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Abstract. We introduce the notion of angular values for deterministic linear difference equations and ran-
dom linear cocycles. We measure the principal angles between subspaces of fixed dimension
as they evolve under nonautonomous or random linear dynamics. The focus is on long-term
averages of these principal angles, which we call angular values: we demonstrate relationships
between different types of angular values and prove their existence for random dynamical sys-
tems. For one-dimensional subspaces in two-dimensional systems our angular values agree with
the classical theory of rotation numbers for orientation-preserving circle homeomorphisms if the
matrix has positive determinant and does not rotate vectors by more than π

2
. Because our

notion of angular values ignores orientation by looking at subspaces rather than vectors, our
results apply to dynamical systems of any dimension and to subspaces of arbitrary dimension.
The second part of the paper delves deeper into the theory of the autonomous case. We explore
the relation to (generalized) eigenspaces, provide some explicit formulas for angular values, and
set up a general numerical algorithm for computing angular values via Schur decompositions.

Key words. Nonautonomous dynamical systems, random dynamical systems, angular value, ergodic aver-
age, principal angles of subspaces, numerical algorithm.
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1. Introduction. In this paper we propose and analyze suitable notions of angular
values for linear nonautonomous discrete-time dynamical systems. The systems are of the
form

(1.1) un+1 = Anun, u0 ∈ Rd, n ∈ N0

with An ∈ GL(Rd), i.e. with real invertible d×d matrices An, n ∈ N0. Our goal is to study
the average rotation of s-dimensional subspaces V0 ⊆ Rd for s = 1, . . . , d when iterated as
in (1.1), i.e. we consider the sequence of subspaces generated by

(1.2) Vn+1 = AnVn, n ∈ N0,

so that Vn+1 = Vn+1(V0) depends on V0 via Vn+1 = AnAn−1 · · ·A1A0V0. Since the matrices
An are invertible the subspaces Vn have the same dimension s for all n ∈ N0. Their rotation
is measured by the well-established notion of principal angles between subspaces which
originates with C. Jordan in 1876. By ](V,W ) we denote the maximum principal angle of
two subspaces V,W and we recall that 0 ≤ ](V,W ) ≤ π

2 holds. Some basics of the theory
of principal angles and of their numerical computation may be found in [25], [17, Ch.6.4].
Generalizations to complex vector spaces and the triangle inequality appear in the papers
[15], [21], [34]. In Section 2 we derive some specific results, tailored to our needs, such
as estimates of principal angles in terms of norms and an angle bound for linear maps.
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Using principal angles between successive spaces Vj−1 and Vj generated by (1.2) we form
the n-step average

(1.3)
1

n
a1,n(V0), where a1,n(V0) =

n∑
j=1

](Vj−1, Vj), n ≥ 1

and two types of limiting values

(1.4) θ̄s = lim sup
n→∞

sup
V0∈G(s,d)

1

n
a1,n(V0), θ̂s = sup

V0∈G(s,d)
lim sup
n→∞

1

n
a1,n(V0),

where G(s, d) denotes the Grassmann manifold of s-dimensional subspaces of Rd. We call
θ̄s the s-inner and θ̂s the s-outer angular value of the system (1.1). In sections 3-4 we
will discuss systems for which the lim sups in (1.4) are actually limits. More variations of
these notions will be defined in Section 3.1, and some key examples will be presented in
Section 3.2 which show that all types of angular values differ in general.

As a physical motivation of angular values consider some object, such as a small
massless rod or a sheet, carried materially by a time-varying fluid flow, and assume that
data about its position and orientation are available at discrete time instances. The task
then is to measure the maximum average rotation of the object. In mathematical terms we
think of a continuous time dynamical system determining its trajectory, and we assume
that the system (1.1) describes its linearization about the trajectory when sampled at
discrete times. Then the first and second outer angular values measure the maximum
average angle of rotation exerted by the flow on a line (s = 1) or on a plane (s = 2).
Rotations of subspaces s ≥ 3 may be relevant in higher-dimensional phase spaces. In view
of such applications it is natural to extend the quantities (1.4) to continuous-time systems.
A short discussion of such an extension is given in the outlook of this article.

Perhaps the simplest example is a 2× 2 orthogonal matrix, where d = 2, s = 1 and

(1.5) An ≡ A = Tϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, 0 ≤ ϕ ≤ π

2
.

All summands in (1.3) are ϕ and a1,n(V0) = nϕ for all one-dimensional V0 ⊂ R2. Hence

we find θ̄1 = θ̂1 = ϕ in this case.
A first motivating example is the following randomized version of (1.5). Let (Ω,P) be a

probability space, τ : Ω→ Ω be an ergodic transformation preserving P and ϕ : Ω→ [0, π2 ]
be a random variable. Setting A(ω) = Tϕ(ω) and An = A(τnω0) for some ω0 ∈ Ω we see

that a1,n(V0) =
∑n−1

j=0 ϕ(τ jω0) for every V0. By Birkhoff’s ergodic theorem, for P-almost

every ω0, one has limn→∞
1
na1,n(V0) =

∫
ϕ(ω) dP(ω). The above general formula holds

for driving systems τ modeling any ergodic stationary deterministic or stochastic process.
In Section 4 we generalize the various notions of angular values to the general setting of
random dynamical systems (cf. [2]). We establish their existence via ergodic theorems and
prove inequalities between the various types; see Theorem 4.2.

A second motivating example abandons orthogonality and changes (1.5) by a skewing
factor 0 < ρ ≤ 1 to

An ≡ A(ρ, ϕ) =

(
cos(ϕ) −ρ−1 sin(ϕ)
ρ sin(ϕ) cos(ϕ)

)
, 0 ≤ ϕ ≤ π

2
.
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This matrix turns out to be a kind of normal form with regard to measuring angles
between a one-dimensional subspace and its image (see Proposition 5.2). The angular
values θ̂1 and θ̄1 agree in this case, but they differ from ϕ in general and depend critically
on the value of ρ (see Proposition 5.2 and Theorem 6.1).

There is a weak analogy of first angular values to Lyapunov exponents which measure
the maximum average exponential growth of a linear nonautonomous system (1.1); see e.g.
[2, Ch.3.2], [6], [24, Suppl.2]). For the latter purpose it is enough to compare the norm
of the last iterate with the first one and average the logarithm. However, in the angular
direction one expects only linear growth which requires one to calculate an arithmetic
average over every single time step.

For certain systems, the above definition of angular values is related to existing con-
cepts of measuring rotations in dynamical systems, which we now discuss. We first men-
tion the classical theory of rotation numbers for orientation-preserving homeomorphisms
of the circle, cf. [9], [24, Ch.11], [27]. If the system (1.1) is two-dimensional and auton-
omous (i.e. An ≡ A ∈ GL(R2)), then it generates a homeomorphism of the unit circle,
which is orientation-preserving for det(A) > 0. If, in addition, no vector rotates by an
angle greater than π

2 , then the rotation number agrees (up to a factor of 2π) with the first
angular value; see Section 5.1, Remark 5.3 and Proposition 5.2 for more details. However,
such a comparison is no longer possible for a reflection or for matrices which generate
rotations of vectors with angles larger than π

2 . By contrast to rotation numbers, our def-
inition (1.4) avoids assuming or specifying any orientation, even when one observes the
motion of one-dimensional subspaces (rather than vectors) in a two-dimensional space.
Including orientation typically leads to complications in discrete-time systems. For exam-
ple, for rotations that are close to reflections one needs extra analytic information from
the system (such as det(An)), which we consider as inaccessible to observation. When
rotations of vectors larger than π

2 occur, our definition takes the smaller of both possible
angles; Figure 1.1 illustrates this for a sequence of subspaces. Note that angles between
successive subspaces are indicated by black arcs with time progressing outward.

Figure 1.1: Angles between successive subspaces in the Hénon system (6.10).

The theory of rotation numbers for homeomorphisms of the circle has been general-
ized to so-called rotation sets of toral automorphisms in [26], and a numerical approach
appears in [29]. However, there seems to be no connection to the definition (1.4) in higher
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dimensions.
Another far-reaching extension of rotation numbers to nonautonomous continuous time

systems of arbitrary dimension has been proposed and investigated in [3], [2, Ch.6.5].
The average rotation of vectors is measured within all two-dimensional subspaces (more
generally within tangent planes of a manifold) mapped by the system. Orientation is taken
into account where counterclockwise refers to positive values. In essence one studies the
flow induced by the given system on the Grassmannian G(2, d). The concept generalizes to
nonlinear random dynamical systems and even leads to a multiplicative ergodic theorem,
see [2, Th.6.5.14]. However, the conceptual difference to angular values remains the same
as for the classical rotation numbers.

Yet another concept of rotation numbers has been developed for continuous time linear
Hamiltonian systems of arbitrary dimension; see [23], [22], with a route from the theory to
numerical results provided in [13]. The notion is based on a suitable generalization of the
arg-function from a scalar complex system to the even dimensional real case. Then the
rotation number appears as the limit of the time average of the arg-function when applied
to a symplectic fundamental matrix. The setting is similar to the random dynamical
systems mentioned above. The resulting rotation number has interesting relations to the
dichotomy spectrum of a parametrically perturbed Hamiltonian system; see [13, Theorem
4-6]. This notion differs from the first angular values of this paper since time is continuous
and orientation is taken into account by the choice of the arg-function.

Let us also mention the notion of antieigenvalues and antieigenvectors developed in
[18]. They are determined by the maximum angle ](v,Av) by which a given matrix A
can turn a vector v ∈ Rd. This corresponds to maximizing the first summand in (1.3),
but ergodic averages seem not to have been considered in this theory.

In the following we summarize some further results of this paper. In Section 3.1 we
collect elementary properties of angular values, such as inequalities among them and in-
variance under special kinematic similarities, see [16] for this notion. Section 5 presents
an in-depth study of the autonomous case An ≡ A. The main theoretical result is Theo-
rem 5.7 which reduces the computation of angular values to the case of a block-diagonal
matrix. Theorem 5.7 builds on a spectral decomposition (Blocking Lemma 5.5), on a
special treatment of multiple real eigenvalues (Proposition 5.4), and on a detailed analysis
of the two-dimensional case (Proposition 5.2). In the two-dimensional case we show that
all types of first angular values coincide and provide a rather explicit formula (Proposition
5.2, Theorem 6.1). While real eigenvalues of the matrix lead to a vanishing angular value,
complex conjugate ones lead to interesting resonances depending on a skewness parameter;
see Figures 6.1, 6.2. In the latter case we use ergodic theory to derive an integral expres-
sion for the first angular value when rotation occurs with irrational multiples of π, and we
reduce the computation to maximizing a finite sum in the rational case. In Section 6 we
present a numerical algorithm for the autonomous case based on eigenvalue computations
and one-dimensional optimization which avoids failure caused by simple forward iteration.
We apply the algorithm to study various systems up to dimension 104, and we confirm
numerically the rather subtle behavior in the two-dimensional complex conjugate case.

2. Angles of subspaces. In this section we collect some useful results about principal
angles between subspaces. In the following, let ‖v‖ =

√
v>v denote the Euclidean norm

for v ∈ Rd and let R(A), N (A) and σ(A) denote the range, the kernel and the spectrum of
a matrix A. Recall the definition of principal angles and principal vectors of two subspaces
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V,W of Rd of equal dimension from [17, Ch.6.4.3].

Definition 2.1. Let V,W be subspaces of Rd of dimension s. Then the principal angles
0 ≤ φ1 ≤ . . . ≤ φs ≤ π

2 and associated principal vectors vj ∈ V , wj ∈ W are defined
recursively for j = 1, . . . , s by

(2.1) cos(φj) = max
v∈V,‖v‖=1

v>v`=0,`=1,...,j−1

max
w∈W,‖w‖=1

w>w`=0,`=1,...,j−1

v>w = v>j wj .

The right-hand side of (2.1) lies in [0, 1], so that φj ∈ [0, π2 ] is uniquely defined by (2.1).
While principal angles are unique, principal vectors are not, in general. Let us note that
principal angles and principal vectors are also defined for subspaces of different dimension
(see [17, Ch.6.4.3]), but this feature will not be used due to our assumption of invertibility.
We further write φj = φj(V,W ) to indicate the dependence on the subspaces, and for the
largest angle we introduce the notation

φs(V,W ) = ](V,W ).

If the subspaces V and W are one-dimensional we may write

](v, w) = ](span(v), span(w)), v, w ∈ Rd, v, w 6= 0.

Let us also note that the usage of the angle between subspaces varies in the literature. For
example, in [1, (3.3.13)], [2, p.216] this notion is used for sin(φ1) where φ1 is the smallest
angle. Then (2.1) turns into a min-min characterization, and the angle becomes zero if
both subspaces share a common direction.

Principal values and vectors can be computed from a singular value decomposition
(SVD) as follows.

Proposition 2.2. ([17, Algorithm 6.4.3]) Let P,Q ∈ Rd,s be two matrices with or-
thonormal columns and consider the SVD

(2.2) P>Q = Y ΣZ>, Y, Z,Σ = diag(σ1, . . . , σs) ∈ Rs,s, Y >Y = Is = Z>Z.

Then the principal angles φj of V = R(P ) and W = R(Q) satisfy

σj = cos(φj), j = 1, . . . , s,

and principal vectors are given by

(2.3) PY =
(
v1 · · · vs

)
, QZ =

(
w1 · · · ws

)
.

Since the singular values of P>Q and Q>P agree, principal angles are symmetric with
respect to V and W . In particular, the maximum angle satisfies

](V,W ) = ](W,V ).

In Definition 2.1 the angles between two subspaces of equal dimension are defined recur-
sively. For the computation of the j-th principal angle, the max-max characterization
(2.1) requires knowledge of the principal vectors from index 1 to j − 1. In the following

5



proposition we state a complementary min-max characterization. It begins with φs and
computes φj via the known principal vectors for indices s to j+1. The result is motivated
by the Hausdorff semi-distance between unit balls and proves to be better suited for the
key estimates below. The proof will be given in the Supplementary materials I.

Proposition 2.3. Let V,W ⊆ Rd be two s-dimensional subspaces. Then the principal
angles and principal vectors satisfy for j = s, . . . , 1

(2.4) cos(φj) = min
v∈V,‖v‖=1

v>v`=0,`=j+1,...,s

max
w∈W,‖w‖=1

w>w`=0,`=j+1,...,s

v>w = v>j wj .

In particular, the following relation holds

(2.5) ](V,W ) = φs(V,W ) = max
v∈V
v 6=0

min
w∈W
w 6=0

](v, w) = arccos
(

min
v∈V
‖v‖=1

max
w∈W
‖w‖=1

v>w
)
.

Remark 2.4. A related variational characterization appears in [31, Theorem 3]

cos(φj) = min
U⊆V

dimU=j−1

max
x∈U⊥∩V,‖x‖=1
y∈W,‖y‖=1

|〈x, y〉|.

If j = s then dimU = s− 1 and x ∈ U⊥ ∩ V runs through V with ‖x‖ = 1. Therefore, the
formula implies (2.4) in the case j = s, but for j < s the formulas differ.

Next we recall some well-known properties of the Grassmannian,

G(s, d) = {V ⊆ Rd is a subspace of dimension s},

which may be found in [17, Ch.6.4.3], [21], for example.

Proposition 2.5. The Grassmannian G(s, d) is a compact smooth manifold of dimension
s(d− s) and a metric space with respect to

d(V,W ) = ‖PV − PW ‖,

where PV , PW are the orthogonal projections onto V and W , respectively, and the formula

d(V,W ) = sin(](V,W )), V,W ∈ G(s, d)

holds. Furthermore, ](V,W ) defines an equivalent metric on G(s, d) satisfying

2

π
](V,W ) ≤ d(V,W ) ≤ ](V,W ).

