subdigraph ofD induced by vertices of color i is indeed an f -partition of D.
Conversely, if D has an f -partition (D1,D2, . . . ,Dp), then setting ϕ(v) = i if v ∈ V (Di)
leads to an L-coloring of D. Hence, D is L-colorable if and only if D has an f -partition
and so the task of finding an f -partition generalizes the usual list-coloring problem (and,
of course, the usual coloring problem, too).

Since deciding whether the dichromatic number is at most two is already NP-hard
(see [7]), it is pointless to try to determine whether a digraph D is f -partitionable in
general. Instead, we need to find a reasonable condition for the function f that would
allow a digraph satisfying this condition to be f -partitionable. Note that in the above
transformation, it follows from the definition of f that

|L(v)| = f1(v) + f2(v) + . . .+ fp(v)

for all v ∈ V (D). Thus, Theorem 2 suggests that

f1(v) + f2(v) + . . . + fp(v) ≥ max{d+D(v), d
−
D(v)}

for all v ∈ V (D) might be the right condition to investigate. Indeed, we will prove that this
condition is always sufficient for the existence of an f -partition, unless (D, f) belongs to
the following, recursively defined class of configurations. Clearly, D admits an f -partition
if and only if each connected component of D has one and, hence, it suffices to examine
connected digraphs.

Let D be a connected digraph, let p ≥ 1, and let f : V (D) → N
p
0 be a vector function.

We say that (D, f) is a hard pair and that D is f -hard if one of the following four
conditions hold.

(H1) D is a block, D is Eulerian, and there exists an index j ∈ [1, p] such that

fi(v) =

{

d+D(v) = d−D(v) if i = j, and

0 otherwise

for all i ∈ [1, p] and for each v ∈ V (D). In this case, we say that (D, f) is a hard
pair of type (M).

(H2) D is a bidirected complete graph and there are integers n1, n2, . . . , np ≥ 0 with at
least two ni different from zero such that n1 + n2 + . . . + np = |D| − 1 and that

f(v) = (n1, n2, . . . , np) for all v ∈ V (D).

In this case, we say that (D, f) is a hard pair of type (K).

(H3) D is a bidirected cycle of odd length and there are two indices k 6= ℓ from the set
[1, p] such that

fi(v) =

{

1 if i ∈ {k, ℓ}, and

0 otherwise

for all i ∈ [1, p] and for each v ∈ V (D). In this case, we say that (D, f) is a hard
pair of type (C).
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(H4) There are two hard pairs (D1, f1) and (D2, f2) with f j : V (Dj) → N
p
0 for j ∈ {1, 2}

such that D is obtained from D1 and D2 by identifying two vertices v1 ∈ V (D1) and
v2 ∈ V (D2) to a new vertex v. Furthermore, for w ∈ V (D), it holds that

f(w) =











f1(w) if w ∈ V (D1) \ {v1},

f2(w) if w ∈ V (D2) \ {v2},

f1(v1) + f2(v2) if w = v.

In this case we say that (D, f) is obtained from (D1, f1) and (D2, f2) by merging
v1 and v2 to v.

In order to develop a better feeling of how hard pairs may look like, we refer the reader
to Figure 2. The main result of this paper is the following.

Theorem 3 Let D be a connected digraph, let p ≥ 1 be an integer, and let f : V (D) → N
p
0

be a vector function such that f1(v) + f2(v) + . . . + fp(v) ≥ max{d+D(v), d
−
D(v)} for all

v ∈ V (D). Then, D is not f -partitionable if and only if (D, f) is a hard pair. ⋄

(C)(K)(M)

(1, 1, 0)

(1, 1, 0)

(1, 1, 0) (1, 1, 0)

(1, 1, 0)

(2, 0, 1)(2, 0, 1)

(2, 0, 1) (2, 0, 1)

(0, 2, 0)(0, 2, 0)

(0, 1, 0)

(0, 2, 0) (0, 2, 0)

(0, 1, 0)(0, 4, 0)

Figure 2: Examples of hard pairs

2 Basic Terminology

Let D = (V (D), A(D)) be a digraph, where V (D) is the set of vertices of D and A(D) is
the set of arcs of D. The order |D| of D is the size of V (D). The digraphs in this paper
do not have loops nor parallel arcs; however, there may be two arcs in opposite directions
between two vertices (in this case we say that the arcs are opposite). We denote by uv
the arc whose initial vertex is u and whose terminal vertex is v. Two vertices u, v
are adjacent if at least one of uv and vu belongs to A(D). If u and v are adjacent, we
also say that u is a neighbor of v and vice versa. If uv ∈ A(D), then v is called an
out-neighbor of u and u is called an in-neighbor of v. Given a digraph D and a vertex
set X, we denote by D[X] the subdigraph of D induced by the vertex set X, that is,
V (D[X]) = X and A(D[X]) = {uv ∈ A(D) | u, v ∈ X}. A digraph D′ is said to be an
induced subdigraph of D if D′ = D[V (D′)]. As usual, if X is a subset of V (D), we define
D − X = D[V (D) \ X]. If X = {v} is a singleton, we use D − v rather than D − {v}.
The out-degree of a vertex v ∈ V (D), denoted d+D(v), is the number of arcs whose inital
vertex is v. Similarly, the in-degree of v, denoted d−D(v) is number of arcs whose terminal
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vertex is v. A vertex v ∈ V (D) is Eulerian if d+D(v) = d−D(v). Moreover, the digraph D
is Eulerian if every vertex of D is Eulerian.

The underlying graph G(D) of D is the simple undirected graph with V (G(D)) =
V (D) and {u, v} ∈ E(G(D)) if and only if at least one of uv and vu belongs to A(D). A
component of a digraph D is a connected component of G(D) and D is connected if it
has precisely one component. A separating vertex of a connected digraph D is a vertex
v ∈ V (D) such that D − v is not connected. Furthermore, a block of D is a maximal
subdigraph D′ of D such that D′ has no separating vertex. By B(D), we denote the set
of blocks of D. Moreover, if v ∈ V (D), we denote by Bv(D) the set of blocks of D
containing v. A bidirected graph is a digraph that can be obtained from an undirected
(simple) graph G by replacing each edge by two opposite arcs, we denote it by D(G).

3 Proof of the main result

In order to prove Theorem 3, we need two classic results for undirected graphs. The first
one is an easy consequence of Menger’s Theorem and usually referred to as the Fan Lemma
(see, e.g. [13, Corollary 3.3.4]). The second lemma is due to Gallai [15, Satz 1.9]. Recall
that a chord of a cycle C in an undirected graph G is an edge of G between vertices of C
that does not belong to the edges of C.

Lemma 4 (The Fan Lemma) Let G be a k-connected graph, let v ∈ V (G), and let
X ⊆ V (G) \ {v} be a set of cardinality at least k. Then, there are k paths from v to
vertices of X whose only common vertex is v and whose only intersection with X are the
respective end-vertices. ⋄

Lemma 5 (Gallai, 1963) If G is a graph in which each even cycle has at least two
chords, then every block of G is a complete graph or an odd cycle. ⋄

The proof of Theorem 3 is divided into two parts. In the first part, we obtain some
properties of hard pairs and prove that hard pairs are not f -partitionable. The proof of
the next proposition follows easily from the definition of hard pair and can be done via
induction on the number of blocks of D.

