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A Stochastic Proximal Alternating Minimization Algorithm for Non-smooth1
and Non-convex Optimization∗2

Derek Driggs† †‡ , Junqi Tang† § , Jingwei Liang¶, Mike Davies§ , and Carola-Bibiane Schönlieb‡3
4

Abstract. In this work, we introduce a novel stochastic proximal alternating linearized minimization (PALM) algorithm5
[6] for solving a class of non-smooth and non-convex optimization problems. Large-scale imaging problems are6
becoming increasingly prevalent due to the advances in data acquisition and computational capabilities. Motivated7
by the success of stochastic optimization methods, we propose a stochastic variant of proximal alternating linearized8
minimization. We provide global convergence guarantees, demonstrating that our proposed method with variance-9
reduced stochastic gradient estimators, such as SAGA [16] and SARAH [27], achieves state-of-the-art oracle10
complexities. We also demonstrate the efficacy of our algorithm via several numerical examples including sparse11
non-negative matrix factorization, sparse principal component analysis and blind image deconvolution.12

Key words. Non-convex and non-smooth optimization, Stochastic optimization, Variance reduction, Alternatingminimization,13
Stochastic PALM, Kurdyka-Łojasiewicz inequality, Sparse principle component analysis14

AMS subject classifications. 90C26, 90C15, 90C30, 49M2715

1. Introduction. With the advent of large-scale machine learning, developing efficient and reliable16
algorithms for (empirical) risk minimization has become an intense focus of the optimization community.17
These tasks involve minimizing a loss function measuring the fit between observed data, x, and a model’s18
predicted result, b: minx∈Rm1

1
n

∑n
i=1 F (xi, bi) where n denotes the number of samples and F is the19

loss function. The two defining qualities of these problems are their large scale (in many applications, n20
is on the order of billions), and finite-sum structure.21

When the value of n is very large, computing the gradient of the loss function is often prohibitively22
expensive, rendering most traditional deterministic first-order optimization algorithms ineffective. Over23
the years, randomized optimization algorithms [7, 32] have become increasingly popular due to their24
efficiency and simplicity. For these algorithms, the full gradient is replaced by a stochastic approximation25
that is cheap to compute, so that their per-iteration complexity grows slowly with n. For objectives with26
a finite-sum structure, many works have shown that certain randomized algorithms achieve convergence27
rates similar to those of full-gradient methods, even though their per-iteration complexity is often a28
factor of n smaller [16, 21, 38].29

Outside machine learning, objectives with a finite-sum structure also arise in problems from image30
processing and computer vision. Recently, randomized optimization algorithms have been explored31
for image processing tasks including PET reconstruction, deblurring and tomography [12, 36]. As32
stochastic methods expand into new applications, they move further from smooth, strongly convex33
finite-sum objectives where they are well-understood theoretically. In this work, we aim to provide a34
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2 D. DRIGGS, J. TANG, J. LIANG, M. DAVIES, AND C.-B. SCHÖNLIEB

better understanding of stochastic algorithms for problems that are neither smooth nor convex.35

1.1. Non-smooth, non-convex optimization. Our goal is to minimize composite objectives36
of the following form:37

(1.1) min
x∈Rm1 ,y∈Rm2

{
Φ(x, y)

def
= J(x) + F (x, y) +R(y)

}
,38

where F (x, y)
def
= 1

n

∑n
i=1 Fi(x, y) has a finite-sum structure. In general, functions J and R are non-39

smooth regularizations that promote structures in the solutions, e.g. sparsity or non-negativity. The40
blocks x and y represent differently structured elements of the solution that are coupled through the loss41
term, F (x, y). Throughout this work, we impose the following assumptions:42

(A.1) J : Rm1 → R ∪ {+∞} and R : Rm2 → R ∪ {+∞} are proper lower semi-continuous (lsc)43
functions that are bounded from below;44

(A.2) Fi : Rm1 ×Rm2 → R are finite-valued, differentiable, and their gradients∇Fi areM(X ,Y)-45
Lipschitz continuous on bounded sets X × Y ⊂ Rm1 × Rm2 for all i ∈ {1, · · · , n};146

(A.3) The partial gradients ∇xFi are Lipschitz continuous with modulus L1(y), and ∇yFi are47
Lipschitz continuous with modulus L2(x) for all i ∈ {1, · · · , n};48

(A.4) The function Φ is bounded from below.49
No convexity is imposed on any of the functions involved. Problem (1.1) departs from the sum-of-50
convex-objectives models that populate the majority of the optimization literature. Many models51
in machine learning, statistics and image processing require the full generality of (1.1). Archetypal52
examples include non-negative or sparse matrix factorization [20], Sparse PCA [13, 42], Robust PCA53
[11], trimmed least-squares [1] and blind image deconvolution [10]. Despite the prevalence of these54
problems, few numerical methods can solve the general problem (1.1), and none that realize match the55
efficiency that randomized algorithms provide. We outline some existing options below.56

Proximal alternating minimization. One approach to solve (1.1) is the Proximal Alternating57
Minimization (PAM) method [3], whose iterations take the following form:58

(1.2)
xk+1 ∈ Argminx∈Rm1

{
Φ(x, yk) + 1

2γx,k
||x− xk||2

}
,

yk+1 ∈ Argminy∈Rm2

{
Φ(xk+1, y) + 1

2γy,k
||y − yk||2

}
,

59

where γx,k, γy,k > 0 are step-sizes. A significant limitation of PAM is that the subproblems in (1.2) do60
not have closed-form solutions in general. As a consequence, each subproblem requires its own set of61
inner iterations, which makes PAM inefficient in practice.62

Proximal alternating linearized minimization [6]. To circumvent this limitation of PAM, Proximal63
Alternating Linearized Minimization (PALM) [6] replaces PAM’s two subproblems with their proximal64
linearizations. PALM’s iterations take the form65

(1.3)
xk+1 ∈ proxγx,kJ

(
xk − γx,k∇xF (xk, yk)

)
,

yk+1 ∈ proxγy,kR
(
yk − γy,k∇yF (xk+1, yk)

)
,

66

1Because we consider a particular bounded set in our analysis, we drop the dependence on X and Y for the remainder of
the paper, writing the Lipschitz constant asM .
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STOCHASTIC PROXIMAL ALTERNATING MINIMIZATION 3

Algorithm 1.1 SPRING: Stochastic Proximal Alternating Linearized Minimization
Initialize: x0 ∈ Rm1 , y0 ∈ Rm2 .
for k = 1, 2, · · · , T − 1 do
xk+1 ∈ proxγx,kJ

(
xk − γx,k∇̃x(xk, yk)

)
yk+1 ∈ proxγy,kR

(
yk − γy,k∇̃y(xk+1, yk)

)
end for
return (xT , yT )

where ∇xF and ∇yF are partial derivatives, and proxγx,kJ is called “proximal operator” of J and
defined by

proxγJ(·) def
= ArgminxγJ(x) + 1

2 ||x− ·||
2.

The proximal mapping is set-valued in general, and becomes single-valued if J is convex.67
In contrast to PAM, each subproblem of PALM can be efficiently computed if the proximal maps of68

J and R are easy to calculate, which is true in many applications. PALM also has the same convergence69
guarantees as PAM, so linearizing F in each proximal step is a clear improvement over PAM. PALM70
with momentum is considered in [29], where the authors show that inertia allows PALM to converge to71
critical points with lower objective values, although accelerated rates might not be obtained.72

1.2. Stochastic PALM. In this work, we introduce SPRING, a randomized version of PALM73
where the partial gradients∇xF (xk, yk) and∇yF (xk+1, yk) in (1.3) are replaced by random estimates,74

∇̃x(xk, yk) and ∇̃y(xk+1, yk), formed using the gradients of only a few indices ∇xFj(xk, yk) and75
∇yFj(xk+1, yk) for j ∈ Bk ⊂ {1, 2, · · · , n}. The mini-batch Bk is chosen uniformly at random from76
all subsets of {1, 2, · · · , n} with cardinality b. We describe SPRING in Algorithm 1.1.77

Many different gradient estimators can be used in SPRING. The simplest one is the stochastic78
gradient descent (SGD) estimator [33]79

∇̃SGD
x (xk, yk) = 1

b

∑
j∈Bk ∇xFj(xk, yk),80

which uses the gradient of a randomly sampled batch to represent the full gradient. Another popular81
choice is SAGA gradient estimator [16], which incorporates the gradient history:82

∇̃SAGA
x (xk, yk) = 1

b

∑
j∈Bk

(
∇xFj(xk, yk)− gk,j

)
+ 1

n

∑n

i=1 gk,i,

gk+1,i =

{
∇xFi(xk, yk) if i ∈ Bk,
gk,i o.w.

83

Both SGD and SAGA estimators are unbiased. The last gradient estimator we specifically consider in84
this work is the (loopless) SARAH estimator [24, 27], ∇̃SARAH

x (xk, yk), which is biased.85 {
∇xF (xk, yk) w.p. 1

p
1
b

∑
j∈Bk

(
∇xFj(xk, yk)−∇xFj(xk−1, yk−1)

)
+ ∇̃SARAH

x (xk−1, yk−1) o.w.
86

Here, p is a tuning parameter that is generally set to O(n). Other variance-reduced estimators can be87
used in SPRING, including the SAG [34] and SVRG [21] estimators, for example, but we consider only88
the SAGA and SARAH estimators specifically in this work.89

This manuscript is for review purposes only.



4 D. DRIGGS, J. TANG, J. LIANG, M. DAVIES, AND C.-B. SCHÖNLIEB

Computing the full gradient is generally n-times more expensive than computing ∇xFi, so when n90
is large and b� n, each step of SPRING with any of these estimators is significantly less expensive91
than that of PALM.92

Remark 1.1. Although we consider only two variable blocks in (1.1), the results of this paper easily93
extend to an arbitrary number of blocks to solve problems of the form94

min
x1,··· ,x`

{
1
n

∑n

i=1 Fi(x1, · · · , x`) +
∑`

t=1Rt(xt)
}
,95

where each Rt is a (possibly non-smooth) regularizer.96

1.3. Contributions. By combining PALM with popular stochastic gradient estimators which are97
variance reduced, we proposed a novel stochastic algorithm for non-convex and non-smooth optimization.98
Theoretically, we show that the resulted algorithm matches the convergence rates of PALM given that99
the gradient estimators ∇̃x and ∇̃y satisfy a variance-reduced property (see Definition 2.1). We prove100
convergence guarantees of two types.101

Convergence rate of generalized gradient map. Given a point z = (x, y), the generalized gradient102
map of PALM/SPRING is defined as103

(1.4) Gγ1,γ2(z)
def
=

(
1/γ1

(
x− proxγ1J(x− γ1∇xF (x, y))

)
1/γ2

(
y − proxγ2R(y − γ2∇yF (x, y)

)
)

)
,104

where γ1, γ2 > 0 are parameters (not necessarily equal to the step-sizes in Algorithm 1.1). If105
dist(0,Gγ1,γ2(z)) = 0, then by the definition of the proximal operator, 0 ∈ (∇xF (x, y) + ∂J(x),106
∇yF (x, y) + ∂R(y)) = ∂Φ(z), meaning z is a critical point. The point z is an ε-approximate critical107
point if it satisfies dist(0,Gγ1,γ2(z)) ≤ ε for some γ1, γ2 ∈ (0,∞).2 In Section 3, we show that3108

E[dist(0,G γx,α
2
,
γy,α

2
(zα))2] ≤ O

(
1
k

)
,109

where α is chosen uniformly at random from the set {1, 2, · · · , k}. If Φ satisfies a certain error bound110
involving the generalized gradient map (see Eq. (3.1)), then SPRING converges linearly to the global111
optimum. These results generalize almost all existing results for stochastic gradient methods on non-112
convex, non-smooth objectives [1, 18, 30, 37, 41].113

Specializing these convergence guarantees to specific gradient estimators, the constants appearing114
in these rates scale with the mean-squared error (MSE, see Definition 2.1) of the gradient estimators.115

• For the SAGA estimator with b ≤ O(n2/3), the iterates of SPRING satisfy116

E[dist(0,G γx,α
2
,
γy,α

2
(zα))2] ≤ O

(
n2L
b3k

)
.117

• For the SARAH gradient estimator with any batch size, we have118

E[dist(0,G γx,α
2
,
γy,α

2
(zα))2] ≤ O

(√nL
k

)
.119

2The set of ε-critical points depends on the parameters γ1, γ2, with larger parameter values generally increasing the size
of the set for fixed ε. For fixed and bounded γ1 and γ2, the generalized gradient map provides a notion of distance to a critical
point. If S(ε) is the set of ε-critical points, then with γ1 and γ2 fixed and bounded, we have S(ε1) ⊂ S(ε2) for ε1 ≤ ε2, and
as ε→ 0, S(ε) contains only the set of critical points of Φ.

3We prove bounds on the expectation of the squared norm of the generalized gradient map to facilitate comparisons with
existing results [1, 30, 31].

This manuscript is for review purposes only.