Some useful geometric estimates for angles of vectors and subspaces are the following:

Lemma 2.6. (Angle estimates)
(i) For any two vectors v, w ∈ Rd with ‖v‖ < ‖w‖ the following holds

(2.6)

tan2](v + w,w) ≤ ‖v‖2

‖w‖2 − ‖v‖2
,

cos2](v + w,w) ≥ ‖w‖
2 − ‖v‖2

‖w‖2
.
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(ii) Let V ∈ G(s, d) and P ∈ Rd,d be such that for some 0 ≤ q < 1

(2.7) ‖(I − P )v‖ ≤ q‖Pv‖ ∀ v ∈ V.

Then dim(V ) = dim(PV ) and the following estimate holds

(2.8) ](V, PV ) ≤ q

(1− q2)1/2
.

Proof. The first inequality in (2.6) follows from the second via the relation tan2 α =
1

cos2 α
− 1. The second inequality in (2.6) can be rewritten as(

(v + w)>w
)2 − ‖v + w‖2(‖w‖2 − ‖v‖2) ≥ 0.

A short computation shows that the left-hand side agrees with
(
v>w + ‖v‖2

)2
which

proves our assertion. The estimate (2.7) shows that Pv = 0, v ∈ V implies v = 0, hence
dim(V ) = dim(PV ). Inequality (2.8) follows from (2.6) and the characterization (2.5)

](V, PV ) = max
v∈V
v 6=0

min
w∈PV
w 6=0

](v, w) ≤ max
v∈V
v 6=0

](v, Pv) ≤ max
v∈V
v 6=0

| tan](v, Pv)|

≤ max
v∈V,v 6=0

‖(I − P )v‖
‖Pv‖

(
1− ‖(I − P )v‖2

‖Pv‖2
)−1/2

≤ q

(1− q2)1/2
.

Remark 2.7. The proof shows that the inequalities in (2.6) are strict for v 6= 0.

Lemma 2.6 will be important for proving the Blocking Lemma 5.5 in the autonomous case.
The next auxiliary result provides an angle-bound for an invertible matrix; it will be used
in Proposition 5.4 for treating real eigenvalues in the autonomous case.

Lemma 2.8. Let S ∈ GL(Rd) and κ = ‖S−1‖‖S‖ be its condition number. Then the
following estimate holds

(2.9) ](SV, SW ) ≤ πκ(1 + κ)](V,W ) ∀ V,W ∈ G(s, d), 1 ≤ s ≤ d.

Proof. Let us first prove (2.9) for s = 1. Then we can assume V = span(v), W =
span(w) with ‖v‖ = ‖w‖ = 1 and v>w ≥ 0. From Proposition 2.5 we have

(2.10)

1

π
](v, w) ≤ 1

2
d(V,W ) =

1

2
‖vv> − ww>‖ =

1

2
‖(v − w)v> + w(v − w)>‖

≤ ‖v − w‖ = (2(1− cos(](v, w))))1/2 = 2 sin(1
2](v, w)) ≤ ](v, w).

We apply the first inequality in (2.10) to the image spaces and obtain

](Sv, Sw) = ](‖Sv‖−1Sv, ‖Sw‖−1Sw) ≤ π‖S
(
‖Sv‖−1v − ‖Sw‖−1w

)
‖

≤ π‖S‖
(
|‖Sv‖−1 − ‖Sw‖−1|+ ‖Sw‖−1‖v − w‖

)
≤ π‖S‖‖Sw‖−1

(
‖Sv‖−1‖S(w − v)‖+ ‖v − w‖

)
.

Now ‖Sw‖−1, ‖Sv‖−1 ≤ ‖S−1‖ and the last inequality from (2.10) lead to

](Sv, Sw) ≤ πκ(1 + κ)‖v − w‖ ≤ πκ(1 + κ)](v, w).

For the general case s ≥ 1 we use (2.9) for all vectors v ∈ V, v 6= 0, w ∈ W,w 6= 0 and
then apply the max-min characterization (2.5) from Proposition 2.3.
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3. Basic theory of angular values. For an invertible nonautonomous linear system
(1.1) we define the solution operator ΦA by

ΦA(n,m) =


An−1 · . . . ·Am, for n > m,

I, for n = m,

A−1
n · . . . ·A−1

m−1, for n < m.

Usually we suppress the dependence on the matrix sequence An, n ∈ N0 and simply write
Φ = ΦA. However, in Section 4 we consider matrix families generated by a linear random
dynamical system for which the dependence on the family is essential.

3.1. Definitions and elementary properties. In the following we consider various
ways of defining the average angular rotation that the system (1.1) exerts on subspaces of
a fixed dimension. For this we use the notion of angles of subspaces from Section 2.

We reconsider a rigid rotation (1.5) as a simple motivating example, but now we allow
0 ≤ ϕ ≤ π. For v ∈ R2, v 6= 0 and j ∈ N one obtains with Proposition 2.2 that

](v, Tϕv) = ](T j−1
ϕ v, T jϕv) = arccos(| cos(ϕ)|) = min(ϕ, π − ϕ).

Hence we obtain for n ∈ N the arithmetic mean

sup
v∈R2

1

n

n∑
j=1

](T j−1
ϕ v, T jϕv) = sup

V ∈G(1,2)

1

n

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V ) = min(ϕ, π − ϕ)

and the same value for both types of limits supV ∈G(1,2) limn→∞ and limn→∞ supV ∈G(1,2).
For general systems however, it turns out that the limit does not necessarily commute

with the supremum, and sometimes the limit does not even exist. Therefore, we introduce
several different types of angular values.

Definition 3.1. Let the invertible nonautonomous system (1.1) be given. For every
s ∈ {1, . . . , d} define the quantities

(3.1) ak+1,k+n(V ) =

k+n∑
j=k+1

](Φ(j − 1, 0)V,Φ(j, 0)V ) n ∈ N, k ∈ N0, V ∈ G(s, d).

i) The upper resp. lower s-th inner angular value is defined by

(3.2) θ̄s = lim sup
n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ),

¯
θs = lim inf

n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ).

ii) The upper resp. lower s-th outer angular value is defined by

(3.3) θ̂s = sup
V ∈G(s,d)

lim sup
n→∞

1

n
a1,n(V ),

ˆ
θs = sup

V ∈G(s,d)
lim inf
n→∞

1

n
a1,n(V ).

iii) The upper resp. lower s-th uniform inner angular value is defined by

(3.4)

θ̄[s] = lim sup
n→∞

1

n
sup

V ∈G(s,d)
sup
k∈N0

ak+1,k+n(V ),

¯
θ[s] = lim inf

n→∞

1

n
sup

V ∈G(s,d)
inf
k∈N0

ak+1,k+n(V ).
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iv) The upper resp. lower s-th uniform outer angular value is defined by

(3.5)

θ̂[s] = sup
V ∈G(s,d)

lim
n→∞

1

n
sup
k∈N0

ak+1,k+n(V ),

ˆ
θ[s] = sup

V ∈G(s,d)
lim
n→∞

1

n
inf
k∈N0

ak+1,k+n(V ).

Remark 3.2. In the case s = d, all angular values are zero since the invertible system
keeps the space V = Rd fixed and since ](Rd,Rd) = 0.

Our guiding principle in forming these quantities is to seek the subspace V which max-
imizes an angular value. The notions of ’upper’ and ’lower’ are motivated by the possible
gap between lim sup and lim inf while ’outer’ and ’inner’ result from the noncommuting
lim and sup. The corresponding uniform angular values (and their ’lower’ and ’upper’
variants) become relevant when passing from autonomous to nonautonomous systems; see
Sections 3.2 and 5.

As shorthand, we use an up/down bar for upper/lower inner angular values and an
up/down hat for upper/lower outer angular values, while their uniform equivalents are
indicated by the bracketed index [s].

Clearly, the lim sup and lim inf in (3.2), (3.3), (3.4) are finite due to the boundedness of
the angles. In Section 4 we prove that the lim sup and lim inf in (3.2) actually become limits
in the setting of random dynamical systems. Let us further mention that the supremum for
both quantities in (3.2) can be replaced by a maximum since a1,n(V ) depends continuously
on V in the compact space G(s, d).

In the following lemma we show that the limits in (3.5) always exist and that the
lim sup in the definition (3.4) of θ̄[s] is in fact a limit. Further, we collect some easy
relations between the various angular values.

Lemma 3.3. The limits in the definition (3.5) of the uniform outer angular values
exist in [0, π2 ] and the lim sup in the definition of θ̄[s] is a limit. Moreover, the relations of
Diagram 3.1 hold for all s = 1, . . . , d.

ˆ
θ[s] ≤

ˆ
θs ≤ θ̂s ≤ θ̂[s]≤ ≤ ≤ ≤

¯
θ[s] ≤ ¯

θs ≤ θ̄s ≤ θ̄[s]

Diagram 3.1: Comparison of angular values.

For the smallest and the largest value in this diagram we have the estimate

sup
V ∈G(s,d)

inf
k∈N0

](Φ(k, 0)V,AkΦ(k, 0)V ) ≤
ˆ
θ[s] ≤ θ̄[s] ≤ sup

V ∈G(s,d)
sup
k∈N0

](V,AkV ).(3.6)

Proof. For every V ∈ G(s, d), the sequence an(V ) = supk∈N0
ak+1,k+n(V ) lies in [0, nπ2 ]

and is subadditive

an+m(V ) = sup
k∈N0

(ak+1,k+n(V ) + ak+n+1,k+n+m(V ))

≤ sup
k∈N0

ak+1,k+n(V ) + sup
κ≥n

aκ+1,κ+m(V ) ≤ an(V ) + am(V ).

9



By Fekete’s subadditive lemma [14, Lemma 4.2.7] this ensures

lim
n→∞

1

n
an(V ) = inf

n∈N

1

n
an(V ) ∈ [0,

π

2
].

In a similar way, the sequence an = supV ∈G(s,d) an(V ) turns out to be subadditive, which
shows that lim sup = lim for the first quantity in (3.4). Further, the sequence αn(V ) =
infk∈N0 ak+1,k+n(V ) turns out to be superadditive, i.e. αn+m(V ) ≥ αn(V ) + αm(V ) for
n,m ∈ N, and thus

lim
n→∞

1

n
αn(V ) = sup

n∈N

1

n
αn(V ) ∈ [0,

π

2
].

Next we prove the inequalities
ˆ
θs ≤ θ̂s ≤ θ̄s ≤ θ̄[s],

ˆ
θs = sup

V ∈G(s,d)
lim inf
n→∞

1

n
a1,n(V ) ≤ sup

V ∈G(s,d)
lim sup
n→∞

1

n
a1,n(V ) = θ̂s

≤ lim sup
n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ) = θ̄s ≤ lim sup

n→∞

1

n
sup

V ∈G(s,d)
sup
k∈N0

ak+1,k+n(V ) = θ̄[s].

The remaining assertions in Diagram 3.1 follow in a similar way. Finally, note that Fekete’s
lemma leads to the representations

sup
V ∈G(s,d)

sup
n∈N

1

n
inf
k∈N0

ak+1,k+n(V ) =
ˆ
θ[s] ≤ θ̄[s] = inf

n∈N

1

n
sup

V ∈G(s,d)
sup
k∈N0

ak+1,k+n(V ).

The inequalities (3.6) then follow by setting n = 1 in supn and infn.

We extend the motivating example (1.5) and analyze in detail the outer angular values
of the 3-dimensional system defined by

(3.7) An = A =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 2

 , n ∈ N0, 0 < ϕ ≤ π

2
.

Denote by ej the j-th unit vector in R3. For v ∈ span(e1, e2), we get, cf. (1.5), that
](Ai−1v,Aiv) = ϕ for all i ∈ N. For v ∈ span(e3) one has ](Ai−1v,Aiv) = 0, i ∈ N.
Next, we take a vector with components in both relevant subspaces. This vector is pushed
under iteration with A towards the most unstable direction e3. Thus, we expect that the
angle between two subsequent iterates converges to 0. The following estimate proves that
this convergence is indeed geometric. Consider v = ( z1 ) with 0 6= z ∈ R2. From the
triangle inequality and the estimate (2.6) in Lemma 2.6 we find a constant C > 0 such
that for all i ∈ N

](Ai−1v,Aiv) = ]

((
T i−1
ϕ z

2i−1

)
,

(
T iϕz

2i

))
= ]

((
21−iT i−1

ϕ z

1

)
,

(
2−iT iϕz

1

))
≤ ]

((
21−iT i−1

ϕ z

1

)
,

(
0
1

))
+ ]

((
0
1

)
,

(
2−iT iϕz

1

))
≤ tan]

((
21−iT i−1

ϕ z

1

)
,

(
0
1

))
+ tan]

((
2−iT iϕz

1

)
,

(
0
1

))
≤ C · 2−i.
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Thus
1

n

n∑
i=1

](Ai−1v,Aiv) ≤ 1

n

∞∑
i=1

C · 2−i =
2C

n
→ 0 as n→∞.

As a consequence, all first outer angular values from Definition 3.1 coincide and have the
value ϕ, see Figure 3.1 and Theorem 5.7 for the inner angular values.

For analyzing the second outer angular values, we first note that for all V ∈ G(2, 3)
there exists a u ∈ span(e1, e2) such that V = span(u, v) with v ∈ R3. Without loss of
generality, we assume that u = e1. We observe for v ∈ span(e1, e2) that a1,n(V ) = 0 and for

v ∈ span(e3), we obtain a1,n(V ) = ϕ. Next, we consider the mixed case v =
(
z1 z2 1

)>
,

with 0 6= z ∈ R2. Let W = span(e1, e3) then we get for i ∈ N

](Ai−1V,AiV ) ≤ ](Ai−1V,Ai−1W ) + ](Ai−1W,AiW ) + ](AiW,AiV ).

The second term is equal to ϕ for all i ∈ N. We conclude that all second outer angular
values coincide with ϕ by showing that the first and third term converge to zero with a
geometric rate. Note that for i ∈ N0 we have

AiV = span(Aie1, A
ie3 +Ai

(
z1 z2 0

)>
)

= span(Aie1, e3 + 2−iAi
(
z1 z2 0

)>
),

AiW = span(Aie1, e3).

With Pi = I + Qi, Qi = 2−iAi

0 0 z1

0 0 z2

0 0 0

 it follows that AiV = PiA
iW . Furthermore,

we find an i-independent constant C > 0 such that ‖(I − Pi)v‖ = ‖Qiv‖ ≤ 2−iC‖Piv‖ for
all v ∈ R3. Thus, Lemma 2.6, (ii) applies for sufficiently large i ∈ N and provides the
estimate

](AiV,AiW ) ≤ 2−i
C

(1− 2−iC)
1
2

which completes the proof.

Figure 3.1: First and second angular values for the motivating three-dimensional system
(3.7).

In general, equality does not hold in Diagram 3.1. This phenomenon is illustrated in
Section 3.2 by Examples 3.10 and 3.11. However, angular values do agree when the angles
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of iterates or their averages occurring in Definition 3.1 have some uniformity properties.
For this purpose let us introduce for n ∈ N the functions

(3.8) bn : G(s, d)→ R, bn(V ) = ](Φ(n− 1, 0)V,Φ(n, 0)V ),

and recall a1,n(V ) =
∑n

j=1 bj(V ) from Definition 3.1. Let us also recall the notion of
uniform almost periodicity for a sequence of functions.

Definition 3.4. Given a set V and a Banach space (W, ‖ · ‖). A sequence of mappings
bn : V → W, n ∈ N is called uniformly almost periodic if

∀ε > 0 ∃P ∈ N : ∀V ∈ V ∀` ∈ N ∃p ∈ {`, . . . , `+ P} :

∀n ∈ N : ‖bn(V )− bn+p(V )‖ ≤ ε.

Remark 3.5. Our definition is slightly weaker than the standard notion ([28, Ch.4.1])
which requires for each ε > 0 the existence of a relatively dense set P ⊂ N such that

∀n ∈ N ∀p ∈ P ∀V ∈ V : ‖bn(V )− bn+p(V )‖ ≤ ε.