Proposition 6 Let D be a connected digraph, let p ≥ 1, and let f : V (D) → N
p
0 be a

vector function such that D is f -hard. Then, for each B ∈ B(D) there is a uniquely
determined function fB : V (B) → N

p
0 such that the following statements hold:

(a) (B, fB) is a hard pair of type (M), (K), or (C).

(b) f(v) =
∑

B∈Bv(H) fB(v) for all v ∈ V (D). In particular, fB(v) = f(v) for all
non-separating vertices v of D belonging to B. ⋄

Proposition 7 Let D be a connected digraph, and let f : V (D) → N
p
0 be a vector function

with p ≥ 1. If (D, f) is a hard pair, then the following statements hold:

(a) f1(v) + f2(v) + . . .+ fp(v) = d+D(v) = d−D(v) for all v ∈ V (D). As a consequence, D
is Eulerian.

(b) D is not f -partitionable. ⋄
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Proof: Statement (a) follows from an easy induction on the number of blocks of D.
Furthermore, if D is a block, then (D, f) is of type (M), (K), or (C) and it is an easy
exercise to check that D is indeed not f -partitionable. To show the reader how it may
be done, suppose that (D, f) is of type (K), i.e., D = D(Kn) and there are integers
n1, n2, . . . , np ≥ 0 with at least two ni different from zero such that n1+n2+. . .+np = n−1
and that f(v) = (n1, n2, . . . , np) for all v ∈ V (D). As D is a bidirected complete graph, an
induced subdigraphDi of D is weakly fi-degenerate if and only if |Di| ≤ ni. Consequently,
if there exists an f -partition (D1,D2, . . . ,Dp), we have

n = |D| = |D1|+ |D2|+ . . .+ |Dp| ≤ n1 + n2 + . . .+ np = n− 1,

which is impossible. This shows that (D, f) is not of type (K).
Now assume that D is not a block and let (D, f) be a minimal counter-example, i.e.,

(D, f) is a hard pair, D admits an f -partition, and |D| is minimum with respect to the
previous two conditions. As D is not a block it follows with (H4) that there are two hard
pairs (D1, f1) and (D2, f2) with |Dj | < |D| for j ∈ {1, 2} such that (D, f) is obtained
from (D1, f1) and (D2, f2) by merging vertices vj ∈ V (Dj) to a new vertex v. For the
sake of readability, we use v below for v1 = v2 = v. By the choice of (D, f), the digraph
Dj is not f j-partitionable for j ∈ {1, 2}. Now let (D1,D2, . . . ,Dp) be an f -partition of

D and let Dj
i = Dj ∩Di for j ∈ {1, 2} and i ∈ [1, p]. By symmetry, we may assume that

v ∈ V (D1). Then, D
j
i is strictly f j

i -degenerate for all i ∈ [2, p] and j ∈ {1, 2} (as Dj
i ⊆ Di

and f j
i (w) = fi(w) for all w ∈ V (Dj

i )). As D
j is not f j-partitionable, it follows that Dj

1 is

not f j
1 -partitionable for j ∈ {1, 2} and so there are non-empty subdigraphs D̃j ⊆ Dj

1 with

min{d+
D̃j

(w), d−
D̃j

(w)} ≥ f j
1 (w) for all w ∈ V (D̃j). Let D̃ = D̃1 ∪ D̃2. If v 6∈ D̃, then D̃ is

the disjoint union of D̃1 and D̃2 and we clearly have min{d+
D̃
(w), d−

D̃
(w)} ≥ f1(w) for all

w ∈ V (D̃). If v ∈ D̃, we obtain that

f1(v) = f1
1 (v)+f2

1 (v) ≤ min{d+
D̃1

(v), d−
D̃1

(v)}+min{d+
D̃2

(v), d−
D̃2

(v)} ≤ min{d+
D̃
(v), d−

D̃
(v)}.

Consequently, D̃ is a subdigraph of D1 with min{d+
D̃
(w), d−

D̃
(w)} ≥ f1(w) for all w ∈ V (D̃)

and soD1 is not weakly f1-degenerate, contradicting the assumption that (D1,D2, . . . ,Dp)
is an f -partition of D.

Thus, the “if”-direction of Theorem 3 is proved. The hard part, i.e., the “only if”-
direction, is covered in the next theorem.

Theorem 8 Let D be a connected digraph, let p ≥ 1 be an integer, and let f : V (D) → N
p
0

be a vector function such that f1(v) + f2(v) + . . . + fp(v) ≥ max{d+D(v), d
−
D(v)} for all

v ∈ V (D). If D is not f -partitionable, then (D, f) is a hard pair. ⋄

Proof: The proof is by reductio ad absurdum. So let (D, f) be a smallest counterexample,
that is,

(1) f1(v) + f2(v) + . . .+ fp(v) ≥ max{d+D(v), d
−
D(v)} for all v ∈ V (D),

(2) D is not f -partitionable,

(3) (D, f) is not a hard pair, and

(4) |D| is minimum subject to (1),(2), and (3).
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In order to derive a contradiction, we establish a sequence of eight claims.

Claim 1 D − v is f -partitionable for every v ∈ V (D). ⋄

Proof : Suppose that D − v is not f -partitionable for some v ∈ V (D). Then there is a
component D′ of D − v such that D′ is not f -partitionable and so (D′, f) is a hard pair
(by (4)). As D is connected, there is a neighbor u of v in D′. Since (D′, f) is a hard pair,
Proposition 7(a) implies that f1(u)+f2(u)+ . . .+fp(u) = d+D′(u) = d−D′(u). As D contains
at least one of the arcs vu and uv, we conclude that

f1(u) + f2(u) + . . .+ fp(u) = d+D′(u) = d−D′(u) < max{d+D(u), d
−
D(u)},

contradicting (1). �

The next claim is central for the proof of Theorem 8. Casually speaking, it says that
not only is D Eulerian and in- and out-degree of each vertex coincides with the sum of
its f -values, but also, given a fixed vertex v and an f -partition (D1,D2, . . . ,Dp) of D− v,
the component of each Di + v containing v is Eulerian, too, and the respective degrees
coincide with the fi-values.

Claim 2 Let v ∈ V (D) be an arbitrary vertex, let (D1,D2, . . . ,Dp) be an f -partition of
D − v, and let i ∈ [1, p]. Then, the following hold:

(a) d+Di+v(v) = d−Di+v(v) = fi(v).

(b) f1(v) + f2(v) + . . .+ fp(v) = d+D(v) = d−D(v). As a consequence, D is Eulerian.

(c) Let u be a neighbor of v in Di. Then, the sequence (D′
1,D

′
2, . . . ,D

′
p) with D′

i =
(Di + v)− u and D′

j = Dj for j 6= i is an f -partition of D − u.

(d) The component D′ of Di+v that contains v is Eulerian and d+D′(w) = d−D′(w) = fi(w)
for all w ∈ V (D′). ⋄

Proof : Let i ∈ [1, p] be arbitrary. As D is not f -partitionable, the digraph Di +
v is not weakly fi-degenerate. Thus, there is a subdigraph D′′ of Di + v such that
min{d+D′′(w), d

−
D′′(w)} ≥ fi(w) for all w ∈ V (D′′). Clearly, D′′ must contain v (as Di

is weakly fi-degenerate) and so

fi(v) ≤ min{d+D′′(v), d
−
D′′(v)} ≤ min{d+Di+v(v), d

−
Di+v(v)}.