STOCHASTIC PROXIMAL ALTERNATING MINIMIZATION 5

These convergence rates imply complexity bounds with respect to a stochastic first-order oracle (SFO)120
which returns the partial gradient of a single component Fi (for example, ∇xFi(xk, yk)). To find an121
ε-approximate critical point, SAGA with a mini-batch of size n2/3 requires no more than O(n2/3L/ε2)122
SFO calls, and SARAH requires no more than O(

√
nL/ε2). The improved dependence on n when123

using SARAH gradient estimator exists in all of our convergence rates for SPRING. Because most124
existing works on stochastic optimization for non-smooth, non-convex problems use models that are125
special cases of (1.1), our results for SPRING capture most existing work as special cases. In particular,126
in the case R ≡ J ≡ 0, our results recover recent results showing that SARAH achieves the oracle127
complexity lower-bound for non-convex problems with a finite-sum structure [18, 28, 37, 40, 41].128

Convergence under the Kurdyka–Łojasiewicz property. We also provide convergence guarantees129
under the Kurdyka–Łojasiewicz property (see Definition 2.4). First, we prove the global convergence130
of the generated sequence under the assumption that the objective function Φ(x, y) of (1.1) has the131
Kurdyka–Łojasiewicz property. Then, under the assumption thatΦ is semi-algebraic with KL-exponent θ132
(see Section 2), we show that the sequence zk = (xk, yk) generated by SPRING converges in expectation133
to a critical point z? of problem (1.1) at the following rates:134

• If θ = 0, then {EΦ(zk)}k∈N converges to EΦ(z?) in a finite number of steps.135
• If θ ∈ (0, 1/2], then E‖zk − z?‖ ≤ O(τk) for some τ ∈ (0, 1).136

• If θ ∈ (1/2, 1), then E‖zk − z?‖ ≤ O(k−
1−θ
2θ−1 ).137

These rates match the rates of the original PALM algorithm.138

1.4. Prior Art. SPRING offers several advantages over existing stochastic algorithms for non-139
smooth non-convex optimization. Reddi et al. investigate proximal SAGA and SVRG for solving140
problems of the form (1.1) when y is constant and J is convex [30]. Using mini-batches of size141
b = n2/3, SAGA and SVRG require O(n2/3L/ε2) stochastic gradient evaluations to converge to an142
ε-approximate critical point. Similarly, Aravkin and Davis introduce TSVRG, a stochastic algorithm143
based on SVRG gradient estimator, for solving another special case of (1.1) [1]. Our work generalizes144
their results and improves them in many cases. Most importantly, we show that using SARAH gradient145
estimator allows SPRING to achieve a complexity of O(

√
nL/ε2) even when the mini-batch size is146

equal to one. Our results for semi-algebraic objectives offer even sharper convergence rates.147
The block stochastic gradient method [39] is closely related to SPRING using the (non-variance-148

reduced) SGD gradient estimator. In a similar work, Davis et al. introduce SAPALM, an asynchronous149
version of PALM that allows stochastic noise in the gradients [15]. The authors prove convergence rates150
that scale with the variance of the noise in the gradients, with their best complexity bound for finding an151
ε-approximate critical point equal to O(nL/ε2). While significant in their own right, these results are152
not directly related to ours, as these works require an explicit bound on the variance of the noise in the153
gradients, and the gradient estimators we consider do not admit such a bound [15].154

2. Preliminaries. We use the following definitions and notation throughout the manuscript.155
Variance Reduction. In our analysis, we mainly focus on stochastic gradient estimators that are156

variance reduced. We use a general definition of a variance-reduced gradient estimator that includes all157
existing estimators, for example, SAGA and SARAH, as special cases.158

Definition 2.1 (Variance-reduced gradient estimator). Let {zk}k∈N = {(xk, yk)}k∈N be the159
sequence generated by Algorithm 1.1 with some gradient estimator ∇̃. This gradient estimator is160
variance-reduced with constants V1, V2, VΥ ≥ 0, and ρ ∈ (0, 1] if it satisfies the following conditions:161

This manuscript is for review purposes only.



6 D. DRIGGS, J. TANG, J. LIANG, M. DAVIES, AND C.-B. SCHÖNLIEB

1. (MSE Bound) There exists a sequence of random variables {Υk}k≥1 of the form Υk =162 ∑s
i=1(vik)

2 for some non-negative random variables vik ∈ R such that163

(2.1)
Ek[‖∇̃x(xk, yk)−∇xF (xk, yk)‖2 + ‖∇̃y(xk+1, yk)−∇yF (xk+1, yk)‖2]

≤ Υk + V1(Ek‖zk+1 − zk‖2 + ‖zk − zk−1‖2),
164

and, with Γk =
∑s

i=1 v
i
k,165

Ek[‖∇̃x(xk, yk)−∇xF (xk, yk)‖+ ‖∇̃y(xk+1, yk)−∇yF (xk+1, yk)‖]
≤ Γk + V2(Ek‖zk+1 − zk‖+ ‖zk − zk−1‖).

166

2. (Geometric Decay) The sequence {Υk}k≥1 decays geometrically:167

(2.2) EkΥk+1 ≤ (1− ρ)Υk + VΥ(Ek‖zk+1 − zk‖2 + ‖zk − zk−1‖2).168

3. (Convergence of Estimator) If {zk}k∈N satisfies limk→∞ E‖zk−zk−1‖2 = 0, then EΥk → 0169
and EΓk → 0.170

Proposition 2.2. SAGA gradient estimator is variance-reduced with parameters V1 = 6M2/b,171

V2 =
√

6M/
√
b, VΥ = 134nL2

b2
, and ρ = b

2n . SARAH estimator is variance-reduced with parameters172
V1 = VΥ = 2L2, V2 = 2L, and ρ = 1/p.173

Proposition 2.2 is a generalization of existing variance bounds for these estimators. For a derivation174
of the constants appearing in Proposition 2.2, we refer the reader to our full work [17].175

Remark 2.3. Our results allow Algorithm 1.1 to use any variance-reduced gradient estimator, even176
different estimators for ∇x and∇y. In particular, it is possible to use different mini-batch sizes when177
approximating the two partial gradients.178

Kurdyka–Łojasiewicz property. Let H : Rm1 → R ∪ {+∞} be a proper lower semicontinuous179

function. For ε1, ε2 satisfying −∞ < ε1 < ε2 < +∞, define the set [ε1 < H < ε2]
def
= {x ∈ Rm1 :180

ε1 < H(x) < ε2}.181

Definition 2.4 (Kurdyka–Łojasiewicz). A function H is said to have the Kurdyka-Łojasiewicz182
property at x̄ ∈ dom(H) if there exists ε ∈ (0,+∞], a neighborhood U of x̄ and a continuous concave183
function ϕ : [0, ε)→ R+ such that184

(i) ϕ(0) = 0, ϕ is C1 on (0, ε), and for all r ∈ (0, ε), ϕ′(r) > 0;185
(ii) for all x ∈ U ∩ [H(x̄) < H < H(x̄) + ε], the Kurdyka–Łojasiewicz inequality holds:186

(2.3) ϕ′
(
H(x)−H(x̄)

)
dist

(
0, ∂H(x)

)
≥ 1.187

If H satisfies the KL property at each point of dom(∂H), then it is called KL functions.188

Roughly speaking, KL functions become sharp up to reparameterization via ϕ, a desingularizing189
function for H . Typical KL functions include the class of semi-algebraic functions [4, 5]. For instance,190
the `0 pseudo-norm and the rank function are KL. Semi-algebraic functions admit desingularizing191
functions of the form ϕ(r) = ar1−θ for a > 0, and θ ∈ [0, 1) is known as the KL exponent of the192
function [4, 6]. For these functions, the KL inequality reads193

(2.4)
(
H(x)−H(x)

)θ ≤ C‖ζ‖ ∀ζ ∈ ∂H(x),194

for some C > 0. In the case H(x) = H(x), we use the convention 00 def
= 0.195

This manuscript is for review purposes only.



STOCHASTIC PROXIMAL ALTERNATING MINIMIZATION 7

Bounded Iterates. Many of our results require the assumption that the iterates generated by SPRING196
are bounded, in addition to assumptions (A.1)-(A.4). Because assumption (A.2) only requires∇Fi to197
be Lipschitz on bounded sets, assuming the iterates are bounded allows us to say∇Fi isM -Lipschitz198
continuous. We also require boundedness of the iterates to ensure that a limit point of this sequence199
exists during the proof of Lemma 4.3. This assumption is required for the same reasons in the analysis200
of PALM. It is satisfied, for example, if J and R have bounded domains.201

Notation. We use {(xk, yk)}k∈N to denote the sequence generated by SPRING. We use Lx
def
=202

maxk∈N L1 (yk), and define Ly analogously. We set L̄ def
= max{Lx, Ly}, γk

def
= max{γx,k, γy,k},203

γ
k

def
= min{γx,k, γy,k}, and Φ

def
= inf(x,y)∈dom(Φ) Φ(x, y). We also use L to denote the maximum of204

Lx, Ly, andM over the iterates generated by SPRING, so that L̄,M ≤ L. We use Ek to denote the205
expectation conditional on the first k iterations of SPRING. Specifically, Ek ≡ E[·|Fk] where Fk is the206
σ-algebra generated by B0, · · · , Bk−1. We require a notion of the expectation of the subdifferential207
of Φ(zk). To define this, let n =

(
n
b

)
be the number of possible gradient estimates in one iteration of208

Algorithm 1.1, and let {zik}n
k

i=1 be the set of possible values for zk.4 We use the notation E∂Φ(zk) =209

∂EΦ(zk) = { 1
nk

∑nk

i=1 ξi|ξi ∈ ∂Φ(zik)}. Every subgradient ξ ∈ ∂Φ(zk) is of the form 1
nk

∑nk

i=1 ξi for210

ξi ∈ ∂Φ(zik), and we denote this vector as Eξ ∈ E∂Φ(zk).211

2.1. Elementary Lemmas. The following lemmas generalize the sufficient decrease property of212
proximal gradient descent to the stochastic-gradient setting. They allow us to show that, if the MSE213
of the stochastic gradient estimator is small enough, then iteratively applying the proximal gradient214
operator decreases the suboptimality of each iterate in expectation.215

Lemma 2.5. Let F : Rm → R be a function with L-Lipschitz continuous gradient, R : Rm → R a216
proper lower semicontinuous function that is bounded from below, and z ∈ proxηR(x− ηd) for some217
η > 0 and x, d ∈ Rm. Then, for all y ∈ Rm,218

(2.5) 0 ≤ F (y)+R(y)−F (z)−R(z)+〈∇F (x)−d, z−y〉+(L2 −
1
2η )‖x−z‖2 +(L2 + 1

2η )‖x−y‖2.219

Proof. By the Lipschitz continuity of∇F , we have the inequalities220

F (x)− F (y) ≤ 〈∇F (x), x− y〉+ L
2 ‖x− y‖

2,

F (z)− F (x) ≤ 〈∇F (x), z − x〉+ L
2 ‖z − x‖

2.
221

Furthermore, by the definition of z,222

z ∈ Argminv∈Rm
{
〈d, v − x〉+ 1

2η‖v − x‖
2 +R(v)

}
.223

Taking v = y, we obtain224

0 ≤ R(y)−R(z) + 〈d, y − z〉+ 1
2η

(
‖x− y‖2 − ‖x− z‖2

)
.225

Adding these three inequalities completes the proof.226

4When the proximal operator is multi-valued, Algorithm 1.1 requires one element to be chosen for each iterate, so we are
not counting “possible” values for zk that arise from choosing other elements of the proximal operator.
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If the full gradient estimator is used, Lemma 2.5 implies the well-known sufficient decrease property227
of proximal gradient descent. Using a gradient estimator, this decrease is offset by the estimator’s MSE.228
The following lemma quantifies this relationship.229

Lemma 2.6 (Sufficient Decrease Property). Let F,R, and z be defined as in Lemma 2.5. The230
following inequality holds for any λ > 0:231

(2.6) 0 ≤ F (x) +R(x)− F (z)−R(z) + 1
2Lλ‖d−∇F (x)‖2 +

(L(λ+1)
2 − 1

2η

)
‖x− z‖2.232

Proof. From Lemma 2.5 with y = x, we have233

0 ≤ F (x) +R(x)− F (z)−R(z) + 〈∇F (x)− d, z − x〉+ (L2 −
1
2η )‖x− z‖2.234

Using Young’s inequality 〈∇F (x) − d, z − x〉 ≤ 1
2Lλ‖d − ∇F (x)‖2 + Lλ

2 ‖x − z‖
2 we obtain the235

desired result.236

As in a related work [14], we use the supermartingale convergence theorem to obtain almost sure237
convergence of sequences generated by SPRING. Below, we present an implication of this result adapted238
to our context. We refer to [14, Theorem 4.2] and [33, Theorem 1] for more general presentations.239

Lemma 2.7 (Supermartingale Convergence). Let {Xk}∞k=0 and {Yk}∞k=0 be sequences of bounded240
non-negative random variables such thatXk, Yk are functions of only the first k iterations of SPRING. If241

(2.7) EkXk+1 + Yk ≤ Xk,242

for all k, then
∑∞

k=0 Yk < +∞ a.s. and Xk converges a.s.243

3. Convergence rates of the generalized gradient map. To begin, we present our analysis of244
the convergence rate of the generalized gradient map defined in (1.4). The following results of Theorem245
3.1 generalize many existing convergence guarantees for stochastic gradient methods on non-convex,246

non-smooth objectives [1, 18, 30, 37, 41]. Recall that L̄ def
= max{Lx, Ly}, γk

def
= max{γx,k, γy,k},247

γ
k

def
= min{γx,k, γy,k}, and Φ

def
= inf(x,y)∈dom(Φ) Φ(x, y).248

Theorem 3.1. Suppose that assumptions (A.1)-(A.4) hold and that the sequence {(xk, yk)}k∈N is249
bounded. Let ∇̃x and ∇̃y be variance-reduced gradient estimators following Definition 2.1.250

• Suppose γk is non-increasing, and for all k, γy,k < 1
4Ly+2M and251

γk ≤ 1
16

√
(L̄+M)2

(V1+VΥ/ρ)2 + 16
(V1+VΥ/ρ) −

L̄+M
16(V1+VΥ/ρ) , 0 < β ≤ γ

k
, γx,k <

1
4Lx

,252

With α chosen uniformly at random from {0, 1, · · · , T − 1},253

E[dist(0,G γx,α
2
,
γy,α

2
(zα))2] ≤

4(Φ(x0,y0)+
2γ0
ρ

Υ0)

