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Abstract. In this paper, we consider the inverse problem of recovering a diffusion σ and absorp-
tion coefficients q in steady-state optical tomography problem from the Neumann-to-Dirichlet map.
We first prove a Global uniqueness and Lipschitz stability estimate for the absorption parameter
provided that the diffusion σ is known and show how to quantify the Lipschitz stability constant for
a given setting. Then, we prove a Lipschitz stability result for simultaneous recovery of σ and q. In
both cases the parameters belong to a known finite subspace with a priori known bounds. The proofs
rely on a monotonicity result combined with the techniques of localized potentials. To numerically
solve the inverse problem, we propose a Kohn-Vogelius-type cost functional over a class of admissible
parameters subject to two boundary value problems. The reformulation of the minimization prob-
lem via the Neumann-to-Dirichlet operator allows us to obtain the optimality conditions by using
the Fréchet differentiability of this operator and its inverse. The reconstruction is then performed
by means of an iterative algorithm based on a quasi-Newton method. Finally, we illustrate some
numerical results.
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ity, Localized potentials.
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1. Introduction. In this paper, we consider the inverse problem of recovering
the parameters σ(x) and q(x) in the elliptic partial differential equation

(1.1) −∇ · (σ∇u) + qu = 0 in Ω,

from the knowledge of all possible Cauchy data on the boundary ∂Ω, σ∂νu|∂Ω, u|∂Ω.
Problem (1.1) can be viewed as steady-state diffusion optical tomography, where light
propagation is modeled by a diffusion approximation and the excitation frequency is
set to zero. Here u represents the density of photons, σ the diffuse coefficient and q
the optical absorption. This problem arises in medical imaging and in geophysics, for
example, in reflection seismology assuming a description in terms of time-harmonic
scalar waves. For a full description of optical tomography, we refer the reader to the
topical reviews of Arridge [1] and Gibson, Hebden and Arridge [2].

Although it is common practice in optical tomography to use the Robin-to-Robin
map to describe the boundary measurements (see [1, 3]), the Neumann-to-Dirichlet
map will be employed here instead. This is justified by the fact that in optical tomog-
raphy, prescribing the Neumnann to-Dirichlet map, is equivalent to prescribing the
Robin-to-Robin boundary map as long as there are no additional unknown coefficients
in the Robin conditions (see for instance [4]).
The paper is split into three parts. Part one is on proving uniqueness and Lipschitz
stability of the the absorption coefficient q provided that the diffusion coefficient σ
is known. Part two is on proving Lipschitz stability of σ and q simultaneously. Part
three deals with the reconstruction of σ and q based on minimizing a Kohn-Vogelius
type functional.

The inverse problem of recovering q from the knowledge of the Dirichlet-to-
Neumann map was first introduced (in a slightly different setting) by Calderón in [5].
The uniqueness issue was treated by Sylvester and Uhlmann in [6]. For more recent
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result on uniqueness, we refer the reader to [7]. By virtue of the work of Alessandrini
[8] it is known that both problems of recovering σ or q (in suitable regularity scales)
enjoy logarithmic stability estimates under mild a priori assumptions on the data. As
shown by Mandache [9], this log-type estimate is optimal. Thus for arbitrary poten-
tials q, Lipschitz stability cannot hold. As discovered in [10], considering potentials or
conductivities in certain finite-dimensional spaces provides improvements in terms of
stability. Under certain assumptions, the authors prove Lipschitz stability estimates.
Their argument relies on a combination of singular solutions and unique continuation
estimates. This idea has been extended to more complex equations and systems (see
for instance [11, 12, 13, 14, 15, 16]).

As a key novelty in this article, we present a different approach based on the
monotonicity and the techniques of localized potentials instead of combining singular
solutions with unique continuation results as previously done in the literature. Follow-
ing analogous results in electrical impedance tomography and elasticity [17, 18, 19],
here we will study the question whether the coefficient q can be uniquely and stably re-
constructed. More precisely, we show that q is uniquely determined and depends upon
the Neumaun-to-Dircihlet map of (1.1) in a Lipschitz way as long as supp(q) b Ω
and σ is known. Moreover, we quantify the Lipschitz constant for a given setting
by solving a finite number of well-posed PDEs which may be important to quantify
the noise robustness in practical applications. To our best knowledge, this result of
quantitative Lipschitz stability is new for the problem under consideration.

As mentioned in [20], the inverse problem of simultaneous reconstruction of σ and
q is in general not uniquely solvable, i.e., it is not possible to uniquely determine both
σ and q from boundary data of u provided that σ and q are smooth. The reason is
that a diffusion coefficient can be transformed into an absorption coefficient by setting

v :=
√
σu,

which transforms equation (1.1) into

−∆v + cv = 0, c =
∆
√
σ√
σ

+
q

σ
.

If σ = 1 in a neighborhood of ∂Ω, then the boundary values remain unchanged. Hence,
boundary measurements can only contain information about c, from which one cannot
extract σ and q. Despite this negative theoretical result, a prominent result by Harrach
[4] demonstrates that uniqueness holds for piecewise constant diffusion and piecewise
analytic absorption coefficients. The author proves that under this condition both
parameters are simultaneously uniquely determined by knowledge of all possible pairs
of Neumann and Dirichlet boundary values σ∂ν |S , u|S , of solutions u of (1.1), and S
is a non-empty subset of ∂Ω

In this paper, we go a step further and we prove a Lipschitz stability for the in-
verse problem of recovering q and σ simultaneously. The proof relies on a monotonicity
estimates combined with the techniques of localized potentials. To the author’s knowl-
edge the Lipschitz stability presented in this work is the first result on simultaneous
recovery for a class of real-valued diffusion and absorption coefficients.

The idea of using monotonicity and localized potentials method has lead to a
several results for inverse coefficient problems; see for instance [21, 22, 23, 24, 25, 26,
27, 28]. Together with the recent results [29, 18, 17, 19], this work shows that this idea
can also be used to prove Uniqueness and Lipschitz stability results for the inverse
optical tomography problem.
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Lipschitz stability estimates for inverse and ill-posed problems are usually based
on constructive approaches involving Carleman estimates or quantitative estimates
of unique continuation [30, 14, 31, 32, 33, 34, 35]. For some applications these con-
structive approaches also allowed to quantify the asymptotic behavior of the Lipschitz
constant; see for instance [36].

Our approach on proving Lipschitz stability is relatively simple compared to pre-
vious works. The main tools are: standard (non quantitative) unique continuation,
the monotonicity result and the method of localized potentials.

For the numerical solution, we reformulate the inverse problem into a minimiza-
tion problem using a Kohn-Vogelius functional, and use a quasi-Newton method which
employs the analytic gradient of the cost function and the approximation of the in-
verse Hessian is updated by BFGS scheme [37]. Let us stress that this numerical part
approaches the problem from a heuristic numerical side to demonstrate that useful
numerical reconstructions are indeed possible. It remains a challenging open task how
to unite the theoretical and numerical approaches in order to find rigorously justified
reconstruction methods that work well in practically relevant settings.

Let us recall that in [38, 39, 40, 41], the authors propose new algorithms for re-
covering optical material properties. These algorithmes are experimentally tested for
two and three- dimensional cases. While these works, which address real-life three-
dimensional problems are an important step towards practical applications, they still
suffer from considerable cross-talk between absorption and scattering reconstructions.
What we mean by cross-talk is that purely scattering (or purely absorbing) inclusions
are often reconstructed with unphysical absorption (or scattering) properties. This
behavior is well-understood from the theoretical viewpoint: Different optical distribu-
tions inside the medium can lead to the same measurements collected at the surface
of the medium [20, 42]. To avoid such cross-talks for our numerical results, we have
used a suitable regularization techniques for the proposed algorithm in order to better
separate and estimate simultaneously the optical properties σ and q.

The paper is organized as follows. In section 2, we introduce the forward, the
Neumann-to-Dirichlet operator and the inverse problem. Section 3 and 4 contain the
main theoretical tools for this work. Section 3 is devoted to the reconstruction of the
absorption coefficient assuming that the diffusion coefficient is known. We show a
monotonicity relation and we prove a Runge approximation result. Then we deduce
the existence of localized potentials and prove the global uniqueness and Lipschitz
stability estimate and show how to calculate the Lipschitz stability constant for a
given setting. Section 4 is concerned with the reconstruction of the diffusion and the
absorption coefficients simultaneously. We first show a monotonicity result between
the diffusion and absorption coefficients and the Neumann-to-Dirichlet operator and
prove the existence of localized potentials. Then, we prove the Lipschitz stability
estimate. In section 5, we introduce the minimization problem, and we compute
the first order optimality condition. In section 6, satisfactory numerical results for
two-dimensional problem are presented. The last section contains some concluding
remarks.