Since i was chosen arbitrarily, we conclude that

∑

i∈[1,p]

fi(v) ≤
∑

i∈[1,p]

min{d+Di+v(v), d
−
Di+v(v)} ≤ min{d+D(v), d

−
D(v)}

≤ max{d+D(v), d
−
D(v)} ≤

∑

i∈[1,p]

fi(v)

and so we have equality everywhere. Thus, (a) and (b) hold.
For the proof of (c) and (d), let D′ be the component of Di + v containing v, and let

u be a neighbor of v in Di + v and therefore in D′ (if such a vertex does not exist, then
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D′ consists only of v, and by (a) fi(v) = 0 = d+Di+v(v) = d−Di+v(v); so there is nothing to

prove). Again, let D′′ be the subdigraph of Di+ v with min{d+D′′(w), d
−
D′′ (w)} ≥ fi(w) for

all w ∈ V (D′′). By (a),

fi(v) = d+Di+v(v) = d−Di+v(v) ≥ max{d+D′′(v), d
−
D′′(v)} ≥ fi(v),

implying that the digraph D′′ must contain all neighbors of v in D′ and, in particular,
D′′ contains u. Consequently, (Di + v) − u is weakly fi-degenerate (as D′′ was chosen
arbitrarily and so any ”bad“ subdigraph must contain u) and, hence, (D′

1,D
′
2, . . . ,D

′
p)

with D′
i = (Di+ v)−u and D′

j = Dj for j 6= i is an f -partition of D−u, which proves (c).
Clearly, the component of D′

i + u containing u is still D′ and so applying statement (a)
to the vertex u and the partition (D′

1,D
′
2, . . . ,D

′
p) leads to d+Di+v(u) = d−Di+v(u) = fi(u)

(as Di + v = D′
i + u). Note that if z is a neighbor of u in D′ we can swap u and z, i.e.,

regard the f -partition (D′′
1 ,D

′′
2 , . . . ,D

′′
p) with D′′

i = (D′
i + u) − z and D′′

j = D′
j = Dj for

j 6= i, and obtain the same conclusion for z. By repeating this procedure, we eventually
reach every vertex of D′ and so (d) follows. �

Claim 3 D is a block. ⋄

Proof : Suppose, to the contrary, that D is the union of two induced subdigraphsD1 and
D2 with V (D1)∩V (D2) = {v} and |Dj| < |D| for j ∈ {1, 2}. We will model two functions
f1 and f2 such that (D1, f1) and (D2, f2) are hard pairs and (D, f) is obtained from the
two hard pairs via the merging operation, thereby giving us the desired contradiction. To
this end, let (D1,D2, . . . ,Dp) be an f -partition of D − v and, for i ∈ [1, p] and j ∈ {1, 2},

let Dj
i = Di ∩Dj. Clearly, the digraphs D1

i and D2
i are disjoint for all i ∈ [1, p]. Now let

i ∈ [1, p] and let D′ be the component of Di + v containing v. Then,

D′ = (D′ ∩ (D1
i + v)) ∪ (D′ ∩ (D2

i + v)).

Note that (D′ ∩ (D1
i + v)) and (D′ ∩ (D2

i + v)) have only v in common and that there are
no arcs between vertices of D1

i and D2
i . By Claim 2(d), we have d+D′(w) = d−D′(w) = fi(w)

for all w ∈ V (D′). Thus, it follows from the above observation that

fi(w) = d+D′(w) = d−D′(w) = d+
(D′∩(Dj

i+v))
(w) = d−

(D′∩(Dj
i+v))

(w)

for j ∈ {1, 2} and all w ∈ V (Dj
i ). Consequently, all vertices from D′ ∩ (Dj

i + v)) besides

v are Eulerian in D′ ∩ (Dj
i + v)). Since in each digraph, the sum of out-degrees over all

vertices equals the sum of in-degrees over all vertices, we conclude that vertex v is also
Eulerian in D′ ∩ (Dj

i + v) and, therefore, in Dj
i + v for j ∈ {1, 2}, i.e.

d+
D

j
i+v

(v) = d+
(D′∩(Dj

i+v))
(v) = d−

(D′∩(Dj
i+v))

(v) = d−
D

j
i+v

(v). (3.1)

This gives us a nice way to define the functions f1 and f2. For i ∈ [1, p] and j ∈ {1, 2}
let

f j
i (w) =

{

fi(w) if w ∈ V (Dj) \ {v}, and

d+
D

j
i

(v) if w = v.
(3.2)
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Then, for j ∈ {1, 2} and all w ∈ V (Dj) \ {v} we have

f j
1 (w) + f j

2 (w) . . . + f j
p(w) = f1(w) + f2(w) + . . . + fp(w)

= max{d+D(w), d
−
D(w)} = max{d+

Dj (w), d
−
Dj (w)}. (3.3)

Moreover, since v is Eulerian in Dj
i + v we obtain

d+
Dj+v

(v) =
∑

i∈[1,p]

d+
D

j
i+v

(v) =
∑

i∈[1,p]

d−
D

j
i+v

(v) = d−
Dj+v

(v), (3.4)

and by the choice of f j(v), it follows that

f j
1(v) + f j

2(v) + . . .+ f j
p(v) = d+

Dj (v) = d−
Dj (v). (3.5)

As a consequence, both (D1, f1) and (D2, f2) fulfil the requirements of Theorem 8.
First assume that for some j ∈ {1, 2}, the digraph Dj is f j-partitionable. By sym-

metry, we may assume j = 1. Then, D1 admits an f1-partition (D′
1,D

′
2, . . . ,D

′
p) and, by

symmetry, v ∈ V (D′
1). Let (D

∗
1 ,D

∗
2, . . . ,D

∗
p) be a partition of D with D∗

1 = D′
1 ∪ (D2

1 + v)
and D∗

i = D′
i ∪ D2

i for i ∈ [2, p]. As D′
i and D2

i are disjoint and as (D2
1,D

2
2 , . . . ,D

2
p) is

an f -partition of D2 − v , D∗
i is weakly fi-degenerate for i ∈ [2, p]. We claim that D∗

1

is weakly f1-degenerate. To this end, let D̃ be a non-empty subdigraph of D∗
1. If D̃ is a

subdigraph of D2
1, then D̃ is weakly f1-degenerate (as D2

1 is weakly f1-degenerate). So
assume that D̃1 = D̃ ∩ D1 is non-empty. Since D̃1 is a subdigraph of D′

1 and therefore
weakly f1

1 -degenerate, there is a vertex w ∈ V (D̃1) with min{d+
D̃1

(w), d−
D̃1

(w)} < f1
1 (w).

If w 6= v, then

min{d+
D̃
(w), d−

D̃
(w)} = min{d+

D̃1
(w), d−

D̃1
(w)} < f1

1 (w) = f1(w), (3.6)

and we are done. It remains to consider the case that w = v. Since d+
D2

1
+v

(v) = d−
D2

1
+v

(v) =

f2
1 (v) (by (3.1) and (3.2)), this implies that

min{d+
D̃
(v), d−

D̃
(v)} ≤ min{d+

D̃1
(v), d−

D̃1
(v)}+ d+

D2

1

(v) < f1
1 (v) + f2

1 (v) = f(v).