Tνβ2 ,254

where ν def
= min{ 1

4γx,0
− Lx, 1

4γy,0
− M

2 − Ly}.255
• If, moreover, Φ satisfies the error bound256

(3.1) Φ(xk, yk)− Φ ≤ µdist
(
0,G γx,k

2
,
γy,k

2

(xk, yk)
)2
,257
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for all k ∈ N, and γk satisfies258

γk ≤ 1
20

√
(L̄+M)2

(V1+VΥ/ρ)2 + 20
(V1+VΥ/ρ) −

L̄+M
20(V1+VΥ/ρ) ,259

then the iterates of SPRING converge to the set of global minimizers of Φ, and after T iterations260
of Algorithm 1.1,261

E[Φ(xT , yT )− Φ] ≤ (1−Θ)T (Φ(x0, y0)− Φ + 4γ0
ρ Υ0),262

where Θ
def
= min{νβ

2

4µ ,
ρ
2}.263

Remark 3.2. We include convergence guarantees under the error bound (3.1) to compare with264
related works [1]. This error bound is similar to the Kurdyka–Łojasiewicz property for functions with265
a KL exponent of 1/2, as can be seen comparing equation (3.1) to equation (2.4) with θ = 1/2 and266
H(x) = Φ. Although objectives satisfying this error bound could be non-convex, this condition ensures267
that convergence to the global minimum is guaranteed.268

Proof of Theorem 3.1, Part 1. Let x̂k+1 ∈ proxγx,k
2 J

(xk −
γx,k

2 ∇xF (xk, yk)), and let ŷk+1 ∈269

proxγy,k
2 R

(yk −
γy,k

2 ∇yF (xk, yk)). Applying Lemma 2.5 with z = x̂k+1, y = x = xk and d =270

∇xF (xk, yk), we have271

F (x̂k+1, yk) + J(x̂k+1) ≤ F (xk, yk) + J(xk) + (Lx2 −
1

γx,k
)‖x̂k+1 − xk‖2.272

Again, applying Lemma 2.5 with z = xk+1, y = x̂k+1, x = xk, and d = ∇̃x(xk, yk), we obtain273

F (xk+1, yk) + J(xk+1) ≤ F (x̂k+1, yk) + J(x̂k+1) + 〈∇xF (xk, yk)− ∇̃x(xk, yk), xk+1 − x̂k+1〉
+ (Lx2 −

1
2γx,k

)‖xk+1 − xk‖2 + (Lx2 + 1
2γx,k

)‖x̂k+1 − xk‖2.
274

Adding these two inequalities gives275

(3.2)

F (xk+1, yk) + J(xk+1)

≤ F (xk, yk) + J(xk) + (Lx − 1
2γx,k

)‖x̂k+1 − xk‖2 + (Lx2 −
1

2γx,k
)‖xk+1 − xk‖2

+ 〈∇xF (xk, yk)− ∇̃x(xk, yk), xk+1 − x̂k+1〉
1
≤ F (xk, yk) + J(xk) + (Lx − 1

2γx,k
)‖x̂k+1 − xk‖2 + (Lx2 −

1
2γx,k

)‖xk+1 − xk‖2

+ 2γx,k‖∇xF (xk, yk)− ∇̃x(xk, yk)‖2 + 1
8γx,k
‖x̂k+1 − xk+1‖2

2
≤ F (xk, yk) + J(xk) + (Lx − 1

4γx,k
)‖x̂k+1 − xk‖2 + (Lx2 −

1
4γx,k

)‖xk+1 − xk‖2

+ 2γx,k‖∇xF (xk, yk)− ∇̃x(xk, yk)‖2.

276

Inequality 1 is Young’s, and 2 is the standard inequality ‖a− c‖2 ≤ 2‖a− b‖2 + 2‖b− c‖2. For the277
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updates in yk, we use Lemma 2.5 with z = ŷk+1, y = x = yk, and d = ∇yF (xk, yk), which gives278

(3.3)
0 ≤ F (xk+1, yk) +R(yk)− F (xk+1, ŷk+1)−R(ŷk+1)

+ 〈∇yF (xk+1, yk)−∇yF (xk, yk), ŷk+1 − yk〉+ (
Ly
2 −

1
γy,k

)‖yk − ŷk+1‖2.
279

Finally, we apply Lemma 2.5 with z = yk+1, y = ŷk+1, x = yk, and d = ∇̃y(xk+1, yk)280

(3.4)

0 ≤ F (xk+1, ŷk+1) +R(ŷk+1)− F (xk+1, yk+1)−R(yk+1)

+ 〈∇yF (xk+1, yk)− ∇̃y(xk+1, yk), yk+1 − ŷk+1〉+ (
Ly
2 −

1
2γy,k

)‖yk − yk+1‖2

+ (
Ly
2 + 1

2γy,k
)‖yk − ŷk+1‖2.

281

Adding these two inequalities and bounding the result as in (3.2), we obtain282
(3.5)
F (xk+1, yk+1) +R(yk+1)

≤ F (xk+1, yk) +R(yk) + (Ly − 1
2γy,k

)‖ŷk+1 − yk‖2 + (
Ly
2 −

1
2γy,k

)‖yk+1 − yk‖2

+ 〈∇yF (xk+1, yk)−∇yF (xk, yk), ŷk+1 − yk〉+ 〈∇yF (xk+1, yk)− ∇̃y(xk+1, yk), yk+1 − ŷk+1〉
1
≤ F (xk+1, yk) +R(yk) + (Ly − 1

4γy,k
)‖ŷk+1 − yk‖2 + (

Ly
2 −

1
4γy,k

)‖yk+1 − yk‖2

+ 〈∇yF (xk+1, yk)−∇yF (xk, yk), ŷk+1 − yk〉+ 2γy,k‖∇yF (xk+1, yk)− ∇̃y(xk+1, yk)‖2

+ 1
8γy,k
‖yk+1 − ŷk+1‖2

2
≤ F (xk+1, yk) +R(yk) + (Ly − 1

4γy,k
)‖ŷk+1 − yk‖2 + (

Ly
2 −

1
4γy,k

)‖yk+1 − yk‖2

+ 〈∇yF (xk+1, yk)−∇yF (xk, yk), ŷk+1 − yk〉+ 2γy,k‖∇yF (xk+1, yk)− ∇̃y(xk+1, yk)‖2

3
≤ F (xk+1, yk) +R(yk) + (Ly − 1

4γy,k
)‖ŷk+1 − yk‖2 + (

Ly
2 −

1
4γy,k

)‖yk+1 − yk‖2

+ 1
2M ‖∇yF (xk+1, yk)−∇yF (xk, yk)‖2 + M

2 ‖ŷk+1 − yk‖2

+ 2γy,k‖∇yF (xk+1, yk)− ∇̃y(xk+1, yk)‖2

4
≤ F (xk+1, yk) +R(yk) + (Ly + M

2 −
1

4γy,k
)‖ŷk+1 − yk‖2 + (

Ly
2 −

1
4γy,k

)‖yk+1 − yk‖2

+ 2γy,k‖∇yF (xk+1, yk)− ∇̃x(xk+1, yk)‖2 + M
2 ‖xk+1 − xk‖2.

283

Inequalities 1 and 3 are Young’s, inequality 2 follows from the fact that ‖a−c‖2 ≤ 2‖a−b‖2 +2‖b−284
c‖2, and 4 uses the assumptions that the sequence {(xk, yk)}k∈N is bounded and ∇F isM -Lipschitz285
continuous on this bounded set.286

Adding inequality (3.2) and inequality (3.5), we have287
(3.6)
Φ(xk+1, yk+1) ≤ Φ(xk, yk) + (Lx − 1

4γx,k
)‖x̂k+1 − xk‖2 + (Ly + M

2 −
1

4γy,k
)‖ŷk+1 − yk‖2

+ (Lx2 + M
2 −

1
4γx,k

)‖xk+1 − xk‖2 + (
Ly
2 −

1
4γy,k

)‖yk+1 − yk‖2

+ 2γk
(
‖∇xF (xk, yk)− ∇̃x(xk, yk)‖2 + ‖∇yF (xk+1, yk)− ∇̃y(xk+1, yk)‖2

)
,

288

This manuscript is for review purposes only.



STOCHASTIC PROXIMAL ALTERNATING MINIMIZATION 11

where γk = max{γx,k, γy,k}. We apply the conditional expectation operator Ek and bound the MSE289
terms using (2.1). This gives290

(3.7)

Ek[Φ(xk+1, yk+1) + (−Lx
2 −

M
2 − 2V1γk + 1

4γx,k
)‖xk+1 − xk‖2

+ (−Ly
2 − 2V1γk + 1

4γy,k
)‖yk+1 − yk‖2]

≤ Φ(xk, yk) + (Lx − 1
4γx,k

)‖x̂k+1 − xk‖2 + (Ly + M
2 −

1
4γy,k

)‖ŷk+1 − yk‖2 + 2γkΥk

+ 2V1γk‖zk − zk−1‖2.

291

Next, we use (2.2) to say292

2γkΥk ≤ 2γk
ρ

(
− EkΥk+1 + Υk + VΥ(Ek‖zk+1 − zk‖2 + ‖zk − zk−1‖2)

)
.293

Adding the previous two inequalities, we have294

Ek[Φ(xk+1, yk+1) + (−Lx
2 −

M
2 − 2V1γk −

2VΥγk
ρ + 1

4γx,k
)‖xk+1 − xk‖2

+ (−Ly
2 − 2V1γk −

2VΥγk
ρ + 1

4γy,k
)‖yk+1 − yk‖2 + 2γk

ρ Υk+1]

≤ Φ(xk, yk) + (Lx − 1
4γx,k

)‖x̂k+1 − xk‖2 + (Ly + M
2 −

1
4γy,k

)‖ŷk+1 − yk‖2 + 2γk
ρ Υk

+ 2γk(V1 + VΥ
ρ )‖zk − zk−1‖2.

295

Let L̄ = max{Lx, Ly}. To ensure that the coefficients of ‖xk+1 − xk‖2 and ‖yk+1 − yk‖2 are non-296
negative, we set297

(3.8) γk ≤ 1
16

√
(L̄+M)2

(V1+VΥ/ρ)2 + 16
(V1+VΥ/ρ) −

L̄+M
16(V1+VΥ/ρ) ,298

for all k ∈ N. With this choice,299

(3.9)

(−Lx+M
2 − 2V1γk −

2VΥγk
ρ + 1

4γx,k
)‖xk+1 − xk‖2 + (−Ly

2 − 2V1γk −
2VΥγk
ρ

+ 1
4γy,k

)‖yk+1 − yk‖2

≥ (− L̄+M
2 − 2V1γk −

2VΥγk
ρ + 1

4γk
)‖zk+1 − zk‖2

≥ 2γk(V1 + VΥ/ρ)‖zk+1 − zk‖2.

300

The final inequality is due to the bound in (3.8). To ensure that the coefficients of ‖x̂k+1 − xk‖2 and301
‖ŷk+1 − yk‖2 are non-positive, we set γx,k < 1

4Lx
and γy,k < 1

4Ly+2M , which yields302

Ek[Φ(xk+1, yk+1) + 2γk(V1 + VΥ/ρ)‖zk+1 − zk‖2 + 2γk
ρ Υk+1]

≤ Φ(xk, yk) + (Lx − 1
4γx,k

)‖x̂k+1 − xk‖2 + (Ly − 1
4γy,k

)‖ŷk+1 − yk‖2

+ 2γk(V1 + VΥ/ρ)‖zk − zk−1‖2 + 2γk
ρ Υk.

303

Because γk is non-increasing,304

Ek[Φ(xk+1, yk+1) + 2γk+1(V1 + VΥ/ρ)‖zk+1 − zk‖2 +
2γk+1

ρ Υk+1]

≤ Φ(xk, yk)− ν‖ẑk+1 − zk‖2 + 2γk(V1 + VΥ/ρ)‖zk − zk−1‖2 + 2γk
ρ Υk,

305
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where ν = min{ 1
4γx,0

− Lx, 1
4γy,0

− M
2 − Ly} Applying the full expectation operator, summing from306

k = 0 to k = T − 1, and using the convention z−1 = z0 gives307

2γT
ρ ΥT + 2γT (V1 + VΥ/ρ)‖zT − zT−1‖2 + ν

∑T−1

k=0
E‖ẑk+1 − zk‖2 ≤ Φ(x0, y0) + 2γ0

ρ Υ0.308

We drop the first two terms on the left from the inequality as they are non-negative. Let α be drawn309
uniformly at random from the set {0, 1, · · · , T − 1}, and recall γ

k
≥ β. Using the fact that ‖ẑk+1 −310

zk‖2 ≥ β2

4 dist(0,Gγx,k
2 ,

γy,k
2

(zk))
2,311

Edist
(

0,Gγx,α
2 ,

γy,α
2

(zα)
)2
≤

4(Φ(x0,y0)+
2γ0
ρ

Υ0)

Tνβ2 ,312

which completes the proof of the first claim.313

Combining the same argument with the error bound (3.1), we obtain a linear convergence rate to314
the global optimum.315

Proof of Theorem 3.1, Part 2. We begin with equation (3.7):316

Ek[Φ(xk+1, yk+1) + (−Lx
2 −

M
2 − 2V1γx,k + 1

4γx,k
)‖xk+1 − xk‖2

+ (−Ly
2 − 2V1γy,k + 1

4γy,k
)‖yk+1 − yk‖2]

≤ Φ(xk, yk)− ν‖ẑk+1 − zk‖2 + 2γkΥk + 2V1γk‖zk − zk−1‖2.