2. Problem formulation. Let Ω ⊂ Rd (d ≥ 2), be a bounded domain with
smooth boundary ∂Ω. For σ, q ∈ L∞+ (Ω), where L∞+ denotes the subset of L∞-
functions with positive essential infima, we consider the following problem with Neu-
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mann boundary data g ∈ L2(∂Ω):

(2.1)

{
−∇ · (σ∇u) + qu = 0 in Ω,

σ∂νu = g on ∂Ω,

where ν is the unit normal vector to ∂Ω. The weak formulation of problem (2.1) reads

(2.2)

∫
Ω

σ∇u · ∇w dx+

∫
Ω

quw dx =

∫
∂Ω

gw ds for all w ∈ H1(Ω).

Using the Riesz representation theorem (or the Lax-Milgram-Theorem), it is easily
seen that (2.2) is uniquely solvable and that the solution depends continuously on g ∈
L2(∂Ω) and σ, q ∈ L∞+ (Ω). Then, we can define the Neumann-to-Dirichlet operator
(NtD):

Λ(σ, q) : L2(∂Ω) −→ L2(∂Ω)

g 7−→ u|∂Ω,

The inverse problem we consider here, is the following:

(2.3) Find the parameters σ, q from the knowledge of the map Λ(σ, q).

We will consider diffusion and absorption parameters that are a priori known to belong
to a finite dimensional set of piecewise-analytic functions and that are bounded from
above and below by a priori known constants. To that end, we first define piecewise-
analyticity as in [17, Definition 2.1]

Definition 2.1. (a) A Subset Γ ⊆ ∂Ω of the boundary of an open set Ω ⊂
Rn is called a smooth boundary piece if it is a C∞-surface and Ω lies on
one side of it, i.e. if for each z ∈ Γ there exists a ball Bε(z) and function
γ ∈ C∞(Rn−1,R) such that

Γ = ∂Ω ∩Bε(z) = {x ∈ Bε(z) : xn = γ(x1, . . . , xn−1)} ,

Ω ∩Bε(z) = {x ∈ Bε(z) : xn > γ(x1, . . . , xn−1)} .

(b) Ω is said to have smooth boundary if ∂Ω is a union of smooth boundary pieces.
Ω is said to have piecewise smooth boundary if ∂Ω is a countable union of the
closures of smooth boundary pieces.

(c) A function ϕ ∈ L∞(Ω) is called piecewise constant if there exists finitely
many pairwise disjoint subdomains Ω1, . . . ,ΩN ⊂ Ω with piecewise smooth
boundaries, such that Ω = Ω1∪, . . . ,∪ΩN and ϕ|Ωi

is constant, i = 1, . . . , N .
(d) A function ϕ ∈ L∞(Ω) is called piecewise analytic if there exists finitely

many pairwise disjoint subdomains Ω1, . . . ,ΩN ⊂ Ω with piecewise smooth
boundaries, such that Ω = Ω1∪, . . . ,∪ΩN , and ϕ|Ωi

has an extension which
is (real-)analytic in a neighborhood of Ωi, i = 1, . . . , N .

As mentioned in [17], it is not clear whether the sum of two piecewise-analytic func-
tions is always piecewise-analytic, i.e. whether the set of piecewise-analytic functions
is a vector space. However, this can be guaranteed with a slightly stronger defini-
tion of piecewise analyticity (see [43, lemma 1]). Therefore, we make the following
definition.



UNIQUENESS LIPSCHITZ STABILITY AND RECONSTRUCTION 5

Definition 2.2. A set F ⊆ L∞(Ω) is called a finite-dimensional subset of
piecewise-analytic functions if its linear span

span F =


k∑
j=1

λjfj : k ∈ N, λj ∈ R, fj ∈ F

 ⊆ L∞(Ω,

contains only piecewise-analytic functions and dim(span F) <∞.

3. Recovery of the absorption coefficient. In this section, we assume that
σ = σ0χΩ\ω +σ1χω, and q = qχω, where σ0, σ1 are positive constants and ω b Ω. We
aim to recover the absorption parameter q ∈ L∞+ (ω) from the NtD operator

Λ(q) : L2(∂Ω)→ L2(∂Ω) : g 7→ u|∂Ω.

provided that σ is known.
Given a finite-dimensional subset F of piecewise analytic functions and two con-

stants b > a > 0, we denote the set

F[a,b] := {q ∈ F : a ≤ q(x) ≤ b, for all x ∈ ω} .

Throughout this paper, the domain ω, the finite-dimensional subset F and the bounds
b > a > 0 are fixed, and the constants in the Lipschitz stability results will depend
on them. Our first results show Uniqueness and Lipschitz stability for the inverse
absorption problem in F[a,b], when the complete infinite-dimensional NtD-operator is
measured.
The outline of this section is the following

(i) In Subsection 3.1, we prove a runge approximation result and we deduce a
global uniqueness for determining q from Λ(q).

(ii) In Subsection 3.2, we show a monotonicity and localized potentials results
and we deduce a Lipschitz stability estimate for determining q from Λ(q).

(iii) In Subsection 3.3, we show how to quantify the Lipschitz constant.

3.1. Runge approximation and uniqueness.. We first note the following
unique continuation property. For every open connected subset O ⊂ Ω, only the
trivial solution of

−div(σ∇u) + qu = 0 in O,

vanishes on an open subset of O or possesses zero Cauchy data on a smooth, open
part of ∂O. When σ is Lipschitz and q is bounded, this property is proven in Miranda
[44, Thm. 19, II]. It can be extended to the case of piecewise analytic σ and q by
sequentially solving Cauchy problems (see [45]).

We will deduce the uniqueness theorem 3.2 from the following Runge approxima-
tion result.

Theorem 3.1 (Runge approximation). Let q ∈ L∞+ (ω) be piecewise analytic.
For all f ∈ L2(ω) there exists a sequence (gn)n∈N ⊂ L2(∂Ω) such that the correspond-
ing solutions u(gn) of (2.1) with boundary data gn, n ∈ N, fulfill

u(gn)|ω → f in L2(ω).

Proof. We introduce the operator

A : L2(ω)→ L2(∂Ω), f 7→ Af := v|∂Ω,
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where v ∈ H1(Ω) solves

(3.1)

∫
Ω

σ∇v · ∇w dx+

∫
ω

qvw dx =

∫
ω

fw dx for all w ∈ H1(Ω).

Let g ∈ L2(∂Ω) and u ∈ H1(Ω) be the corresponding solution of problem (2.1). Then
the adjoint operator of A is characterized by

(3.2)

∫
ω

(A∗g) f dx =

∫
∂Ω

(Af) g ds =

∫
∂Ω

vg ds =

∫
Ω

σ∇u · ∇v dx+

∫
ω

quv dx

=

∫
ω

fu dx, for all f ∈ L2(ω),

which shows that A∗ : L2(∂Ω) → L2(ω) fulfills A∗g = u|ω. The assertion follows if
we can show that A∗ has dense range, which is equivalent to A being injective.

To prove this, let v|∂Ω = Af = 0 with v ∈ H1(Ω) solving (3.1). Since (3.1) also
implies that σ∂νv|∂Ω = 0, and Ω \ ω is connected, it follows by unique continuation
that v|Ω\ω = 0 and thus v+|∂ω = 0. Since v ∈ H1(Ω) this also implies that v−|∂ω = 0,
and together with (3.1) we obtain that v|ω ∈ H1(ω) solves

−∇ · (σ∇v) + qv = 0 in ω,

with homogeneous Dirichlet boundary data v|∂ω = 0. Hence, v|ω = 0, so that v = 0
almost everywhere in Ω. From (3.1) it then follows that

∫
ω
fw dx = 0 for all w ∈

H1(Ω) and thus f = 0.

Theorem 3.2 (Global uniqueness). For q1, q2 ∈ L∞+ (ω) that are piecewise ana-
lytic,

Λ(q1) = Λ(q2) if and only if q1 = q2.