Consequently, D∗
1 is weakly f1-degenerate, as claimed, and so (D∗

1,D
∗
2 , . . . ,D

∗
p) is an f -

partition of D, which is impossible.
Thus, Dj is not f j-partitionable for j ∈ {1, 2} and, hence by the minimality of D, both

(D1, f2) and (D2, f2) are hard pairs and (D, f) is obtained from (D1, f2) and (D2, f2) via
the merging operation. As a consequence, (D, f) is a hard pair, contradicting (3). This
contradiction completes the proof of the claim. �

By the above claim, D is a block. Hence it remains to show that (D, f) is a hard pair
of type (M), (K), or (C), giving us the desired contradiction. The next claim eliminates
the pairs of type (M).

Claim 4 For every v ∈ V (D) and each f -partition (D1,D2, . . . ,Dp) of D − v, there are
two indices i 6= j from [1, p] such that Di and Dj are non-empty. ⋄

Proof : Suppose that there is a vertex v ∈ V (D) and a partition (D1,D2, . . . ,Dp) of D−v
such that exactly one part of the partition is non-empty, say D1. Then D1+v = D and so
it follows from Claim 2(d) and the fact that D is connected that d+D(w) = d−D(w) = f1(w)
for all w ∈ V (D). Thus it follows from Claim 2(b) that fj(w) = 0 for all j 6= i from [1, p]
and for all w ∈ V (D) and (D, f) is a hard pair of type (M), contradicting (3). �
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Actually, Claim 2(c) provides us with a powerful tool that we shall use in the following.
Let v ∈ V (D) be an arbitrary vertex and let (D1,D2, . . . ,Dp) be an f -partition of D− v.
Moreover, let u ∈ V (D) be a neighbor of v. Then, u ∈ V (Di) for some i ∈ [1, p] and
Claim 2(c) implies that replacing Di with (Di + v)− u leads to an f -partition of D− u in
which v is contained in what was previously Di. Thus, we can swap v and any neighbor
u of v and obtain a new f -partition of D − u. In order to make this observation a bit
more graphical, we introduce the following terms. Given a vertex v ∈ V (D), we call an f -
partition (D1,D2, . . . ,Dp) ofD−v an f -coloring ϕ ofD−v. Moreover, for w ∈ V (D)\{v},
we set ϕ(w) = i if w ∈ V (Di) and say that w has color i. Finally, we say that the vertex
v is uncolored. The following Claim is just a reformulation of Claim 2(a) and Claim 4
to fit the new terminology.

Claim 5 Let v ∈ V (D) be an arbitrary vertex and let ϕ be an f -coloring of D− v. Then,
the following statements hold:

(a) At least two color-classes of ϕ are non-empty.

(b) d+
D[ϕ−1({i})]+v

(v) = d−
D[ϕ−1({i})]+v

(v) = fi(v) for all i ∈ [1, p]. ⋄

Using this terminology, the above described method of swapping two vertices is nothing
else than assigning to v the color of some neighbor u of v and uncoloring u. We will call
this process shifting the color from u to v. Note that this leads to an f -coloring of D−u.
The original idea of shifting goes back to Gallai [15].

Now let C be a cycle in G(D), let v ∈ V (C) be an arbitrary vertex, and let ϕ be an
f -coloring of D − v. Moreover, let u and w be the vertices such that uv and vw are in
E(C). Then, we can shift the color from u to v. Afterwards, we shift the color from the
other neighbor of u on C to u. Continuing like this, we can shift the color of each vertex
of C, one after another, clockwise, until eventually we shift the color from v to w. This
gives us a new f -coloring ϕ′ of D − v (see Figure 3). In particular, ϕ′(w) = ϕ(u).

w

v

u v4

v3

1

partition of D − v

w

v

u v4

v3

partition of D − u

2
w

v

u v4

v3

partition of D − v4

3

w

v

u v4

v3

partition of D − v3

4
w

v

u v4

v3

partition of D − w

5
w

v

u v4

v3

partition of D − v

6

belongs to D2

belongs to D1

belongs to D3

uncolored

Figure 3: Clockwise shifting of colors around a cycle in G(D).

Similarly, starting from ϕ with shifting the color from w to v, we can shift the color
of each vertex counter-clockwise on the cycle and obtain a third f -coloring of D − v.
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By repeated clockwise, respectively counter-clockwise shifting, it is easy to see that the
following claim is true.

Claim 6 Let C be a cycle in G(D), let v ∈ V (C) be an arbitrary vertex, and let ϕ be
an f -coloring of D − v. Moreover, let u and w be the neighbours of v on C, that is,
{uv, vw} ⊆ E(C). Then, for any pair v1, v2 of vertices distinct from v with v1v2 ∈ E(C)
and for each i ∈ {1, 2} there is an f -coloring ϕ∗ of D − v such that ϕ∗(u) = ϕ(vi) and
ϕ∗(w) = ϕ(v3−i). ⋄

Using Claims 5 and 6, we are able to prove the next claim.

Claim 7 Let C be a cycle in G(D) and let v ∈ V (C) be a vertex of C that is not contained
in a chord of C in G(D). Then, C is an odd cycle and there is an f -coloring ϕ∗ of D− v
and indices k 6= ℓ from [1, p] such that the vertices of C − v are colored alternately with k
and ℓ. ⋄

Proof : Let u and w be the vertices with {uv, vw} ⊆ E(C). As v is not contained in a
chord, u and w are the only neighbors of v from V (C) in G(D). We first claim that there is
an f -coloring ϕ∗ of D−v with ϕ∗(u) 6= ϕ∗(w). To this end, let ϕ be an f -coloring of D−v
and assume that ϕ(u) = ϕ(w). From Claim 5(a) we know that at least two color classes
of ϕ are non-empty. Thus, in D − v there is a vertex z with ϕ(z) 6= ϕ(u). As C is a cycle
contained in the block G(D), we have |G(D)| ≥ 3 and so G(D) is 2-connected. Then, it
follows from Lemma 4 that in G(D) there are two paths P , P ′ from z into the set {u, v, w}
whose only common vertex is z and whose internal vertices are not in {u, v, w}. Note that
the union P ∪P ′ together with either one or both of the edges {uv, vw} forms a cycle C ′ in
G(D), which contains v. Since ϕ(z) 6= ϕ(u) = ϕ(w), C ′ contains two consecutive vertices
of different colors, say v1 and v2. If C

′ contains both u and w, it follows from Claim 6 that
there is a coloring ϕ∗ of D − v with ϕ∗(u) = ϕ(v1) 6= ϕ(v2) = ϕ∗(w), and we are done. In
order to complete the first part of the claim, it remains to consider the case that C ′ contains
only one of u,w, say u. By symmetry, we may assume ϕ(v1) 6= ϕ(w). Then, it follows
from Claim 6 that there is a coloring ϕ∗ of D − v with ϕ∗(u) = ϕ(v1) 6= ϕ(w) = ϕ∗(w)
and so we are done.

Now let ϕ∗(u) = k and ϕ∗(w) = ℓ. We claim that the vertices of C−v are colored alter-
nately with k and ℓ. Otherwise, there are vertices u1, u2 distinct from v with u1u2 ∈ E(C)
and {ϕ∗(u1), ϕ

∗(u2)} 6= {k, ℓ}. By symmetry, we may assume that ℓ 6∈ {ϕ∗(u1), ϕ
∗(u2)}.