317

Using (2.2), we can say for any c > 0,318

0 ≤ 2cγk
ρ

(
− EkΥk+1 + (1− ρ)Υk + VΥ(‖zk+1 − zk‖2 + ‖zk − zk−1‖2)

)
.319

Adding the previous two inequalities, we have320

Ek[Φ(xk+1, yk+1) + (−Lx
2 −

M
2 − 2V1γx,k − 2cVΥγk

ρ + 1
4γx,k

)‖xk+1 − xk‖2

+ (−Ly
2 − 2V1γy,k − 2cVΥγk

ρ + 1
4γy,k

)‖yk+1 − yk‖2 + 2cγk
ρ Υk+1]

≤ Φ(xk, yk)− ν‖ẑk+1 − zk‖2 + 2γk(V1 + cVΥ
ρ )‖zk − zk−1‖2 + 2cγk

ρ (1 + ρ
c − ρ)Υk.

321

We apply the error bound assumption (3.1) to say322

−ν‖ẑk+1 − zk‖2 ≤ −
νγ2
k

4 dist(0,Gγx,k
2 ,

γy,k
2

(zk))
2 ≤ −νγ2

k
4µ (Φ(xk, yk)− Φ).323

In total, we have324

Ek[Φ(xk+1, yk+1)− Φ + (−Lx
2 −

M
2 − 2V1γx,k − 2cVΥγk

ρ + 1
4γx,k

)‖xk+1 − xk‖2

+ (−Ly
2 − 2V1γy,k − 2cVΥγk

ρ + 1
4γy,k

)‖yk+1 − yk‖2 + 2cγk
ρ Υk+1]

≤ (1− νγ2
k

4µ )(Φ(xk, yk)− Φ) + 2γk(V1 + cVΥ
ρ )‖zk − zk−1‖2 + 2cγk

ρ (1 + ρ
c − ρ)Υk.

325
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Choosing c = 2, setting the step-sizes so that they satisfy, for all k,326

γk ≤ 1
20

√
(L̄+M)2

(V1+2VΥ/ρ)2 + 20
(V1+2VΥ/ρ) −

L̄+M
20(V1+2VΥ/ρ) , γx,k <

1
4Lx

, γy,k <
1

4Ly+2M , 0 < β ≤ γ
k
,327

and letting Θ = min{νβ
2

4µ ,
ρ
2}, we have328

Ek[Φ(xk+1, yk+1)− Φ + 2γk(V1 + 2VΥ
ρ )‖zk+1 − zk‖2 + 4γk

ρ Υk+1]

≤ (1−Θ)(Φ(xk, yk)− Φ + 2γk(V1 + 2VΥ
ρ )‖zk − zk−1‖2 + 4γk

ρ Υk).
329

Because γk is non-increasing,330

Ek[Φ(xk+1, yk+1)− Φ + 2γk+1(V1 + 2VΥ
ρ )‖zk+1 − zk‖2 +

4γk+1

ρ Υk+1]

≤ (1−Θ)(Φ(xk, yk)− Φ + 2γk(V1 + 2VΥ
ρ )‖zk − zk−1‖2 + 4γk

ρ Υk).
331

Applying the full expectation operator, chaining this inequality over the iterations k = 0 to k = T − 1,332
and using the convention z−1 = z0,333

E[Φ(xT , yT )− Φ] ≤ (1−Θ)T
(
Φ(x0, y0)− Φ + 4γ0

ρ Υ0

)
,334

which completes the proof.335

Because SAGA and SARAH gradient estimators are variance-reduced, Theorem 3.1 implies specific336
convergence rates for Algorithm 1.1 when using these estimators.337

Corollary 3.3. To compute an ε-approximate critical point in expectation, Algorithm 1.1 using338
• SARAH gradient estimator with p = n, γk ≤ 1

2L
√

30n
and any batch size requires no more than339

O
(
L
√
n/ε2

)
SFO calls;340

• SAGA gradient estimator with b = n2/3 and γk ≤ 1
2
√

2710L
requires no more thanO(Ln2/3/ε2)341

SFO calls.5342
If Φ satisfies the error bound condition (3.1), then to compute an ε-suboptimal point in expectation,343
Algorithm 1.1 using344

• the SARAH gradient estimator requires no more than O((n+ L
√
n/µ) log

(
1/ε
)
) SFO calls;345

• the SAGA gradient estimator requires no more than O((n+ Ln2/3/µ) log(1/ε)) SFO calls.346

Remark 3.4. The improved dependence on n when using SARAH gradient estimator exists in all347
of our convergence rates for SPRING. Because most existing works on stochastic optimization for non-348
smooth, non-convex problems use models that are special cases of (1.1), our results for SPRING capture349
most existing work as special cases. In particular, in the case R ≡ J ≡ 0, our results recover recent350
results showing that SARAH achieves the oracle complexity lower-bound for non-convex problems with351
a finite-sum structure [18, 28, 37, 40, 41].352

5For ease of exposition, we do not optimize over constants, so these step-sizes (particularly for the SAGA estimator) are
not optimal. In general, we find the step-sizes suggested by theory to be conservative in practice (see Section 5 for details
regarding practical step-sizes).
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4. Convergence Rate under the KL Property. The results from previous section require only353
assumptions (A.1) to (A.4). To prove convergence of the sequence of the algorithm, and to obtain354
convergence rates depending on the KL exponent of the objective, we further require that Φ is semi-355
algebraic. In this section, under these assumptions, we prove convergence of the sequence and extend356
the convergence rates of PALM to SPRING. To derive these results, we first derive some preparatory357
results which generalize claims of PALM [6] to the stochastic setting. Given k ∈ N, define the quantity358

(4.1) Ψk
def
= Φ(zk) + 1

2ρ
√

2(V1+VΥ/ρ)
Υk +

√
V1+VΥ/ρ√

2
‖zk − zk−1‖2.359

Our first result guarantees that Ψk is decreasing in expectation.360

Lemma 4.1 (`2 summability). Let {zk}∞k=0 be the sequence generated by SPRING with γk non-361

increasing and satisfying γk <
√

2

5(
√
V1+VΥ/ρ+L̄)

, ∀k, then Ψk satisfies362

(4.2) EkΨk+1 ≤ Ψk +
(
L̄
2 + 3

2

√
2(V1 + VΥ/ρ)− 1

2γk

)
Ek‖zk+1− zk‖2−

√
V1+VΥ/ρ

2
√

2
‖zk − zk−1‖2,363

and the expectation of the squared distance between the iterates is summable:364 ∑∞

k=0
E
[
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

]
=
∑∞

k=0
E‖zk+1 − zk‖2 <∞.365

Proof. Applying Lemma 2.6 twice, once for the update in xk and once for the update in yk, we have366

F (xk+1, yk) + J(xk+1) ≤ F (xk, yk) + J(xk) + 1
2L̄λ
‖∇̃x(xk, yk)−∇xF (xk, yk)‖2

+
( L̄(λ+1)

2 − 1
2γx,k

)
‖xk+1 − xk‖2,

367

as well as368

F (xk+1, yk+1) +R(yk+1) ≤ F (xk+1, yk) +R(yk) +
( L̄(λ+1)

2 − 1
2γy,k

)
‖yk+1 − yk‖2

+ 1
2L̄λ
‖∇̃y(xk+1, yk)−∇yF (xk+1, yk)‖2.

369

Adding these inequalities together,370

Φ(xk+1, yk+1) ≤ Φ(xk, yk) + 1
2L̄λ
‖∇̃x(xk, yk)−∇xF (xk, yk)‖2

+ 1
2L̄λ
‖∇̃y(xk+1, yk)−∇yF (xk+1, yk)‖2 +

( L̄(λ+1)
2 − 1

2γk

)
‖zk+1 − zk‖2.

371

Applying the conditional expectation operator Ek, we can bound the MSE terms using (2.1). This gives372

(4.3) Ek
[
Φ(zk+1)+

(
− L̄(λ+1)

2 − V1

2L̄λ
+ 1

2γk

)
‖zk+1−zk‖2

]
≤ Φ(zk)+ 1

2L̄λ
Υk+ V1

2L̄λ
‖zk−zk−1‖2.373

Next, we use (2.2) to say that374

1
2L̄λ

Υk ≤ 1
2L̄λρ

(
− EkΥk+1 + Υk + VΥ(Ek‖zk+1 − zk‖2 + ‖zk − zk−1‖2)

)
.375
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Combining these inequalities, we have376

Ek
[
Φ(zk+1) + 1

2L̄λρ
Υk+1 +

(
− L̄(λ+1)

2 − V1+VΥ/ρ
2L̄λ

+ 1
2γk

)
‖zk+1 − zk‖2

]
≤ Φ(zk) + 1

2L̄λρ
Υk + V1+VΥ/ρ

2L̄λ
‖zk − zk−1‖2.

377

This is equivalent to378

Ek
[
Φ(zk+1) + 1

2L̄λρ
Υk+1 +

(V1+VΥ/ρ
2L̄λ

+ Z
)
‖zk+1 − zk‖2

+
(
− L̄(λ+1)

2 − V1+VΥ/ρ
L̄λ

− Z + 1
2γk

)
‖zk+1 − zk‖2

]
≤ Φ(zk) + 1

2L̄λρ
Υk +

(V1+VΥ/ρ
2L̄λ

+ Z
)
‖zk − zk−1‖2 − Z‖zk − zk−1‖2,

379

for any constant Z ≥ 0. We use the choice Z =

√
V1+VΥ/ρ

2
√

2
to simplify later arguments. Setting380

γk ≤ (2( L̄(λ+1)
2 + V1+VΥ/ρ

L̄λ
+Z))−1, setting λ =

√
2(V1+VΥ/ρ)

L̄
to approximately maximize this bound381

on γk, and using the fact that γk is non-increasing, we have382

(4.4) EkΨk+1 ≤ Ψk +
( L̄(λ+1)

2 + V1+VΥ/ρ
L̄λ

+ Z − 1
2γk

)
Ek‖zk+1 − zk‖2 − Z‖zk − zk−1‖2,383

proving the first claim that Ψk is decreasing in expectation.384
To prove the second claim, we apply the full expectation operator to (4.4) and sum the resulting385

inequality from k = 0 to k = T − 1,386

EΨT ≤ Ψ0 +
∑T−1

k=0

( L̄(λ+1)
2 + V1+VΥ/ρ

L̄λ
+ Z − 1

2γk

)
E‖zk+1 − zk‖2 − ZE‖zk − zk−1‖2.387

Rearranging and using the facts that Φ ≤ ΨT and γk is non-increasing,388

(4.5)
∑T−1

k=0

(
1

2γk
− L̄(λ+1)

2 − V1+VΥ/ρ
L̄λ

− Z
)
E‖zk+1 − zk‖2 + ZE‖zk − zk−1‖2 ≤ Ψ0 − Φ.389

Taking the limit T → +∞ proves that the sequence E‖zk+1 − zk‖2 is summable.390

The next lemma establishes a bound on the norm of the subgradients of Φ(zk).391

Lemma 4.2 (Subgradient Bound). Let {zk}k∈N be the sequence generated by SPRING with392
step-sizes satisfying 0 < β ≤ γ

k
. Define393

Akx
def
= 1/γx,k(xk−1 − xk) +∇xF (xk, yk)− ∇̃x(xk−1, yk−1) and

Aky
def
= 1/γy,k(yk−1 − yk) +∇yF (xk, yk)− ∇̃y(xk, yk−1).

394

Then (Akx, A
k
y) ∈ ∂Φ(xk, yk) and, with p = 1/β +M + Ly + V2,395

(4.6) Ek−1‖(Akx, Aky)‖ ≤ p(Ek−1 ‖zk − zk−1‖+ ‖zk−1 − zk−2‖) + Γk−1.396

This manuscript is for review purposes only.



16 D. DRIGGS, J. TANG, J. LIANG, M. DAVIES, AND C.-B. SCHÖNLIEB

Proof. The fact that (Akx, A
k
y) ∈ ∂Φ(xk, yk) is clear from the definition of the proximal operator:397

1
γx,k

(xk−1 − xk)− ∇̃x(xk−1, yk−1) ∈ ∂J(xk),

1
γy,k

(yk−1 − yk)− ∇̃y(xk, yk−1) ∈ ∂R(yk).
398

Combining this with the fact that ∂Φ(xk, yk) = (∇xF (xk, yk) + ∂J(xk),∇yF (xk, yk) + ∂R(yk))399
makes it clear that (Akx, A

k
y) ∈ ∂Φ(xk, yk). All that remains is to bound the norms of Akx and Aky .400

Because∇F isM -Lipschitz continuous on bounded sets,401

(4.7)

Ek−1‖Akx‖ ≤ 1
γx,k

Ek−1‖xk−1 − xk‖+ Ek−1‖∇xF (xk, yk)− ∇̃x(xk−1, yk−1)‖

≤ 1
γx,k

Ek−1‖xk−1 − xk‖+ Ek−1‖∇xF (xk, yk)−∇xF (xk−1, yk−1)‖

+ Ek−1‖∇xF (xk−1, yk−1)− ∇̃x(xk−1, yk−1)‖
≤
(

1
γx,k

+M
)
Ek−1‖xk−1 − xk‖+MEk−1‖yk − yk−1‖

+ Ek−1‖∇xF (xk−1, yk−1)− ∇̃x(xk−1, yk−1)‖.