Proof. For absorption parameters q1, q2 ∈ L∞+ (ω) and Neumann data g, h ∈
L2(∂Ω) we denote the corresponding solutions of (2.1) by ug1, uh1 , ug2, and uh2 re-
spectively. The variational formulation (2.2) yields the orthogonality relation∫

∂Ω

h (Λ(q2)− Λ(q1)) g ds

=

∫
∂Ω

hΛ(q2)g ds−
∫
∂Ω

gΛ(q1)h ds =

∫
∂Ω

hug2 ds−
∫
∂Ω

guh1 ds

=

∫
Ω

σ∇uh1 · ∇u
g
2 dx+

∫
ω

q1u
h
1u

g
2 dx−

(∫
Ω

σ∇ug2 · ∇uh1 dx+

∫
ω

q2u
g
2u
h
1 dx

)
=

∫
ω

(q1 − q2)uh1u
g
2 dx.

This shows that Λ(q1) = Λ(q2) implies that∫
ω

(q1 − q2)uh1u
g
2 dx = 0, for all g, h ∈ L2(∂Ω).

Using the Runge approximation result in theorem 3.1, this yields that (q1−q2)uh1 = 0
(a.e.) in ω for all h ∈ L2(∂Ω), and using theorem 3.1 again, this implies q1 = q2.
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3.2. Monotonicity, localized potentials and Lipschitz stability. To prove
the Lipschitz stability result in Theorem 4.3, we first show a monotonicity estimate
between the absorption coefficient and the Neumann-to-Dirichlet operator, and deduce
the existence of localized potentials from the Runge approximation result.

Lemma 3.3 (Monotonicity estimate). Let q1, q2 ∈ L∞+ (ω) be two absorption
parameters, let g ∈ L2(∂Ω) be an applied boundary current, and let u2 := ugq2 ∈ H

1(Ω)
solve (2.1) for the boundary current g and the absorption parameter q2. Then

(3.3)

∫
ω

(q1 − q2)u2
2 dx ≥

∫
∂Ω

g (Λ(q2)− Λ(q1)) g ds ≥
∫
ω

(
q2 −

q2
2

q1

)
u2

2 dx.

Proof. Let u1 := ugq1 ∈ H
1(Ω). From the variational equation, we deduce∫

Ω

σ∇u1 · ∇u2 dx+

∫
ω

q1u1u2 dx =

∫
∂Ω

gΛ(q2)g ds =

∫
Ω

σ|∇u2|2 dx+

∫
ω

q2u
2
2 dx.

Thus∫
Ω

σ|∇(u1 − u2)|2 dx+

∫
ω

q1(u1 − u2)2 dx

=

∫
Ω

σ|∇u1|2 dx+

∫
ω

q1u
2
1 dx+

∫
Ω

σ|∇u2|2 dx+

∫
ω

q1u
2
2 dx

− 2

∫
Ω

σ|∇u2|2 dx− 2

∫
ω

q2u
2
2 dx

=

∫
∂Ω

gΛ(q1)g ds−
∫
∂Ω

gΛ(q2)g ds+

∫
ω

(q1 − q2)u2
2 dx.

Since the left-hand side is nonnegative, the first asserted inequality follows. Inter-
changing q1 and q2, we get∫

∂Ω

gΛ(q2)g ds−
∫
∂Ω

gΛ(q1)g ds

=

∫
Ω

σ|∇(u2 − u1)|2 dx+

∫
ω

q2(u2 − u1)2 dx−
∫
ω

(q2 − q1)u2
1 dx

=

∫
Ω

σ|∇(u2 − u1)|2 dx+

∫
ω

(
q2u

2
2 − 2q2u1u2 + q1u

2
1

)
dx

=

∫
Ω

σ|∇(u2 − u1)|2 dx+

∫
ω

q1

(
u1 −

q2

q1
u2

)2

ds+

∫
ω

(
q2 −

q2
2

q1

)
u2

2 dx.

Since the first two integrals on the right-hand side are non negative, the second as-
serted inequality follows.

Note that we call Lemma 3.3 a monotonicity estimate because of the following corol-
lary:

Corollary 3.4 (Monotonicity). For two absorption parameters q1, q2 ∈ L∞+ (ω)

(3.4) q1 ≤ q2 implies Λ(q1) ≥ Λ(q2) in the sense of quadratic forms.

Let us stress, however, that Lemma 3.3 holds for any q1, q2 ∈ L∞+ (ω) and does not
require q1 ≤ q2 or q1 ≥ q2.
The existence of localized potentials follows from the Runge approximation property
as in [18, Lemma 4.3].
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Lemma 3.5 (Localized potentials). Let q ∈ L∞+ (ω) be piecewise analytic, and
let O ⊆ ω be a subset with positive boundary measure. Then there exists a sequence
(gn)n∈N ⊂ L2(∂Ω) such that the corresponding solutions u(gn) of (2.1) fulfill

lim
n→∞

∫
O
|u(gn)|2 ds =∞ and lim

n→∞

∫
ω\O
|u(gn)|2 ds = 0.

Proof. Using the Runge approximation property in Theorem 3.1, we find a se-
quence g̃n ∈ L2(∂Ω) so that the corresponding solutions u(g̃n) fulfill

u(g̃n)|ω →
χO(∫
O dx

)1/2 in L2(ω).

Hence

lim
n→∞

∫
O
|u(g̃n)|2 dx = 1 and lim

n→∞

∫
ω\O
|u(g̃n)|2 dx = 0,

so that

gn :=
g̃n(∫

ω\O ũ
2
n dx

)1/4
,

has the desired property

lim
n→∞

∫
O
|u(gn)|2 dx = lim

n→∞

∫
O |u

(g̃n)|2 dx(∫
ω\O |u(g̃n)|2 dx

)1/2
=∞,

lim
n→∞

∫
ω\O
|u(gn)|2 dx = lim

n→∞

(∫
ω\O
|u(g̃n)|2 dx

)1/2

= 0.

Theorem 3.6 (Lipschitz stability). There exists a constant C > 0 such that

‖q1 − q2‖L∞(ω) ≤ C‖Λ(q1)− Λ(q2)‖L(L2(∂Ω)), for all q1, q2 ∈ F[a,b].

Proof. Let F ⊂ L∞(ω) be a finite dimensional subspace of piecewise analytic
functions, b > a > 0, and

q1, q2 ∈ F[a,b] = {q ∈ F : a ≤ q(x) ≤ b for all x ∈ ω} .

For the ease of notation, we write in the following

‖q1 − q2‖ := ‖q1 − q2‖L∞(Ω) and ‖g‖ := ‖g‖L2(∂Ω).

Since Λ(q1) and Λ(q2) are self-adjoint, we have that

‖Λ(q2)− Λ(q1)‖∗

= sup
‖g‖=1

∣∣∣∣∫
∂Ω

g (Λ(q2)− Λ(q1)) g ds

∣∣∣∣
= sup
‖g‖=1

max

{∫
∂Ω

g (Λ(q2)− Λ(q1)) g ds,

∫
∂Ω

g (Λ(q1)− Λ(q2)) g ds

}
.
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Using the first inequality in the monotonicity relation (3.3) in Lemma 3.3 in its original
form, and with q1 and q2 interchanged, we obtain for all g ∈ L2(∂Ω)∫

∂Ω

g (Λ(q2)− Λ(q1)) g ds ≥
∫
ω

(q1 − q2)|u(g)
q1 |

2 dx,∫
∂Ω

g (Λ(q1)− Λ(q2)) g ds ≥
∫
ω

(q2 − q1)|u(g)
q2 |

2 dx,

where u
(g)
q1 , u

(g)
q2 ∈ H1(Ω) denote the solutions of (2.1) with Neumann data g and

absorption parameter q1 and q2, resp. Hence, for q1 6= q2, we have

‖Λ(q2)− Λ(q1)‖∗
‖q1 − q2‖

≥ sup
‖g‖=1

φ

(
g,

q1 − q2

‖q1 − q2‖L∞(ω)
, q1, q2

)
,

where (for g ∈ L2(∂Ω), ζ ∈ F , and κ1, κ2 ∈ F[a,b])

(3.5) φ (g, ζ, κ1, κ2) := max

{∫
ω

ζ|u(g)
κ1
|2 dx,

∫
ω

(−ζ)|u(g)
κ2
|2 dx

}
.

