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Abstract. This work focuses on angular values of nonautonomous dynamical systems which have been
introduced for general random and (non)autonomous dynamical systems in a previous publi-
cation [9]. The angular value of dimension s measures the maximal average rotation which an
s-dimensional subspace of the phase space experiences through the dynamics of a discrete-time
linear system. Our main results relate the notion of angular value to the well-known dichotomy
(or Sacker-Sell) spectrum and its associated spectral bundles. In particular, we prove a reduction
theorem which shows that instead of maximizing over all subspaces, it suffices to maximize over
so-called trace spaces which have their basis in the spectral fibers. The reduction leads to an
algorithm for computing angular values of dimensions one and two. We apply the algorithm to
several systems of dimension up to 4 and demonstrate its efficiency to detect the fastest rotating
subspace even if it is not dominant under the forward dynamics.

Key words. Nonautonomous dynamical systems, angular value, ergodic average, Sacker-Sell spectrum,
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1. Introduction. The concept of angular values was introduced in [9] for (non)auto-
nomous and random linear discrete-time dynamical systems. The purpose of this notion
is to measure the average of the largest principle angle between two subspaces at suc-
cessive times und to maximize this value over all subspaces of a fixed dimension. There
is a fundamental difference between such angular values and the well-established theory
of Lyapunov exponents which measure the exponential growth or decay of vectors in a
dynamical system, see for example [1, Ch.3.2], [8], [29, Suppl.2]. Furthermore, there are
important differences to other existing notions which quantify rotations in dynamical sys-
tems. Let us mention primarily the rotation number for circle homeomorphisms and for
more general maps and flows, see e.g. [2, 13, 29, 30]. While the rotation number measures
the oriented angle between vectors and image vectors in two-dimensional subspaces, angu-
lar values are based on the principal angles between subspaces which always lie in [0, π2 ].
Even the principal angle between one-dimensional subspaces may differ from the oriented
angle between vectors spanning the subspaces. When using principal angles as a measure
one loses information about orientation but gains applicability to discrete-time systems in
arbitrary dimensions and to subspaces of arbitrary dimension.

While [9] sets out the basic definitions and some general relations between angular
values, the construction of an algorithm as well as explicit formulas are restricted to the
autonomous and the random case. It is the purpose of this article to provide deeper insight
into the general nonautonomous case and to present a robust algorithm.

We consider a nonautonomous linear difference equation of the form

(1.1) un+1 = Anun, An ∈ Rd,d, n ∈ N0

and assume throughout this paper that all matrices are invertible and An as well as
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A−1n are uniformly bounded. As regards applications, we think of (1.1) to arise from
the linearization of a nonlinear (non)autonomous dynamical system along a particular
trajectory. In physical terms, we have in mind an object which is carried materially by a
time-varying fluid flow and for which data about its position and orientation have been
observed at discrete time instances. Then angular values are expected to measure the
maximal torsional stress of the object.

The solution operator Φ corresponding to (1.1) is defined by

Φ(n,m) =


An−1 · . . . ·Am, for n > m,

I, for n = m,

A−1n · . . . ·A−1m−1, for n < m.

To keep this paper self-contained, some important definitions and estimates of angles
from [9] are summarized in Section 2. Our notion of an s-th angular value is based on the
averages

(1.2)
1

n
ak+1,k+n(V ), ak+1,k+n(V ) =

k+n∑
j=k+1

](Φ(j − 1, 0)V,Φ(j, 0)V ), k ≥ 0, n ≥ 1.

Here V is an element of the Grassmann manifold G(s, d) of s-dimensional subspaces of
R
d. By ](U, V ) ∈ [0, π2 ] we denote the largest principal angle between two subspaces

U, V ∈ G(s, d), which can be computed by a singular value decomposition (SVD), see [21,
Ch. 6.4.3]. There are several possibilities to pass to a limit in (1.2) and take the supremum
over V ∈ G(s, d), for example

θ̄s = lim sup
n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ), θ̂s = sup

V ∈G(s,d)
lim sup
n→∞

1

n
a1,n(V ).(1.3)