Then, by Claim 6, there is a coloring ϕ′ of D−v with ϕ′(u) = ϕ∗(u1) and ϕ′(w) = ϕ∗(u2).
As ℓ 6∈ {ϕ∗(u1), ϕ

∗(u2)}, and as u and w are the only neighbors of v from V (C) in G(D),
we obtain that either

d+
D[(ϕ′)−1({ℓ})]+v

(v) 6= d+
D[(ϕ∗)−1({ℓ})]+v

(v) = fℓ(v)

or
d−
D[(ϕ′)−1({ℓ})]+v

(v) 6= d−
D[(ϕ∗)−1({ℓ})]+v

(v) = fℓ(v),

in contradiction to Claim 5(b). This proves the claim that the vertices of C−v are colored
alternately with k and ℓ. As ϕ∗(u) 6= ϕ∗(w), this implies that C is an odd cycle and so
the proof of the claim is complete. �

As a consequence of the above claim, we obtain that every even cycle in G(D) has at
least two chords. Thus, it follows from Lemma 5 that every block of G(D) is an odd cycle
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or a complete graph. As D and therefore G(D) itself is a block, we conclude that G(D)
is either a cycle of odd length or a complete graph. To complete the proof of Theorem 3,
we show that both cases are impossible.

Claim 8 G(D) is not an odd cycle. ⋄

Proof : For otherwise, let v ∈ V (D) be an arbitrary vertex. As C = G(D) is an odd
cycle, C obviously has no chords and so it follows from Claim 7 that there is a coloring ϕ
of D − v and indices k 6= ℓ from [1, p] so that the vertices of C − v are colored alternately
with k and ℓ. Then, it follows from Claim 5(b) that

fk(v) = fℓ(v) = 1 and fi(v) = 0 for i ∈ [1, p] \ {k, ℓ}

and {uv, vu, vw,wv} ⊆ A(D) where u and w are the neighbors of v in C.
(3.7)

By shifting the color from the neighbor u of v to v we obtain (3.7) for u instead of v.
Repeating this argument proves that (D, f) is a hard pair of type (C), a contradiction.�

It remains to consider the case that G(D) is a complete graph. Claim 5 implies that
|D| ≥ 3. First we claim that D is bidirected. For otherwise, there are two vertices
u, v ∈ V (D) with uv ∈ A(D) but vu 6∈ A(D). Let ϕ be an f -coloring of D − v. Then, by
Claim 5(a), there is a vertex w ∈ V (D) \ {v} with ϕ(w) 6= ϕ(u). As G(D[{u, v, w}]) is a
triangle, it follows from Claim 6 that swapping the colors of u and w results in another
f -coloring of D − v. Then, by Claim (5)(b), we obtain that wv ∈ A(D) but vw 6∈ A(D).
By shifting the color from w to v we conclude from Claim 5(b) that uw ∈ A(D) but
wu 6∈ A(D). Similarly, by instead shifting the color from u to w we conclude from
Claim (5)(b) that wu ∈ A(D), but uw 6∈ A(D), which clearly is impossible. This proves
the claim that D is bidirected and so D is a bidirected complete graph.

Finally, we prove that (D, f) is a hard pair of type (K), leading to the desired con-
tradiction. To this end, let v ∈ V (D) be an arbitrary vertex, let (D1,D2, . . . ,Dp) be an
f -partition of D − v, and let ni = |Di|. As D is a bidirected complete graph, it then
follows from Claim 2(a) that fi(v) = ni for all i ∈ [1, p]. Moreover, if u ∈ V (D) \ {v}, say
u ∈ V (D1) (by symmetry), then the sequence (D′

1,D
′
2, . . . ,D

′
p) with D′

1 = (D1 + v) − u
and D′

j = Dj for j ∈ [2, p] is an f -partition of D− u (by Claim 2(c)) with |Di|
′ = |Di| for

all i ∈ [1, p] and applying Claim 2(a) to u leads to fi(u) = ni for all i ∈ [1, p]. Note that

n1 + n2 + . . . + np = |D1|+ |D2|+ . . .+ |Dp| = |V (D)| − 1

and so (D, f) is a hard pair of type (K), contradicting (3). This contradiction completes
the proof of Theorem 3.

Since a bidirected graph D is weakly h-degenerate if and only if its underlying graph
G(D) is strictly h-degenerate (i.e. in each non-empty subgraph G′ of G there is a vertex v
with dG′(v) < h(v)), the restriction of Theorem 3 to bidirected graphs gives us also a result
regarding strict degeneracy of undirected graphs. This result for undirected graphs was
originally proven by Borodin, Kostochka, and Toft in the paper [8]. The proof structure
of Claim 3 is similar to that of the first part of their proof. However, apart from this,
our proof leads to another proof for the undirected case that uses completely different
methods than the original proof. A major benefit of our proof is that it—contrary to the
original proof in [8]— generalizes easily to the case of directed multigraphs respectively
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multigraphs. Of course, the definition of weak degeneracy and of f -partitions also works
if we allow multiple arcs between vertices going in the same direction. Also, the definition
of hard pair needs only to be generalized slightly. To this end, we need the following term.
Let G be a simple graph and let t ≥ 1 be an integer. Then we denote by tG the graph
that results from G by replacing each edge by t parallel edges. Now let D be a connected
multidigraph, and let f : V (D) → N

p
0 be a vector function. We say that (D, f) is a hard

pair, if either

• (D, f) is of type (M), or

• D is a bidirected tKn and there are integers n1, n2, . . . , np ≥ 0 with at least two ni

different from zero such that n1 + n2 + . . .+ np = n− 1 and

f(v) = (tn1, tn2, . . . , tnp) for all v ∈ V (D), or

• D is a bidirected tCn with n odd and there are two indices k 6= ℓ from the set [1, p]
such that for all v ∈ V (D),we have fi(v) = t if i ∈ {k, ℓ} and fi(v) = 0 otherwise, or

• (D, f) is obtained from two hard pairs via the merging operation.

For multidigraphs, we obtain the following theorem.

Theorem 9 Let D be a connected multidigraph, let p ≥ 1, and let f : V (D) → N
p
0 be a

vector function such that f1(v)+f2(v)+ . . .+fp(v) ≥ max{d+D(v), d
−
D(v)} for all v ∈ V (D).

Then, D is not f -partitionable if and only if (D, f) is a hard pair. ⋄

By inspecting their proofs, it is easy to check that Claims 1-7 also hold for multidigraphs.
Only the remaining part of the proof needs to be changed slightly, but still can easily be
done adapting the methods described there. Therefore, we abstain from giving an extra
proof.

4 Applications of Theorem 3

4.1 Brooks’ Theorem for list-colorings of digraphs

As mentioned in the introduction, Theorem 3 implies Harutyunyan and Mohar’s Theo-
rem 2 [19]. Let us recall the theorem for the reader’s convenience.

Theorem 2 (Harutyunyan and Mohar, 2011) Let D be a connected digraph, and let
L be a list-assignment such that |L(v)| ≥ max{d+D(v), d

−
D(v)} for all v ∈ V (D). Suppose

that D is not L-colorable. Then, the following statements hold:

(a) D is Eulerian and |L(v)| = max{d+D(v), d
−
D(v)} for all v ∈ V (D).

(b) If B ∈ B(D), then B is a directed cycle of length ≥ 2, or B is a bidirected complete
graph, or B is a bidirected cycle of odd length ≥ 5.