This is more restrictive, since the choice of p ∈ {`, . . . , `+ P} ∩ P is uniform in V .

The following Proposition 3.7 will be used repeatedly when determining angular values
for the two-dimensional case; see Proposition 5.2. First, we state a crucial observation,
which is proven in the Supplementary materials II.

Lemma 3.6. Let bn : V → W, n ∈ N be a sequence of uniformly almost periodic and
uniformly bounded functions. Then for all ε > 0 there exists N ∈ N such that for all
n ≥ m ≥ N , k ∈ N, V ∈ V∥∥∥ 1

n

n∑
j=1

bj(V )− 1

m

m∑
j=1

bj+k(V )
∥∥∥ ≤ ε.

Proposition 3.7. The following statements hold for all s ∈ {1, . . . , d}.
(a) If the functions 1

na1,n : G(s, d)→ R converge uniformly to the constant function ϕ ∈ [0, π2 ]

as n→∞, then all nonuniform angular values coincide, i.e. θ̄s = θ̂s =
¯
θs =

ˆ
θs = ϕ.

(b) If the functions bn, n ∈ N from (3.8) are uniformly almost periodic, then all angular values
coincide,

ˆ
θ[s] =

ˆ
θs = θ̂s = θ̂[s] =

¯
θ[s] =

¯
θs = θ̄s = θ̄[s].

Proof. The claim in (a) is clear since lim sup and lim inf in (3.3) are limits and the
supremum is continuous w.r.t. uniform convergence.

Lemma 3.3 shows that it suffices for (b) to prove θ̄[s] ≤
ˆ
θ[s]. By the definition (3.4) we

find for every ε > 0 a number N1 ∈ N and for all n ≥ N1 elements Vn ∈ G(s, d), kn ∈ N
such that ∣∣∣θ̄[s] −

1

n

n∑
j=1

bj+kn(Vn)
∣∣∣ ≤ ε

2
.

From Lemma 3.6 we obtain N = N(ε) ∈ N, N ≥ N1 such that for all n ≥ N , h ∈ N0∣∣∣ 1
n

n∑
j=1

bj(VN )− 1

N

N∑
j=1

bj+kN (VN )
∣∣∣+
∣∣∣ 1
n

n∑
j=1

bj(VN )− 1

n

n∑
j=1

bj+h(VN )
∣∣∣ ≤ ε

2
.
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Combining these results yields for all h ∈ N0, n ≥ N :

θ̄[s] ≤
1

n

n∑
j=1

bj+h(VN ) +
∣∣∣ 1
n

n∑
j=1

bj(VN )− 1

n

n∑
j=1

bj+h(VN )
∣∣∣

+
∣∣∣ 1

N

N∑
j=1

bj+kN (VN )− 1

n

n∑
j=1

bj(VN )
∣∣∣+
∣∣∣θ̄[s] −

1

N

N∑
j=1

bj+kN (VN )
∣∣∣

≤ ε

2
+
ε

2
+

1

n

n∑
j=1

bj+h(VN ).

Taking the infimum over h and the limit n → ∞ (see Lemma 3.3 for its existence)
shows that there exists V (ε) := VN(ε) ∈ G(s, d) satisfying

θ̄[s] − ε ≤ lim
n→∞

inf
h∈N0

1

n

n∑
j=1

bj+h(V (ε)).

Thus we deduce

θ̄[s] − ε ≤ sup
V ∈G(s,d)

lim
n→∞

inf
h∈N0

1

n

n∑
j=1

bj+h(V ) =
ˆ
θ[s] ≤ θ̄[s].

Next, we apply a kinematic similarity, induced by a transformation ũn = Qnun with
Qn ∈ GL(Rd) to (1.1), i.e. we consider

(3.9) ũn+1 = Ãnũn, Ãn = Qn+1AnQ
−1
n ,

and ask when angular values remain unchanged.

Proposition 3.8. (Invariance of angular values)
(i) Assume Qn = rnQ, n ∈ N with rn ∈ R, r 6= 0 and Q ∈ Rd,d orthogonal. Then the angular

values of (1.1) and (3.9) agree.
(ii) Assume constant transformation matrices Qn = Q,n ∈ N0 with Q invertible. If any of the

values θs ∈ {
ˆ
θ[s],

ˆ
θs, θ̂s, θ̂[s],¯

θ[s],¯
θs, θ̄s, θ̄[s]} in Definition 3.1 vanishes for the system (1.1)

then the same angular value vanishes for the transformed system (3.9).

Proof. First note that the solution operators ΦA, ΦÃ of (1.1), (3.9) are related by

(3.10) ΦÃ(n,m)Qm = QnΦA(n,m), n,m ∈ N0.

The result of (i) follows from (3.10) and the invariance of angles under scalings and or-
thogonal transformations (cf. Proposition 2.2)

](ΦÃ(j − 1, 0)QV,ΦÃ(j, 0)QV ) = ](
rj−1

r0
QΦA(j − 1, 0)V,

rj
r0
QΦA(j, 0)V )

= ](ΦA(j − 1, 0)V,ΦA(j, 0)V ).

For case (ii) the relation (3.10) reads ΦÃ(j, 0)Q = QΦA(j, 0) and the assertion follows
from the angle-boundedness (2.9) of the matrix S = Q.
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One can strengthen Proposition 3.8 as follows. For assertion (i) it is sufficient if Qn = rnPn
where Pn converges to some orthogonal matrix, and for assertion (ii) it is sufficient if Qn
converges to some invertible matrix. However, we do not expect substantially more general
transformations to leave all angular values invariant. For example, if a kinematic similarity
preserves the single terms ](un, Anun) = ](Qnun, Qn+1Anun), for all n ∈ N0 and if a
condition is desired which does not depend on the particular choice of An, one is led to
the property ](Qnu,Qn+1v) = ](u, v) for all u, v ∈ Rd, n ∈ N0. The latter condition
implies that all matrices Qn, n ∈ N0 are multiples of a common orthogonal matrix.

Finally, we discuss an invariance property of maximizers which occur with the outer
angular values. Starting with the difference equation (1.1), we define for η, n ∈ N0 the
matrices An(η) := An+η. Denote by Φ+

η the solution operator of the shifted difference
equation

(3.11) un+1 = An+ηun, n ∈ N0

and observe that for all n,m, η ∈ N0

Φ+
η (n,m) = Φ(n+ η,m+ η).

Let θ̂s(η) be the s-th upper outer angular value for (3.11). The corresponding maximizers
that occur with the outer values are given by

V̂s(η) =
{
V ∈ G(s, d) : θ̂s(η) = lim sup

n→∞

1

n

n∑
j=1

](Φ+
η (j − 1, 0)V,Φ+

η (j, 0)V )
}
.

Note that this set may be empty. We obtain the following invariance.

Proposition 3.9. Let An ∈ Rd,d, n ∈ N0 be invertible matrices. Then the following
relation holds for all η ∈ N,

(3.12) AηV̂s(η) = V̂s(η + 1).

Proof. Fix η ∈ N and let V ∈ G(s, d). Then we get

1

n

n∑
j=1

](Φ+
η+1(j − 1, 0)AηV,Φ

+
η+1(j, 0)AηV )

=
1

n

n∑
j=1

](Φ(j + η, η + 1)AηV,Φ(j + η + 1, η + 1)AηV )

=
1

n

n∑
j=1

](Φ(j + η, η)V,Φ(j + η + 1, η)V )

=
n+ 1

n

1

n+ 1

n+1∑
j=1

](Φ+
η (j − 1, 0)V,Φ+

η (j, 0)V )− ](V,Φ+
η (1, 0)V )

 .

Taking lim sup as n→∞ we have

lim sup
n→∞

1

n

n∑
j=1

](Φ+
η+1(j − 1, 0)AηV,Φ

+
η+1(j, 0)AηV )

= lim sup
n→∞

1

n

n∑
j=1

](Φ+
η (j − 1, 0)V,Φ+

η (j, 0)V ).
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In the case V̂s(η) = ∅ then V̂s(η + 1) = ∅ and (3.12) is trivial. Otherwise, the invertibility
of Aη yields

V ∈ V̂s(η)⇔ AηV ∈ V̂s(η + 1)

which proves (3.12).

A corresponding result also holds for lower outer angular values as well as for uniform
outer angular values.

3.2. Some nonautonomous key examples. Upper, lower, uniform respectively non-
uniform outer and inner angular values do not coincide in general. The following examples
illustrate this fact.

First, we construct an example which possesses different upper, lower and uniform
angular values. A related example in continuous time can be found in [12, Example 2.2].
There, the authors illustrate that the Lyapunov spectrum may be a proper subset of the
Sacker-Sell spectrum and that generally both spectra do not consist of isolated points only.

Example 3.10. Fix 0 ≤ ϕ0 < ϕ1 ≤ π
2 and let Tϕ :=

(
cosϕ − sinϕ
sinϕ cosϕ

)
. For n ∈ N0, we

define

An =

{
Tϕ0 , for n = 0 ∨ n ∈

⋃∞
`=1[22`−1, 22` − 1] ∩N,

Tϕ1 , otherwise.

Table 3.2 illustrates this construction.

n 0 1 2 3 4 5 6 7 8 . . . 15 16

An Tϕ0 Tϕ1 Tϕ0 Tϕ0 Tϕ1 Tϕ1 Tϕ1 Tϕ1 Tϕ0 . . . Tϕ0 Tϕ1

Table 3.2: Construction of (An)n∈N0 .

Inner and outer angular values coincide for the nonautonomous difference equation

un+1 = Anun, n ∈ N0,

since all one-dimensional subspaces rotate through the same angle.
Denote by p` the number of occurrences of Tϕ1 in (An)0≤n≤`. One observes for n ∈ N

that

p22n−1−1 =
1

3
(4n − 1) = p22n−1

and

lim
n→∞

1

22n−1 − 1
p22n−1−1 =

2

3
,

1

22n − 1
p22n−1 =

1

3
.

Thus, we obtain

¯
θ1 =

ˆ
θ1 =

2

3
ϕ0 +

1

3
ϕ1, θ̄1 = θ̂1 =

1

3
ϕ0 +

2

3
ϕ1.

For each n ∈ N, we find infinitely many indices ν ∈ N such that Aν+` = Tϕ0 (resp.
Aν+` = Tϕ1) for all ` = 0, . . . , n − 1. As a consequence, the Diagram 3.1 has the explicit
form in Diagram 3.3.

Although inner and outer angular values coincide for Example 3.10, this coincidence
is in general not true. We discuss the following example.
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ϕ0 =
ˆ
θ[1] < 2

3ϕ0 + 1
3ϕ1 =

ˆ
θ1 < 1

3ϕ0 + 2
3ϕ1 = θ̂1 < θ̂[1] = ϕ1

= = = =
ϕ0 =

¯
θ[1] < 2

3ϕ0 + 1
3ϕ1 =

¯
θ1 < 1

3ϕ0 + 2
3ϕ1 = θ̄1 < θ̄[1] = ϕ1

Diagram 3.3: Angular values of Example 3.10.

Example 3.11. Let

C :=

(
1 0
0 1

2

)
, R :=

(
−1 0
0 1

)
.

In the case of the reflection R, we observe for v =

(
cosφ
sinφ

)
, φ ∈ [0, π2 ] that

](v,Rv) =

{
2φ, for 0 ≤ φ ≤ π

4 ,

π − 2φ, for π
4 < φ ≤ π

2

and the maximal angle is achieved at v ∈ span {( 1
1 )}.

For n ∈ N0, we define

An :=

{
R, for n ∈

⋃∞
`=1[2 · 2` − 4, 3 · 2` − 5],

C, otherwise.

Table 3.4 illustrates this construction.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 19 20

An R R C C R R R R C C C C R . . . R C

Table 3.4: Construction of (An)n∈N0 .

We prove that inner and outer angular values of the nonautonomous difference equa-
tion

un+1 = Anun, n ∈ N0

do not coincide. First we show that θ̂1 = 0. Let

Vφ := span

(
cosφ
sinφ

)
, bj(φ) = ](Φ(j − 1, 0)Vφ,Φ(j, 0)Vφ).

For φ ∈ {0, π2 } we get bj(φ) = 0 for all j ∈ N. In the case φ ∈ (0, π2 ) we observe that
Φ(j, 0)Vφ → V0 as j →∞. Thus for each ε > 0 there exists an N ∈ N such that bj(φ) ≤ ε
for all j ≥ N . As a consequence we get for n sufficiently large

1

n

n∑
j=1

bj(φ) =
1

n

N−1∑
j=1

bj(φ) +

n∑
j=N

bj(φ)

 ≤ 1

n

(
(N − 1)

π

2
+ (n+ 1−N)ε

)
≤ 2ε
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and this shows

θ̂1 = sup
V ∈G(1,2)

lim sup
n→∞

1

n

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V ) = 0.

Similarly, all outer angular values are zero.
Next, we determine an estimate for the upper inner angular value. We claim that

θ̄1 ≥ π
6 .

For ` ∈ N let p` := 3·2`−5. Note that the matrix C appears 2`−2 times in (An)0≤n≤p`
and R appears 2` times in (An)p`−1<n≤p`.

Let V (`) := span{C−2`+2 ( 1
1 )}. We obtain

θ̄1 = lim sup
n→∞

sup
v∈G(1,2)

1

n

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V )

≥ lim sup
`→∞

1

p` + 1

p`+1∑
j=1

](Φ(j − 1, 0)V (`),Φ(j, 0)V (`))

≥ lim sup
`→∞

1

p` + 1
2`
π

2
= lim

`→∞

2`

3 · 2` − 4
· π

2
=
π

6
.

We obtain estimates for
¯
θ1 by analyzing the subsequence n = p` − 2` + 1 for ` ∈ N.

These indices detect the end of each block of Cs. In particular, we observe that π
12 ≤ ¯

θ1 <
π
6

and present results for all angular values in Diagram 3.5.

0 =
ˆ
θ[1] = 0 =

ˆ
θ1 = 0 = θ̂1 = θ̂[1] = 0

= < < <

0 =
¯
θ[1] < π

12 ≤ ¯
θ1 < π

6 ≤ θ̄1 < θ̄[1] = π
2

Diagram 3.5: Angular values of Example 3.11.

4. Angular values of random linear cocycles. Following [2, Ch.3.3.1] we consider
a probability space (Ω,F ,P) and let T : Ω 	 be a measurable, P-preserving, ergodic

transformation. Let A : Ω → GL(Rd) and set A
(n)
ω = A(Tn−1ω) · · ·A(Tω)A(ω). Note

that A
(n)
ω corresponds to a random solution operator Φ(n, 0, ω) in the setting of Section 3;

cf. [2, (3.3.2)]. In analogy to the right-hand side of (1.3), for n ≥ 1, define for s ∈ {1, . . . , d}
and V ∈ G(s, d)

an(ω, V ) =
n−1∑
j=0

](A(j)
ω V,A(j+1)

ω V ).

Define a skew product τ : Ω×G(s, d) 	 by τ(ω, V ) = (Tω,A(ω)V ) and f : Ω×G(s, d)→ R

by f(ω, V ) = ](V,A(ω)V ). One has the Birkhoff sum representation:

an(ω, V ) =

n−1∑
j=0

f(τ j(ω, V )).
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The following result provides general conditions for the angular value limits to be inde-
pendent of the initial condition ω and reference subspace V . We use the notation ϑs for
angular values in this setting, to distinguish them from the angular values θs in Section 3.

Theorem 4.1. Suppose τ preserves an ergodic probability measure µ on Ω × G(s, d),
where µ has marginal P on Ω; that is, µ(·,G(s, d)) = P.
Then there is a ϑs ∈ [0, π2 ] satisfying

ϑs = lim
n→∞

1

n
an(ω, V ) =

∫
Ω×G(s,d)

](V,A(ω)V ) dµ(ω, V ),

for µ-almost every (ω, V ) ∈ Ω× G(s, d).

Proof. This follows immediately from Birkhoff’s ergodic theorem and ergodicity of τ .