Introduce the compact set

(3.6) C =
{
ζ ∈ span F : ‖ζ‖L∞(ω) = 1

}
.

Then, we have

(3.7)

‖Λ(q2)− Λ(q1)‖∗
‖q1 − q2‖

≥ sup
‖g‖=1

φ(g, ζ, κ1, κ2)

≥ inf
ζ∈C

κ1,κ2∈F[a,b]

sup
‖g‖=1

φ(g, ζ, κ1, κ2).

The assertion of Theorem 3.6 follows if we can show that the right hand side of (3.7)
is positive. Since φ is continuous, the function

(ζ, κ1, κ2) 7→ sup
‖g‖=1

φ(g, ζ, κ1, κ2)

is semi-lower continuous, so that it attains its minimum on the compact set C×F[a,b]×
F[a,b]. Hence, to prove Theorem 3.6, it suffices to show that

sup
‖g‖=1

φ(g, ζ, κ1, κ2) > 0 for all (ζ, κ1, κ2) ∈ C × F[a,b] ×F[a,b].

To show this, let (ζ, κ1, κ2) ∈ C × F[a,b] × F[a,b]. Since ‖ζ‖L∞(ω) = 1, there exists a
subset O ⊆ ω with positive measure and 0 < Θ < 1 such that either

(a) ζ(x) ≥ Θ for all x ∈ O, or (b) − ζ(x) ≥ Θ for all x ∈ O.

In case (a), we use the localized potentials sequence in Lemma 3.5, to obtain a bound-
ary current ĝ ∈ L2(∂Ω) with∫

O

∣∣∣u(ĝ)
κ1

∣∣∣2 dx ≥ 1

Θ
and

∫
ω\O

∣∣∣u(ĝ)
κ1

∣∣∣2 dx ≤ 1

2
,
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so that (using again ‖ζ‖L∞(ω) = 1)

φ (ĝ, ζ, κ1, κ2) ≥
∫
ω

ζ
∣∣∣u(ĝ)
κ1

∣∣∣2 dx ≥ Θ

∫
O

∣∣∣u(ĝ)
κ1

∣∣∣2 dx− ∫
ω\O

∣∣∣u(ĝ)
κ1

∣∣∣2 dx ≥ 1

2
.

In case (b), we can analogously use a localized potentials sequence for κ2, and find
ĝ ∈ L2(∂Ω) with

φ (ĝ, ζ, κ1, κ2) ≥
∫
ω

(−ζ)
∣∣∣u(ĝ)
κ2

∣∣∣2 dx ≥ Θ

∫
O

∣∣∣u(ĝ)
κ2

∣∣∣2 dx− ∫
ω\O

∣∣∣u(ĝ)
κ2

∣∣∣2 dx ≥ 1

2
.

Hence, in both cases,

sup
‖g‖=1

φ(g, ζ, κ1, κ2) ≥ φ
(

ĝ

‖ĝ‖
, ζ, κ1, κ2

)
=

1

‖ĝ‖2
φ(ĝ, ζ, κ1, κ2) > 0,

so that Theorem 3.6 is proven.

3.3. Quantitative Lipschitz stability. In this subsection, we restrict ourself
to the case where F is a set of piecewise constant functions on a given partition
∪Nj=1Dj = ω, i.e,

F =

q(x) =

N∑
j=1

qjχDj , q1, . . . qN ∈ R

 ⊂ L∞(ω),

and for 0 < a < b, F[a,b] is the set of q ∈ F such that a ≤ qj ≤ b for all j =
1, . . . , N . The structure assumed for q fits well in several problems arising in practical
applications.
For our quantitative Lipschitz stability estimate, we need a finite numbers of localized
potentials and we show how to reconstruct them.

Lemma 3.7. Let b > a > 0 be given constants. For j = 1, . . . , N anf k = 1, . . . ,K,
with K =

(
b3
(
b
a − 1

)
c+ 3

)
, we define the piecewise constant function η(j,k) ∈ L∞+ (ω)

by

η(j,k)(x) =

(k + 4)
a

3
if x ∈ Dj ,

a

3
if x ∈ ω \Dj .

(i) There exist boundary data g(j,k) ∈  L2(∂Ω), so that the corresponding solutions

ug
(j,k)

η(j,k) ∈ H1(Ω) of (2.1) with g = g(j,k) and q = η(j,k) fulfill

(3.8) β(i,k) :=
1

2

∫
Dj

|ug
(j,k)

η(j,k) |2 dx−
(

3b

2a
− 1

2

)∫
ω\Dj

|ug
(j,k)

η(j,k) |2 dx > 1.

(ii) For arbitrary q ∈ F[a,b], the solutions ug
(j,k)

q ∈ H1(Ω) of (2.1) with g = g(j,k)

fulfill ∫
Dj

|ug
(j,k)

q |2 dx−
∫
ω\Dj

|ug
(j,k)

q |2 dx ≥ β(j,k) > 1.

(iii) g(j,k) can be computed by solving a finite number of well-posed PDEs.
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Proof. (i) follows immediately from the localized potentials result in Lemma 3.5.
To prove (b), we need the following monotonicity result which follows from Lemma
3.3 with q2 = q + δ and q1 = q and from using the same inequality again with
interchanged roles of q1 and q2. For g ∈ L2(∂Ω), q ∈ L∞+ (ω), and δ ∈ L∞+ (ω) such
that (q + δ) ∈ L∞+ (ω), we have

(3.9)

∫
ω

δugq dx ≥
∫
ω

δugq+δ dx.

Let j = 1, . . . , N and q ∈ F[a,b]. Since K fullfils b < (K + 3)a3 , there exists k ∈
{1, . . . ,K} such that qj = q|Dj fullfils

(k + 2)
a

3
≤ qj < (k + 3)

a

3
.

Using the monotonicity-based inequality (3.9), with

a

3
≤ (k + 4)

a

3
− qj <

2a

3
and − b+

a

3
≤ a

3
− qj < −

2a

3
,

we obtain∫
Dj

|ug
(j,k)

q |2 dx−
∫
ω\Dj

|ug
(j,k)

q |2 dx

=
3

2a

(∫
Dj

2a

3
|ug

(j,k)

q |2 dx− 2a

3

∫
ω\Dj

|ug
(j,k)

q |2 dx

)

≥ 3

2a

(∫
Dj

(
(k + 4)

a

3
− qj

)
|ug

(j,k)

q |2 dx+

∫
ω\Dj

(a
3
− qj

)
|ug

(j,k)

q |2 dx

)

=
3

2a

(∫
Dj

(
η(j,k) − qj

)
|ug

(j,k)

q |2 dx+

∫
ω\Dj

(
η(j,k) − qj

)
|ug

(j,k)

q |2 dx

)

≥ 3

2a

(∫
Dj

(
η(j,k) − qj

)
|ug

(j,k)

η(j,k) |2 dx+

∫
ω\Dj

(
η(j,k) − qj

)
|ug

(j,k)

η(j,k) |2 dx

)

≥ 3

2a

(∫
Dj

a

3
|ug

(j,k)

η(j,k) |2 dx−
∫
ω\Dj

(
b− a

3

)
|ug

(j,k)

η(j,k) |2 dx

)

=
1

2

∫
Dj

|ug
(j,k)

η(j,k) |2 dx−
(

3b

2a
− 1

2

)∫
ω\Dj

|ug
(j,k)

η(j,k) |2 dx = β(j,k) > 1,

and (ii) is proved. To prove (iii) we use a similar approach as in the construction
of localized potentials in [18]. For j = 1, . . . , N and k = 1, . . . ,K, we introduce the
operator A as in Theorem 3.1

A : L2(ω)→ L2(∂Ω), f 7→ Af := v|∂Ω,

where v ∈ H1(Ω) solves∫
Ω

σ∇v · ∇w dx+

∫
ω

η(j,k)vw dx =

∫
ω

fw dx for all w ∈ H1(Ω).

We have shown that the adjoint operator A∗ of A is given by

A∗ : L2(∂Ω)→ L2(ω) : g 7→ u|ω,
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where u is the solution of (2.1) with q = η(j,k), and that A∗ has dense range.
Consider the linear ill-posed equation

A∗g = 3χDj .