Since the supremum over the Grassmannian occurs either inside or outside the lim sup we
call θ̄s the sth inner and θ̂s the sth outer angular value of the system. Because of the
lim sup in (1.3) we give these angular values the additional attribute ’upper’, and then
define another class of ’lower’ angular values where lim inf is used instead. Finally, we
consider uniform versions of angular values by first taking the supremum of ak+1,k+n(V )
over k ∈ N0 and then proceeding as above, see Definition 2.6. This distinguishes between
long-time dynamics starting at time zero and longtime dynamics starting at an arbitrary
later time. Such a distinction is quite common in the Lyapunov theory when passing from
Lyapunov exponents to Bohl exponents or from Lyapunov spectra to dichotomy spectra
([6], [15], [26]). All of the above notions of angular values can be different as examples in
[9, Section 3.2] show. At the end of Section 3.2 we will reconsider these examples in view
of our reduction theory.

Our numerical methods aim at computing outer angular values for general nonau-
tonomous systems. Recall that the more specific theory and the algorithm from [9, Sec-
tion 5, 6] are restricted to an autonomous system (1.1), i.e. An = A for n ∈ N0. In this
case all first angular values mentioned above agree and can be computed from orthogo-
nal bases of invariant subspaces which belong to eigenvalues of A of the same modulus.
This reduces the numerical effort substantially to a series of Schur decompositions and to
one-dimensional optimization.
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One major goal of this article is to develop a reduction theorem which generalizes the
autonomous results to nonautonomous systems and to subspaces of arbitrary dimension.
We tackle this task in Section 3. It turns out that the dichotomy spectrum, also called
the Sacker-Sell spectrum [35], and its accompanying spectral bundle take over the role
of invariant subspaces from the autonomous case. With every element V ∈ G(s, d) we
associate a subspace T0(V ), called the trace space, which has the same dimension as V
and which has a basis composed of vectors from the fibers; see (3.16). Our main reduction
result Theorem 3.6 then states that the lim sup of 1

na1,n(V ) from (1.2) for the given space
V agrees with the lim sup of 1

na1,n(T0(V )) for the trace space. Similar results are derived
for the inner angular values (s = 1) and for uniform angular values (s ≥ 1) in Sections 3.3
and 3.4.

The reduction theorem is the basis for the numerical algorithm which we propose in
Section 4. Note that angular values are generally not achieved in the most stable or most
unstable directions of the trace spaces. Therefore, algorithms, which use forward iteration
exclusively, tend to fail since they follow asymptotic dynamics.

Our overall algorithm consists of the following steps:
1. Compute an approximation of the dichotomy spectrum.
2. Compute the corresponding spectral bundles and obtain the trace spaces.
3. Determine the supremum of (1.2) w.r.t. the trace spaces and for large values of n.

The first two tasks are accomplished by using discrete versions of QR-methods from [15]
and least squares techniques from [24]. However, by the third step our approach differs
substantially from taking QR or SVD decompositions for an overall method, which is
common for Lyapunov exponents; see [14],[15]. We apply this algorithm to several models
to illustrate various aspects. We begin with a comparison between explicitly known angular
values and the output of our algorithm for cases s = 1, 2. For the classical Hénon system
we illustrate the somewhat slow convergence of the ergodic averages (1.2) as n→∞ and we
discuss their dependence on the initial time k. Further, we give a geometric interpretation
of angular values as a measure of the maximal average angle between successive tangent
lines to the stable and the unstable fiber bundle within the attractor. In this case the stable
fiber rotates faster than the unstable one while the latter is dominant under the forward
dynamics. This demonstrates that our reduction procedure is essential in detecting the
fastest rotating subspace.
We continue the geometric interpretation of angular values for a 3-dimensional extension
of the Hénon system and a 4-dimensional system of coupled oscillators. For the coupled
oscillator model we observe that angular values are insensitive to the breakdown of an
invariant torus at increasing coupling values. The torus breakdown is known to be related
to the ratio of Lyapunov exponents towards vs. inside the torus ([18], [16], [34]). Rather,
angular values reflect the rotation of Floquet spaces associated with the periodic orbit
approached by the trajectory. This behavior occurs regardless of whether the periodic
orbit is imbedded into an invariant torus or not.

2. Basic definitions and properties. To keep the article self-contained, we summarize
in this section some important notions, definitions and results from [9].