The existence of an ergodic invariant measure µ for τ is connected with a certain
irreducibility condition on the action on subspaces, leading to an independence of the
angular values with respect to V . We would like to treat general linear cocycles and so
in analogy to Section 3.1, we consider angular values of a random linear cocycle w.r.t.
ω ∈ Ω and ask for extreme values w.r.t. V ∈ G(s, d). To keep the analogy with Definition
3.1 we use an up/down bar for upper/lower inner angular values and an up/down hat
for upper/lower outer angular values, while their uniform equivalents are denoted by the
bracketed index [s].

Theorem 4.2. Let T : Ω 	 be a measurable, P-preserving, ergodic transformation and
let A : Ω→ GL(Rd). Then the following assertions hold.

1. There is a number ϑ̄s such that for P-a.e. ω,

(4.1) ϑ̄s = lim
n→∞

max
V ∈G(s,d)

an(ω, V )

n
= inf

n∈N

1

n

∫
Ω

max
V ∈G(s,d)

an(ω, V ) dP(ω).

In particular, one has

ϑ̄s ≤
∫

Ω
max

V ∈G(s,d)
](V,A(ω)V ) dP(ω).

2. There is a number ϑ̂s such that for P-a.e. ω,

ϑ̂s = sup
V ∈G(s,d)

lim sup
n→∞

an(ω, V )

n
.

Furthermore, if for P-a.e. ω the supremum over V is achieved by at most K <∞ subspaces
V1(ω), . . . , VK(ω), then one may create K equivariant collections {Vk(ω)}1≤k≤K,ω∈Ω, sat-
isfying Vk(Tω) = A(ω)Vk(ω), k = 1, . . . ,K.

3. There is a number
ˆ
ϑs such that for P-a.e. ω,

ˆ
ϑs = sup

V ∈G(s,d)
lim inf
n→∞

an(ω, V )

n
.

Furthermore, if for P-a.e. ω the supremum over V is achieved by at most K <∞ subspaces
V1(ω), . . . , VK(ω), then one may create K equivariant collections {Vk(ω)}1≤k≤K,ω∈Ω, sat-
isfying Vk(Tω) = A(ω)Vk(ω), k = 1, . . . ,K.
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4. There is a number ϑ̄[s] such that

ϑ̄[s] = lim
n→∞

sup
V ∈G(s,d)

ess sup
ω∈Ω

an(ω, V )

n
= inf

n→∞
ess sup
ω∈Ω

max
V ∈G(s,d)

an(ω, V )

n
.

In particular, one has

ϑ̄[s] ≤ ess sup
ω∈Ω

max
V ∈G(s,d)

](V,A(ω)V ).

5. There is a number
ˆ
ϑ[s] such that

ˆ
ϑ[s] = sup

V ∈G(s,d)
lim
n→∞

ess inf
ω∈Ω

an(ω, V )

n
= sup

V ∈G(s,d)
sup
n≥1

ess inf
ω∈Ω

an(ω, V )

n
.

In particular, one has
sup

V ∈G(s,d)
ess inf
ω∈Ω

](V,A(ω)V ) ≤
ˆ
ϑ[s].

6. There is a number ϑ̂[s] such that

ϑ̂[s] = sup
V ∈G(s,d)

lim
n→∞

ess sup
ω∈Ω

an(ω, V )

n
= sup

V ∈G(s,d)
inf
n≥1

ess sup
ω∈Ω

an(ω, V )

n
.

In particular, one has
ϑ̂[s] ≤ sup

V ∈G(s,d)
ess sup
ω∈Ω

](V,A(ω)V ).

Remark 4.3. In Part 1 of Theorem 4.2, if Ω is a metric space, ω 7→ A(ω) is continuous,
and T : Ω 	 is uniquely ergodic, then using the fact that ω 7→ maxV ](V,A(ω)V ) is
continuous, we obtain the following stronger conclusion. By Theorem 1.5 [33], the limit
in (4.1) converges in a semi-uniform way (the limit exists for all ω ∈ Ω and converges
uniformly in ω): given ε > 0, there exists n0 such that for all n ≥ n0,

ϑ̄s ≤ max
V ∈G(s,d)

an(ω, V )

n
≤ ϑ̄s + ε for all ω ∈ Ω.

A simple example of such a system is an irrational rotation on the unit circle Ω = S1 and
Tω = ω+ϕ, where ϕ /∈ Q. The Lebesgue measure on S1 is the unique invariant probability
measure. One may choose any continuous matrix-valued function A. More generally, one
may consider rationally independent translations on higher-dimensional tori.

Proof of Theorem 4.2.
1. We note that the invertibility of the matrices A(ω) implies A(ω)G(s, d) = G(s, d) for P

a.e. ω. As in the proof of Lemma 3.3 one can easily show that

max
V ∈G(s,d)

an+m(ω, V ) ≤ max
V ∈G(s,d)

an(ω, V ) + max
V ∈G(s,d)

am(Tnω, V )

for every n,m ≥ 0, and therefore gn(ω) := maxV ∈G(s,d) an(ω, V ) is a subadditive sequence
of functions. Recall that 0 ≤ an(ω, V ) ≤ π

2 for all ω, V , implying 0 ≤ gn ≤ π
2 . The results

are now immediate by the subadditive ergodic theorem applied to gn, using ergodicity of
P.
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2. By direct computation, one verifies that

an(Tω,A(ω)V ) = an(ω, V )− ](V,A(ω)V ) + ](A(n)
ω V,A(n+1)

ω V ).

Thus, because values of angles are bounded, one has

(4.2) lim sup
n→∞

1

n
an(Tω,A(ω)V ) = lim sup

n→∞

1

n
an(ω, V ) =: g(ω, V ),

where g is measurable in ω and V . By the invertibility of A(ω) for a.e. ω, we see that

h(ω) := sup
V ∈G(s,d)

g(ω, V ) = sup
V ∈G(s,d)

lim sup
n→∞

1

n
an(Tω,A(ω)V )

= sup
V ∈G(s,d)

lim sup
n→∞

1

n
an(Tω, V ) = h(Tω).

By ergodicity, the T -invariant function h is constant a.e. The expression (4.2) demonstrates
equivariance of a particular maximizing V (if it exists). By hypothesis for P-a.e. ω there
are at most K distinct subspaces Ṽ satisfying supV ∈G(s,d) g(ω, V ) = g(ω, Ṽ ). By ergodicity,
the invertibility of the A(ω), and the equivariance property, the number of solutions must
be independent of ω on a full P-measure set; let us call this number K. The equivariance
property allows us to “match” theK pointwise solutions to createK families of maximizing
subspaces V1(ω), . . . , VK(ω) obeying equivariance.

3. This proof is analogous to Part 2.
4. Since V 7→ 1

nan(ω, V ) is continuous for each n ∈ N and P-a.e. ω, and G(s, d) is compact,
we may replace the maxV ∈G(s,d) with supV ∈G(s,d) in all statements of Part 4. One may
now interchange the operations ess supω and supV ∈G(s,d). Similarly to the proof of Part 1,
one shows that supV ∈G(s,d) ess supω an(ω, V ) is a subadditive sequence. Then the results
follow immediately from Fekete’s subadditive lemma.

5. We note that for fixed V we obtain a superadditive sequence of numbers gn(V ) :=
ess infω an(ω, V ). By Fekete’s superadditive lemma one has limn→∞ gn(V ) exists and
equals supn∈N gn(V ). This proves all statements concerning

ˆ
ϑ[s].

6. The results for ϑ̂[s] follow similarly, replacing superadditivity with subadditivity.

In the following we compare the various angular values as in Diagram 3.1. First note
that we have a limit in equation (4.1). Therefore, it is unnecessary to distinguish between
upper and lower angular values ϑ̄s,

¯
ϑs as in Diagram 3.1 for the nonautonomous case. To

complete the following diagram, we introduce the lower uniform inner angular value

¯
ϑ[s] = lim inf

n→∞
sup

V ∈G(s,d)
ess inf
ω∈Ω

an(ω, V )

n
,

which does not appear in Theorem 4.2.

Lemma 4.4. Let the assumptions of Theorem 4.2 hold. Then the angular values defined
above are related by Diagram 4.1.

Proof. The proof of the inequalities in Diagram 4.1 is similar to the proof of Lemma
3.3.
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ˆ
ϑ[s] ≤

ˆ
ϑs ≤ ϑ̂s ≤ ϑ̂[s]≤ ≤ ≤ ≤

¯
ϑ[s] ≤ ϑ̄s = ϑ̄s ≤ ϑ̄[s]

Diagram 4.1: Comparison of angular values for random dynamical systems.

In the special case where Ω consists of a single point, we are in the autonomous setting
with a single matrix A. We may apply the results of Theorem 4.2 Parts 1–3 to obtain the
following corollary.

Corollary 4.5. Let an(V ) =
∑n−1

j=0 ](AjV,Aj+1V ) with A ∈ GL(Rd) and V ∈ G(s, d).
Then the following holds:

1. The limit

ϑ̄s := lim
n→∞

max
V ∈G(s,d)

an(V )

n
exists and equals inf

n∈N
max

V ∈G(s,d)

an(V )

n
.

In particular, one has
ϑ̄s ≤ max

V ∈G(s,d)
](V,AV ).

2. There is a number ϑ̂s such that

ϑ̂s = sup
V ∈G(s,d)

lim sup
n→∞

an(V )

n
.

Furthermore, if the supremum over V is achieved by a subspace V then the supremum is
also achieved by AjV for all j ∈ Z.

3. There is a number
ˆ
ϑs such that

ˆ
ϑs = sup

V ∈G(s,d)
lim inf
n→∞

an(V )

n
.

Furthermore, if the supremum over V is achieved by a subspace V then the supremum is
also achieved by AjV for all j ∈ Z.

Finally, to contrast the random setting with the nonautonomous setting, let us re-
examine the nonautonomous Examples 3.10 and 3.11. There we found

¯
θ1 < θ̄1 for the

nonautonomous inner angular values in Diagrams 3.3 and 3.5. However, such a distinction
is unnecessary in the random setting, see Diagram 4.1. Therefore, the 0, 1 sequences un-
derlying the choice of matrices in Tables 3.2 and 3.4 cannot occur for a set of full measure
with an ergodic measure-preserving map.

5. Angular values for the autonomous case. A linear dynamical system, generated
by a single matrix A ∈ GL(Rd), fits into both – the nonautonomous setting of Section 3
and the random setting of Section 4. Therefore, the various angular values θs from Section
3 and ϑs from Section 4 coincide. Even for this case the computation of angular values
turns out to be nontrivial. Since we will vary the matrix A, we write θs(A) to indicate the
dependence of the angular values on the matrix.

The following Corollary collects some equalities in Diagram 3.1 for autonomous sys-
tems.
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Corollary 5.1. For an invertible autonomous system the following equalities hold for the
values from Definition 3.1

(5.1)
¯
θs(A) = θ̄s(A) = θ̄[s](A) = lim

n→∞

1

n
sup

V ∈G(s,d)

n∑
j=1

](Aj−1V,AjV ).

Proof. The existence of the limit on the RHS of (5.1) is due to Part 1 of Corollary 4.5.
Its existence can also be derived directly from Fekete’s subadditive lemma. The fact that
θ̄s(A) is equal to the limit on the RHS of (5.1) is by definition in Part 1 of Corollary 4.5.
The equality

¯
θs(A) = θ̄s(A) is trivial because we are discussing limits rather than limsup or

liminf. The equality θ̄s(A) = θ̄[s](A) follows from Part 4 of Theorem 4.2, since Ω consists
of a single point. It also follows from Definition 3.1 and the identity

ak+1,k+n(V ) =

k+n∑
j=k+1

](Aj−1V,AjV ) =

n∑
ν=1

](Aν−1AkV,AνAkV ) = a1,n(AkV ).

Next, we determine some explicit formulas for angular values in the autonomous case.
Proposition 3.8(i) shows that we can assume A to be in real Schur form (cf. [20, Theorem
2.3.4]), i.e. A is quasi-upper triangular

(5.2) A =


Λ1 A12 · · · A1k

0 Λ2 · · · A2k
...

. . .
. . .

...
0 · · · 0 Λk

 , Λi ∈ Rdi,di , Aij ∈ Rdi,dj ,

where either di = 1 and Λi = λi ∈ R is a real eigenvalue or di = 2 and

(5.3) Λi =

(
Re(λi) − 1

ρi
Im(λi)

ρiIm(λi) Re(λi)

)
, 0 < ρi ≤ 1,

for a complex eigenvalue λi ∈ C \R.

5.1. The two-dimensional case. Later on we use (5.2) to reduce the computation of
angular values to those of diagonal blocks. Therefore, we look at 2× 2-matrices first and
compute θ̄1(A) in terms of the spectrum σ(A). This is already a nontrivial task. Consider
A ∈ R2,2 with complex conjugate eigenvalues λ, λ̄, Im(λ) > 0 and set ϕ = arg(λ) where
λ = |λ|exp(iϕ), 0 < ϕ < π. By orthogonal similarity transformations and a scaling with
|λ|−1 one can put A into the normal form (see (5.3))

(5.4) A(ρ, ϕ) =

(
cos(ϕ) −ρ−1 sin(ϕ)
ρ sin(ϕ) cos(ϕ)

)
, 0 < ρ ≤ 1, 0 < ϕ < π.

According to Proposition 3.8(i) these are the transformations which leave all angular values
invariant. Further, the matrix A(ρ, ϕ) leaves the ellipse x2 + ρ−2y2 = 1 invariant, so that
ρ ≤ 1 can be achieved by a permutation.

Finally, we introduce the skewness of a matrix A ∈ GL(Rd) by

skew(A) =
1

2r(A)
‖A−A>‖, r(A) = max{|λ| : λ ∈ σ(A)}

and note that this quantity is also invariant under scalings and orthogonal similarity
transformations. For the matrix (5.4) we have skew(A(ρ, ϕ)) = 1

2(ρ+ ρ−1)| sin(ϕ)|.
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Proposition 5.2. For a matrix A ∈ GL(R2) all first angular values θ1(A) with θ1 ∈
{
ˆ
θ[1],

ˆ
θ1, θ̂1, θ̂[1],¯

θ[1],¯
θ1, θ̄1, θ̄[1]} coincide. Moreover, the following holds:

(a) If A has only real eigenvalues then

θ1(A) =

{
π
2 , if σ(A) = {−λ, λ} ⊂ R, λ > 0,

0, otherwise.

(b) If σ(A) = {λ, λ̄}, Im(λ) 6= 0 then

(5.5) θ1(A) ≤ min(|arg(λ)|, π − |arg(λ)|).

If additionally, skew(A) ≤ 1 then we have equality, i.e.

(5.6) θ1(A) = min(|arg(λ)|, π − |arg(λ)|).

Proof. By Proposition 3.8(i) we can assume A to be in Schur form and scale A such
that the largest eigenvalue has (absolute) value 1. Further we mention that θ̄1(A) = 0
causes all other angular values to vanish by Corollary 5.1 and Lemma 3.3.

For A = I the result is trivial and we are left with the cases

(5.7) A =


(

1 η

0 λ

)
,

0 < |λ| < 1, λ ∈ R, η ≥ 0, case (i)

λ = 1, η > 0, case (ii)

λ = −1, η ≥ 0, case (iii)

A(ρ, ϕ), 0 < ρ ≤ 1, 0 < ϕ < π, case (iv).

It suffices to consider spaces V = span(v0) where v0 =

(
cos(θ0)
sin(θ0)

)
and |θ0| ≤ π

2 . We write

the iterates in polar coordinates

vj = Ajv0, vj = rj

(
cos(θj)
sin(θj)

)
,(5.8)

where rj = ‖vj‖ and the angles θj ∈ R will be determined appropriately. If |θj−θj−1| ≤ π
one finds that the angle between successive spaces is

(5.9) ](span(vj−1), span(vj)) = χ(θj − θj−1), χ(x) := min(|x|, π − |x|).