Sine 3χDj ∈ R(A∗), the conjugate gradient method [46, III.15], yields a sequence of
iterates (gn)n∈N ⊂ L2(∂Ω) for which

A∗gn → 3χDj
.

Therefore, the solutions un of (2.1) with q = η(j,k) and g = gn fulfill

1

2

∫
Dj

|un|2 dx−
(

3b

2a
− 1

2

)∫
ω\Dj

|un|2 dx→
3

2
,

so that after finitely many iteration steps, (3.8) is fulfilled.

Now, we state the main result of this subsection.

Theorem 3.8 (Quantitative Lipschitz stability). Let g(j,k) ∈ L2(Ω) defined as
in Lemma 3.7. Set

L =
(

max
{
‖g(j,k)‖2L2(∂Ω), j = 1, . . . , N, k = 1, . . . ,K

})−1

.

Then

(3.10) ‖q1 − q2‖∞ ≤ L‖Λ(q1)− Λ(q2)‖∞ for all q1, q2 ∈ F[a,b].

Proof. From Lemma 3.7, we have for all q ∈ F[a,b], and for all j ∈ {1, . . . , N}

(3.11)

sup
‖g‖=1

(∫
Dj

|ugq |2 dx−
∫
ω\Dj

|ugq |2 dx

)

= sup
06=g∈L2(∂Ω)

1

‖g‖2

(∫
Dj

|ugq |2 dx−
∫
ω\Dj

|ugq |2 dx

)
≥ L.

To prove Theorem 3.8, it suffices to show that

(3.12) sup
‖g‖=1

φ(g, ζ, κ1, κ2) ≥ L for all (ζ, κ1, κ2) ∈ C × F[a,b] ×F[a,b],

where φ and C defined in (3.5) and (3.6). Since F contains only piecewise-constant
functions, for every ζ ∈ C there must exist a subset Dj ⊂ ω with either

ζ|Dj = 1, or ζ|Dj = −1,

Hence using (3.5) and (3.11), we obtain for the case ζ|Dj = 1,

sup
‖g‖=1

φ(g, ζ, κ1, κ2) ≥ sup
‖g‖=1

∫
ω

ζ|ugκ1
|2 dx

≥ sup
‖g‖=1

(∫
Dj

|ugκ1
|2 dx−

∫
ω\Dj

|ugκ1
|2 dx

)
≥ L,
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and for the case ζ|Dj = −1,

sup
‖g‖=1

φ(g, ζ, κ2, κ2) ≥ sup
‖g‖=1

∫
ω

(−ζ)|ugκ2
|2 dx

≥ sup
‖g‖=1

(∫
Dj

|ugκ2
|2 dx−

∫
ω\Dj

|ugκ2
|2 dx

)
≥ L.

so that (3.12) is proved and the proof is completed.

4. Simultaneous recovery of diffusion and absorption. The inverse prob-
lem of recovering σ and q simultaneously is known to be an ill-posed problem and
stability results can only be obtained under a-priori assumptions.

For our problem, we will prove a stability result under the assumption that the
coefficients belong to an a-priori known finite-dimensional subspace, that upper and
lower bounds are a-priori known, and that a definiteness condition holds.

As in the last section the main tools to prove the stability are the monotonicity and
the existence of localized potentials, which are the subject of the following subsection.

4.1. Monotonicity and localized potentials.

Lemma 4.1 (Monotonivity). Let σ1, σ2, q1, q2 ∈ L∞+ (Ω). Then
(4.1)∫

Ω

[
(σ2 − σ1)|∇u1|2 + (q2 − q1)u2

1

]
dx ≥ 〈g, (Λ(σ1, q1)− Λ(σ2, q2)) g〉

≥
∫

Ω

[
(σ2 − σ1)|∇u2|2 + (q2 − q1)u2

2

]
dx,

(4.2)

〈g, (Λ(σ1, q1)− Λ(σ2, q2)) g〉 ≥
∫

Ω

[(
σ1 −

σ2
1

σ2

)
|∇u1|2 +

(
q1 −

q2
1

q2

)
u2

1

]
dx

=

∫
Ω

[
σ1

σ2
(σ2 − σ1)|∇u1|2 +

q1

q2
(q2 − q1)u2

1

]
dx,

for all g ∈ L2(∂Ω) where u1, u2 ∈ H1(Ω) are the solutions of (2.1) with Neumann
boundary data g on ∂Ω, and coefficients (σ1, q1), resp., (σ2, q2).

Proof. The proof of (4.1) is given in [4, Lemma 4.1 ]. Following the proof of
Lemma 3.3, we can easily deduce (4.2).

Theorem 4.2 (Localized potentials). Let σ, q ∈ L∞+ (Ω) that are piecewise ana-

lytic and D b Ω be non empty open set, such that Ω\D is connected. Let B be a subdo-
main of D with smooth boundary ∂B. Then there exists a sequence (gn)n∈N ⊂ L2(Ω),
such that the corresponding solutions (u(gn))n∈N of (2.1) fulfill

(4.3) lim
n→∞

‖u(gn)‖2L2(B) =∞,

(4.4) lim
n→∞

‖u(gn)‖2
H1(D\B)

= 0,

(4.5) lim
n→∞

‖u(gn)‖2L2(∂B) = 0,

(4.6) lim
n→∞

‖∇u(gn)‖2L2(B) =∞.
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Proof. This proof is based on the UCP for Cauchy data. First, we define the
virtual measurement operators Aj (j = 1, 2) by

A1 : L2(B)→ L2(∂Ω), F 7→ v|∂Ω,

where v ∈ H1(Ω) solves

(4.7)

∫
Ω

σ∇v · ∇w dx+

∫
Ω

qvw dx =

∫
B

Fw dx for all w ∈ H1(Ω),

A2 : H1(D \B)′ → L2(∂Ω), G 7→ v|∂Ω,

where v ∈ H1(Ω) solves

(4.8)

∫
Ω

σ∇v · ∇w dx+

∫
Ω

qvw dx = 〈G,w〉D\B for all w ∈ H1(Ω).

Here 〈., .〉D\B denotes the dual pairing on H1(D \ B)′ ×H1(D \ B). First, we show

that the dual operators A′1 and A′2 are given by

A′1 : L2(∂Ω)→ L2(B) : g 7→ A′1g = u|B ,
A′2 : L2(∂Ω)→ H1(D \B) : g 7→ A′2g = u|D\B .

Let F ∈ L2(Ω), g ∈ L2(∂Ω), u, v ∈ H1(Ω) solve (2.1) and (4.7), respectively. Then,∫
Ω

FA′1g dx =

∫
∂Ω

gA1F ds =

∫
Ω

σ∇v · ∇u dx+

∫
Ω

qvu dx =

∫
B

Fudx.

Let G ∈ H1(Ω), g ∈ L2(∂Ω), u, v ∈ H1(Ω) solve (2.1) and (4.8), respectively. Then,∫
Ω

GA′2g dx =

∫
∂Ω

gA2Gds =

∫
Ω

σ∇v · ∇u dx+

∫
Ω

qvu dx = 〈G, u〉D\B .

Next, we will prove that

R(A1) ∩R(A2) = {0} and R(A1) 6= {0}.

Let ϕ ∈ R(A1)∩R(A2). Then there exist v1, v2 ∈ H1(Ω) such that v1|∂Ω = v2|∂Ω = ϕ,
and ∫

Ω

σ∇vj · ∇w dx+

∫
Ω

qvjw dx = 0,

for all w ∈ H1(Ω) with supp(w) ⊂ Ω \D. Hence,

div(σ ∇vj) + qvj = 0 in Ω \D,

and (σ∂νv1)|∂Ω = (σ∂nv2)|∂Ω = 0. The unique continuation principle for Cauchy data
yields that v1 = v2 in Ω \D. Hence v := v1χD\B + v2χΩ\(D\B) ∈ H1(Ω) and satisfies{

div(σ∇v) + qv = 0 in Ω,

σ∂νv = 0 on ∂Ω.

It follows that v = 0 and thus ϕ = v|∂Ω = 0, and consequently R(A1) ∩R(A2) = {0}.
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Next, we will prove that R(A1) 6= {0}. We first prove the injectivity of the dual
operator A′1. Let g ∈ L2(∂Ω) be such that A′1g = u|D = 0. By the unique continua-
tion principal, we conclude that u = 0 in Ω. This means that g = σ∂νu|∂Ω = 0, which
proves that A′1 is injective. Hence A1 has a dense range, i.e., R(A1) = L2(∂Ω).