2.1. Angles and subspaces. Let us begin with a useful characterization of the angle
between two subspaces V and W of Rd, both having the same dimension s. Principal
angles between these subspaces can be computed from the singular values of V >B WB, where
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the columns of VB and WB ∈ Rd,s form orthonormal bases of V and W , respectively, see
[21, Ch.6.4.3]. The smallest singular value is the cosine of the largest principal angle which
we denote by ](V,W ). We further use the notion

](v, w) = ](span(v), span(w)), v, w ∈ Rd, v, w 6= 0

in case the subspaces are one-dimensional.
The following characterization of ](V,W ) turns out to be essential for the analysis of

angular values. It provides an alternative to the standard definition in [21, Ch.6.4.3], see
[9, Supplementary materials I] for a proof.

Proposition 2.1. Let V,W ⊆ R
d be two s-dimensional subspaces. Then the following

relation holds

](V,W ) = max
v∈V
v 6=0

min
w∈W
w 6=0

](v, w) = arccos
(

min
v∈V
‖v‖=1

max
w∈W
‖w‖=1

v>w
)
.

The next proposition summarizes some well-known properties of the Grassmannian

G(s, d) = {V ⊆ Rd is a subspace of dimension s},

see [21, Ch.6.4.3], [27]. Throughout the paper ‖ · ‖ denotes the Euclidean norm of vectors
as well as the associated spectral norm of matrices.

Proposition 2.2. The Grassmannian G(s, d) is a compact smooth manifold of dimension
s(d− s) and a metric space with respect to

d(V,W ) = ‖PV − PW ‖,

where PV , PW are the orthogonal projections onto V and W , respectively. Moreover, the
formula

d(V,W ) = sin(](V,W )), V,W ∈ G(s, d)

holds and ](V,W ) defines an equivalent metric on G(s, d) satisfying

2

π
](V,W ) ≤ d(V,W ) ≤ ](V,W ).

The following lemma from [9, Lemma 2.6] is our main tool to estimate angles of vectors
and subspaces in terms of the Euclidean norm.

Lemma 2.3.
i) For any two vectors v, w ∈ Rd with ‖v‖ < ‖w‖ the following holds

tan2](v + w,w) ≤ ‖v‖2

‖w‖2 − ‖v‖2
.

ii) Let V ∈ G(s, d) and P ∈ Rd,d be such that for some 0 ≤ q < 1

‖(I − P )v‖ ≤ q‖Pv‖ ∀v ∈ V.

Then dim(V ) = dim(PV ) and the following estimate holds

](V, PV ) ≤ q

(1− q2)1/2
.
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Finally, we state a linear algebra result which will provide the basic reduction step
in Theorem 3.4. By R(P ) and N (P ) we denote the range and kernel of a matrix P ,
respectively.

Lemma 2.4. Let V ∈ G(s, d) and let P be a projector in Rd. Furthermore, let Q be any
projector defined in Rd and with range V ∩R(P ). Then the linear map

L = I − P +Q : V → (I − P )V ⊕ (V ∩R(P ))(2.1)

is a bijection and there exists a constant ρ > 0 such that

‖P (I −Q)v‖ ≤ ρ‖(I − P )(I −Q)v‖ ∀v ∈ V.(2.2)

Proof. Note that the sum in (2.1) is direct since (I − P )V ⊆ N (P ). For the same
reason, if Lv = 0 for some v ∈ V , then (I − P )v = 0 and Qv = 0 holds. This shows v ∈
V ∩R(P ) = R(Q) and v = Qv = 0. Thus L is one to one. To show that L is onto, take any
u ∈ (I−P )V and w ∈ V ∩R(P ). Then we have u = (I−P )v for some v ∈ V , and defining
ṽ = (I−Q)v+w ∈ V , we obtain Lṽ = (I−P )(v+w−Qv) +Qw = (I−P )v+w = u+w.
To show the estimate (2.2) note that 0 = (I − P )(I − Q)v = (I − P )v for some v ∈ V
implies v ∈ V ∩R(P ) = R(Q) and thus (I −Q)v = 0 = P (I −Q)v. Then we obtain (2.2)
from the elementary fact that two linear maps A,B : V → R

d satisfy N (B) ⊆ N (A) if
and only if there exists a constant C > 0 such that ‖Av‖ ≤ C‖Bv‖ for all v ∈ V .