In the following we study the matrices from (5.7) case by case.
(i) Since |λ| < 1 the Blocking Lemma 5.5 below applies and reduces the formula to the

one-dimensional case, i.e. θ̄1(A) = max(θ̄1(1), θ̄1(λ)) = 0 and similarly for
¯
θ1, θ̂1,

ˆ
θ1. Nev-

ertheless, for later use and for the purpose of illustration we discuss the simple subcase
η = 0 < λ explicitly. In this case we obtain |θj | ≤ π

2 for all j ∈ N and the following
formula

(5.10) θj = Ψλ(θj−1), Ψλ(θ) =

{
arctan(λ tan(θ)), |θ| < π

2 ,

θ, |θ| = π
2 ,

cf. Figure 5.1. For λ > 0 we have Ψ′λ(θ) > 0 for all |θ| ≤ π
2 , 0 < Ψλ(θ) < θ for θ ∈ (0, π2 ),

and 0 > Ψλ(θ) > θ for θ ∈ (−π
2 , 0). The values θj are monotone decreasing resp. increasing
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if θ0 > 0 resp. θ0 < 0, and therefore

a1,n =
n∑
j=1

](span(vj−1), span(vj)) = |
n∑
j=1

(θj−1 − θj)| = |θ0 − θn| ≤
π

2
.(5.11)

The assertion then follows from Proposition 3.7 (a) with ϕ = 0.

Figure 5.1: Graphs of Ψλ for λ = 0.2 and of Γη for η = 1.

(ii) For the matrix in (5.7) (ii) we obtain

(5.12) θj = Γη(θj−1), Γη(θ) =


arccot(η + cot(θ)), 0 < θ < π,

arccot−1(η + cot(θ)), −π < θ < 0,

θ, θ = −π, 0, π,

where arccot−1 is the first negative branch of arccot, see Figure 5.1. The function Γη
is strictly monotone increasing and satisfies Γη(θ) < θ for 0 < |θ| < π. Therefore, the
sequence θj is monotone decreasing and converges to 0 if 0 ≤ θ0 < π and to −π if θ0 < 0.
Thus the minimum in (5.9) is achieved at |θj − θj−1| and we obtain as in (5.11)

a1,n =
n∑
j=1

](span(vj−1), span(vj)) ≤ |
n∑
j=1

(θj−1 − θj)| = |θ0 − θn| ≤ π.

(iii) The third case describes a reflection which satisfies A2 = I. Moreover, we find

v>0 Av0 = cos(2θ0)− η sin(2θ0)

which vanishes for θ0 = π
4 if η = 0, and otherwise for

θ0 =
1

2
arctan(η−1) ∈

(
0,
π

4

)
.

Then we have ](v0, Av0) = π
2 = ](Ajv0, A

j−1v0) for all j ≥ 1. Since π
2 is the maximum

possible angular value our assertion is proved. A reflection turns out to have the same
angular value as a rotation by π

2 .
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(iv) In (5.7) we can assume ϕ ≤ π
2 since A(ρ, ϕ) is orthogonally similar to −A(ρ, π − ϕ). For

this rotational case we use ergodic theory and employ almost periodicity; see [28, Ch.4.1,
Remarks 1.3-1.7]. We extend the function Ψρ defined in (5.10) from [−π

2 ,
π
2 ] to R by

setting

Ψρ(θ + nπ) = Ψρ(θ) + nπ, |θ| ≤ π

2
, n ∈ Z \ {0}.(5.13)

For this extended function there exists a constant Cρ > 0 such that

(5.14) |Ψρ(x)− x|, |Ψ′ρ(x)|, |Ψ′′ρ(x)| ≤ Cρ for all x ∈ R.

The factorization(
cos(ϕ) −ρ−1 sin(ϕ)
ρ sin(ϕ) cos(ϕ)

)
=

(
1 0
0 ρ

)(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(
1 0
0 ρ−1

)
shows that the angles θj ∈ R in (5.8) are accumulated according to

θj = Fρ,ϕ(θj−1), j ∈ N, Fρ,ϕ(θ) := Ψρ(ϕ+ Ψρ−1(θ)).(5.15)

The new variables ϕj = ϕ+ Ψρ−1(θj) then satisfy the recursion

ϕj = ϕ+ Ψρ−1(Ψρ(ϕ+ Ψρ−1(θj−1))) = ϕ+ ϕj−1,

hence ϕj = ϕ0 + jϕ = (j + 1)ϕ+ Ψρ−1(θ0) and

(5.16) θj = Ψρ(jϕ+ Ψρ−1(θ0)).

In particular, the values θj are monotone increasing. From (5.16) and (5.14) we infer

(5.17)

1

n
a1,n =

1

n

n∑
j=1

χ(θj−1 − θj) ≤
1

n

n∑
j=1

(θj − θj−1) =
1

n
(θn − θ0)

= ϕ+
1

n

(
Ψρ(ϕn − ϕ)− (ϕn − ϕ) + Ψρ−1(θ0)− θ0

)
≤ ϕ+

Cρ + Cρ−1

n
.

This will lead to the estimate (5.5) as n→∞ provided we have shown the equality of all
angular values. For this purpose we apply Proposition 3.7(b) where we identify V ∈ G(1, 2)

with θ + 2πZ ∈ S2π = R/(2πZ) via V = span

(
cos(θ)
sin(θ)

)
. The function Ψρ is a lift of the

circle map ψρ : S2π → S2π defined by ψρ(θ + 2πZ) = Ψρ(θ) + 2πZ. Further, the iteration
(5.15) may be written by means of a circle map Tρ,ϕ : S2π → S2π as follows

θj + 2πZ = Tρ,ϕ(θj−1 + 2πZ), Tρ,ϕ = ψρ ◦ τϕ ◦ ψ−1
ρ ,(5.18)

where the shift τϕ : S2π → S2π is defined by τϕ(θ + 2πZ) = θ + ϕ + 2πZ. The map Fρ,ϕ
in (5.15) is then a lift of Tρ,ϕ. It is well known (see [5, Ch.2.6.2]) that τϕ is an ergodic
isometry of S2π with respect to Lebesgue measure µ1 and the standard metric

d1(θ1 + 2πZ, θ2 + 2πZ) = min
z∈Z
|θ1 − θ2 + 2πz|
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if and only if ϕ
π /∈ Q. In this case the conjugacy (5.18) implies that Tρ,ϕ is an ergodic

isometry of S2π with respect to the image measure µρ = µ1 ◦ ψ−1
ρ and the image metric

dρ(·, ·) = d1(ψ−1
ρ ·, ψ−1

ρ ·). We conclude from [28, Remark 1.3] that the map Tρ,ϕ is uniformly
almost periodic, i.e. for every ε > 0 there exists a relatively dense set P ⊆ N0 such that
dρ(x, T

p
ρ,ϕx) ≤ ε for all x ∈ S2π, p ∈ P. Moreover, for any continuous function g : S2π → R

the sequence of functions bn(x) = g(Tn−1
ρ,ϕ x), x ∈ S2π, n ∈ N is uniformly almost periodic

in the sense of Definition 3.4. To see this, let ε0 > 0 be given and take ε > 0 such that
|g(x1) − g(x2)| ≤ ε0 whenever dρ(x1, x2) ≤ ε, x1, x2 ∈ S2π. For the relatively dense set
P ⊂ N belonging to ε we then find

|bn(x)− bn+p(x)| = |g(Tn−1
ρ,ϕ x)− g(T pρ,ϕ(Tn−1

ρ,ϕ x))| ≤ ε0 ∀n ∈ N, p ∈ P, x ∈ S2π.

In the case ϕ
π ∈ Q we have the same result since then every point x ∈ S2π has the same

period q where ϕ
π = 2p

q .
Let us apply this to the continuous function

(5.19) g(x) = min(d1(x, Tρ,ϕx), d1(τπx, Tρ,ϕx)), x ∈ S2π.

Setting x = θ0 + 2πZ we obtain

T j−1
ρ,ϕ x = θj−1 + 2πZ, j ∈ N.

Using θj−1 < θj ≤ θj−1 + π and (5.9) for j ∈ N then leads to

(5.20)
bj(x) = g(T j−1

ρ,ϕ x) = min(θj − θj−1, θj−1 + π − θj)
= χ(θj − θj−1) = ](span(vj−1), span(vj)).

Therefore, all angular values agree by Proposition 3.7 (b).
Next we show that the assumption skew(A) = 1

2(ρ+ρ−1)| sin(ϕ)| ≤ 1 implies θj−θj−1 ≤ π
2 .

Then the minimum in (5.9) is always achieved with the first term and the first inequality
in (5.17) becomes an equality. Thus we find

| 1
n
a1,n − ϕ| ≤

Cρ + Cρ−1

n
,

and Proposition 3.7(a) implies the assertion. It remains to analyze the inequality

Fρ,ϕ(θ) = Ψρ(ϕ+ Ψρ−1(θ)) ≤ θ +
π

2
, θ ∈ R.(5.21)

For later purposes we perform a rather explicit calculation. First note that it is enough
to consider 0 < |θ| < π

2 since Fρ,ϕ(θ+nπ) = Fρ,ϕ(θ) +nπ holds by (5.13) and since (5.21)
is obvious for θ = 0,±π

2 . By the monotonicity of Ψρ−1 and the sum formula1 for arctan
we obtain that Fρ,ϕ(θ) ≤ θ + π

2 holds for 0 < |θ| < π
2 if and only if

ϕ ≤ Ψρ−1(θ +
π

2
)−Ψρ−1(θ) =

{
r(θ, ρ), 0 < θ < π

2 ,

π + r(θ, ρ), −π
2 < θ < 0,

r(θ, ρ) := arctan
(tan(θ) + 1

tan(θ)

ρ−1 − ρ

)
= arctan

( 2

(ρ−1 − ρ) sin(2θ)

)
.

1arctan(x) + arctan(y) = sgn(x)π − arctan( x+y
xy−1

) for x 6= 0, xy > 1.
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In the case θ < 0 this inequality always holds since ϕ ≤ π
2 , while for θ > 0 it is equivalent

to

(5.22) sin(2θ) ≤ 2

tan(ϕ)(ρ−1 − ρ)
=: β(ρ, ϕ).

Expressing tan(ϕ) in terms of sin(ϕ) = 2 skew(A)
ρ−1+ρ

leads to

(5.23) β(ρ, ϕ) =
(

1 +
4(1− skew(A)2)

(ρ−1 − ρ)2

)1/2
.

Hence condition (5.22) holds for all θ ∈ R if skew(A) ≤ 1.

Remark 5.3. Let us relate the result of Proposition 5.2 to the theory of rotation num-
bers; see [24, Ch.11]. First, note that this theory uses [0, 1) instead of [0, 2π) as the
interval of periodicity. Every matrix A ∈ GL(R2) induces a homeomorphism f : S1 → S1

of S1 = R/Z via the relation (one step of the iteration (5.8))

v = ‖v‖
(

cos(2πx)
sin(2πx)

)
7→ Av = ‖Av‖

(
cos(2πf(x))
sin(2πf(x))

)
, x ∈ S1.(5.24)

The homeomorphism is orientation-preserving if and only if det(A) > 0. For such a
homeomorphism the rotation number τ(f) ∈ [0, 1) is well defined. Iterating (5.24) and
comparing with (5.8) then shows the equality 2πτ(f) = θ̂1(A), provided no vector rotates
by more than π

2 . For the matrices in (5.7) these conditions hold in case (i) if λ > 0, in
case (ii), and in case (iv) if skew(A) ≤ 1 (see (5.15)). The corresponding f -maps are
2πf(x) = Ψλ(2πx) (see case (i), λ > 0, η = 0, equation (5.10)), 2πf(x) = Γη(2πx) (case
(ii), equation (5.12)), and 2πf(x) = Ψρ(ϕ + Ψρ−1(2πx)) (case (iv)). Determining the
exact first angular value θ1(A) in case skew(A) > 1 of (a) is more involved. In Theorem
6.1 we will show that the inequality (5.5) is generally strict except for some resonant values
of ϕ = arg(λ).

5.2. Systems of higher dimension. As a first step we consider a matrix with a single
eigenvalue which generalizes the second case in (5.7). Its proof is stated in the Supple-
mentary materials III.

Proposition 5.4. Assume that the spectrum of A ∈ Rd,d consists of one eigenvalue
λ ∈ R, λ 6= 0. Then all first angular values vanish, i.e.

θ1(A) = 0 for θ1 ∈ {
ˆ
θ[1],

ˆ
θ1, θ̂1, θ̂[1],¯

θ[1],¯
θ1, θ̄1, θ̄[1]}.

To proceed further, we require the following lemma.

Lemma 5.5. (Blocking Lemma) Let Rd = Xs ⊕Xu be a decomposition into invariant
subspaces of A ∈ Rd,d such that As = A|Xs and Au = A|Xu satisfy

(5.25) |σ(As)| < |σ(Au)|.

Then the following holds for all types of angular values θ1 ∈ {θ̄1,
¯
θ1, θ̂1,

ˆ
θ1}

(5.26) θ1(A) = max(θ1(As), θ1(Au)).
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We refer to the Supplementary materials IV for a proof of the Blocking Lemma.

Remark 5.6. By Corollary 5.1 it is clear that formula (5.26) also holds for the uniform
first angular value θ̄[1](A). We did not succeed in proving this for the remaining three
uniform first angular values. However, we will be able to treat these three values in the
subsequent main Theorem 5.7 under a special assumption.

The following Theorem combines the results of Propositions 5.2, 5.4 and Lemma 5.5.

Theorem 5.7. Let the spectrum of A ∈ GL(Rd) satisfy

(5.27) λ ∈ σ(A), λ /∈ R =⇒ λ is simple and |η| 6= |λ| ∀η ∈ σ(A) \ {λ, λ̄}.

Then all 8 types of angular values θ1(A) with θ1 ∈ {
ˆ
θ[1],

ˆ
θ1, θ̂1, θ̂[1],¯

θ[1],¯
θ1, θ̄1, θ̄[1]} coincide.

Let Rd =
⊕k

i=1R(Qi), Qi ∈ Rd,di, Q>i Qi = Idi be a decomposition of Rd into invariant
subspaces of A corresponding to eigenvalues of equal modulus, i.e.

(5.28) AQi = QiAi, Ai ∈ Rdi,di , |σ(A1)|, . . . , |σ(Ak)| pairwise different.

Then the following equality holds

(5.29) θ1(A) = max
i=1,...,k

θ1(Ai).

If there exist two real eigenvalues of opposite sign in σ(A) then θ1(A) = π
2 . Otherwise, the

following estimate holds

(5.30) θ1(A) ≤ max
λ∈σ(A)

min(|arg(λ)|, π − |arg(λ)|).

Equality holds if the maximum on the right-hand side of (5.30) is zero or if it is achieved
for an eigenvalue λi0 ∈ σ(Ai0), i0 ∈ {1, . . . , k} with Im(λi0) 6= 0 and skew(Ai0) ≤ 1; i.e.

(5.31) θ1(A) = min(|arg(λi0)|, π − |arg(λi0)|).

Remark 5.8. For the formulas (5.29) and (5.31) it is essential to choose orthonormal
bases for the invariant subspaces. Other bases will preserve the spectra of the matrices
Ai but neither the values skew(Ai) nor the angular values θ1(Ai), see Proposition 5.2 (b).
Except for the first block Λ1, the angular values of Λi in the Schur form (5.2) generally do
not agree with θ1(Ai), see Algorithm 6.2 and the example in Section 6.3.2.