402

A similar argument holds for ‖Aky‖.403

Ek−1‖Aky‖ ≤ 1
γy,k

Ek−1‖yk−1 − yk‖+ Ek−1‖∇yF (xk, yk)− ∇̃y(xk, yk−1)‖

≤ 1
γy,k

Ek−1‖yk−1 − yk‖+ Ek−1‖∇yF (xk, yk)−∇yF (xk, yk−1)‖

+ Ek−1‖∇yF (xk, yk−1)− ∇̃y(xk, yk−1)‖

≤
(

1
γy,k

+ Ly
)
Ek−1‖yk−1 − yk‖+ Ek−1‖∇yF (xk, yk−1)− ∇̃y(xk, yk−1)‖.

404

Adding these two inequalities together and using equation (2.1) to bound the MSE terms, we get405

Ek−1‖(Akx, Aky)‖ ≤ Ek−1

[
‖Akx‖+ ‖Aky‖

]
≤ p(Ek−1‖zk − zk−1‖+ ‖zk−1 − zk−2‖) + Γk−1,406

where p = 1/β +M + Ly + V2.407

Define the set of limit points of {zk}∞k=0 as408

ω
def
= {z : ∃ an increasing sequence of integers {k`}`∈N such that zk` → z as `→ +∞}.409

The following lemma describes properties of ω.410

Lemma 4.3 (Limit points of {zk}∞k=0). Suppose assumptions (A.1)-(A.4) hold, that the sequence411
zk = (xk, yk) is bounded, and the step-sizes of Algorithm 1.1 satisfy the following conditions:412

γx,k, γy,k ∈
[
β,

√
2

5(
√
V1+VΥ/ρ+L̄)

)
∀k,413

and γk is non-increasing. Then414
(1).

∑∞
k=1 ‖zk − zk−1‖2 <∞ a.s., and ‖zk − zk−1‖ → 0 a.s.;415

(2). EΦ(zk)→ Φ?, where Φ? ∈ [Φ,∞);416
(3). Edist(0, ∂Φ(zk))→ 0;417

This manuscript is for review purposes only.



STOCHASTIC PROXIMAL ALTERNATING MINIMIZATION 17

(4). The set ω is non-empty, and for all z? ∈ ω, Edist(0, ∂Φ(z?)) = 0;418
(5). dist(zk, ω)→ 0 a.s.;419
(6). ω is a.s. compact and connected;420
(7). EΦ(z?) = Φ? for all z? ∈ ω.421

Remark 4.4. The boundedness of zk is also imposed in the original PALM [6] and asynchronous422
PALM [14], it can be satisfied automatically if, for instance, each regularizer has bounded domain.423

Proof. By Lemma 4.1, we have424

EkΨk+1 +O
(
‖zk − zk−1‖2

)
≤ Ψk.425

The supermartingale convergence theorem implies that
∑∞

k=1 ‖zk − zk−1‖2 < +∞ a.s., and it follows426
that ‖zk − zk−1‖ → 0 a.s. This proves Claim 1.427

The supermartingale convergence theorem also ensures Ψk converges a.s. to a finite, positive428
random variable. Because ‖zk − zk−1‖ → 0 a.s. and ∇̃ is variance-reduced so EΥk → 0, we can say429
limk→∞ EΨk = limk→∞ EΦ(zk) ∈ [Φ,∞), implying Claim 2.430

Claim 3 holds because, by Lemma 4.2,431

E‖(Akx, Aky)‖ ≤ pE[‖zk − zk−1‖+ ‖zk−1 − zk−2‖] + EΓk−1.432

We have that E‖zk − zk−1‖ → 0 and EΓk → 0. This ensures that E‖(Akx, Aky)‖ → 0.433
To prove Claim 4, suppose z? = (x?, y?) is a limit point of the sequence {zk}∞k=0 (a limit point must434

exist because we suppose the sequence {zk}∞k=0 is bounded). This means there exists a subsequence zkq435

satisfying limq→∞ zkq → z?. Furthermore, by the variance-reduced property of ∇̃x(xkq , ykq , we have436

E‖∇̃x(xkq , ykq)−∇xF (xkq , ykq)‖2 → 0, which implies that there exists a subsequence of {zkq}q∈N437

(call it {zkq}q∈I for some index set I ⊂ N) such that ∇̃x(xkq , ykq)−∇xF (xkq , ykq)→ 0 a.s. Because438
R and J are lower semicontinuous,439

(4.8) lim inf
q→∞

R(xkq) ≥ R(x?) and lim inf
q→∞

J(xkq) ≥ J(x?).440

By the update rule for xk+1,441

xk+1 ∈ argminx
{
〈x− xk, ∇̃x(xk, yk)〉+ 1

2γx,k
‖x− xk‖2 +R(x)

}
.442

Letting x = x?,443

〈xk+1 − xk, ∇̃x(xk, yk)〉+ 1
2γx,k
‖xk+1 − xk‖2 +R(xk+1)

≤ 〈x? − xk,∇xF (xk, yk)〉+ 〈x? − xk, ∇̃x(xk, yk)−∇xF (xk, yk)〉+ 1
2γx,k
‖x? − xk‖2 +R(x?).

444

Setting k = kq, taking the expectation, and taking the limit q →∞,445

lim sup
q→∞

R(xkq+1) ≤ lim sup
q→∞

〈x? − xkq ,∇xF (xkq , ykq)〉

+ 〈x? − xkq , ∇̃x(xkq , ykq)−∇xF (xkq , ykq)〉+ 1
2γx,k
‖x? − xkq‖2 +R(x?).

446
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The first term on the right goes to zero because xkq → x? and ∇xF (xkq , ykq) is bounded. The447

second term is zero almost surely because it is bounded above by ‖xkq − x∗‖2 + ‖∇̃x(xkq , ykq) −448

∇xF (xkq , ykq)‖2, and we have ∇̃x(xkq , ykq) − ∇xF (xkq , ykq) → 0 a.s. Therefore, lim supq→∞449
R(xkq+1) ≤ R(x?) a.s., which, together with equation (4.8), implies R(xkq+1) → R(x?) a.s. The450
same argument holds for J and yk, and it follows that451

(4.9) lim
q→∞

Φ(xkq , ykq) = Φ(x?, y?) a.s.452

Claim 3 ensures that E‖(Akx, Aky)‖ → 0. Combining Claim 3 with (4.9) and the fact that the subdiffer-453
ential of Φ is closed, we have Edist(0, ∂Φ(z?)) = 0.454

Claims 5 and 6 hold for any sequence satisfying ‖zk − zk−1‖ → 0 a.s. (this fact is used in the same455
context in [6, Remark 5] and [14, Remark 4.1]).456

Finally, we must show that Φ has constant expectation over ω. From Claim 2, we haveEΦ(zk)→ Φ?457
which implies EΦ(zkq) → Φ? for every subsequence {zkq}∞q=0 converging to some z? ∈ ω. In the458
proof of Claim 4, we show that Φ(zkq)→ Φ(z?), so EΦ(z?) = Φ? for all z? ∈ ω.459

The following lemma is analogous to the Uniformized Kurdyka–Łojasiewicz Property [6]. It is a460
slight generalization of the Kurdyka–Łojasiewicz property showing that zk eventually enters a region of461
z for some z satisfying Φ(z) = Φ(z∗), and in this region, the Kurdyka–Łojasiewicz inequality holds.462

Lemma 4.5. Assume the conditions of Lemma 4.3 hold and that zk is not a critical point of Φ after463
a finite number of iterations. Let Φ be a semi-algebraic function with KL exponent θ. Then there exists464
an indexm and a desingularizing function φ so that the following bound holds:465

φ′(E[Φ(zk)− Φ?
k])Edist

(
0, ∂Φ(zk)

)
≥ 1 ∀k > m,466

where Φ?
k is a non-decreasing sequence converging to EΦ(z?) for some z? ∈ ω.467

Proof. First, we show that EΦ(zk) satisfies the KL property. Recall that b is the mini-batch size.468
Let n =

(
n
b

)
be the number of possible gradient estimates in one iteration, and let {zik}n

k

i=1 be the set of469

possible values for zk. Considering EΦ as a function of {zik}n
k

i=1, we have470

EΦ(zk) = 1
nk

∑nk

i=1
Φ(zik).471

Because EΦ(zk) can be written as
∑

i fi(xi) where fi are KL functions with exponent θ, EΦ(zk) (as472

a function of {zik}n
k

i=1) is also KL with exponent θ [25, Theorem 3.3]. Hence, EΦ satisfies the KL473

inequality at every point in its domain. Therefore, for every point (z1
k, · · · , zn

k

k ) in a neighborhood Uk474

of (z1
k, z

2
k, · · · , zn

k

k ) and satisfying475

(4.10) 1
nk

∑nk

i=1
Φ(zik) <

1
nk

∑nk

i=1
Φ(zik) <

1
nk

∑nk

i=1
Φ(zik) + εk476

for some εk > 0, the Kurdyka–Łojasiewicz inequality holds with the desingularizing function φk:477

(4.11) φ′k

(
1
nk

∑nk

i=1
Φ(zik)− 1

nk

∑nk

i=1
Φ(zik)

)
dist

(
0, 1

nk

∑nk

i=1
∂Φ(zik)

)
≥ 1.6478

6For the subdifferential terms we are taking the Minkowski sum: 1
nk

∑nk

i=1 ∂Φ(zik) = { 1
nk

∑nk

i=1 ξi|ξi ∈ ∂Φ(zik)}.
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There always exists a choice of (z1
k, z

2
k, · · · , zn

k

k ) satisfying (4.10) unless EΦ(zk) is a local minimum.479
Lemma 4.3 Claim 5 implies dist(zk, ω)→ 0 a.s., and Claims 2 and 7 imply EΦ(zk)→ EΦ(z?), so we480

can choose zk such that 1
nk

∑nk

i=1 Φ(zik)→ EΦ(z?) as well. To summarize, we have shown that there481

exists a sequence (z1
k, · · · , zn

k

k ) such that482

1. The point (z1
k, · · · , zn

k

k ) lies in a neighborhood Uk of (z1
k, · · · , zn

k

k ),483
2. The inequality (4.10) is satisfied, and484

3. We have 1
nk

∑nk

i=1 Φ(zik)→ EΦ(z?).485
Points 1.) and 2.) imply the Kurdyka–Łojasiewicz inequality (4.11). This ensures that the Kurdyka–486
Łojasiewicz inequality holds at every iteration, but the desingularizing function φk changes every487
iteration. We now show that the Kurdyka–Łojasiewicz inequality holds using a single function φ.488

Because Φ is semi-algebraic with KL exponent θ, each desingularizing function is of the form489

φk(s) = aks
1−θ. Each ak is bounded, so amax

def
= max{ak}k≥1 is bounded, and inequality (4.11)490

holds with the desingularizing function φmax(s) = amaxs
1−θ.491

Let Φ?
k

def
= minj≥k

1
nj

∑nj

i=1 Φ(zij). It is clear that Φ∗k is non-decreasing and Φ?
k → EΦ(z∗). From492

point 3, we can say there exists an indexm and a constant a such that for all k ≥ m,493

(4.12) a
(

1
nk

∑nk

i=1
Φ(zik)− Φ?

k

)−θ
≥ amax

(
1
nk

∑nk

i=1
Φ(zik)− 1

nk

∑nk

i=1
Φ(zik)

)−θ
.494

The constant a exists; we can take a to be495

(4.13) max
k≥1


 1

nk

∑nk

i=1 Φ(zik)− Φ?
k

1
nk

∑nk

i=1 Φ(zik)−
1
nk

∑nk

i=1 Φ(zik)

θ

k≥1

,496

which is bounded. To see this, we acknowledge that this ratio is bounded for every k, and497

(4.14) lim
k→∞

 1
nk

∑nk

i=1 Φ(zik)− Φ?
k

1
nk

∑nk

i=1 Φ(zik)−
1
nk

∑nk

i=1 Φ(zik)

 = lim
k→∞

 1
nk

∑nk

i=1 Φ(zik)− EΦ(z∗)

1
nk

∑nk

i=1 Φ(zik)− EΦ(z∗)

 = 1.498

Therefore, with φ(s) = as1−θ, we have499

φ′(E[Φ(zk)− Φ?
k])dist

(
0,E∂Φ(zk)

)
≥ φ′max(E[Φ(zk)− Φ?

k])dist
(
0,E∂Φ(zk)

)
≥ 1, ∀k > m,500

The desired inequality follows from Jensen’s inequality and the convexity of x 7→ dist(0, x).501

We now show that the iterates of SPRING have finite length in expectation.502

Lemma 4.6 (Finite Length). Suppose Φ is a semi-algebraic function with KL exponent θ ∈ [0, 1).503
Let {zk}∞k=0 be a bounded sequence of iterates of SPRING using a variance-reduced gradient estimator504
and step-sizes satisfying the hypotheses of Lemma 4.3.505

(1). Either zk is a critical point after a finite number of iterations, or {zk}∞k=0 satisfies the finite506
length property in expectation:507 ∑∞

k=0
E‖zk+1 − zk‖ <∞,508
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and there exists an iterationm so that for all i > m,509 ∑i

k=m
E‖zk+1 − zk‖+ E‖zk − zk−1‖ ≤

√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2

+ 2
√
s

K1ρ

√
EΥm−1 +K3∆m,i+1,

510

where511

K1
def
= p+ 2

√
sVΥ/ρ, K2

def
= 1

2γ0
− L̄

2 −
3
√

2
4

√
V1 + VΥ/ρ, K3

def
= 2K1(K2+Z)

K2Z
,512

p is as in Lemma 4.2, and ∆p,q
def
= φ(E[Ψp − Φ?

p])− φ(E[Ψq − Φ?
q ])].513

(2). The iterates of SPRING {zk}∞k=0 converge to a critical point of Φ in expectation.514

Remark 4.7. Our analysis for SPRING requires Φ to be semi-algebraic for the finite-length property515
to hold, but in the analysis of PALM, the finite-length property requires only that Φ is KL (and not516
necessarily semi-algebraic) [6, Thm. 1]. This difference arises because SPRING does not necessarily517
decrease the objective every iteration (even in expectation), but PALM does [6, Lem. 3]. Instead, we518
prove that the iterates of SPRING decrease Ψk in expectation. Related works [14] solve this problem by519
requiring an analog of Ψk to be KL, but this is not a straightforward approach for SPRING because of520
the complex variance bounds required to analyze variance-reduced gradient estimators.521

Proof. We begin with a proof of Claim 1. If θ ∈ (0, 1/2), then Φ satisfies the KL property with522
exponent 1/2, so we consider only the case θ ∈ [1/2, 1). By Lemma 4.5, there exists a function523
φ0(r) = ar1−θ such that524

φ′0(E[Φ(zk)− Φ?
k])Edist

(
0, ∂Φ(zk)

)
≥ 1 ∀k > m.525

Lemma 4.2 provides a bound on Edist(0, ∂Φ(zk)).526
(4.15)
Edist

(
0, ∂Φ(zk)

)
≤ E‖(Akx, Aky)‖ ≤ pE[‖zk − zk−1‖+ ‖zk−1 − zk−2‖] + EΓk−1

≤ p(
√

E‖zk − zk−1‖2 +
√
E‖zk−1 − zk−2‖2) +

√
sEΥk−1.