Remark 2.5. The last step of the proof is a special case of a result from functional
analysis: Let A,B : X → Y be linear bounded operators between Banach spaces X and
Y , then A is called relatively bounded by B if there exists a constant C > 0 such that
‖Ax‖ ≤ C‖Bx‖ for all x ∈ X; see [19, Ch.3.7]. The smallest constant of this type is

(2.3) ρ(A,B) = inf{C > 0 : ‖Ax‖ ≤ C‖Bx‖ ∀x ∈ X} = sup
Bx 6=0

‖Ax‖
‖Bx‖

.

If B is Fredholm one can show that A is relatively bounded by B iff N (B) ⊆ N (A).

2.2. Definition of angular values. The angular values defined in [9, Section 3.1] always
aim at finding the subspace V which maximizes the average angle in (1.2). However, there
are several possibilities to let time go to infinity. We will use the attributes ’upper’ and
’lower’ to distinguish between lim sup and lim inf, and the attributes ’outer’ and ’inner’ to
distinguish between limits taken outside or inside the supremum over the Grassmannian,
cf. (1.3). This motivates the first part of the following definition.

Definition 2.6. Let the nonautonomous system (1.1) be given. For s ∈ {1, . . . , d} define
the quantities

(2.4) am,n(V ) =

n∑
j=m

](Φ(j − 1, 0)V,Φ(j, 0)V ) m,n ∈ N, V ∈ G(s, d).

i) The upper resp. lower sth inner angular value is defined by

(2.5) θ̄s = lim sup
n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ),

¯
θs = lim inf

n→∞

1

n
sup

V ∈G(s,d)
a1,n(V ).
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ii) The upper resp. lower sth outer angular value is defined by

θ̂s = sup
V ∈G(s,d)

lim sup
n→∞

1

n
a1,n(V ),

ˆ
θs = sup

V ∈G(s,d)
lim inf
n→∞

1

n
a1,n(V ).

iii) The upper resp. lower sth uniform inner angular value is defined by

(2.6)

θ̄[s] = lim
n→∞

1

n
sup

V ∈G(s,d)
sup
k∈N0

ak+1,k+n(V ),

¯
θ[s] = lim inf

n→∞

1

n
sup

V ∈G(s,d)
inf
k∈N0

ak+1,k+n(V ).

iv) The upper resp. lower sth uniform outer angular value is defined by

θ̂[s] = sup
V ∈G(s,d)

lim
n→∞

1

n
sup
k∈N0

ak+1,k+n(V ),

ˆ
θ[s] = sup

V ∈G(s,d)
lim
n→∞

1

n
inf
k∈N0

ak+1,k+n(V ).

The uniform angular values defined in (iii) and (iv) distinguish between longtime dynamics
starting at time zero and longtime dynamics starting at an arbitrary later time. In the
stability theory for nonautonomous systems, such a distinction is quite common when
passing from Lyapunov exponents to Bohl exponents, see [6], [12, Ch.III.4]. One can show
that the limits occurring in Definition 2.6 exist and that the various angular values are
related by the diagram below ([9, Lemma 3.3])

(2.7) ˆ
θ[s] ≤

ˆ
θs ≤ θ̂s ≤ θ̂[s]≤ ≤ ≤ ≤

¯
θ[s] ≤ ¯

θs ≤ θ̄s ≤ θ̄[s]

Finally, we note that all inequalities in this diagram can be strict, as suitable examples
in [9, Section 3.2] show. However, our numerical computations in Section 4 suggest that
such a distinction of angular values is rather exceptional.

3. The dichotomy spectrum and reduction theorems. We discuss in this section
relations between angular values and the dichotomy spectrum. This particularly results
in a computational approach for angular values. We start with a brief introduction, cf.
[25], of the dichotomy spectrum which is also called the Sacker-Sell spectrum.

3.1. Dichotomy spectrum and trace spaces. The dichotomy spectrum, see [35] is
based on the notion of an exponential dichotomy, cf. [23, 4, 28, 11, 12, 31]. In the following
we recall its general definition for a discrete interval I ⊂ Z which is unbounded above,
and for a linear system (1.1) which is bounded invertible, i.e. there exists a C > 0 such
that ‖An‖, ‖A−1n ‖ ≤ C for all n ∈ I.