Proof. Let us first prove (5.29) for all 4 nonuniform types of angular value. Note that a
decomposition Rd =

⊕k
i=1R(Qi) of the desired type always exists since we can decompose

σ(A) into subsets of equal modulus and then select an orthogonal basis for each of the
corresponding invariant subspaces. In this way we transform A into block-diagonal form
in a specific way (see (5.28)),

A
(
Q1 · · · Qk

)
=
(
Q1 · · · Qk

)
diag(A1, . . . , Ak).(5.32)

If one does not insist on orthonormal bases for the subspaces then one can keep the
diagonal blocks Λi from the Schur form; see [17, Thm 7.1.6]. From Q>i Qi = Idi we obtain
for every vi ∈ Rdi , vi 6= 0, i = 1, . . . , k, j ∈ N,

](Aj−1Qivi, A
jQivi) = ](QiA

j−1
i vi, QiA

j
ivi) = ](Aj−1

i vi, A
j
ivi),
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so that all first angular values of Ai and of the restriction A|R(Qi) coincide. Hence Lemma
5.5 shows (5.29). Note that (5.29) also holds for the θ̄[1]-values by Corollary 5.1.

Now assume that there exist two real eigenvalues λ,−λ ∈ σ(A) and w.l.o.g. assume
λ,−λ ∈ σ(A1). Then there exists an orthogonal S ∈ Rd1,d1 and some η ∈ R such that

A1S = SM, M =

(
M11 M12

0 M22

)
,M11 =

(
λ η
0 −λ

)
.

The first two columns of S form an orthonormal basis of the span of eigenvectors which
belong to λ and −λ. Choosing initial vectors v1 = (v0, 0, . . . , 0)> ∈ Rd1 , v0 ∈ R2 we find
for all j ∈ N

](Aj−1
1 Sv1, A

j
1Sv1) = ](SM j−1v1, SM

jv1) = ](M j−1v1,M
jv1) = ](M j−1

11 v0,M
j
11v0).

The proof of Proposition 5.2(a) (see case (iii) in (5.7)) shows that there exists v0 ∈ R2,
v0 6= 0 such that for all j ∈ N

π

2
= ](M j−1

11 v0,M
j
11v0) = ](Aj−1

1 Sv1, A
j
1Sv1) = ](Aj−1Q1Sv1, A

jQ1Sv1).

Since π
2 is the maximum of all angular values, Definition 3.1 implies that all 8 types of

angular values are equal to π
2 .

If such a pair of real eigenvalues does not exist then assumption (5.27) shows that the
matrices Ai either are two-dimensional as in Proposition 5.2 (see case (iv) in (5.7)) or have
a single real eigenvalue as in Proposition 5.4. In both cases the propositions guarantee
all first angular values of the matrices Ai to coincide. Thus the four nonuniform angular
values of the given matrix A are equal by (5.29). For θ̄[1](A) the result then follows from
Corollary 5.1. Moreover, Lemma 3.3 yields formula (5.29) and the coincidence of the
θ̂[1]-values:

θ̄1(B) = θ̂1(B) ≤ θ̂[1](B) ≤ θ̄[1](B) = θ̄1(B), B ∈ {A,Ai(i = 1, . . . , k)}.

Next we show
ˆ
θ[1](A) =

ˆ
θ1(A). From (5.29) we find an index ` ∈ {1, . . . , k} for which

ˆ
θ1(A) =

ˆ
θ1(A`) holds. Then we use Lemma 3.3 and the equality of angular values from

Propositions 5.2 and 5.4,

ˆ
θ1(A) =

ˆ
θ[1](A`) = sup

V`∈G(1,d`)
lim inf
n→∞

1

n
inf
k∈N0

k+n∑
j=k+1

](Q`A
j−1
` V`, Q`A

j
`V`)

= sup
V`∈G(1,d`)

lim inf
n→∞

1

n
inf
k∈N0

k+n∑
j=k+1

](Aj−1Q`V`, A
jQ`V`)

≤ sup
V ∈G(1,d)

lim inf
n→∞

1

n
inf
k∈N0

k+n∑
j=k+1

](Aj−1V,AjV ) =
ˆ
θ[1](A) ≤

ˆ
θ1(A).

Using Lemma 3.3 we obtain the result for the last angular value
¯
θ[1](A):

ˆ
θ1(B) =

ˆ
θ[1](B) ≤

¯
θ[1](B) ≤

¯
θ1(B) =

ˆ
θ1(B), B ∈ {A,Ai(i = 1, . . . , k)}.

Finally, the estimate (5.30) follows from (5.5) and Proposition 5.4. If the maximum
value on the right of (5.30) is zero then the assertion (5.31) is obvious. Otherwise, it
follows from (5.29) and (5.6) in Proposition 5.2 when applied to the 2× 2 matrix Ai0 .
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Note that condition (5.27) excludes a complex eigenvalue of multiplicity ≥ 2 and another
eigenvalue of the same modulus. Let us consider such an exceptional case, namely a block
diagonal matrix with two rotations

(5.33) A =

(
Tϕ1 0
0 Tϕ2

)
, 0 ≤ ϕ1, ϕ2 ≤

π

2
.

We claim that every type of angular value is given by

θ1(A) = max(ϕ1, ϕ2).

Let v =
(
v1 v2

)>
, v1, v2 ∈ R2 and |v1|2 + |v2|2 = 1. Since A is orthogonal we obtain

cos(](Av, v)) = |〈Av, v〉| = |〈Tϕ1v1, v1〉+ 〈Tϕ2v2, v2〉|
= cos(ϕ1)|v1|2 + cos(ϕ2)|v2|2 = |v1|2(cos(ϕ1)− cos(ϕ2)) + cos(ϕ2).

By the orthogonal invariance of the angle (see Proposition 3.8) this leads to

lim
n→∞

1

n

n∑
j=1

](Aj−1v,Ajv) = arccos
(
|v1|2(cos(ϕ1)− cos(ϕ2)) + cos(ϕ2)

)
.(5.34)

Suppose w.l.o.g. that ϕ2 ≥ ϕ1 so that cos(ϕ1) − cos(ϕ2) ≥ 0. Then the maximum w.r.t.
v in (5.34) occurs for |v1| = 0, hence θ1(A) = ϕ2. The same argument applies to a
block diagonal matrix with k blocks Tϕi , i = 1, . . . , k on the diagonal, leading to θ1(A) =
maxi=1,...,k ϕi. However, we did not find a formula for θ1(A) in cases which violate (5.27)
but which are more general than (5.33).

6. Numerical algorithms and results. In this section, our main goal is to discuss
algorithms for the computation of the first outer angular value θ̂1(A) of an autonomous
system generated by a matrix A ∈ Rd,d. First we investigate the two-dimensional case
where our focus is on matrices with skew(A) > 1. We extend the theory underlying
Proposition 5.2 and compare with numerical computations.

Then we use the results from Lemma 5.5 and Theorem 5.7 to develop an algorithm for
matrices of arbitrary dimension. Let us emphasize that the whole calculation aims at first
outer angular values. In the autonomous case we know the coincidence with inner angular
values by Theorem 5.7. However, for general nonautonomous systems the computation of
inner angular values turns out to be quite involved since one has to solve an optimization
problem in every time step.

Let us also note that simple algorithms based on subspace iterations tend to fail. The
forward iteration of a generic one-dimensional subspace converges to the most unstable di-
rection. However, we must consider also non-generic directions, i.e. all invariant subspaces,
in order to compute θ̂1(A).

6.1. Two dimensional autonomous examples. Consider the normal form (5.4) with
increasing skewness and recall from Proposition 5.2 that all angular values coincide,

A(ρ, ϕ) =

(
cos(ϕ) −ρ−1 sin(ϕ)
ρ sin(ϕ) cos(ϕ)

)
, 0 < ρ ≤ 1, 0 < ϕ ≤ π

2
.(6.1)
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In the following Table 6.1 we compare for three cases the value of ϕ from its normal form
with the numerical value θ̂1,num obtained by solving the optimization problem

(6.2) θ̂1,num = max
v∈R2,‖v‖=1

1

N

N∑
j=1

](Aj−1v,Ajv), N = 1000

with the MATLAB-routine fminbnd. Note that in this case computations using forward
iteration are not spoilt by a dominating direction since A has two eigenvalues of equal
modulus.

A skew(A) eigenvalues ϕ θ̂1,num ϕ− θ̂1,num(
2 1
−1 3

)
1√
7
< 1 5

2 ±
√

3
2 i arctan(

√
3

5 ) 0.33347 6 · 10−17(
1 1
−1 1

)
1√
2
< 1 1± i π

4 0.78540 1 · 10−16(
2 1
−49 3

)
5
√

5√
11
> 1 5

2 ±
√

195
2 i arctan(

√
39
5 ) 0.52709 0.6999

Table 6.1: First angular values for autonomous examples with increasing skewness.

The first and second example in Table 6.1 have skewness ≤ 1. Then the numerical an-
gular value θ̂1,num agrees with min(| arg(λ)|, π−| arg(λ)|) to machine accuracy, as predicted

by Proposition 5.2. However, the third example belongs to the values ϕ = arctan(
√

39
5 ),

ρ = 10
√

5−
√

461√
39

≈ 1
7 and skew(A) ≈ 3.37, so that Proposition 5.2 provides no explicit

expression for the first angular value. The solution of (6.2) yields a substantially smaller
value θ̂1,num < ϕ in this case. Indeed, the first angular value exhibits a rather subtle
dependence on the matrix entries for skew(A) > 1. Figure 6.1 (left panel) shows the result
of an extensive computation of the angular value for the matrix (6.1) with ρ = 1

7 and for
25210 equidistant points ϕ ∈ [0, π2 ]. The vertical red line on the left marks the critical
value ϕc = arcsin( 2

ρ+ρ−1 ) below which we have skew(A(ρ, ϕ)) ≤ 1 and Proposition 5.2
guarantees ϕ as the first angular value. The value ϕc seems to be sharp, and for values
ϕ > ϕc we observe resonances occurring at rational multiples of π.

The following theorem gives an explicit formula for irrational multiples of π and reduces
the computation of the angular value to a finite optimization problem for rational multiples
of π. For comparison we show in Figure 6.1(right panel) the diagram of angular values
when evaluated directly from the result of Theorem 6.1. Continuing this evaluation for
several values of ρ yields the three-dimensional diagram in Figure 6.2.

Theorem 6.1. For 0 < ρ ≤ 1 and 0 < ϕ ≤ π
2 the first angular value θ̂1(A(ρ, ϕ)) of the

matrix from (6.1) is given by
(6.3)

θ̂1(A(ρ, ϕ)) =



ϕ, skew(A(ρ, ϕ)) ≤ 1, case(i)

ϕ+
1

π

∫
{δ<0}

δ(θ)dθ, skew(A(ρ, ϕ)) > 1, ϕπ /∈ Q, case(ii)

ϕ, skew(A(ρ, ϕ)) > 1, ϕπ = 1
q , q ≥ 2, case(iii)

1

q
max

0≤θ≤π
2

q∑
j=1

gj(θ), skew(A(ρ, ϕ)) > 1, ϕπ = p
q , q /∈ pN, case(iv).
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Figure 6.1: Angular value θ̂1 for (6.1) with ρ = 1
7 . Left panel: For 25210 equidistant

points ϕ ∈ [0, π2 ] the minimal and maximal first angular value are computed by solving
an optimization problem; minima and maxima are connected with lines. Right panel:
Computation of first angular value via formula (6.3) in Theorem 6.1. Results for case 1
(orange), case 2 (green), case 3 (big points on the diagonal), case 4 (small points above
the green curve). In case 4, minima are also shown (small points below the green curve)
and connected with corresponding maxima.

Here the functions gj , δ : [0, π]→ R, j ∈ N are defined as follows:

δ(θ) = 2Ψρ(θ)− 2Ψρ(θ + ϕ) + π, with Ψρ from (5.10),

gj(θ) = min(θj − θj−1, θj−1 + π − θj), θj−1 = Ψρ((j − 1)ϕ+ Ψρ−1(θ)).

If π
2 < ϕ < π then θ̂1(A(ρ, ϕ)) = θ̂1(A(ρ, π − ϕ)).

Proof. The proof is done sequentially for cases (i), (ii), (iv), and (iii).
(i) This case follows from (5.6) in Proposition 5.2 since A(ρ, ϕ) has eigenvalues e±iϕ.

(ii) For nonresonant values ϕ
π /∈ Q we return to the proof of (5.7) case (iv) in Proposition 5.2.

Let us apply Birkhoff’s ergodic theorem to the ergodic isometry Tρ,ϕ of (S2π, dρ, µρ) (see
(5.18)) and to the continuous map g from (5.19),

θ̂1(A(ρ, ϕ)) = lim
n→∞

1

n

n∑
j=1

g(T j−1
ρ,ϕ ξ) =

1

2π

∫
S2π

g(y)dµρ(y) =
1

2π

∫
S2π

g(ψρ(x))dµ1(x).

(6.4)

The last equality is due to the transformation formula. Also note that the convergence
is uniform in ξ ∈ S2π, see [28, Ch.4.1, Remark 1.5]. We evaluate the integrand for
x = θ + 2πZ, θ ∈ [0, 2π),

g(ψρ(x)) = min(d1(ψρ(x), Tρ,ϕ ◦ ψρ(x)), d1(τπ ◦ ψρ(x), Tρ,ϕ ◦ ψρ(x)))

= min(d1(ψρ(x), ψρ ◦ τϕ(x)), d1(ψρ ◦ τπ(x), ψρ ◦ τϕ(x)))

= min(Ψρ(θ + ϕ)−Ψρ(θ),Ψρ(θ + π)−Ψρ(θ + ϕ)),
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Figure 6.2: Angular value θ̂1 for (6.1) with ϕ ∈ [0, π2 ] and ρ = 0.05, 0.1, . . . , 1. Computa-
tion via formula (6.3) in Theorem 6.1.

where the last equality follows from Ψρ(θ) ≤ Ψρ(θ + ϕ) < Ψρ(θ + π) = Ψρ(θ) + π.
Combining this with (6.4) and using (5.13) leads to

θ̂1(A(ρ, ϕ)) =
1

2π

∫ 2π

0
min(Ψρ(θ + ϕ)−Ψρ(θ),Ψρ(θ + π)−Ψρ(θ + ϕ))dθ

=
1

π

∫ π

0
min(Ψρ(θ + ϕ)−Ψρ(θ),Ψρ(θ + π)−Ψρ(θ + ϕ))dθ.

We investigate the minimum by looking at the sign of the difference

Ψρ(θ + π)−Ψρ(θ + ϕ)− (Ψρ(θ + ϕ)−Ψρ(θ)) = δ(θ).

For skew(A(ρ, ϕ)) > 1 the equivalence of (5.21) and (5.22) yields

(6.5) δ(θ)

{
≥ 0, θ ∈ [0, θ−] ∪ [θ+, π],

< 0, θ ∈ (θ−, θ+),

where the values θ± are given as follows

θ± = Ψρ−1(θ′±),

θ′− =
1

2
arcsin

(
2

tan(ϕ)(ρ−1 − ρ)

)
∈
(
0,
π

4

)
, θ′+ =

π

2
− θ′− ∈

(π
4
,
π

2

)
.
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Using (5.13) the following computation completes the proof of assertion (ii)

θ̂1(A(ρ, ϕ)) =
1

π

{(∫ θ−

0
+

∫ π

θ+

)
Ψρ(θ + ϕ)−Ψρ(θ)dθ +

∫ θ+

θ−

Ψρ(θ + π)−Ψρ(θ + ϕ)dθ
}

=
1

π

{∫ π

0
Ψρ(θ + ϕ)−Ψρ(θ)dθ +

∫ θ+

θ−

δ(θ)dθ
}

=
1

π

{∫ π+ϕ

ϕ
−
∫ π

0

}
Ψρ(θ)dθ +

1

π

∫ θ+

θ−

δ(θ)dθ

=
1

π

∫ ϕ

0
Ψρ(θ) + π −Ψρ(θ)dθ +

1

π

∫ θ+

θ−

δ(θ)dθ

= ϕ+
1

π

∫
{δ<0}

δ(θ)dθ.