A fortiori R(A1) 6= {0}, which together with R(A1) ∩R(A2) = {0}, implies the
range non inclusion R(A1) 6⊆ R(A2). Using [47, Corollary 2.6], it follows that there
exists a sequence (gn)n∈N ⊂ L2(∂Ω) such that

lim
n→∞

‖A′1gn‖2L2(B) = lim
n→∞

‖u(gn)‖2L2(B) =∞,

and

(4.9) lim
n→∞

‖A′2gn‖2H1(D\B)
= lim
n→∞

‖u(gn)‖2
H1(D\B)

= 0.

i.e. (4.3) and (4.4) hold. Also (4.5), holds from (4.9). Since

‖u(gn)‖L2(B) ≤ C
(
‖u(gn)‖L2(∂B) + ‖∇u(gn)‖L2(B)

)
,

where C > 0 is a constant, this also imply (4.6).

Let G be a finite dimensional subset of piecewise analytic functions. We consider four
constants 0 < c1 ≤ c2 and 0 < c3 ≤ c4 which are the lower and upper bounds of the
parameters and define the set

G[c1,c2]×[c3,c4] = {(σ, q) ∈ G : c1 ≤ σ(x) ≤ c2, c3 ≤ q(x) ≤ c4 for all x ∈ Ω} .

In the following main result of this paper, the domain Ω, the finite-dimensional subset
G and the bounds 0 < c1 ≤ c2 and 0 < c3 ≤ c4 are fixed, and the constant in the
Lipschitz stability result will depend on them.

Theorem 4.3 (Lipschitz stability). There exists a positive constant C > 0 such
that for all (σ1, q1), (σ2, q2) ∈ G[c1,c2]×[c3,c4] with either

(a) σ1 ≤ σ2 and q1 ≤ q2 or

(b) σ1 ≥ σ2 and q1 ≥ q2,

we have

(4.10)
dΩ((σ1, q1), (σ2, q2)) :=max

(
‖σ1 − σ2‖L∞(Ω), ‖q1 − q2‖L∞(Ω)

)
≤ C‖Λ(σ, q1)− Λ(σ2, q2)‖∗.

Here ‖.‖∗ is the natural norm of ‖.‖L(L2(∂Ω)).

Proof. For the sake of brevity, we write ‖.‖ for ‖.‖L2(∂Ω). We start with the
reformulation of the right-hand side of estimate (4.10). Since Λ(σ1, q1) and Λ(σ2, q2)
are self-adjoint, we have that

‖Λ(σ2, q2)− Λ(σ1, q1)‖∗
= sup
‖g‖=1

|〈g, (Λ(σ2, q2)− Λ(σ1, q1)) g〉|

= sup
‖g‖=1

max {〈g, (Λ(σ2, q2)− Λ(σ1, q1)) g〉, 〈g, (Λ(σ1, q1)− Λ(σ2, q2)) g〉} .
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Next, we apply both inequalities in the monotonicity relation (4.1) in Lemma 4.1 in
order to obtain lower bounds for the corresponding integrals. We thus obtain for all
g ∈ L2(∂Ω)
(4.11)

〈g, (Λ(σ2, q2)− Λ(σ1, q1)) g〉 ≥
∫

Ω

(σ1 − σ2)|∇ug(σ1,q1)|
2 dx+

∫
Ω

(q1 − q2)|ug(σ1,q1)|
2 dx

and
(4.12)

〈g, (Λ(σ1, q1)− Λ(σ2, q2)) g〉 ≥
∫

Ω

(σ2 − σ2)|∇ug(σ2,q2)|
2 dx+

∫
Ω

(q2 − q2)|ug(σ2,q2)|
2 dx

where ugσ1,q1 , u
g
σ2,q2 ∈ H1(Ω) denote the solutions of (2.1) with Neumann data g

and parameters (σ1, q1) and (σ2, q2), respectively. Based on the estimates (4.11) and
(4.12), we obtain for (σ1, q1) 6= (σ2, q2)
(4.13)
‖Λ(σ2, q2)− Λ(σ1, q1)‖∗
dΩ((σ1, q1), (σ2, q2))

≥ sup
‖g‖=1

Φ

(
g,

σ1 − σ2

dΩ((σ1, q1), (σ2, q2))
,

q1 − q2

(dΩ((σ1, q1), (σ2, q2))
, (σ1, q1), (σ2, q2)

)
,

and define for g ∈ L2(∂Ω), (ζ1, ζ2) ∈ G, and (κ1, τ1), (κ2, τ2) ∈ G[c1,c2]×[c3,c4] the
function Φ (g, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) by

Φ (g, (ζ1, ζ2), (κ1, τ1), (κ2, τ2))

:= max (Ψ (g, (ζ1, ζ2), (κ1, τ1)) ,Ψ (g, (−ζ1,−ζ2), (κ2, τ2))) ,

with

Ψ (g, (β, γ), (κ, τ)) :=

∫
Ω

β|∇ug(κ,τ)|
2 dx+

∫
Ω

γ|ug(κ,τ)|
2 dx.

We introduce the compact sets

K+ =
{

(ζ1, ζ2) ∈ spanG : ζ1, ζ2 ≥ 0 and max
(
‖ζ1‖L∞(Ω), ‖ζ2‖L∞(Ω)

)
= 1
}
,

K− =
{

(ζ1, ζ2) ∈ spanG : ζ1, ζ2 ≤ 0 and max
(
‖ζ1‖L∞(Ω), ‖ζ2‖L∞(Ω)

)
= 1
}
,

and denote K := K+ ∪K−. Then using that either assumption (a) or assumption (b)
is fulfilled, we can rewrite (4.13) as

(4.14)

‖Λ(σ2, q2)− Λ(σ1, q1)‖∗
dΩ((σ1, q1), (σ2, q2))

≥ inf
(ζ1,ζ2)∈K

(κ1,τ1),(κ2,τ2)∈G[c1,c2]×[c3,c4]

sup
‖g‖=1

Φ (g, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) .

The assertion of Theorem 3.6 follows if we can show that the right-hand side of (4.14)
is positive. Since Φ is continuous, we can conclude that the function

((ζ1, ζ2), (κ1, τ1), (κ2, τ2)) 7→ sup
‖g‖=1

Φ (g, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) ,

is semi-lower continuous, so that it attains its minimum on the compact set
K × G[c1,c2]×[c3,c4] × G[c1,c2]×[c3,c4]. Hence, to prove Theorem 3.6, it suffices to show
that

(4.15) sup
‖g‖=1

Φ (g, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) > 0,
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for all ((ζ1, ζ2), (κ1, τ1), (κ2, τ2)) ∈ K × G[c1,c2]×[c3,dc4] × G[c1,c2]×[c3,c4].
In order to prove that (4.15) holds true, let ((ζ1, ζ2), (κ1, τ1), (κ2, τ2)) ∈ K ×

G[c1,c2]×[c3,c4] × G[c1,c2]×[c3,c4].
We first treat the case that (ζ1, ζ2) ∈ K+. Then there exist an open subset ∅ 6= B ⊂ Ω
and a constant 0 < δ < 1, such that either

(i) ζ1|B ≥ δ, and ζ2 ≥ 0, or

(ii) ζ2|B ≥ δ, and ζ1 ≥ 0.

We use the localized potentials sequence in Theorem 4.2 to obtain a boundary load
g̃ ∈ L2(∂Ω) with

(4.16)

∫
B

|ug̃(κ1,τ1)|
2 dx ≥ 1

δ
and

∫
B

|∇ug̃(κ1,τ1)|
2 dx ≥ 1

δ
.

In case (i), this leads to

Φ (g̃, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) ≥
∫

Ω

ζ1|∇ug̃(κ1,τ1)|
2 dx+

∫
Ω

ζ2|ug̃(κ1,τ1)|
2 dx

≥
∫
B

ζ1|∇ug̃(κ1,τ1)|
2 dx ≥ δ

∫
B

|∇ug̃(κ1,τ1)|
2 dx ≥ 1,

and in case (ii), we have

Φ (g̃, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) ≥
∫

Ω

ζ1|∇ug̃(κ1,τ1)|
2 dx+

∫
Ω

ζ2|ug̃(κ1,τ1)|
2 dx

≥
∫
B

ζ2|ug̃(κ1,τ1)|
2 dx ≥ δ

∫
B

|ug̃(κ1,τ1)|
2 dx ≥ 1.