Definition 3.1. The difference equation (1.1) has an exponential dichotomy (ED for
short) on I, if there exist constants K > 0, αs, αu ∈ (0, 1) and families of projectors P sn,
P un := I − P sn, n ∈ I such that

(i) P s,un Φ(n,m) = Φ(n,m)P s,um for all n,m ∈ I.
6



(ii) For n,m ∈ I, n ≥ m the following estimates hold:

‖Φ(n,m)P sm‖ ≤ Kαn−ms , ‖Φ(m,n)P un ‖ ≤ Kαn−mu .

The tuple (K,αs,u, P
s,u
I

= (P s,un )n∈I) is called the dichotomy data.

The dichotomy spectrum is constructed, using the scaled equation

(3.1) un+1 =
1

γ
Anun, n ∈ I,

which has the solution operator Φγ(n,m) = γm−nΦ(n,m). Spectrum and resolvent set
are defined as follows:

ΣED := {γ > 0 : (3.1) has no ED on I}, RED := R
>0 \ ΣED.

The Spectral Theorem [5, Theorem 3.4] provides the decomposition ΣED =
⋃`
i=1 Ii of the

dichotomy spectrum into ` ≤ d intervals

Ii = [σ−i , σ
+
i ], i = 1, . . . , `, where 0 < σ−` ≤ σ

+
` < · · · < σ−1 ≤ σ

+
1 .

The intervals Ii, i = 1, . . . , ` are called spectral intervals. Correspondingly, the resolvent
set is RED =

⋃`+1
i=1 Ri with resolvent intervals

R1 = (σ+1 ,∞), Ri = (σ+i , σ
−
i−1), i = 2, . . . , `+ 1 with σ+`+1 = 0,

see Figure 3.1. In case σ−i = σ+i for an i ∈ {1, . . . , `} the spectral interval Ii is an isolated
point. For γ ∈ Ri = (σ+i , σ

−
i−1) with i ∈ {1, . . . , ` + 1} the system (3.1) has an ED with

Figure 3.1: Illustration of spectral intervals (orange) and of resolvent intervals (blue).

dichotomy data

(3.2)
(
K ,αs(γ) =

σ+i
γ
, αu(γ) =

γ

σ−i−1
, (P sn,i, P

u
n,i = I − P sn,i)n∈I

)
.

The projectors P s,un,i commute with Φγ(n,m) = γm−nΦ(n,m) as in Definition 3.1 (i) and
satisfy for n ≥ m the ED-estimates

‖Φ(n,m)P sm,i‖ = γn−m‖Φγ(n,m)P sm,i‖ ≤ Kγn−m
(
σ+i
γ

)n−m
= K(σ+i )n−m,

‖Φ(m,n)P un,i‖ = γm−n‖Φγ(m,n)P un,i‖ ≤ Kγm−n
(

γ

σ−i−1

)n−m
= K

(
σ−i−1

)m−n
.
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Note that these estimates do not depend on the particular choice of γ ∈ Ri. Further, the
projectors are uniquely determined and their ranges form a flag of subspaces for n ∈ I, i.e.

(3.3)
{0} = R(P sn,`+1) ⊆ R(P sn,`) ⊆ · · · ⊆ R(P sn,1) = R

d,

R
d = R(P un,`+1) ⊇ R(P un,`) ⊇ · · · ⊇ R(P un,1) = {0}.

Spectral bundles that correspond to eigenspaces in autonomous systems are defined
as follows (see Figure 3.2):

(3.4) W i
n := R(P sn,i) ∩R(P un,i+1), i = 1, . . . , `.

Note that the dimensions of these spectral bundles di := dim(W i
n) for i = 1, . . . , ` do not

depend on n ∈ I. Alternatively, we may write the ranges of dichotomy projectors in terms
of spectral bundles:

(3.5) R(P un,i) =
i−1⊕
j=1

Wj
n, R(P sn,i) =

⊕̀
j=i

Wj
n, i = 1, . . . , `+ 1.

The fiber projector Pn,i, i = 1, . . . , ` onto W i
n along

⊕`
ν=1,ν 6=iWν

n is given by

(3.6) Pn,i = P sn,iP
u
n,i+1 = P un,i+1P

s
n,i = P sn,i − P sn,i+1 = P un,i+1 − P un,i.

Spectral bundles satisfy for i = 1, . . . , ` and n,m ∈ I the invariance condition

(3.7) Φ(n,m)W i
m =W i

n.

Figure 3.2: Construction of spectral bundles.