527

The final inequality is Jensen’s. Because Γk =
∑s

i=1 v
i
k for some non-negative random variables vik, we528

can say EΓk = E
∑s

i=1 v
i
k ≤ E

√
s
∑s

i=1(vik)
2 ≤
√
sEΥk. We can bound the term

√
EΥk using (2.2):529

(4.16)

√
EΥk ≤

√
(1− ρ)EΥk−1 + VΥE[‖zk − zk−1‖2 + ‖zk−1 − zk−2‖2]

≤
√

(1− ρ)
√

EΥk−1 +
√
VΥ(

√
E‖zk − zk−1‖2 +

√
E‖zk−1 − zk−2‖2)

≤
(
1− ρ

2

)√
EΥk−1 +

√
VΥ(

√
E‖zk − zk−1‖2 +

√
E‖zk−1 − zk−2‖2).

530

The final inequality uses the fact that
√

1− ρ = 1− ρ/2− ρ2/8− · · · . This allows us to say531
(4.17)
Edist

(
0, ∂Φ(zk)

)
≤ K1

√
E‖zk − zk−1‖2 +K1

√
E‖zk−1 − zk−2‖2 + 2

√
s

ρ (
√

EΥk−1 −
√
EΥk),532

whereK1
def
= p+ 2

√
sVΥ/ρ. Define Ck to be the right side of this inequality:533

Ck
def
= K1

√
E‖zk − zk−1‖2 +K1

√
E‖zk−1 − zk−2‖2 + 2

√
s

ρ (
√
EΥk−1 −

√
EΥk).534
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We then have535

(4.18) φ′0(E[Φ(zk)− Φ?
k])Ck ≥ 1 ∀k > m.536

By the definition of φ0, this is equivalent to537

(4.19)
a(1− θ)Ck

(E[Φ(zk)− Φ?
k])

θ
≥ 1 ∀k > m.538

We would like the inequality above to hold for Ψk rather than Φ(zk). Replacing EΦ(zk) with EΨk539
introduces a term of O((E[‖zk − zk−1‖2 + Υk])

θ) in the denominator. We show that inequality (4.19)540
still holds after this adjustment because these terms are small compared to Ck.541

The quantity Ck ≥ c1(
√
E‖zk − zk−1‖2 +

√
E‖zk−1 − zk−2‖2 +

√
EΥk−1) for some constant542

c1 > 0, and because E‖zk − zk−1‖2,EΥk → 0, and θ ≥ 1/2, there exists an indexm and a constants543
c2, c3 > 0 such that544 (

E
[

1

2ρ
√

2(V1+VΥ/ρ)
Υk +

√
V1+VΥ/ρ√

2
‖zk − zk−1‖2

])θ
≤ c2

((
E
[
Υk−1 + ‖zk − zk−1‖2 + ‖zk−1 − zk−2‖2

] )θ) ≤ c3Ck ∀k > m.

545

The first inequality uses (2.2). Because the terms above are small compared toCk, there exists a constant546
+∞ > d > c3 such that547

ad(1−θ)Ck
(E[Φ(zk)−Φ?k])θ+

(
E[ 1

2ρ
√

2(V1+VΥ/ρ)
Υk+

√
V1+VΥ/ρ√

2
‖zk−zk−1‖2]

)θ ≥ 1,548

for all k > m. Using the fact that (a+ b)θ ≤ aθ + bθ for all a, b ≥ 0 because θ ∈ [1/2, 1), we have549

ad(1−θ)Ck
(E[Ψk−Ψ?])θ

= ad(1−θ)Ck(
E
[
Φ(zk)−Φ?k+

1

2ρ
√

2(V1+VΥ/ρ)
Υk+

√
V1+VΥ/ρ√

2
‖zk−zk−1‖2

])θ
≥ ad(1−θ)Ck

(E[Φ(zk)−Φ?k])
θ
+
(
E
[

1

2ρ
√

2(V1+VΥ/ρ)
Υk+

√
V1+VΥ/ρ√

2
‖zk−zk−1‖2

])θ ≥ 1 ∀k > m.
550

Therefore, with φ(r) = adr1−θ,551

φ′(E[Ψk − Φ?
k])Ck ≥ 1 ∀k > m.552

By the concavity of φ,553

(4.20)
φ(E[Ψk − Φ?

k])− φ(E[Ψk+1 − Φ?
k+1]) ≥ φ′(E[Ψk − Φ?

k])(E[Ψk − Φ?
k + Φ?

k+1 −Ψk+1])

≥ φ′(E[Ψk − Φ?
k])(E[Ψk −Ψk+1]),

554

where the last inequality follows from the fact that Φ?
k is non-decreasing. With ∆p,q

def
= φ(E[Ψp −555

Φ?
p])− φ(E[Ψq − Φ?

q ])], we have shown556

∆k,k+1Ck ≥ E[Ψk −Ψk+1].557
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Using Lemma 4.1, we can bound E[Ψk − Ψk+1] below by both E‖zk+1 − zk‖2 and E‖zk − zk−1‖2.558
Specifically,559

(4.21) ∆k,k+1Ck ≥ ZE[‖zk − zk−1‖2],560

as well as561

(4.22) ∆k,k+1Ck ≥ K2E[‖zk+1 − zk‖2],562

whereK2
def
= −

( L̄(λ+1)
2 + V1+VΥ/ρ

L̄λ
+ Z − 1

2γ0

)
and λ and Z are set as in Lemma 4.1. Let us use the563

first of these inequalities to begin. Applying Young’s inequality to (4.21) yields564

(4.23) 2
√

E‖zk − zk−1‖2 ≤ 2
√
Ck∆k,k+1Z−1 ≤ Ck

2K1
+

2K1∆k,k+1

Z
565

Summing inequality (4.23) from k = m to k = i,566

(4.24)

2
∑i

k=m

√
E‖zk − zk−1‖2 ≤

∑i

k=m

Ck
2K1

+
2K1∆m,i+1

Z

≤
∑i

k=m

1
2

√
E‖zk − zk−1‖2 + 1

2

√
E‖zk−1 − zk−2‖2

−
√
s

K1ρ

(√
EΥi −

√
EΥm−1

)
+

2K1∆m,i+1

Z ,

567

Dropping the non-positive term −
√
EΥi, this shows that568 ∑i

k=m

√
E‖zk − zk−1‖2 ≤ 1

2

√
E‖zm−1 − zm−2‖2 +

√
s

K1ρ

√
EΥm−1 +

2K1∆m,i+1

Z .569

Applying the same argument using inequality (4.22) instead of (4.21), we obtain570 ∑i

k=m

√
E‖zk+1 − zk‖2

≤ 1
2

√
E‖zm − zm−1‖2 + 1

2

√
E‖zm−1 − zm−2‖2 +

√
s

K1ρ

√
EΥm−1 +

2K1∆m,i+1

K2
.

571

Adding these inequalities together, we have572 ∑i

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2 ≤ 1

2

√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2

+ 2
√
s

K1ρ

√
EΥm−1 +

2K1(K2+Z)∆m,i+1

K2Z
.

573

For easier analysis, we add 1
2

√
E‖zm − zm−1‖2 to the right side:574

(4.25)

∑i

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

≤
√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2 + 2

√
s

K1ρ

√
EΥm−1 +

2K1(K2+Z)∆m,i+1

K2Z
.

575

Applying Jensen’s inequality to the terms on the left gives576 ∑i

k=m
E‖zk+1 − zk‖+ E‖zk − zk−1‖

≤
√

E‖zm − zm−1‖2 +
√

E‖zm−1 − zm−2‖2 + 2
√
s

K1ρ

√
EΥm−1 +

2K1(K2+Z)∆m,i+1

K2Z
.

577
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The term limi→∞∆m,i+1 is bounded because EΨk is bounded due to Lemma 4.1, so letting i→∞578
proves the assertion.579

An immediate consequence of Claim 1 is that the sequence E‖zk+1−zk‖ is Cauchy, so the sequence580
{zk}∞k=0 converges in expectation to a critical point. This is because, for any p, q ∈ N with p ≥ q,581

E‖zp− zq‖ = E‖
∑p−1

k=q zk+1− zk‖ ≤
∑p−1

k=q E‖zk+1− zk‖, and the finite length property implies this582
final sum converges to zero. This proves Claim 2.583

Finally, we prove convergence rates for SPRING depending on the KL exponent of the objective584
function, demonstrating that the full convergence theory of PALM extends to SPRING.585

Theorem 4.8 (Convergence Rates). Suppose Φ is a semi-algebraic function with KL exponent586
θ ∈ [0, 1). Let {zk}∞k=0 be a bounded sequence of iterates of SPRING using a variance-reduced gradient587
estimator and step-sizes satisfying the hypotheses of Lemma 4.3. The following convergence rates hold:588

(1). If θ ∈ (0, 1/2], then there exists d1 > 0 and τ ∈ [1− ρ, 1) such that E‖zk − z?‖ ≤ d1τ
k.589

(2). If θ ∈ (1/2, 1), then there exists a constant d2 > 0 such that E‖zk − z?‖ ≤ d2k
− 1−θ

2θ−1 .590
(3). If θ = 0, then there exists anm ∈ N such that EΦ(zk) = EΦ(z?) for all k ≥ m.591

Proof. As in the proof of the previous lemma, if θ ∈ (0, 1/2), then Φ satisfies the KL property592
with exponent 1/2, so we consider only the case θ ∈ [1/2, 1).593

Substituting the desingularizing function φ(r) = ar1−θ into (4.25),594

(4.26)

∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

≤
√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2 + 2

√
s

K1ρ

√
EΥm−1 + aK3(E[Ψm − Φ?

m])1−θ.
595

Because Ψm = Φ(zm) +O(‖zm − zm−1‖2 + Υm), we can rewrite the final term as Φ(zm)− Φ?
m.596

(E[Ψm − Φ?
m])1−θ = (E[Φ(zm)− Φ?

m + 1
2L̄λρ

Υm + V1+VΥ/ρ
2L̄λ

‖zm − zm−1‖2])1−θ

1
≤ (E[Φ(zm)− Φ?

m])1−θ +
(

1
2L̄λρ

EΥm

)1−θ
+
(V1+VΥ/ρ

2L̄λ
E‖zm − zm−1‖2

)1−θ
.

597

Inequality 1 is due to the fact that (a+ b)1−θ ≤ a1−θ + b1−θ. This yields the inequality598 ∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

≤
√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2 + 2

√
s

K1ρ

√
EΥm−1 + aK3(E[Φ(zm)− Φ?

m])1−θ

+ aK3

(
1

2L̄λρ
EΥm

)1−θ
+ aK3

(V1+VΥ/ρ
2L̄λ

E‖zm − zm−1‖2
)1−θ

.

599

Applying the Kurdyka–Łojasiewicz inequality (2.4),600

(4.27) aK3(E [Φ(zm)− Φ?
m])1−θ ≤ aK3(E‖ζm‖)

1−θ
θ ,601

for all ζm ∈ ∂Φ(zm) and we have absorbed the constant C into a. Equation (4.15) provides a bound on602
the norm of the subgradient:603

(E‖ζm‖)
1−θ
θ ≤

(
p(
√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2) +

√
sEΥm−1

) 1−θ
θ .604
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Denote the right side of this inequality Θ
1−θ
θ

m . Therefore,605

(4.28)

∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

≤
√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2 + 2

√
s

K1ρ

√
EΥm−1 + aK3Θ

1−θ
θ

m

+ aK3

(
1

2L̄λρ
EΥm

)1−θ
+ aK3

(V1+VΥ/ρ
2L̄λ

E‖zm − zm−1‖2
)1−θ

.