Hence, in both cases,

sup
‖g‖=1

Φ(g, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) ≥ Φ

(
g̃

‖g̃‖
, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)

)
=

1

‖g̃‖2
Φ(g̃, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) > 0.

For (ζ1, ζ2) ∈ K−, we can analogously use a localized potentials sequence for (κ2, τ2),
and prove that

sup
‖g‖=1

Φ(g, (ζ1, ζ2), (κ1, τ1), (κ2, τ2)) > 0,

and the proof of Theorem 3.6 is completed.

Remark 4.4. All the results of section 3 and section 4 stay valid when the
Neumann-to-Dirichlet operator Λ(σ, q) is extended to H−

1
2 (∂Ω)→ H

1
2 (∂Ω). On these

spaces, it is easily shown that Λ(σ, q) is bijective, and its inverse is the Dirichlet-to-

Neumann operator ΛD(σ, q) : f → u
(f)
σ,q |∂Ω, where u

(f)
σ,q solves{

−∇ · (σ∇u(f)
σ,q) + qu(f)

σ,q = 0 in Ω,

u(f)
σ,q = f on ∂Ω.



18 H. MEFTAHI

5. Numerical approach to solve the inverse problem. In this section, we
are interested in the following inverse problem

(5.1) Find σ, q knowing measurements fk = Λ(σ, q)gk, k = 1, . . .K,

where fk ∈ L2(∂Ω) is a measurement of the density of photons corresponding to the
input flux gk, and K ∈ N is the number of measurements.

To solve the inverse problem (5.1) numerically, we consider a minimization problem
of a Kohn-Vogelius type functional:
(5.2)

min
(σ,q)∈G[c1,c2]×[c3,c4]

J(σ, q) =

K∑
k=1

∫
Ω

(
σ|∇(u(gk) − u(fk))|2 + q|u(gk) − u(fk)|2

)
dx

+
ρ

2

∫
Ω

(σ2 + q2) dx.

Here u(gk) and u(fk) solve the following problems:

(5.3)

{
−∇ · (σ∇u(gk)) + qu(gk) = 0 in Ω,

σ∂νu
(gk) = gk on ∂Ω,

(5.4)

{
−∇ · (σ∇u(fk)) + qu(fk) = 0 in Ω,

u(fk) = fk on ∂Ω.

When dealing with reconstruction of the absorption parameter q where σ is assumed
to be known, the minimization problem (5.2) is reduced to
(5.5)

min
q∈F[a,b]

J (q) =

K∑
k=1

∫
Ω

(
σ|∇(u(gk) − u(fk))|2 + q|u(gk) − u(fk)|2

)
dx+

ρ

2

∫
Ω

q2 dx.

Theorem 5.1. The functional J : L∞+ (Ω)2 → R, defined in (5.2) is Fréchet dif-
ferentiable, and its Fréchet derivative at (σ, q) ∈ L∞+ (Ω)2 in the direction (σ̃, q̃) ∈
L∞+ (Ω)2 is given by
(5.6)

J ′ (σ, q) (σ̃, q̃) =

K∑
k=1

∫
Ω

(
σ̃
(
|∇u(fk)|2 − |∇u(gk)|2

)
+ q̃

(
(u(fk))2 − (u(gk))2

))
dx

+ ρ

∫
Ω

(σσ̃ + qq̃) dx.

We need the following lemma to prove Theorem 5.1.

Lemma 5.2. The non-linear operator

Λ(σ, q) : L∞+ (Ω)2 → L(L2(∂Ω)), (σ, q)→ Λ(σ, q)

is Fréchet differentiable and its derivative

Λ′ : L∞+ (Ω)2 → L(L∞(Ω)2,L(L2(∂Ω))
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is given by the bilinear form

(5.7)

∫
∂Ω

g(Λ′(σ, q)(δ1, δ2))h ds = −
∫

Ω

δ1∇u(g)
σ,q · ∇u(h)

σ,q dx−
∫

Ω

δ2u
(g)
σ,qu

(h)
σ,q dx,

for all σ, q ∈ L∞+ (Ω), δ1, δ2 ∈ L∞(Ω), g, h ∈ L2(∂Ω) where u
(g)
σ,q ∈ H1(Ω) is solution

of the problem (2.1).

Proof. It follows from the monotonicity relation (3.3) that for all sufficiently small
δ1, δ2 ∈ L∞(Ω) such that σ + δ1, q + δ2 ∈ L∞+ (Ω)∫

Ω

(δ1|∇u(g)
σ,q|2 + δ2(u(g)

σ,q)
2) dx ≥

∫
∂Ω

g (Λ(σ, q)− Λ(σ + δ1, q + δ2)) g ds

≥
∫

Ω

(
σ − σ2

σ + δ1

)
|∇u(g)

σ,q|2 dx+

∫
Ω

(
q − q2

q + δ2

)
(u(g)
σ,q)

2 dx.

Thus

(5.8)

‖Λ(σ, q)− Λ(σ + δ1, q + δ2)− Λ′(σ, q)(δ1, δ2)‖L(L2(∂Ω))

= sup
g∈L2(∂Ω)

∣∣∣∣∫
∂Ω

g (Λ(σ, q)− Λ(σ + δ1, q + δ2)− Λ′(σ, q)(δ1, δ2)) ds

∣∣∣∣
≤
∫

Ω

((
δ2
1

σ + δ1

)
|∇u(g)

σ,q|2 +

(
δ2
2

q + δ2

)
(u(g)
σ,q)

2

)
dx = O

(
‖(δ1, δ2)‖2

∞
)
.

This shows that Λ is Fréchet differentiable, and its derivative is given by (5.7).

Proof of Theorem 5.1. From the definition of the functional J , and applying
Green’s formula once, we have

(5.9)

J(σ, q) =

K∑
k=1

∫
Ω

σ|∇u(gk)|2 dx+

K∑
k=1

∫
Ω

q|u(gk)|2 dx+

K∑
k=1

∫
Ω

σ|∇u(fk)|2 dx

+

K∑
k=1

∫
Ω

q|u(fk)|2 dx− 2

K∑
k=1

∫
∂Ω

gkfk ds+
ρ

2

∫
Ω

(σ2 + q2) dx

=

K∑
k=1

〈gk,Λ(σ, q)gk〉+

K∑
k=1

〈ΛD(σ, q)fk, fk〉

− 2

K∑
k=1

∫
∂Ω

gkfk ds+
ρ

2

∫
ω

(σ2 + q2) dx.

From Lemma 5.2, Λ(σ, q) is Fréchet differentiable with

〈gk,Λ′(σ, q)(σ̃, q̃)gk〉 = −
∫

Ω

(
σ̃|∇u(gk)|2 + q̃(u(gk))2

)
dx,

and
〈(ΛD(σ, q))′(σ̃, q̃)fk, fk〉 = 〈(Λ(σ, q)−1)′(σ̃, q̃)fk, fk〉

=

∫
Ω

(
σ̃|∇u(fk)|2 + q̃(u(fk))2

)
dx.

Since
∫
∂Ω
gkfk ds is constant and (σ, q)→

∫
Ω

(σ2 + q2) dx is Fréchet differentiable, we
conclude that J is Fréchet differentiable and its derivative is given by (5.6).
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Remark 5.3. Using the same techniques, we can prove that the functional J is
Fréchet differentiable and its derivative is given by:

J ′(q)q̃ =

K∑
k=1

∫
Ω

q̃
(

(u(fk))2 − (u(gk))2
)
dx+ ρ

∫
Ω

q̃q dx.

6. Implementation details and numerical examples. We provide in this
section two numerical examples that illustrate the performance of our numerical
method. In the first example, we reconstruct the spatial distribution of the absorp-
tion coefficient while keeping the diffusion coefficient fixed. In the second example,
we show that both optical properties are reconstructed simultaneously.

When dealing with reconstruction with noise data, the choice of the regularization
parameter ρ in (5.1) is crucial. Usually, it is determined using a knowledge of the noise
level by, e.g., the discrepancy principle. However, in practice, the noise level may be
unknown, rendering such rules inapplicable. To overcome this issue, we propose a
heuristic choice rule based on the following balancing principle [48]: Choose ρ such
that
(6.1)

(β − 1)

K∑
k=1

∫
Ω

(
σ|∇(u(gk) − u(fk))|2 + q|u(gk) − u(gk)|2

)
dx− ρ

2

∫
Ω

(σ2 + q2) dx = 0.