Recall that the values θ± = θ±(ρ, ϕ), depend on ρ, ϕ and satisfy

(6.6) 0 < θ−(ρ, ϕ) < θ+(ρ, ϕ) < π
2 , if skew(A(ρ, ϕ)) > 1

by the strict monotonicity of Ψρ−1 . Therefore, (6.5) implies θ̂1(A(ρ, ϕ)) < ϕ.
(iv) Next we consider ϕ

π = p
q for some natural numbers 0 < p ≤ q. From the definition (5.18)

of Tρ,ϕ we obtain

T qρ,ϕ = ψρ ◦ τ qϕ ◦ ψ−1
ρ = ψρ ◦ τpπ ◦ ψ−1

ρ = τpπ,

where we used ψρ ◦ τpπ = τpπ ◦ ψρ due to (5.13). Moreover, translation invariance of the
metric d1 yields that the function g in (5.19) is π-periodic:

g(τπx) = min(d1(τπx, Tρ,ϕ(τπx)), d1(τ2πx, Tρ,ϕ(τπx)))

= min(d1(τπx, τπ(Tρ,ϕx)), d1(x, τπ(Tρ,ϕx)))

= min(d1(x, Tρ,ϕx), d1(τπx, τ2π(Tρ,ϕx)))

= min(d1(x, Tρ,ϕx), d1(τπx, Tρ,ϕx)) = g(x).

Therefore, decomposing n = kq + r with k ≥ 0, 1 ≤ r ≤ q leads to

1

n

n∑
j=1

g(T j−1
ρ,ϕ x) =

1

n

( k−1∑
ν=0

q∑
`=1

g(T νq+`−1
ρ,ϕ x) +

r∑
`=1

g(T kq+`−1
ρ,ϕ x)

)

=
1

n

( k−1∑
ν=0

q∑
`=1

g(τνpπ(T `−1
ρ,ϕ x)) +

r∑
`=1

g(τkpπ(T `−1
ρ,ϕ x))

)
=

k

kq + r

q∑
`=1

g(T `−1
ρ,ϕ x) +

1

n

r∑
`=1

g(T `−1
ρ,ϕ x)

n→∞
−−−−→ 1

q

q∑
`=1

g(T `−1
ρ,ϕ x).

Maximizing over x = θ0 + 2πZ and using (5.20) then proves case (iv) of formula (6.3).
(iii) It remains to show that the maximum in case p = 1 is given by ϕ = π

q . In this case we

have T qρ,ϕ = τπ and thus equation (5.20) yields for all θ0 ∈ [0, π2 ]

1

q

q∑
`=1

g(T `−1
ρ,ϕ x) =

1

q

q∑
`=1

χ(θj − θj−1) ≤ 1

q

q∑
j=1

(θj − θj−1) =
1

q
(θq − θ0) =

π

q
= ϕ.(6.7)
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We set θ0 = θ− and recall that θ− has been chosen such that θ1−θ0 = π
2 . Since θj−θj−1 ≥ 0

sum up to π there is no index j > 1 with θj − θj−1 >
π
2 , hence equality holds in (6.7).

Theorem 6.1 and Figures 6.1, 6.2 show that angular values can be quite sensitive to
parametric perturbations. For example, approximate a rational multiple ϕ0 = π

q , q ≥ 2 by
irrational multiples ϕ of π for some value ρ with skew(A(ρ, ϕ0)) > 1. Then the formula
(6.3) and the relations (6.5), (6.6) imply

(6.8) lim inf
ϕ→ϕ0

θ̂1(A(ρ, ϕ)) = ϕ0 +

∫ θ+(ρ,ϕ0)

θ−(ρ,ϕ0)
δ(θ)dθ < ϕ0 = θ̂1(A(ρ, ϕ0)).

Hence the angular value θ̂1 is not lower semi-continuous. However, angular values may
still be upper semi-continuous.

6.2. An algorithm for computing first angular values. Based on Theorem 6.1 and
on the results from Section 5, we propose the following numerical scheme for autonomous
systems; see Algorithm 6.2. In case A ∈ Rd,d is invertible and satisfies the assumption
(5.27) our numerical approach is justified by Theorem 5.7.

Algorithm 6.2 Computation of θ̂1(A)

(1) Compute a real Schur decomposition of A

A = QSQ>, S =

Λ1 ?
. . .

0 Λk

 , Q ∈ Rd,d orthogonal, cf. (5.2),

such that the diagonal blocks Λ1, . . . ,Λ` are two-dimensional and Λ`+1, . . .Λk are
reals (such a Schur decomposition always exists, see [20, Theorem 2.3.4]). Let
λi, λ̄i be the eigenvalues of Λi, i = 1, . . . ` and let Ai = λi = Λi for i = `+ 1, . . . , k.

(2) Compute θ̂1(A) as follows

if ∃i 6= j ∈ {`+ 1, . . . , k} : λi = −λj then
θ̂1(A) = π

2
else

for i = 1, . . . , ` do
if i = 1 then

A1 = Λ1

else
Compute a reordered Schur decomposition of A using ordschur,
such that the upper left 2× 2-block has the eigenvalue λi.
Denote this upper left 2× 2-block by Ai.

end if
Determine ϕi, ρi such that Ai = |λi|A(ρi, ϕi).
Compute θ̂1(Ai) = θ1(A(ρi, ϕi)) using Theorem 6.1.

end for
θ̂1(A) = max{0, θ̂1(Ai), i = 1, . . . , `}.

end if

As explained in Remark 5.8, the Schur decomposition of A is reordered several times to
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obtain the diagonal blocks Ai, i = 2, . . . , `. We apply the MATLAB command ordschur

for this task.2 The value θ1(A(ρi, ϕi)) is calculated for i = 1, . . . , ` with Theorem 6.1. Note
that the fourth case in (6.3) results in a one-dimensional optimization problem which we
solve with a derivative-free method implemented in the MATLAB-routine fminbnd.

6.3. Numerical experiments. Let us apply Algorithm 6.2 to autonomous models with
increasing complexity and dimension. The example in Section 6.3.2 particularly illustrates
the need for reordering the Schur decomposition in Algorithm 6.2.

6.3.1. Block-diagonal examples. We begin with autonomous examples which have a
block-diagonal structure. Due to the invariance of corresponding coordinate spaces, one
can read off first angular values without the need for reordering Schur decompositions.
Furthermore, the numerical calculation can be done with high accuracy and even exactly
when these expressions are evaluated symbolically. Therefore, approximation errors are
not discussed in Table 6.2.

A A1 θ̂1(A1) A2 θ̂1(A2) θ̂1(A)

( 2 0
0 3 ) 2 0 3 0 0(

2 0
0 −2

)
2 0 −2 0 π

2

( c s
s −c ) 1 0 −1 0 π

2(
c −s 0
s c 0
0 0 −2

)
( c −ss c ) ϕ −2 0 ϕ

Table 6.2: Angular values of block-diagonal examples. We abbreviate c = cos(ϕ), s =
sin(ϕ), 0 < ϕ < π

2 .

6.3.2. An illustrative four-dimensional example. Using the normal form (6.1) we
consider a 4× 4-matrix which has already Schur form

A =

(
A(1, 1

2) I2

0 ηA(1
2 , 1.4)

)
=

(
Λ1 I2

0 Λ2

)
with η = 1.2. For this matrix we have θ1(Λ1) = 1

2 and θ1(Λ2) = 1.128. The algorithm
sets A1 = Λ1 and reorders the Schur form so that the eigenvalues of Λ2 appear in the first
2× 2-block:

QTAQ =

(
ηA(0.7493, 1.4) ?

0 A(0.6142, 1
2)

)
, whereby A2 = ηA(0.7493, 1.4).

From Theorem 6.1 the algorithm then finds θ1(A2) = 1.355 and thus we have

max(θ1(Λ1), θ1(Λ2)) = 1.128 < 1.355 = max(θ1(A1), θ1(A2)) = θ1(A).

This example illustrates that first angular values can generally not be computed from the
diagonal blocks of a single Schur decomposition.

2We are not aware of a MATLAB procedure that computes the block decomposition (5.32) directly.
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dim(A) θ̂1(A) number of 2× 2 blocks initial Schur max reordering

102 1.5370 45 0.0045 sec 0.0001 sec

103 1.5643 488 0.43 sec 0.013 sec

104 1.5705 4958 105 sec 1.18 sec

Table 6.3: First angular values of three random matrices: number of 2×2 blocks, analyzed
by Algorithm 6.2; computing time for initial Schur decomposition; maximal time for one
reordering Schur step.

6.3.3. High dimensional examples. We illustrate the performance of our algorithm
for three matrices of dimension 102, 103 and 104. Their entries are uniformly distributed in
(0, 1) and generated by the MATLAB random number generator initialized with rng(1).
Table 6.3 documents our numerical results. We measure the time for the initial Schur
decomposition and the maximal time for one reordering with ordschur. It turns out
that the computing time for one reordering step grows linearly with the position i of the
block Λi in the Schur form. The numerical experiments are carried out on an Intel Xeon
W-2140B CPU with MATLAB 2020a.

Applying Algorithm 6.2 to the 104-dimensional random matrix yields ` = 4958 two-
dimensional blocks for which we calculate the first angular value, using Theorem 6.1.
Then there are 84 real eigenvalues of different modulus leading to a vanishing angular
value. Summing up we obtain k = 5042 one- resp. two-dimensional blocks Ai. For the
presentation in Figure 6.3, these blocks are rearranged, such that

(6.9) θ1(Ai) ≤ θ1(Ai+1) for all i = 1, . . . , k − 1.

The left panel shows a plot of the pairs (i, θ1(Ai))i=1,...,k. Except for an initial ramp due
to the 84 real eigenvalues, the plot suggests an almost uniform distribution of angular
values. This is also confirmed by the corresponding histogram shown in the right panel.
As expected, further experiments show no correlation between the modulus |λi| of the
eigenvalue and the angular value θ1(Ai) of the corresponding 2× 2 matrix Ai.

Figure 6.3: Left: sorted angular values θ1(Ai), see (6.9), of a 104-dimensional random
matrix; right: histogram of angular values.
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Outlook. The approach of this article lends itself to several extensions and further
problems which we discuss in the following.

Numerics for nonlinear systems. The content of Sections 3 and 4 applies to linear
difference equations arising from variational equations of nonlinear dynamical systems of
the form

(6.10) un+1 = DF (ξn)un, n ∈ N0,

where ξn+1 = F (ξn), n ∈ N0 is a bounded trajectory of a nonlinear diffeomorphism F :
Rd → Rd. To numerically estimate the angular values of these variational equations, one
has to extend the numerical algorithm for the autonomous case (Section 6) to general
nonautonomous systems (1.1) in dimension d ≥ 2 and to angular values of arbitrary type
s ≥ 1. This is the topic of the forthcoming work [7], which uses a reduction procedure
to generalize Theorem 5.7 from eigenvalues and eigenspaces to the dichotomy spectrum
and stable and unstable fibers (see [32], [4], [30]). The algorithm is applied to variational
equations. In fact, Figure 1.1 shows for the well-known Hénon map ([19]) the succession
of those subspaces which lead to the outer angular value for the linearized equation (6.10).

Continuous-time systems. It is natural to set up a theory of angular values for
continuous-time systems. Such an extension requires one to handle derivatives of principal
angles between moving subspaces both theoretically and numerically. By Proposition 2.2
principal angles can be computed from singular values of matrices, which employ orthog-
onal bases of subspaces—obtained by a QR-decomposition, for example. Thus one is led
to the well-known problem of computing smooth singular value and QR-decompositions
which has been studied extensively in the literature; see [8], [10], [11]. One approach is to
solve suitable differential equations for smooth decompositions ([10]), and this has turned
out to be efficient with numerical methods for Lyapunov exponents; see [11, Section 4]. A
corresponding analysis of the angle function from Section 3 and a resulting algorithm are
currently under investigation.

Perturbation theory. As noted after Theorem 6.1 (see (6.8) and Figures 6.1, 6.2)
angular values can be quite sensitive to parametric perturbations. In particular, without
further assumptions they are not lower semi-continuous. It is an open question whether
they are still upper semi-continuous in general. More specifically, it will be desirable
to have criteria which ensure continuity of angular values. For Lyapunov exponents in
continuous time such criteria are well known; see [1, Ch.IV,V], [11, Section 2].

Regularity theory. On the one hand, the examples in Section 3.2 demonstrate that
lim inf and lim sup generally do not coincide for outer angular values. On the other hand,
the lim inf and lim sup do coincide for the inner angular values and the uniform angular
values in random dynamical systems and in all cases for autonomous dynamical systems;
see Sections 4 and 5. It will be of interest to identify a larger class of systems for which
the corresponding limits exist. This will provide a weak analogy to the class of regular
continuous-time dynamical systems that have sharp Lyapunov exponents; see [1, Theorem
3.9.1].
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[19] M. Hénon. A two-dimensional mapping with a strange attractor. Comm. Math. Phys., 50(1):69–77,

1976.
[20] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, second

edition, 2013.
[21] S. Jiang. Angles between Euclidean subspaces. Geom. Dedicata, 63(2):113–121, 1996.
[22] R. Johnson and M. Nerurkar. Exponential dichotomy and rotation number for linear Hamiltonian

systems. J. Differential Equations, 108(1):201–216, 1994.
[23] R. A. Johnson. m-functions and Floquet exponents for linear differential systems. Ann. Mat. Pura

Appl. (4), 147:211–248, 1987.
[24] A. B. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems. Ency-

39



clopedia of mathematics and its applications ; vol. 54. Cambridge University Press, Cambridge,
1995.

[25] C. Meyer. Matrix analysis and applied linear algebra. SIAM,Philadelphia, PA, 2000.
[26] M. Misiurewicz and K. Ziemian. Rotation sets for maps of tori. J. London Math. Soc. (2), 40(3):490–

506, 1989.
[27] Z. Nitecki. Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms. The

M.I.T. Press, Cambridge, Mass.-London, 1971.
[28] K. Petersen. Ergodic theory, volume 2 of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge, 1989.
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Supplementary materials.

I. Variational characterization of maximum principal angle – Proof of
Proposition 2.3.

Proof. We use the following elementary fact

(I.1) max
y∈Rj ,‖y‖=1

v>y = ‖v‖ ∀ v ∈ Rj , v 6= 0,

with the maximum achieved at y = 1
‖v‖v for v 6= 0. Consider w ∈ W with ‖w‖ = 1 and

w>w` = 0, ` = j + 1, . . . , s. By Proposition 2.2 there exists b ∈ Rs such that

w = Qb = QZZ>b =
(
w1 · · · ws

)
Z>b.(I.2)

Since ‖w‖ = 1 and w>w` = 0 for ` = j + 1, . . . , s we obtain the partitioning

Z>b =

(
bI

0

)
, bI ∈ Rj , ‖bI‖ = 1, Z =

(
ZI ZII

)
, ZI ∈ Rd,j .

By (I.1) this implies for all v ∈ Rd, v 6= 0

max
w∈W,‖w‖=1

w>w`=0,`=j+1,...,s

v>w = max
bI∈Rj ,‖bI‖=1

v>QZIbI = ‖ZI>Q>v‖.(I.3)

In a similar way, for v ∈ Rd with ‖v‖ = 1 and v>v` = for ` = j + 1, . . . , d we find vectors
a ∈ Rd, aI ∈ Rj such that

v = Pa = PY Y >a =
(
v1 · · · vs

)
Y >a, Y >a =

(
aI

0

)
, ‖aI‖ = 1.

Using this and (2.2) in (I.3) and setting ΣI = diag(σ1, . . . , σj) leads to

min
v∈V,‖v‖=1

v>v`=0,`=j+1,...,s

max
w∈W,‖w‖=1

w>w`=0,`=j+1,...,s

v>w

= min
aI∈Rj ,‖aI‖=1

‖ZI>Q>PY
(
aI

0

)
‖ = min

aI∈Rj ,‖aI‖=1
‖ZI>ZΣ

(
aI

0

)
‖

= min
aI∈Rj ,‖aI‖=1

‖ZI>ZIΣIaI‖ = min
aI∈Rj ,‖aI‖=1

‖ΣIaI‖.