For later purposes, we define the following subset of the Grassmannian G(s, d).

Definition 3.2. Every element V ∈ G(s, d) of the form

V =
⊕̀
i=1

Wi : Wi ⊆ W i
k (subspace) i = 1, . . . , `,

∑̀
i=1

dimWi = s

is called a trace space at time k. The set of all trace spaces is denoted by Dk(s, d).

Trace spaces depend on the spectral bundle in (3.4) and determine all angular values.
Therefore, they form an essential part of the Grassmannian and we will study them in the
following subsections.
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3.2. Outer angular values and spectral bundles. In the remaining part of this section,
we work in the setup I = N0. As a first step, we consider a system with an ED and study
the forward dynamics Φ(j, k) of a subspace V ∈ G(s, d) starting at an arbitrary time
k ∈ N. Decomposing V = (R(P sk )∩V )⊕Ṽ where P uk Ṽ = P uk V , we see that the stable part
R(P sk ) ∩ V moves to Φ(j, k)(R(P sk ) ∩ V ) = R(P sj ) ∩Φ(j, k)V because of invariance, while

the remaining part Ṽ is driven towards the image Φ(j, k)P uk V = P uj Φ(j, k)V . Therefore,
we expect the image of V to approach (R(P sj ) ∩ Φ(j, k)V )⊕ Φ(j, k)P uk V as illustrated in
Figure 3.3. This is made precise in the following theorem.

Figure 3.3: A subspace V (green) at time k (left) is driven by the dynamics at time j > k
(right) towards the direct sum (orange plane) of its unstable projection (yellow) and the
intersection with the stable subspace (black).

Theorem 3.3. Let the system (1.1) have an exponential dichotomy on N0 with data
(K,αs,u, P

s,u
N0

). For k ∈ N0 and V ∈ G(s, d) let

(3.8) Qsk : Rd → R(P sk ) ∩ V

denote the orthogonal projector onto R(P sk ) ∩ V . Then the quantity (recall (2.3))

ρsk(V ) = inf{C > 0 : ‖P sk (I −Qsk)v‖ ≤ C‖P uk (I −Qsk)v‖ ∀v ∈ V } <∞

is finite and there exists an index jsk = jsk(V ) such that

(3.9) K2(αsαu)j
s
kρsk(V ) ≤ 1

2
.

For all j ≥ k + jsk the following estimate holds

(3.10) ](Φ(j, k)V,Φ(j, k)(P uk V ⊕QskV )) ≤ 2√
3
K2(αsαu)j−kρsk(V ).

Proof. Applying Lemma 2.4 to P = P sk and Q = Qsk shows that the quantity ρsk(V )
is finite. Since αsαu < 1 there exists an index jsk satisfying (3.9). Our goal is to apply
Lemma 2.3 (ii) for j ≥ k to the s-dimensional subspace Ṽ = Φ(j, k)V and the matrix
P̃ = P uj + P sj Φ(j, k)QskΦ(k, j). First note that Lemma 2.4 and the properties of the
solution operator imply

Φ(j, k)(P uk V ⊕QskV ) = Φ(j, k)(P uk +Qsk)Φ(k, j)Φ(j, k)V

= (P uj + Φ(j, k)QskΦ(k, j))Φ(j, k)V = P̃ Ṽ.

9



The exponential dichotomy yields for all v ∈ V and j ≥ k

‖P uk v‖ = ‖Φ(k, j)P uj Φ(j, k)(P uk v +Qskv)‖
≤ Kαj−ku ‖Φ(j, k)(P uk v +Qskv)‖ = Kαj−ku ‖P̃Φ(j, k)v‖,

‖(I − P̃ )Φ(j, k)v‖ = ‖Φ(j, k)v − (Φ(j, k)P uk v + Φ(j, k)P skQ
s
kv)‖

= ‖Φ(j, k)P sk (I −Qsk)v‖ ≤ Kαj−ks ‖P sk (I −Qsk)v‖.

Combining these estimates we obtain

(3.11)
‖(I − P̃ )Φ(j, k)v‖ ≤ Kαj−ks ρsk(V )‖P uk (I −Qsk)v‖ = Kαj−ks ρsk(V )‖P uk v‖

≤ K2(αsαu)j−kρsk(V )‖P̃Φ(j, k)v‖.