(c) For each B ∈ B(D) there is a set ΓB of ∆+(B) colors such that for every v ∈ V (D),
the sets ΓB with B ∈ Bv(D) are pairwise disjoint and L(v) =

⋃

B∈Bv(D) ΓB. ⋄
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Proof of Theorem 2: Let D and L be as described in the theorem. By using the method
from the introduction, we transform the list-coloring problem to that of finding an f -
partition: Let Γ =

⋃

v∈V (D) L(v). By renaming the colors if necessary, we may assume

Γ = [1, p]. Now let f : V (D) → N
p
0 be the vector function with

fi(v) =

{

1 if i ∈ L(v), and

0 if i 6∈ L(v)

for i ∈ [1, p]. By the definition of f , we have f1(v) + f2(v) + . . . + fp(v) = |L(v)| ≥
max{d+D(v), d

−
D(v)} for all v ∈ V (D) and D is not f -partitionable. Thus, it follows from

Theorem 3 that (D, f) is a hard pair. Then, statement (a) follows from Proposition 7(a).
Moreover, Proposition 6(a) implies that for each block B ∈ B, (B, fB) is of type (M),
(K), or (C), where fB is the function as defined in Proposition 6. Note that if (B, fB) is
of type (M), then from the definition of f it follows that the only non-zero coordinate of
fB is constant 1 and, hence, d+B(v) = d−B(v) = 1 for all v ∈ V (B). Consequently, B is a
directed cycle. Thus, (b) holds true. Statement (c) follows easily from Proposition 6(a)
and (b).

4.2 The s-degenerate dichromatic number

In [16], Golowich introduces a generalization of the dichromatic number as follows. Let
s ≥ 1 be an integer. Then, the s-degenerate dichromatic number of a digraph D,
denoted by

→

χs(D), is the least integer p such that D admits a p-partition into weakly
s-degenerate subdigraphs. Clearly, χ1 corresponds to the dichromatic number. Note that
the s-degenerate dichromatic number is the digraph counterpart to the point partition
number of an undirected graph, which was introduced by Lick andWhite [25] and which is
also known as the s-chromatic number. The point partition number χs of an undirected
graph G is usually defined as the minimum number p such that G admits a p-partition into
s-degenerate subgraphs. By setting fi ≡ s in Theorem 3, we easily obtain the following
theorem, which was proven for undirected graphs by Mitchem [26].

Theorem 10 Let D be a connected digraph and let m = maxv∈V (D){d
+
D(v), d

−
D(v)}. More-

over, let s ≥ 1 be an integer and let p = ⌈m
s
⌉. If D is neither a bidirected odd cycle, a

bidirected complete graph, nor an Eulerian digraph in which every vertex has in- and out-
degree s, then χs(D) ≤ p. ⋄

To conclude the paper, let us demonstrate how to obtain a list-version of Theorem 10.
Given a digraph D and a list-assignment L of D, we say that D is (L, s)-colorable if D
admits an L-coloring in which every color class induces a weakly s-degenerate subdigraph.

Theorem 11 Let D be a connected digraph and let m = maxv∈V (D){d
+
D(v), d

−
D(v)}. More-

over, let s ≥ 1 be an integer and let L be a list-assignment with |L(v)| ≥ m
s

for all
v ∈ V (H). Then, D is not (L, s)-colorable if and only if the following two conditions are
fulfilled:

(a) D is a bidirected complete graph with |D| − 1 ≡ 0 (mod s), or D is a bidirected odd
cycle and s = 1, or D is an Eulerian digraph in which every vertex has in-degree
and out-degree s.

(b) There is a color set Γ such that L(v) = Γ for all v ∈ V (D) and |Γ| = m/s. ⋄
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Proof: If m = 0, then D consists of just one vertex and the statement is evident. So
assume m ≥ 1. Let Γ =

⋃

v∈V (D) L(v). By renaming the colors if necessary, we can

assume that Γ = [1, p]. Now we define a vector function f : V (D) → N
p
0 as follows. Let

fi(v) =

{

s if i ∈ L(v),

0 otherwise

for i ∈ [1, p]. Then, D is not (L, s)-colorable if and only if D is not f -partitionable. By
definition, we have f1(v) + f2(v) + . . .+ fp(v) = s|L(v)| ≥ m for all v ∈ V (D) and so D is
not (L, s)-colorable if and only if (D, f) is a hard pair. (by Theorem 3)

First assume that D and L satisfy (a) and (b). Then it is easy to check that (D, f)
is indeed a hard pair and so D is not (L, s)-colorable. Now assume that D is not (L, s)-
colorable. Then (D, f) is a hard pair and from Proposition 7(a) it follows that m ≤
s|L(v)| = d+D(v) = d−D(v) for all v ∈ V (D) and so D is Eulerian and each vertex v satisfies
d+D(v) = d−D(v) = m. If m = s, then |L(v)| = 1 for all v ∈ V (D) and D is not (L, s)-
colorable if and only if there is a color α ∈ Γ with L(v) = {α} for all v ∈ V (D), and
we are done. So assume m > s. Then, |L(v)| ≥ 2 and so for each vertex v there are
two indices i 6= j such that fi(v) ≥ 1 and fj(v) ≥ 1. Consequently, by Proposition 6, no
end-block of D is a mono-block. Since every vertex of D has in-degree and out-degree m,
this implies that D itself is a block and so D is either a bidirected complete graph or a
bidirected odd cycle. In the first case, (D, f) is of type (K) and, since every coordinate
of f is either s or zero we easily conclude from the definition of hard pair of type (K)
that |D| − 1 ≡ 0 (mod s). If (D, f) is of type (C), we conclude that s = 1. Moreover, in
both cases the function f is constant and so the list-assignment L is constant, too, and
|L(v)| = m/s for all v ∈ V (D). This completes the proof.
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5 Appendix: Constructing an f-partition

The problem of deciding whether the dichromatic number of a digraph is at most two is
already NP-complete [7]. Since this problem is the same as deciding whether there is an
f -partition for f ≡ (1, 1), we cannot hope to find an efficient algorithm for deciding, for a
given pair (D, f), whether D admits an f -partition. The good news, however, is that it is
possible to deduce a polynomial time algorithm from our proof that, given a pair (D, f)
with f1(v)+ f2(v)+ . . .+ fp(v) ≥ max{d+D(v), d

−
D(v)} for all v ∈ V (D), either verifies that

(D, f) is a hard pair or returns an f -partition of D. The algorithm uses the following six
subroutines.

Algorithm 1 Greedy Coloring

Input: (D, f, v∗) such that D is connected, f1(v)+f2(v)+. . .+fp(v) ≥ max{d+D(v), d
−
D(v)}

for all v ∈ V (D) and f1(v
∗) + f2(v

∗) + . . . + fp(v
∗) > min{d+D(v

∗), d−D(v
∗)}.

Output: An f -partition (D1,D2, . . . ,Dp) of D

1: n := |D|, vn := v∗

2: for i = n− 1, n − 2, . . . , 1 do
3: let vi be a vertex such that vi has a neighbor from {vi+1, vi+2, . . . , vn}
4: end for
5: Dj := ∅ for j ∈ [1, p]
6: for i = 1, 2, . . . , n do
7: Dj := Dj ∪ {vi} where j is the minimum integer with
8: fj(vi) > min{d+Dj+vi

(vi), d
−
Dj+vi

(vi)}.
9:

10: end for
11: return (D1,D2, . . . ,Dp).
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Algorithm 2 Greedy Coloring of D − v

Input: (D, f, v) where D is connected and f1(v)+f2(v)+. . .+fp(v) = max{d+D(v), d
−
D(v)}

for all v ∈ V (D)
Output: An f -partition (D1,D2, . . . ,Dp) of D − v

1: Let K1, . . . ,Kq be the connected components of D − v.
2: for j = 1, 2, . . . , q do
3: find a vertex v∗Kj

with f1(v
∗
Kj

)+ f2(v
∗
Kj

)+ . . .+ fp(v
∗
Kj

) > min{d+K(v∗Kj
), d−K(v∗Kj

)}

4: apply Algorithm 1 to (K, f, v∗Kj
) to obtain an f -partition (DKj ,1,DKj ,2, . . . ,DKj ,p)

of Kj.
5: end for
6: for i = 1, 2, . . . , p do
7: Di :=

⋃

j∈[1,q]DKj ,i

8: end for
9: return (D1,D2, . . . ,Dp).