The idea behind this principle is to balance the data fitting term with the penalty
term and the weight β > 1 controls the trade-off between them. The choice rule
does not require the knowledge of the noise level, and has been successfully applied
to linear and non linear inverse problems [49, 48, 50, 51, 52].
When dealing only with the reconstruction of q, the balancing equation (6.1) is reduced
to

(6.2) (β − 1)

K∑
k=1

∫
Ω

(
σ|∇(u(gk) − u(fk))|2 + q|u(gk) − u(fk)|2

)
dx− ρ

2

∫
Ω

q2 dx = 0.

For our problem, we compute a solution ρ∗ to the balancing equation (6.1) or (6.2)
by the fixed point algorithm proposed in [50, 51].
We consider the following setup for our numerical examples: The domain Ω under
consideration is the two dimensional unit disk centered at the origin. We use a
Delaunay triangular mesh and a standard finite element method with piecewise finite
elements to numerically compute the states for our problem. The measurements fk
are computed synthetically by solving the direct problem (2.1). To simulate noisy
data, the measurements fk are corrupted by adding a normal Gaussian noise with
mean zero and standard deviation ε‖fk‖∞ where ε is a parameter. To avoid the so
called ”inverse crime”, the inverse problem is solved using 1016 elements, while the
data fk is computed with 4064 elements. For all the computations we have used
Matlab R2018a.

6.1. Example 1: Reconstructing q. In the following numerical results, the
diffusion coefficient σ is assumed to be known, and is given by σ = 1χΩ\ω+2χω, where
ω is the disk of radius 1/2 centered at the origin. The exact absorption coefficient to
be recovered is given by

q†(x1, x2) = 1 + cos(πx1) cos(πx2)χ(‖(x1,x2)‖∞<0.5).
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We obtain measurements fk corresponding to the fluxes

gk = 10 + sin(kθ), θ ∈ [0, 2π], k = 1, . . . 5.

and we reconstruct q by minimizing the functional

J (q) =

5∑
k=1

∫
Ω

(
σ|∇(u(gk) − u(fk))|2 + q|u(gk) − u(fk)|2

)
dx+

ρ

2

∫
Ω

q2 dx,

in the space of piecewise constant functions on the FEM mesh.
Figure 1 shows the true and the reconstructed absorption images with noise free syn-
thetic data and without regularization. Figure 2 shows the reconstructed absorption
images with respect to different initialization and noise levels. The quality of the
reconstruction is satisfactory and depend on the initialization of the algorithm.

Fig. 1. On the left the true absorption image and the right the reconstructed absorption image
with ε = 0, ρ = 0 and initialization q(x1, x2) = 1.

Fig. 2. On the left the reconstructed absorption image with ε = 0 and ρ = 0. On the right
reconstructed absorption image with ε = 0.05 and ρ = 0.0000001672. In both cases, the initialization
is taken as q(x1, x2) = (|x1| < 0.2)(|x2| < 0.2).

6.2. Examples 2: Reconstructing σ and q simultaneously. In this example
the exact parameters to be recovered are given by

σ†(x) = 2χD1 + 3χD2 + 1χΩ\D1∪D2
, q†(x) = 3χD3 + 4χD4 + 1χΩ\D3∪D4

,

where D1, D2, D3 and D4 are given by:

D1 =
{

(x1, x2) ∈ R2 : (x1 − 0.5)2 + x2
2 < 0.22

}
,
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D2 =
{

(x1, x2) ∈ R2 : (x1 + 0.5)2 + x2
2 < 0.22

}
,

D3 =
{

(x1, x2) ∈ R2 : x2
1 + (x2 − 0.5)2 < 0.22

}
,

D4 =
{

(x1, x2) ∈ R2 : x2
1 + (x2 + 0.5)2 < 0.22

}
.

We use measurements fk correspond to the fluxes gk(θ) = sin(kθ), θ ∈ [0, 2π], k =
1, . . . 5 and we reconstruct σ, q by minimizing the function

J(σ, q) =

5∑
k=1

∫
Ω

(
σ|∇(u(gk) − u(fk)|2 + q|u(gk) − u(fk)|2

)
dx+

ρ

2

∫
Ω

(σ2 + q2) dx,

in the space of piecewise constant functions on the FEM mesh. The initialization is
given by

(σ(x), q(x)) = (1.1χD1
+ 1.2χD2

+ 1χΩ\D1∪D2
, 1.1χD3

+ 1.2χD4
+ 1χΩ\D3∪D4

).

Figure 3. shows the true diffusion image and the reconstructed diffusion image with
noise free synthetic data and without regularization. Figure 4. depicts the recon-
structed diffusion images with different noise synthetic data and regularization. Fig-
ure 5. depicts the reconstructed absorption image with noise free synthetic data and
without regularization. Figure 6. shows the reconstructed absorption image with
different noise synthetic data and regularization.

In this example, the quality of reconstructions is satisfactory and the regulariza-
tion technique that we have imposed here allows us to estimate the optical properties
in the presence of moderate noise with accuracy. Let us mention that in [53] the
authors introduced a gradient-based optimisation scheme to reconstruct the optical
properties without regularization of the minimization problem. A crosstalk problem
appeared in the reconstruction of the profiles. This is maybe due to the non unique-
ness of the inverse problem which is know to be severally ill-posed.

Fig. 3. On the left the true diffusion image and on the right the reconstructed diffusion image
with ε = 0, ρ = 0 .

7. Conclusion. In this paper, we have shown a global uniqueness and Lipschitz
stability results when a-priori smoothness assumptions are imposed on the parameters
(σ piecewise constant and q piecewise-analytic). We have also shown for a given setting
that the Lipschitz constant can be computed by solving a finite numbers of well posed
PDEs. The proofs rely on the monotonicity of the NtD operator combined with the
techniques of localized potentials. These techniques seem simple compared to the



UNIQUENESS LIPSCHITZ STABILITY AND RECONSTRUCTION 23

Fig. 4. On the left the reconstructed diffusion image with ε = 0.03, ρ = 1.674 × 10−6 and on
the right the reconstructed diffusion image with ε = 0.05 and ρ = 3.192× 10−7.

Fig. 5. On the left the exact absorption and on the right the reconstructed absorption with
ε = 0, and ρ = 0.

Fig. 6. On the left the reconstructed absorption with ε = 0.03 and ρ = 5.82611× 10−6, and on
the right the reconstructed absorption with ε = 0.05 and ρ = 1.35438× 10−7.

techniques of Carleman estimates and complex geometrical optics(CGO) used in the
litterature.

We have formulated the inverse problem as a regularized problem using a Khon-
Vogelius functional. In the inversion procedure, the forward model is discretized
using a finite element method. We solve the regularized problem by using a Quasi-
Newton method with BFGS type updating rule for the Hessian matrix. Numerical
reconstructions based on synthetic data provide results that are in agreement with
the expected reconstructions and no crosstalk between the parameters is observed.
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Let us mention that our numerical method depend strongly on the initialization, the
measurements and the mesh size. When considering the reconstruction of σ and q
simultaneously, our algorithm can’t reconstruct the jump sets of the parameters. A
shape optimization procedure may be used to reconstruct the parameters and their
jump sets simultaneously.
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Journal de Mathématiques Pures et Appliquées, 107(5):638–664, 2017.

[13] Romina Gaburro and Eva Sincich. Lipschitz stability for the inverse conductivity problem for
a conformal class of anisotropic conductivities. Inverse Problems, 31(1):015008, 2015.

[14] Giovanni Alessandrini, Maarten V de Hoop, Romina Gaburro, and Eva Sincich. Lipschitz
stability for a piecewise linear schrödinger potential from local cauchy data. Asymptotic
Analysis, 108(3):115–149, 2018.

[15] Elena Beretta, Maarten V De Hoop, and Lingyun Qiu. Lipschitz stability of an inverse boundary
value problem for a schrodinger-type equation. SIAM Journal on Mathematical Analysis,
45(2):679–699, 2013.

[16] Giovanni S Alberti and Matteo Santacesaria. Calderóns inverse problem with a finite number of
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