By condition (3.9) we can apply Lemma 2.3 (ii) with q = K2(αsαu)j−kρsk(V ) ≤ 1
2 for

j ≥ k + jsk and obtain

](Φ(j, k)V,Φ(j, k)(P uk V ⊕QskV )) ≤ 2K2

√
3

(αsαu)j−kρsk(V ).

This proves the estimate (3.10).

In a similar way, we can reverse time and analyze the backwards dynamics of V . For
this purpose, let

(3.12) Quk : Rd → R(P uk ) ∩ V

denote the orthogonal projector onto R(P uk ) ∩ V . Then

ρuk(V ) = inf{C > 0 : ‖P uk (I −Quk)v‖ ≤ C‖P sk (I −Quk)v‖ ∀v ∈ V } <∞

holds and there exists an index juk = juk (V ) such that

(3.13) K2(αsαu)j
u
k ρuk(V ) ≤ 1

2
.

Then we obtain from Lemma 2.3 (ii) the following estimate for all j ≤ k − juk ,

(3.14) ](Φ(j, k)V,Φ(j, k)(P skV ⊕QukV )) ≤ 2√
3
K2(αsαu)k−jρuk(V ).

Theorem 3.3 provides the building block for reducing the analysis of angular values for
general subspaces V ∈ G(s, d) to specific ones which have a basis consisting of vectors from
the spectral bundle (3.4). For a fixed starting time k ∈ N and i = 1, . . . , ` we recall the
projectors Pk,i = P uk,i+1P

s
k,i : Rd → W i

k from (3.6) and define the orthogonal projectors
(cf. (3.3), (3.5), (3.8))

(3.15) Qsk,i : Rd → R(P sk,i) ∩ V, i = 1, . . . , `.

With each V ∈ G(s, d) we associate a subspace with a fiber basis and defined by

(3.16) Tk(V ) =
⊕̀
i=1

(Pk,iQsk,iV ) =
⊕̀
i=1

(P uk,i+1(R(P sk,i) ∩ V )).

10



Below we will show dim Tk(V ) = s and the equality

Tk(V ) =
(∑̀
i=1

Pk,iQsk,i
)
V.(3.17)

Therefore, Tk(V ) is a trace space at time k in the sense of Definition 3.2. In fact, we have
the equality

(3.18) Dk(s, d) = {Tk(V ) : V ∈ G(s, d)},

since every V =
⊕`

i=1Wi ∈ Dk(s, d) with Wi ⊆ W i
k satisfies Pk,iQsk,iV = Wi, i = 1, . . . , `.

Hence every trace space can be found by subsequent projection as in (3.17).
Our main reduction theorem is the following.

Theorem 3.4. Assume that the difference equation (1.1) has the dichotomy spectrum
ΣED =

⋃`
i=1[σ

−
i , σ

+
i ] with fibers W i

k, i = 1 . . . , ` and projectors Pk,i, i = 1, . . . , `, k ∈ N0.
Then for every k ∈ N0 and V ∈ G(s, d), s = 1, . . . , d there exists an index j = j(k, V ) and
a constant C = C(k, V ) such that for all j ≥ k + j the following estimate holds

(3.19) ](Φ(j, k)V,Φ(j, k)Tk(V )) ≤ C(k, V )
(

max
i=1,...,`−1

σ+i+1

σ−i

)j−k
.

Remark 3.5. Note that several of the spaces Pk,iQsk,iV occurring in the decomposition
(3.16) may be trivial. The following proof will show that one can then omit the correspond-

ing quotients
σ+
i+1

σ−
i

from the maximum in (3.19). Moreover, the proof will provide values

for the index j(k, V ) and the constant C(k, V ) in terms of V and the dichotomy data in
the resolvent intervals.

Proof. The main work is to set up inductive steps which apply Theorem 3.3 to Φγ for
values of γ in successive resolvent intervals.
Step1: Let us first discuss a recursive construction that leads to the trace space (3.17).
With every V ∈ G(s, d) we associate subspaces Vi ∈ G(s, d) and further projectors Q̃k,i(i =
1, . . . , `+ 1) defined by V1 = V , Q̃k,1 = Id and then for i = 1, . . . , ` as follows

(3.20)
Q̃k,i+1 : Rd → R(P sk,i+1) ∩ Vi orthogonal projector,

Vi+1 = P uk,i+1Vi ⊕ Q̃k,i+1Vi.