606

Suppose θ ∈ (1/2, 1). Each of the terms on the right side of this inequality are converging to zero, but607
at different rates. Because Θm = O(

√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2 +

√
EΥm−1), and θ608

satisfies 1−θ
θ < 1, the term Θ

1−θ
θ

m dominates the first three terms on the right side of this inequality for609

largem. Also, because 1−θ
2θ ≤ 1− θ, Θ

1−θ
θ

m dominates the final two terms as well. Combining these610
facts, there exists a natural numberM1 such that for allm ≥M1,611

(4.29)
(∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

) θ
1−θ ≤ PΘm,612

for some constant P > (aK3)
θ

1−θ . The bound of (4.16) implies613

2
√
sEΥm−1 ≤ 4

√
s

ρ

(√
EΥm−1 −

√
EΥm +

√
VΥ(

√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2)

)
.614

Therefore,615

(4.30)

Θm = p(
√

E‖zm − zm−1‖2 +
√

E‖zm−1 − zm−2‖2) + (2
√
sEΥm−1 −

√
sEΥm−1)

≤
(
p+ 4

√
sVΥ
ρ

)
(
√

E‖zm − zm−1‖2 +
√
E‖zm−1 − zm−2‖2)

+ 4
√
s

ρ (
√
EΥm−1 −

√
EΥm)−

√
sEΥm−1.

616

Furthermore, because θ
1−θ > 1 and EΥm → 0, for large enoughm, we have (

√
EΥm)

θ
1−θ �

√
EΥm.617

This ensures that there exists a natural numberM2 such that for everym ≥M2,618

(4.31)
( 4
√
s(1−ρ/4)

ρ(p+4
√
sVΥ/ρ)

√
EΥm

) θ
1−θ ≤ P

√
sEΥm.619

The constant appearing on the left was chosen to simplify later arguments. Therefore, (4.29) implies620 (∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2 + 4

√
s(1−ρ/4)

ρ(p+4
√
sVΥ/ρ)

√
EΥm

) θ
1−θ

1
≤ 2

θ
1−θ
2

(∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

) θ
1−θ

+ 2
θ

1−θ
2

( 4
√
s(1−ρ/4)

ρ(p+4
√
sVΥ/ρ)

√
EΥm

) θ
1−θ

2
≤ 2

θ
1−θ
2

(∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

) θ
1−θ + 2

θ
1−θ
2

(
P
√
sEΥm

)
3
≤ 2

θ
1−θ
2

(
P (p+ 4

√
sVΥ/ρ)

(√
E ‖zm − zm−1‖2 +

√
‖zm−1 − zm−2‖2

)
+ 4
√
sP (1−ρ/4)

ρ

(√
EΥm−1 −

√
EΥm

))
.

621

This manuscript is for review purposes only.



STOCHASTIC PROXIMAL ALTERNATING MINIMIZATION 25

Here, 1 follows by convexity of the function x
θ

1−θ for θ ∈ [1/2, 1) and x ≥ 0, 2 is (4.31), and 3 is622

(4.29) combined with (4.30). We absorb the constant 2
θ

1−θ
2 into P . Define623

Sm
def
=
∑∞

k=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2 + 4

√
sP (1−ρ/4)

ρ(p+4
√
sVΥ/ρ)

√
EΥm.624

Sm is bounded for allm because
∑∞

k=m

√
E‖zk+1 − zk‖2 is bounded by equation (4.26). Hence, we625

have shown626

(4.32) S
θ

1−θ
m ≤ P (p+ 4

√
sVΥ/ρ)(Sm−1 − Sm).627

The rest of the proof follows the proof of [2, Theorem 5]. Let h(r)
def
= r−

θ
1−θ . First, suppose that628

h(Sm) ≤ Rh(Sm−1) for some R ∈ (1,∞). Then (4.32) ensures that629

1 ≤ P (p+ 4
√
sVΥ/ρ)(Sm−1 − Sm)h(Sm) ≤ RP (p+ 4

√
sVΥ/ρ)(Sm−1 − Sm)h(Sm−1)

≤ RP (p+ 4
√
sVΥ/ρ)

∫ Sm−1

Sm

h(r)dr

= RP (p+4
√
sVΥ/ρ)(1−θ)

1−2θ

[
S

1−2θ
1−θ
m−1 − S

1−2θ
1−θ
m

]
.

630

Hence,631

0 < − 1−2θ
RP (p+4

√
sVΥ/ρ)(1−θ) ≤ S

1−2θ
1−θ
m − S

1−2θ
1−θ
m−1 .632

Now suppose h(Sm) > Rh(Sm−1), so that Sm < R−
1−θ
θ Sm−1 and S

1−2θ
1−θ
m > q

1−2θ
1−θ S

1−2θ
1−θ
m−1 where633

q = R−
1−θ
θ . This implies that634

(
q

1−2θ
1−θ − 1

)
S

1−2θ
1−θ
m−1 ≤ S

1−2θ
1−θ
m − S

1−2θ
1−θ
m−1 ,635

and the quantity on the left is clearly bounded away from zero because q < 1, 1−2θ
1−θ < 0, and Sm−1 → 0.636

This shows that in either case, there exists a µ′ > 0 such that637

µ′ ≤ S
1−2θ
1−θ
m − S

1−2θ
1−θ
m−1 .638

Summing this inequality fromm = M2 tom = M3, we obtain (M3 −M2)µ′ ≤ S
1−2θ
1−θ
M3

− S
1−2θ
1−θ
M2−1, and639

because the function x 7→ x
1−θ
1−2θ is decreasing, this implies640

SM3 ≤
(
S

1−2θ
1−θ
M2−1 + (M3 −M2)µ′

) 1−θ
1−2θ ≤ dM

1−θ
1−2θ

3 ,641

for some constant d. By Jensen’s inequality, we can say
∑∞

k=M3
E‖zk − zk−1‖ ≤ SM3 ≤ dM

− 1−θ
2θ−1

3 .642
Using the fact that E‖zm − z?‖ = E‖

∑∞
k=m+1 zk − zk−1‖ ≤ E

∑∞
k=m ‖zk − zk−1‖ proves Claim 1.643
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If θ = 1/2, then (E‖ζm‖)
1−θ
θ = E‖ζm‖. Equation (4.28) then gives644

(4.33)

∑∞

i=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

≤
(

1 + aK3

(
p+

√
V1+VΥ/ρ

2L̄λ

))(√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2

)
+
(

2
√
s

K1ρ
+ aK3

√
s
)√

EΥm−1 + aK3

√
1

2L̄λρ

√
EΥm,

645

where we have added the non-negative term aK3

√
V1+VΥ/ρ

2L̄λ

√
E‖zm−1 − zm−2‖2 to the right to simplify646

the presentation. Using equation (4.16), we have that, for any constant c > 0,647

0 ≤ −c
√

EΥm + c
(
1− ρ

2

)√
EΥm−1 + c

√
VΥ(

√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2).648

Combining this inequality with (4.33),649 ∑∞

i=m

√
E‖zk+1 − zk‖2 +

√
E‖zk − zk−1‖2

≤
(
1 + aK3

(
p+

√
V1+VΥ/ρ

2L̄λ

)
+ c
√
VΥ

)(√
E‖zm − zm−1‖2 +

√
E‖zm−1 − zm−2‖2

)
+ c
(
1− ρ

2 + 2
√
s

cK1ρ
+ aK3

√
s

c

)√
EΥm−1 − c

(
1− aK3c

−1
√

1
2L̄λρ

)√
EΥm.

650

Defining651

Tm
def
=
∑∞

i=m

√
E‖zi+1 − zi‖2 +

√
E‖zi − zi−1‖2,652

and P2 = 1 + aK3

(
p+ 4

√
sVΥ/ρ+

√
V1+VΥ/ρ

2L̄λ

)
+ c
√
VΥ, we have shown653

Tm + c
(
1− aK3c

−1
√

1
2L̄λρ

)√
EΥm

≤ P2(Tm−1 − Tm) + c
(
1− ρ

2 + 2
√
s

cK1ρ
+ aK3

√
s

c

)√
EΥm−1.

654

Rearranging,655

(1 + P2)Tm + c
(
1− aK3c

−1
√

1
2L̄λρ

)√
EΥm ≤ P2Tm−1 + c

(
1− ρ

2 + 2
√
s

cK1ρ
+ aK3

√
s

c

)√
EΥm−1.656

This implies657

Tm +
√
EΥm

≤ max
{

P2

1 + P2
,
(
1− ρ

2 + 2
√
s

cK1ρ
+ aK3

√
s

c

)(
1− aK3c

−1
√

1
2L̄λρ

)−1
}

(Tm−1 +
√

EΥm−1).
658

For large c, the second coefficient in the above expression approaches 1− ρ/2. This proves the linear659
rate of Claim 2.660

When θ = 0, the KL property (2.4) implies that exactly one of the following two scenarios holds:661
either EΦ(zk) 6= Φ?

k and662

(4.34) 0 < C ≤ E‖ζk‖ ∀ζk ∈ ∂Φ(zk),663
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or Φ(zk) = Φ?
k. We show that the above inequality can only hold for a finite number of iterations.664

Using the subgradient bound, the first scenario implies665

C2 ≤ (E‖ζk‖)2 ≤ (pE‖zk − zk−1‖+ pE‖zk−1 − zk−2‖+ EΓk−1)2,

≤ 3p2(E‖zk − zk−1‖)2 + 3p2(E‖zk−1 − zk−2‖)2 + 3(EΓk−1)2,

≤ 3p2E‖zk − zk−1‖2 + 3p2E‖zk−1 − zk−2‖2 + 3sEΥk−1.

666

where we have used the inequality (a1 + a2 + · · ·+ as)
2 ≤ s(a2

1 + · · ·+ a2
s) and Jensen’s inequality.667

Applying this inequality to the decrease of Ψk (4.2), we obtain668

EΨk ≤ EΨk−1 +
( L̄(λ+1)

2 + V1+VΓ/ρ
2L̄λ

+ Z − 1
2η

)
E‖zk − zk−1‖2 − ZE‖zk−1 − zk−2‖2

≤ EΨk−1 − C2 +O(E‖zk − zk−1‖2) +O(E‖zk−1 − zk−2‖2) +O(EΥk−1),
669

for some constant C2.7 Because the final three terms go to zero as k →∞, there exists an indexM4 so670
that the sum of these three terms is bounded above by C2/2 for all k ≥M4. Therefore,671

EΨk ≤ EΨk−1 − C2

2 , ∀k ≥M4.672

Because Ψk is bounded below for all k, this inequality can only hold forN <∞ steps. AfterN steps, it673
is no longer possible for the bound (4.34) to hold, so it must be that Φ(zk) = Φ?

k. Because Φ?
k < Φ(z?),674

Φ?
k < EΦ(zk), and both EΦ(zk),Φ

?
k converge to EΦ(z?), we must have Φ?

k = EΦ(zk) = EΦ(z?).675

The main difference between these convergence rates and those of PALM occurs when θ ∈ (0, 1/2].676
In this case, the linear convergence rate cannot be faster than the geometric decay of the MSE of the677
gradient estimator, which is of order (1− ρ)k after k iterations. Without mini-batching (i.e. b = 1), this678
rate is approximately (1− 1/n)k for the SAGA estimator and (1− 1/p)k for the SARAH estimator.679

5. Numerical Experiments. To demonstrate the advantages of SPRING, we compare SPRING680
using the SAGA and SARAH gradient estimators to PALM [6] and inertial PALM [29]. We also681
present results for SPRING using the (non-variance-reduced) SGD estimator (a case studied by Xu and682
Yin [39]). We refer to SPRING using the SGD, SAGA, and SARAH gradient estimators as SPRING-683
SGD, SPRING-SAGA, and SPRING-SARAH, respectively. Two applications are considered here for684
comparison: sparse non-negative matrix factorization (Sparse-NMF) and blind image-deblurring (BID)8.685
We also provide in the appendix additional results on sparse principal component analysis (Sparse-PCA).686

Sparse-NMF: Given a data-matrix A, we seek a factorization A ≈ XY where X ∈ Rn×r, Y ∈687
Rr×d are non-negative with r ≤ d and X sparse. Sparse-NMF has the following formulation:688

(5.1) min
X,Y
‖A−XY ‖2F , s.t. X, Y ≥ 0, ‖Xi‖0 ≤ s, i = 1, ..., r.689

Here,Xi denotes the ith column ofX . In dictionary learning and sparse coding,X is called the learned690
dictionary with coefficients Y . In this formulation, the sparsity on X is strictly enforced using the691
non-convex `0 constraint, restricting 75% of the entries to be 0.692

7We have ignored extraneous constants in the final three terms for clarity.
8The implementations are available at https://junqitang.com/
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Blind Image-Deblurring: Let Z be a blurred image. The problem of blind deconvolution reads:693

(5.2) min
X,Y
‖Z −X � Y ‖2F + λ

∑2d

r=1
Φ([D(X)]r) s.t. 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, ‖Y ‖1 ≤ 1,694

where � is the 2D convolution operator, X is the image to recover, and Y is the blur-kernel to estimate.695
We choose a classic smooth edge-preserving regularizer in the image domain, with D(·) being the 2D696
differential operator computing the horizontal and vertical gradients for each pixel. For the potential697
function Φ(·), we choose Φ(v) := log(1 + θv2) as in [29]. This potential function promotes sparsity in698
image gradients, hence yielding sharp images. We choose θ = 103 and λ = 5×10−5 in our experiments699

One of the benefits of SPRING and PALM is that the two step-sizes, γX,k and γY,k, depend separately700
on the Lipschitz constants L̂X(Yk) and L̂Y (Xk). The practical performance of these algorithms depends701
significantly on the step-size choices. The following section describes how we use adaptive step-sizes702
in our experiments.703

5.1. Parameter choices and on-the-fly estimation of Lipschitz constants. The global704
Lipschitz constants of the partial gradients of F are usually unknown and difficult to estimate. In705
practice, adaptive step-size choices based on estimating local Lipschitz constants are needed for PALM706
and inertial PALM [29]. In our experiments, we use the power method to estimate the Lipschitz constants707
on-the-fly in every iteration of the compared algorithms. For SPRING-SGD, SPRING-SAGA, and708
SPRING-SARAH, we find that it is sufficient to randomly sub-sample a mini-batch and run 5 iterations709
of the power method to get an estimate of the Lipschitz constants of the stochastic gradients. For PALM,710
we run 5 iterations of the power method in each iteration on the full batch to get an estimate of the711
Lipschitz constants of the full partial gradients.712