Since σ1 ≥ . . . ≥ σj the last minimum is σj and it is achieved at the j-th unit vector
aI = eIj ∈ Rj . With Proposition 2.2 this yields the minimizer v = PY ej = vj , where

ej =

(
eIj
0

)
∈ Rd. Returning to (I.3) we obtain the maximizer bI = 1

σj
ZI>Q>vj where

σj = ‖ZI>Q>vj‖ is the maximum value. By (I.2) and (2.3) this leads to the maximizer
of the original problem

w =
1

σj
QZ

(
ZI>Q>vj

0

)
=

1

σj
QZ

(
ZI>Q>PY ej

0

)
=

1

σj
QZ

(
ZI>ZΣej

0

)
=

1

σj
QZ

(
σje

I
j

0

)
= wj .

Finally, note that taking arccos reverses min and max in (2.5).
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II. Uniform almost periodicity – Proof of Lemma 3.6.

Proof. Let ε > 0. By the uniform almost periodicity there exists a P ∈ N such that
for every V ∈ V and each k ∈ N0 we find a pk ∈ {k, . . . , P + k} (which may depend on V )
with

(II.1) ‖bn(V )− bn+pk(V )‖ ≤ ε

8
∀n ∈ N.

Let b∞ = supn,V ‖bn(V )‖ and L = d16
ε Pb∞e. It follows for each k ∈ N0 that

(II.2)∥∥∥ L∑
j=1

bj(V )−
L∑
j=1

bj+k(V )
∥∥∥ ≤ L∑

j=1

‖bj(V )− bj+pk(V )‖+
∥∥∥ L∑
j=1

bj+pk(V )−
L∑
j=1

bj+k(V )
∥∥∥

≤
L∑
j=1

ε

8
+ 2Pb∞ ≤ L

ε

4
.

Let N = d8
εLb∞e and decompose n ≥ m ≥ N modulo L, i.e.

m = `mL+ rm, 0 ≤ rm < L, n = `nL+ rn, 0 ≤ rn < L.

For c(V ) :=
∑L

j=1 bj(V ) we obtain from (II.1) and (II.2) for each k ∈ N0 the estimates

∥∥∥ L`n∑
j=1

bj(V )− `nc(V )
∥∥∥ ≤ `n∑

i=1

∥∥∥ L∑
j=1

bj+(i−1)L(V )− c(V )
∥∥∥ ≤ `nLε

4
,

∥∥∥`n
n
c(V )− `m

m
c(V )

∥∥∥ =
∣∣∣`nrm − `mrn

nm

∣∣∣‖c(V )‖ ≤ `nL

nm
‖c(V )‖ ≤ 1

m
‖c(V )‖ ≤ L

N
b∞ ≤

ε

4
.

Combining these estimates, we find for every k ∈ N0∥∥∥ 1

n

n∑
j=1

bj(V )− 1

m

m∑
j=1

bj+k(V )
∥∥∥

≤
∥∥∥ 1

n

L`n∑
j=1

bj(V )− 1

m

L`m∑
j=1

bj+k(V )
∥∥∥+

∥∥∥ 1

n

L`n+rn∑
j=L`n+1

bj(V )− 1

m

L`m+rm∑
j=L`m+1

bj+k(V )
∥∥∥

≤
∥∥∥ 1

n

L`n∑
j=1

bj(V )− `n
n
c(V )

∥∥∥+
∥∥∥`n
n
c(V )− `m

m
c(V )

∥∥∥
+
∥∥∥`m
m
c(V )− 1

m

L`m∑
j=1

bj+k(V )
∥∥∥+

∥∥∥ 1

n

L`n+rn∑
j=L`n+1

bj(V )− 1

m

L`m+rm∑
j=L`m+1

bj+k(V )
∥∥∥

≤ `nL

n

ε

4
+
ε

4
+
`mL

m

ε

4
+

2L

N
b∞ ≤ ε.

III. A matrix with a single eigenvalue – Proof of Proposition 5.4.

Proof. By Lemma 3.3 and Corollary 5.1 it suffices to show that θ̄1(A) = 0. Further,
by Proposition 3.8 we can assume λ = 1 and A to be in (real) Jordan normal form

(III.1)
A = diag(Λ1, . . . ,Λk), Λ` = Id` + E` ∈ Rd`,d` ,

(E`)ij = δi+1,j , 1 ≤ i, j ≤ d`, ` = 1, . . . , k.
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Consider first the case k = 1 and drop the index `. For a vector v ∈ Rd, v 6= 0 let
d? + 1 = max{j ∈ {1, . . . , d} : vj 6= 0} and assume w.l.o.g. vd?+1 = 1. Further, we define
vectors vj , j ∈ N0 and polynomials qi of degree d? + 1− i for i = 1, . . . , d? + 1 by

(III.2) vj := Ajv =

d?∑
ν=0

(
j

ν

)
Eνv, qi(j) = (vj)i =

d?+1−i∑
ν=0

(
j

ν

)
vi+ν .

If d? = 0 then we have vj = v for all j ∈ N0, hence all angles ](vj , vj+1) = 0 vanish
and do not contribute to the supremum in (3.2). Therefore, we can assume d? ≥ 1. Let
zν ∈ C, ν = 1, . . . , d? denote the roots of q1 (repeated according to multiplicity) and set
xν = Re(zν). Our goal is to show that there exists a constant C? > 0 independent of v
such that for all j ∈ N0

(III.3) ](vj , vj+1) ≤ C?
minν=1,...,d? |j − xν |

, if min
ν=1,...,d?

|j − xν | ≥ 1.

Suppose this has been shown, then the set M =
⋃
ν=1,...,d?

(xν−1, xν +1) contains at most
2d? natural numbers and (III.3) leads to the estimate

1

n

n−1∑
j=0

](vj , vj+1) ≤ d?π

n
+

1

n

∑
j∈{0,...,n−1}\M

C?
minν=1,...,d? |j − xν |

≤ dπ

n
+
C?
n

∑
j∈{0,...,n−1}\M

d?∑
ν=1

1

|j − xν |

≤ dπ

n
+
C?
n

2d(log(n) + 1).

In the last step we used the standard estimate of the harmonic sum. The right-hand side
is independent of v, taking the supremum over v and letting n→∞ shows θ̄1(A) = 0.

For the proof of (III.3) let us first notice the relation vj+1 − vj = (A − Id)vj = Evj .
By (III.2) this leads to the recursion (setting qd?+2 ≡ 0)

qi(j + 1)− qi(j) = qi+1(j), j ∈ N0, i = 1, . . . , d? + 1(III.4)

and to the expression

(III.5) ‖vj+1 − vj‖2 =

d?+1∑
i=1

qi+1(j)2 = ‖vj‖2 − q1(j)2 ≤ ‖vj‖2.

If q1(j) 6= 0 then Lemma (2.6) (i) applies and yields

(III.6)

](vj , vj+1) ≤ tan](vj , vj+1) ≤
[
‖vj‖2 − q1(j)2

q1(j)2

]1/2

=

[
d?+1∑
i=2

qi(j)
2

q1(j)2

]1/2

≤
√
d? max

i=2,...,d?+1

|qi(j)|
|q1(j)|

.
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In view of the recursion (III.4) and (III.6) it is sufficient to prove for some constant C2,
independent of v, and for all τ = 0, . . . , d? the estimate

(III.7)

∣∣∣∣q2(j + τ)

q1(j)

∣∣∣∣ ≤ C2

minν=1,...,d? |j − xν |
, if min

ν=1,...,d?
|j − xν | ≥ 1.

From q1(j) =
∏d?
ν=1(j − zν) and (III.4) we obtain by expanding products

∣∣∣∣q2(j + τ)

q1(j)

∣∣∣∣ =

d?∏
ν=1

|j − zν |−1
∣∣∣ d?∏
ν=1

(j − zν + τ + 1)−
d?∏
ν=1

(j − zν + τ)
∣∣∣

=

d?∏
ν=1

|j − zν |−1
∣∣∣ ∑
J⊂{1,...,d?}
|J |<d?

∏
ν∈J

(j − zν)
[
(τ + 1)d?−|J | − τd?−|J |

]∣∣∣
≤

∑
J⊂{1,...,d?}
|J |≥1

[
(τ + 1)|J | − τ |J |

]∏
ν∈J
|j − zν |−1.

Because of |j − zν | ≥ |j − xν | and |J | ≥ 1 we have

∏
ν∈J
|j − zν |−1 ≤ 1

minν=1,...,d? |j − xν |
, if min

ν=1,...,d?
|j − xν | ≥ 1,

which proves (III.7).
The proof is easily adapted to the general Jordan form (III.1). Assertion (III.3) remains

the same, but now we have block vectors vj = (vj1, . . . , v
j
k)
> and polynomials qi,`,i =

1, . . . , d`, ` = 1, . . . , k. The formula (III.5) turns into

‖vj+1 − vj‖2 = ‖vj‖2 −
k∑
`=1

q1,`(j)
2 =

k∑
`=1

(‖vj`‖
2 − q1,`(j)

2),

and the estimate (III.6) is modified by using

‖vj‖2 −
∑k

`=1 q
2
1,`(j)∑k

`=1 q
2
1,`(j)

≤
k∑
`=1

‖vj`‖
2 − q1,`(j)

2

q1,`(j)2
.

The subsequent arguments remain unchanged.

IV. Proof of the Blocking Lemma 5.5.

Proof. By scaling A and (5.25) we can arrange that |σ(As)|, |σ(A−1
u )| < q < 1. Then

there exists a constant C? such that

‖A−ju vu‖ ≤ C?qj‖vu‖, ‖Ajsvs‖ ≤ C?qj‖vs‖, ∀ vu ∈ Xu, vs ∈ Xs.(IV.1)

Let us first consider outer angular values and decompose v ∈ Rd as v = vs + vu, vs ∈
Xs, vu ∈ Xu.
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The cases vs = 0 resp. vu = 0 immediately show that θ1(A) ≥ max(θ1(As), θ1(Au))
holds for θ1 ∈ {θ̂1,

ˆ
θ1}. To prove the converse, we assume vu 6= 0 and obtain from the

triangle inequality

(IV.2)
∣∣ 1
n

n∑
j=1

](Aj−1v,Ajv)− 1

n

n∑
j=1

](Aj−1
u vu, A

j
uvu)

∣∣ ≤ 2

n

n∑
j=0

](Ajv,Ajuvu).

We show that the right-hand side converges to zero as n → ∞ for every v. Then the
lim inf and the lim sup of the first two sums in (IV.2) agree and our assertion follows by
taking the supremum over v. With C?, q from (IV.1) there exist an index j? = j?(v) such
that

(IV.3) 2C2
?q

2j‖vs‖ ≤
√

3‖vu‖, for all j ≥ j?.

The estimate (2.6) in Lemma 2.6 then shows for j ≥ j?

(IV.4)

](Ajv,Ajuvu) ≤ tan](Ajv,Ajuvu) ≤ ‖Ajsvs‖(
‖Ajuvu‖2 − ‖Ajsvs‖2

)1/2

≤ C?q
j‖vs‖(

C−2
? q−2j‖vu‖2 − C2

?q
2j‖vs‖2

)1/2 ≤ 2C2
?q

2j ‖vs‖
‖vu‖

.

Since the right-hand side is summable our conclusion follows.
Next we analyze the inner angular values. By Corollary 5.1 it suffices to consider

θ1 = θ̄1. As above, Definition 3.1 implies the estimate θ1(A) ≥ max(θ1(As), θ1(Au)), and
it remains to prove the converse. From (IV.3) and (IV.4) we infer that for each v = vs+vu
with vu 6= 0 the following index exists

k? = k?(v) = min{j ∈ N : ‖Ajvs‖ ≤ ‖Ajvu‖}.

Further choose j? such that 2C2
?q

2j? ≤
√

3. Then (IV.3) holds for Ak?s vs, A
k?
u vu instead of

vs, vu and the estimate (IV.4) yields

](Ajv,Ajvu) ≤ 2C2
?q

2(j−k?) for j − k? ≥ j?.

We use ‖Ak?−1
u vu‖ ≤ ‖Ak?−1

s vs‖, (IV.1) and Lemma 2.6 to derive a corresponding estimate
of angles to the stable part for j ≤ k? − j? − 1:

](Ajv,Ajvs) ≤ tan](Ajv,Ajvs)

≤ ‖Aj−k?+1
u (Ak?−1

u vu)‖(
‖Aj−k?+1

s Ak?−1
s vs‖2 − ‖Aj−k?+1

u (Ak?−1
u vu)‖2

)1/2

≤ C?q
k?−j−1‖Ak?−1

u vu‖(
C−2
? q−2(k?−j−1)‖Ak?−1

s vs‖2 − C2
?q

2(k?−j−1)‖Ak?−1
s vs‖2

)1/2

≤ C2
?q

2(k?−j−1)‖Ak?−1
u vu‖(

1− C4
?q

4(k?−j−1)
)1/2 ‖Ak?−1

s vs‖
≤ 2C2

?q
2(k?−j−1).
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With these preparations the triangle inequality leads to (recall
∑n

m = 0 if m > n)

1

n

n∑
j=1

](Aj−1v,Ajv) ≤ 1

n

[( k?−1−j?∑
j=1

+
n∑

j=k?+1+j?

)
](Aj−1v,Ajv) + (2j? + 1)

π

2

]

≤ 1

n

[
2C2

?

( k?−1−j?∑
j=1

q2(k?−j−1) +
n∑

j=k?+1+j?

q2(j−k?)
)

+ (j? + 1)π

+

min(k?,n)∑
j=1

](Aj−1
s vs, A

j
svs) +

n∑
j=k?+1

](Aj−1
u vu, A

j
uvu)

]
.

For any given ε > 0, there exists n0 ∈ N such that for all k ≥ n0, vs ∈ Xs, vs 6= 0,
vu ∈ Xu, vu 6= 0 the following holds

k∑
j=1

](Aj−1
s vs, A

j
svs) ≤ k(θ̄1(As) + ε),

k∑
j=1

](Aj−1
u vu, A

j
uvu) ≤ k(θ̄1(Au) + ε).

Thus we have for n ≥ n0

min(k?,n)∑
j=1

](Aj−1
s vs, A

j
svs) ≤

{
min(k?, n)(θ̄1(As) + ε), k? ≥ n0,

n0
π
2 , k? ≤ n0.

With a similar estimate for
∑n

j=k?+1](Aj−1
u vu, A

j
uvu) we obtain for n ≥ n0 and some

constant C independent of v and n

1

n

n∑
j=1

](Aj−1v,Ajv) ≤ 1

n

[
C + n0

π

2
+ min(k?, n)(θ̄1(As) + ε)

+ n0
π

2
+ (n−min(k?, n))(θ̄1(Au) + ε)

]
≤ max(θ̄1(As), θ̄1(Au)) + ε+

1

n
(C + n0π).

Now take the supremum over v ∈ Rd, vu 6= 0 and then n large so that the last summand
is less than ε. This finishes the proof of (5.26).

46


	1 Introduction
	2 Angles of subspaces
	3 Basic theory of angular values
	3.1 Definitions and elementary properties
	3.2 Some nonautonomous key examples

	4 Angular values of random linear cocycles
	5 Angular values for the autonomous case
	5.1 The two-dimensional case
	5.2 Systems of higher dimension

	6 Numerical algorithms and results
	6.1 Two dimensional autonomous examples
	6.2 An algorithm for computing first angular values
	6.3 Numerical experiments
	6.3.1 Block-diagonal examples
	6.3.2 An illustrative four-dimensional example
	6.3.3 High dimensional examples


	I Variational characterization of maximum principal angle – Proof ofProposition 2.3
	II Uniform almost periodicity – Proof of Lemma 3.6
	III A matrix with a single eigenvalue – Proof of Proposition 5.4
	IV Proof of the Blocking Lemma 5.5