The correctness of the first two algorithms follows from Claims 1 and 2. In particular,
in step 7 of Algorithm 1, we always find such an index j since

∑

k∈[1,p]

min{d+Dk+vi
(vi), d

−
Dk+vi

(vi)} ≤ min{d+
D[{v1,v2,...,vi}]

(vi), d
−
D[{v1,v2,...,vi}]

(vi)}

< max{d+D(vi), d
−
D(vi)} ≤ f1(vi) + f2(vi) + . . .+ fp(vi).

Here the last in-equality follows from the fact that vi has a neighbor in the set {vi+1, . . . , vn}.
Algorithm 3 describes the shifting procedure that we introduced after Claim 4. Given

a vertex v and a neighbor w of v, we first check if we can add v to the f -partition in
order to obtain the desired f -partition of D. If this is not the case, then it follows from
Claim 2(c) that we can ”swap“ v and w and obtain an f -partition of D −w. The idea of
the Main Algorithm 7 is to iteratively split end-blocks B together with the appropriate
block-function fB (as in Proposition 6) from D and try to partition those separately. If we
find an fB-partition of some block B, we describe a procedure how to extend this partition
to an f -partition of the whole digraph.

Algorithm 4 deals with the case that the underlying graph C = G(B) of a block B
is a cycle and (B, fB) is not a hard pair. Then, it follows from the proof of Claim 8
that by repeated application of the shifting procedure we will eventually obtain an fB-
partition. As (B, fB) is not a hard pair, there are two consecutive vertices v,w on C
with fB(v) 6= fB(w). By beginning the shifting with the vertex v, we ensure that the
algorithm will terminate after at most length(C) + 1 iterations since then the condition
in Algorithm 3 line 2 will be violated at the latest. This is due to the fact that if u, u′

are the neighbors of v, respectively w on C distinct from {v,w} and (D1,D2, . . . ,Dp) is
an fB-partition of D − v, then u and u′ need to belong to different parts of the partition
(by Claim 4(b) applied to (D1,D2, . . . ,Dp) and to the f -partition of D − w that results
from (D1,D2, . . . ,Dp) by swapping v and w). Thus, after length(C) + 1 iterations, v is
again uncolored but the neighbors of v will belong to other partition parts than previous.
Hence, Algorithm 4 runs in polynomial time.
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Algorithm 3 Shifting Procedure

Input: (D, f, v, w, (D1,D2, . . . ,Dp)) where

• D is a Eulerian block
• v is a vertex of D
• w is a neighbor of v in D
• f1(u) + f2(u) + . . . + fp(u) = d+D(u) = d−D(u) for all u ∈ V (D)
• (D1,D2, . . . ,Dp) f -partition of D − v

Output: Either an f -partition of D, or an f -partition of D − w.

1: for i = 1, 2, . . . , p do
2: if min{d+Di+v(v), d

−
Di+v(v)} < fi(v) then

3: Di := Di + v
4: return the f -partition (D1,D2, . . . ,Dp) of D
5: end if
6: end for
7: let i be the index with w ∈ V (Di)
8: Di := Di + v − w
9: return the f -partition (D1,D2, . . . ,Dp) of D − w.

Algorithm 4 f -partition of a cycle

1: procedure CyclePartition(D, f)
2: let v,w be two adjacent vertices of D with f(v) 6= f(w)
3: apply Algorithm 2 to (D, f, v)
4: while true do
5: apply Algorithm 3 to (D, f, v, w, (D1,D2, . . . ,Dp))
6: if Algorithm 3 returns an f -partition (D′

1,D
′
2, . . . ,D

′
p) of D then

7: return the f -partition (D′
1,D

′
2, . . . ,D

′
p) of D

8: else
9: Algorithm 3 returns an f -partition (D′

1,D
′
2, . . . ,D

′
p) of D −w

10: u := neighbor of w in D distinct from v, v := w, w := u,
(D1,D2, . . . ,Dp) := (D′

1,D
′
2, . . . ,D

′
p)

11: end if
12: end while
13: end procedure

Algorithm 5 describes a procedure that settles the case that the underlying graph of
a block B is a complete graph. Here, we first need to check if B is bidirected; otherwise,
we describe a method how to obtain an fB-partition of the non-bidirected block (lines 1
till 24). That the procedure works follows from the proof’s part after Claim 8. If B is
bidirected, we argue as in the same proof section to get an f -partition.
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Algorithm 5 f -partition of a complete digraph

1: procedure CompleteDigraphPartition(D, f)
2: if there is an arc vu ∈ A(D) with uv 6∈ A(D) then
3: apply Algorithm 2 to (D, f, v) to obtain f -partition (D1,D2, . . . ,Dp) of D− v.
4: if min{d+Dj+v(v), d

−
Dj+v(v)} < fj(vi) for some j ∈ [1, p] then

5: Dj := Dj + vi
6: return f -partition (D1,D2, . . . ,Dp).
7: else if all but one Di are empty then
8: find vertex w ∈ V (D) with fj(w) > 0 for some j 6= i (if possible, w = v).
9: Di := (Di + v)− w, Dj := Dj + w

10: return (D1,D2, . . . ,Dp) f -partition of D
11: else
12: let i be the index with u ∈ V (Di). Find w with w ∈ V (Dj) and i 6= j.
13: v∗ := v, C = G(D)[{u, v, w}]
14: while true do
15: apply Algorithm 3 to (D, f,C, v∗, (D1,D2, . . . ,Dp)
16: if Algorithm 3 returns f -partition (D′

1,D
′
2, . . . ,D

′
p) of D then

17: (D1,D2, . . . ,Dp) := (D′
1,D

′
2, . . . ,D

′
p)

18: return (D1,D2, . . . ,Dp) is f -partition of D
19: else
20: Algorithm 3 returns f -partition (D′

1,D
′
2, . . . ,D

′
p) of D − w∗

where w∗ is the right neighbor of v∗ on C
21: v∗ := w∗, (D1,D2, . . . ,Dp) := (D′

1,D
′
2, . . . ,D

′
p)

22: end if
23: end while
24: end if
25: else D is a bidirected complete graph. Let v ∈ V (D) be arbitrary and apply

Algorithm 2 to obtain an f -partition (D1,D2, . . . ,Dp) of D − v.
26: let ni = |Di| for i = 1, . . . , p.
27: if fi(v) > ni for some i ∈ [1, p] then
28: Di := Di + v
29: return (D1,D2, . . . ,Dp) is an f -partition of D
30: else if there is a vertex w with w ∈ V (Di) (i ∈ [1, p]) and fi(w) ≥ ni +2 then
31: Di := Di + v
32: return (D1,D2, . . . ,Dp) is an f -partition of D
33: else
34: find a vertex w and indices i 6= j with w ∈ V (Di) and fj(w) > nj

35: Di := (Di + v)− w, Dj := Dj + w
36: return (D1,D2, . . . ,Dp) is an f -partition of D
37: end if
38: end if
39: end procedure
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Algorithm 6 uses the two previously described procedures in order to find an fB-
partition of any block B where (B, fB) is not a hard pair. We first check if (B, fB) is
a hard pair (which can be done efficiently). If this is not the case, we determine if the
underlying graph is a cycle or a complete graph and apply the respective procedures to get
an fB-partition. If the block’s underlying graph is neither a complete graph nor a cycle,
we argue as in Claim 7. Note that Cranston and Rabern describe in [11] a constructive
proof of Gallai’s Lemma 5. In particular, they provide an efficient method how to find an
even cycle that has at most one chord if the block is neither a complete graph nor an odd
cycle. Moreover, in the worst case we need to shift a lot here but we still stay polynomial
in the size of the block.