For example, consider estimating the Lipschitz constants of the gradients corresponding to the713
objective function of Sparse-NMF (5.1). LetXk and Yk be the updates of k-th iteration, then LY (Xk) =714
‖Xk‖2, which is the largest squared singular value of Xk, and can be computed via power iteration:715

vi =
XT
k (Xkvi−1)

‖XT
k (Xkvi−1)‖2

,716

with a random initialization satisfying ‖v0‖2 = 1. We find that using 5 iterations is sufficient to provide717
good estimates, so we approximate LY (Xk) by ‖XT

k (Xkv5)‖2. We use the same strategy for LX(Yk).718
Denote the estimated Lipschitz constants of the full gradients as L̂X(Yk) and L̂Y (Xk), and denote719

the estimated Lipschitz constants of the stochastic estimates as L̃X(Yk) and L̃Y (Xk). We set the720
step-sizes of the compared algorithms as follows:721

• PALM: γX,k = 1
L̂X(Yk)

and γY,k = 1
L̂Y (Xk)

(these are the standard step-sizes [6]).722

• Inertial PALM: γX,k = 0.9
L̂X(Yk)

, γY,k = 0.9
L̂Y (Xk)

, and we set the momentum parameter to723
k−1
k+2 , where k denotes the number of iterations. Pock and Sabach [29] assert that this dynamic724

momentum parameter achieves the best practical performance.9725

9The dynamic choice of momentum parameter is not theoretically analyzed by Pock and Sabach [29], but it appears to be
superior to the constant inertial parameter choice. Pock and Sabach suggest the aggressive step-sizes γX,k = 1

L̂X (Yk)
and

γY,k = 1

L̂Y (Xk)
for the dynamic scheme, but we find these choices sometimes lead to unstable/divergent behavior in the late

iterations. Hence, we use the slightly smaller step-sizes γX,k = 0.9

L̂X (Yk)
and γY,k = 0.9

L̂Y (Xk)
instead. These choices ensure

the algorithm is stable, and we observe that they do not compromise the convergence rate in practice.
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• SPRING-SGD: γX,k = 1√
dkb/neL̃X(Yk)

and γY,k = 1√
dkb/neL̃Y (Xk)

. It is well-known in726

the literature that a shrinking step-size is necessary for SGD to converge to a critical point727
[7, 22, 26, 39].728
• SPRING-SAGA: γX,k = 1

3L̃X(Yk)
and γY,k = 1

3L̃Y (Xk)
.729

• SPRING-SARAH: γX,k = 1
2L̃X(Yk)

and γY,k = 1
2L̃Y (Xk)

.730

Remark 5.1 (Practical step-sizes for SPRING-SAGA and SPRING-SARAH). While the step-sizes731
suggested in Sections 3 and 4 lead to state-of-the-art convergence rates for (1.1), we observe that those732
step-size choices are conservative for SPRING-SAGA and SPRING-SARAH in practice. Hence, we733
adopt the suggested step-size choices in the original works with scale factors 1/3 for SAGA [16, Section734
2] and 1/2 for SARAH [27, Corollary 3]. For all tested methods, the step-sizes we use are optimal in735
practice while ensuring convergence in all experiments with extensive tests.736

The same random initialization is used for all of the compared algorithms in our Sparse-NMF737
experiments, while for BID we initialize the image estimate with the blurred image and the kernel738
estimate with all ones. We observe that SPRING with variance-reduced gradients can be sensitive to739
poor initialization, and this may initially compromise convergence. However, this initialization issue740
can be effectively resolved if we use plain stochastic gradient without variance-reduction in the first741
epoch of SPRING-SARAH/SPRING-SAGA as a warm-start, which is suggested in [23].742

In all the convergence plots for our experiments, we report the average results for stochastic methods743
with 10 independent runs. We comment here that from our numerical observations, the final objective744
values achieved by the stochastic algorithms vary very little from the average.745

5.2. Sparse-NMF. We consider the extended Yale-B dataset and ORL dataset, which are standard746
facial recognition benchmarks consisting of human face images.10 The extended Yale-B dataset contains747
2414 cropped images of size 32× 32, while the ORL dataset contains 400 images sized 64× 64. In748
the experiment for Yale dataset, we extract 49 sparse basis-images for the dataset. For ORL dataset we749
extract 25 sparse basis-images. In each iteration of the stochastic algorithms, we randomly sub-sample750
5% of the full batch as a mini-batch. Here for SPRING-SARAH we set p = 1

20 . To reflect the effect of751
the algorithmic randomness within our methods, we report the average results (over 10 independent752
runs) of objective values in Figure 1. Meanwhile we also report the variance of the objective value at753
termination in Table 1. The obtained results are shown in Figures 1 and 2, from which we observe:754

• Overall, SPRING using SAGA and SARAH estimators achieves superior performance compared755
to PALM, inertial PALM, and SPRING using the vanilla SGD gradient estimator.756
• PALM has the worst performance in the considered Sparse-NMF tasks, which is not surprising757

since PALM is the baseline method in this comparison. Incorporating inertia can offer consid-758
erable acceleration for PALM. We believe that such inertial schemes can also be extended to759
accelerate SPRING and leave it as an important direction of future research (see [19] for some760
work in this direction).761
• SPRING using the vanilla SGD gradient estimator achieves fast convergence initially, but762
gradually slows its convergence due to the shrinking step-size that is necessary to combat763
the non-reducing variance. However, using variance-reduced gradient estimators SAGA and764
SARAH, SPRING is able to overcome this issue and achieve the best overall convergence rates.765

10Preprocessed versions [8, 9] can be found in: http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Figure 1: Objective decrease comparison of Sparse-NMF on Yale dataset.
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Figure 2: Objective decrease comparison of Sparse-NMF on ORL dataset.

Remark 5.2 (Computational overheads for stochastic gradient methods). While the epoch count766
metric measures the gradient complexities of the algorithms, it does not reflect the computation overheads767
of the stochastic algorithms. The most important overhead for stochastic gradient methods in our setting768
would be the multiple calls to the proximal operator [35, 36]. Even though the proximal operators in our769
settings are not computationally expensive, computing such an operation many times still accumulates770
to a non-negligible overhead. Although our epoch count results confirm the complexity advantage771
predicted by theory, we can only observe compromised benefits from the wall-clock time comparison.772

Remark 5.3 (The effect of algorithmic randomness). In order to reflect the algorithmic randomness773
of our stochastic methods, we present in log-scale the averaged convergence curves over 10 independent774
runs (in Figure 1 and 2). We also report that the variation of these results are virtually negligible, as we775
show in Table 1. The variances of the objective values at termination (250th epoch for Yale dataset, and776
1000th epoch for ORL dataset) in the same log-scale are very small.777
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Table 1: The variation of the objective value (log-scale) at termination for randomized methods

Dataset/Algorithm SPRING-SGD SPRING-SAGA SPRING-SARAH
Yale 1.8711× 10−5 7.5532× 10−6 8.3064× 10−6

ORL 9.9082× 10−5 1.6723× 10−5 1.2961× 10−5

As a visual illustration we also present in Figure 3 the basis images generated by SPRING-SAGA778
and PALM for the Yale dataset at the 50th epoch. It is clear that the basis images generated by SPRING-779
SAGA appear natural and smooth quickly at an early epoch, while PALM’s results at the same epoch780
appear noisy and distorted.781

(a) SPRING-SAGA (b) PALM

Figure 3: Basis images from the Sparse-NMF experiment generated by SPRING-SAGA and PALM on
the 50th epoch for the Yale dataset.

5.3. Blind Image-Deblurring. For blind image-deconvolution, we choose to compare SPRING-782
SARAH, PALM and inertial PALM. We use two images, Kodim08 and Kodim15, of size 256× 256 for783
testing. For each image, two blur kernels—linear motion blur and out-of-focus blur—are considered784
with additional additive Gaussian noise. For SPRING-SARAH, the mini-batch size is 1/64 of the full785
batch (and also we set p = 1

64 ). For this mini-batch size, we choose smaller step sizes γX,k = 1
8L̃X(Yk)

,786

γY,k = 1
3L̃Y (Xk)

than the default choices to encourage stability. As above, we present results of SPRING787

in terms of an average of 10 independent runs in Figures 6 and 7, and we report that the variance due to788
the algorithmic randomness evaluated at termination is also negligible (on the order of 10−6).789

For both images with motion blur, the convergence comparisons of the algorithms are provided in790
Figures 4 and 5, from which we observe SPRING-SARAH is faster than the other two methods in both791
cases. Figures 6 and 7 provide comparisons of the recovered image and blur kernel. We observe superior792
performance of SPRING-SARAH over PALM in these figures as well. In particular, when comparing793
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Figure 4: Objective decrease comparison (epoch counts) of blind image-deconvolution experiment on
Kodim08 image using an 11× 11 motion-blur kernel.
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Figure 5: Objective decrease comparison (wall-clock time) of blind image-deconvolution experiment on
Kodim15 image using an 11× 11 motion-blur kernel.

the estimated blur kernels of the two algorithms every 100 epochs, we clearly see that SPRING-SARAH794
more quickly recovers more accurate solutions than PALM. It is worth noting that, although stochastic795
gradient methods have been shown to be inherently inefficient for non-blind and non-uniform deblurring796
task where the blur kernels are known or estimated beforehand [36], SPRING still offers significant797
acceleration over PALM in blind-deblurring tasks. Additional experiments using out-of-focus blur798
kernels are provided in the appendix.799

6. Conclusion. We propose SPRING, a stochastic extension of the PALM algorithm for solving a800
class of structured non-smooth and non-convex optimization problems. We analyze the convergence801
properties of SPRING when using a variety of variance-reduced gradient estimators, and we prove802
specific convergence rates using the SAGA and SARAH estimators. For generic optimization problems803
of the form (1.1), we show that SPRING-SAGA (with b ≤ O(n2/3)) and SPRING-SARAH return an804
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(a) Original image and kernel (b) Blurred image (c) Recovered by PALM (d) Recovered by SPRING
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(f) Estimated kernel by SPRING

Figure 6: Image and kernel reconstructions from the blind image-deconvolution experiment on the
Kodim08 image using an 11× 11 motion blur kernel.

(a) Original image and kernel (b) Blurred image (c) Recovered by PALM (d) Recovered by SPRING
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(f) Estimated kernel by SPRING

Figure 7: Image and kernel reconstructions from the blind image-deconvolution experiment on the
Kodim15 image using an 11× 11 motion blur kernel.

ε-approximate critical point in expectation in no more thanO(n
2L
b3ε2

) andO(
√
nL
ε2

) SFO calls, respectively,805
showing that SPRING-SARAH achieves the complexity lower bound for stochastic non-convex opti-806
mization. For objectives satisfying an error bound, we further demonstrate that our methods converge807
linearly to the global optimum. Because of the generality of our results, they contain almost all existing808
results for stochastic non-convex optimization as special cases, and they improve on them in many809
settings. Most importantly, we extend the full convergence theory of PALM to the stochastic setting,810
showing that SPRING achieves the same convergence rates as PALM on semialgebraic objectives.811
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Appendix A. Additional numerical experiments. This section contains additional numerical905
experiments demonstrating the superiority of SPRING over PALM.906

We first present our additional results on the Sparse-PCA example for the Yale and ORL datasets.907
The problem of Sparse-PCA with r principal components can be written as:908

(A.1) min
X,Y
‖A−XY ‖2F + λ1‖X‖1 + λ2‖Y ‖1.909

where X ∈ Rn×r, Y ∈ Rr×d. We use `1 regularization on both X and Y to promote sparsity with910
λ1 = 10−3 and λ2 = 5×10−3, and r = 25. We compare SPRING-SAGA, SPRING-SARAH, SPRING-911
SGD and PALM. We choose the mini-batch size to be 1

40 of the full batch (for SPRING-SARAH we set912
p = 1

40 ). We report the results of 10 independent runs of the stochastic methods in Figure 8 and 9, and913
we denote that the variance due to the algorithmic randomness evaluated at termination is also negligible914
(on the order of 10−5). Similar to what we observe in the Sparse-NMF experiments, our results in915
Figure 8 and 9 show that SPRING with stochastic variance-reduced gradient estimators achieves the916
fastest convergence.917
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Figure 8: Objective decrease comparison of Sparse-PCA on Yale dataset.

Figures 10 to 12 show additional comparisons for blind image-deblurring where the images are918
blurred with an out-of-focus kernel. We choose the regularization parameter λ = 1 × 10−4 and the919
other settings are the same for the BID experiments presented in the main text. Again, we observe that920
our SPRING-SARAH algorithm outperforms PALM and inertial-PALM.921
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Figure 9: Objective decrease comparison of Sparse-PCA on ORL dataset.
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Figure 10: Objective decrease comparison (versus run time) of blind image-deconvolution experiment
on Kodim08 and Kodim15 images using an out-of-focus blur kernel.
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(a) Original image and kernel (b) Blurred image (c) Recovered by PALM (d) Recovered by SPRING
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Figure 11: Image and kernel reconstructions from the blind image-deconvolution experiment on the
Kodim08 image using an out-of-focus blur kernel.

(a) Original image and kernel (b) Blurred image (c) Recovered by PALM (d) Recovered by SPRING
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Figure 12: Image and kernel reconstructions from the blind image-deconvolution experiment on the
Kodim15 image using an out-of-focus blur kernel.
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