Algorithm 7, which is the main algorithm, first tries to color the vertices greedily by
using Algorithm 1. If this is not possible, it immediately follows that f1(v) + f2(v) +
. . . + fp(v) = d+D(v) = d−D(v) for all v ∈ V (D) and, hence, D is Eulerian. Note that
this implies that every block is Eulerian, too (see Claim 3). We then compute a block-
decomposition of D (which can be done efficiently, see [21]). Afterwards, we take an
end-block B1 of D as well as the unique separating vertex v1 of D contained in B1 and
color the vertices of D − v1 greedily using Algorithm 2. If we cannot add v1 to any of
the partition parts, then it follows from Claim 3 that we can split f(v1) into fB1

(v1) and
an updated f(v1) := f(v1) − fB1

(v1) as in lines 14-22, so that both (B1, fB1
) as well as

the remaining part D \ (V (B1) \ {v1}) together with the new function f fulfill the degree-
condition. Then we try to find an fB1

-partition of B1, if this is not possible we record that
(B1, fB1

) is a hard pair. Afterwards, we continue splitting end-blocks from D until we can
either confirm that every block together with its corresponding function is a hard pair or
we find an fBi

-partition of some block Bi. Then, it follows from the proof of Claim 3 that
we can extend this partition to an f -partition of the current D. Now we can greedily color
the vertices of Bi−1 \ {vi−1} and combine this partition with the partition of the previous
D in order to get an f -partition of D + Bi−1. By repeating this procedure until B1 gets
added to D, we eventually obtain the desired f -partition.
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Algorithm 6 Finding an f -partition of a block

Input: (D, f) where

• D is a Eulerian block, and
• f1(v) + f2(v) + . . .+ fp(v) = d+D(v) = d−D(v) for all v ∈ V (D)

Output: Either that (D, f) is a hard pair, or an f -partition (D1,D2, . . . ,Dp) of D

1: if (D, f) is a hard pair then
2: return (D, f) is a hard pair
3: else if G(D) is a cycle then
4: (D1,D2, . . . ,Dp) =CyclePartition(D, f)
5: return (D1,D2, . . . ,Dp) is an f -partition of D
6: else if G(D) is a complete graph then
7: (D1,D2, . . . ,Dp) =CompleteDigraphPartition(D, f)
8: return (D1,D2, . . . ,Dp) is an f -partition of D
9: else

10: find an even cycle C of D(G) and vertex v ∈ V (C) that is not contained in a chord
11: apply Algorithm 2 to obtain an f -partition (D1,D2, . . . ,Dp) of D − v
12: if min{d+Dj+v(v), d

−
Dj+v(v)} < fj(vi) for some j ∈ [1, p] then

13: Dj := Dj + vi
14: return f -partition (D1,D2, . . . ,Dp).
15: end if
16: if all but one Di are empty then
17: find a vertex w with fj(w) > 0 for some j 6= i
18: Di := Di − w, Dj := ({w},∅).
19: end if
20: let u,w be the neighbors of v on C
21: if u,w are contained in the same Di then
22: find vertex z with z ∈ V (Dj) and j 6= i
23: find cycle C ′ in G(D) containing z and the edge vw

and choose a cyclic ordering of the vertices of C ′

24: end if
25: v∗ := v
26: while u,w are contained in the same Di or v 6= v∗ do
27: apply Algorithm 3 to (D, f, v∗, C ′, (D1, . . . ,Dp))
28: if Algorithm 3 returns f -partition (D1,D2, . . . ,Dp) of D then
29: return (D1,D2, . . . ,Dp) is an f -partition of D
30: else v∗ := right neighbor of v∗ on C ′

31: end if
32: end while
33: choose a cyclic ordering of the vertices of C
34: while true do
35: apply Algorithm 3 to (D, f, v∗, C, (D1, . . . ,Dp))
36: if Algorithm 3 returns f -partition (D1,D2, . . . ,Dp) of D then
37: return (D1,D2, . . . ,Dp) is an f -partition of D
38: else v∗ := right neighbor of v∗ on C
39: end if
40: end while
41: end if
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Algorithm 7 Main Algorithm

Input: (D, f) where

• D is a connected digraph
• f1(v) + f2(v) + . . .+ fp(v) ≥ max{d+D(v), d

−
D(v)} for all v ∈ V (D)

Output: Either (D, f) is a hard pair, or f -partition (D1,D2, . . . ,Dp) of D

1: if there is a vertex v∗ with f1(v
∗)+ f2(v

∗)+ . . .+ fp(v
∗) > min{d+D(v

∗), d−D(v
∗)} then

2: apply Algorithm 1 to (D, f, v∗) to obtain an f -partition (D1,D2, . . . ,Dp) of D
3: return (D1,D2, . . . ,Dp) is an f -partition of D
4: end if
5: Compute the block-decomposition of D
6: i := 1
7: while D 6= ∅ do
8: let Bi be an end-block of D, let vi be the separating vertex contained in Bi.
9: apply Algorithm 2 to (D, vi) to obtain an f -partition of D − vi.

10: if min{d+Dj+vi
(vi), d

−
Dj+vi

(vi)} < fj(vi) for some j ∈ [1, p] then
11: Dj := Dj + vi
12: go to step 27
13: else
14: fBi

(vi) := (fBi,1(vi), fBi,2(vi), . . . , fBi,p(vi)) with
15: fBi,j(vi) = d+

Bi∩(Dj+vi)
(vi) for j ∈ [1, p]

16: fBi
(w) = f(w) for w ∈ V (Bi) \ {vi}.

17: apply Algorithm 6 to (Bi, fBi
)

18: if Algorithm 6 returns fBi
-partition of Bi then

19: Di := D[(V (Di) ∩ (V (D) \ V (B))) ∪ V (D′
i)] for i ∈ [1, p]

20: go to step 27
21: else
22: D := D−(V (B)\{vi}), f(vi) := f(vi)−fBi

(vi), update block-decomposition
of D, i := i+ 1

23: end if
24: end if
25: end while
26: return D is f -hard and results from merging (B1, fB1

),(B2, fB2
), . . . , (Bi−1, fBi−1

)
27: while i > 1 do
28: apply Algorithm 2 on (Bi−1, fBi−1

, vi−1), get an fBi−1
-partition (D′

1,D
′
2, . . . ,D

′
p)

of Bi−1 − vi−1

29: Di := D[V (Di) ∪ V (D′
i)] for i ∈ [1, p]

30: i := i− 1
31: end while
32: return (D1,D2, . . . ,Dp) is an f -partition of D.
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