Figure 3.4 illustrates this recursion for two characteristic cases. The initial space V = V1
is successively replaced by spaces V2, V3, . . . , V`+1 =: Tk(V ) of the same dimension by
working down the flag of subspaces in (3.3). In each step the intersection R(P sk,i+1) ∩ Vi
with the current stable space is kept while the remaining part is replaced by its current
unstable projection P uk,i+1Vi.

Note that Lemma 2.4 implies Vi+1 = (P uk,i+1 + Q̃k,i+1)Vi and dimVi = dimVi+1. In
addition, we claim for i = 1, . . . , `

(3.21) P uk,i+1Vi =
( i∑
ν=1

Pk,νQsk,ν
)
V, Q̃k,i+1Vi = Qsk,i+1V.

11



Figure 3.4: Recursive construction of subspaces, cf. (3.20) for two characteristic cases.
Upper row: Since V intersects W i

k only in {0} for any i ∈ {1, 2, 3}, the sequence of
subspaces (Vi)i≤4 is constant for i ≥ 3, i.e. V2 6= V3 = V4. Lower row: V has a nontrivial
intersection with W3

k and the sequence of subspaces (Vi)i≤4 is constant for i ≥ 2. In both
cases, the trace space of V is given as Tk(V ) = V3.

We proceed by induction. First note that (3.3), (3.20) and (3.15) imply P sk,1 = Id, Qk,1V =

Q̃k,1V1. Further, we have by (3.6), (3.20), (3.15)

P uk,2V1 = Pk,1V, Q̃k,2V1 = R(P sk,2) ∩ V = Qsk,2V.

Assume that (3.21) holds for the index i. Then we obtain from (3.20), (3.5)

Q̃k,i+2Vi+1 = R(P sk,i+2) ∩ Vi+1 = R(P sk,i+2) ∩ (P uk,i+1Vi ⊕ Q̃k,i+1Vi)

= R(P sk,i+2) ∩ Q̃k,i+1Vi = R(P sk,i+2) ∩ (R(P sk,i+1) ∩ V )

= R(P sk,i+2) ∩ V = Qsk,i+2V.

Furthermore,

P uk,i+2Vi+1 = P uk,i+2(P
u
k,i+1Vi ⊕ Q̃k,i+1Vi)

= P uk,i+2

(( i∑
ν=1

Pk,νQsk,ν
)
V ⊕Qsk,i+1V

)
=
( i∑
ν=1

P uk,i+2Pk,νQsk,ν
)
V + P uk,i+2P

s
k,i+1Q

s
k,i+1V.

From (3.3), (3.5) and (3.6) we have the equalities P uk,i+2Pk,ν = Pk,ν for ν ≤ i and

12



P uk,i+2P
s
k,i+1 = Pk,i+1. With R(Pk,i+1) ∩

⊕i
ν=1Wν

k = {0} this leads to

P uk,i+2Vi+1 =
( i∑
ν=1

Pk,νQsk,ν
)
V ⊕ Pk,i+1Q

s
k,i+1V =

( i+1∑
ν=1

Pk,νQsk,ν
)
V.

The last equality needs an argument. The relation “⊇” is obvious. For the converse we
consider v, w ∈ V and construct ṽ ∈ V such that

(3.22)

i∑
ν=1

Pk,νQsk,νv + Pk,i+1Q
s
k,i+1w =

i+1∑
ν=1

Pk,νQsk,ν ṽ.

For this purpose set ṽ = v + Qsk,i+1(w − v) and verify (3.22) by using the equality
Pk,νQsk,νQsk,i+1(w − v) = Pk,νQsk,i+1(w − v) = Pk,νP sk,i+1Q

s
k,i+1(w − v) = 0 for ν ≤ i.

In this way one also obtains the equality of the representations (3.16) and (3.17) via an
induction w.r.t. the index i.
Step2: We prove the key estimate (3.19). Let us apply Theorem 3.3 for i = 1, . . . , ` to the
scaled operator Φγ with γ ∈ Ri+1 = (σ+i+1, σ

−
i ) and Vi ∈ G(s, d), Q̃k,i as defined by (3.20)

(recall (3.2) and σ+`+1 = 0). The index jsk,i is determined by 2K2
(σ+

i+1

σ−
i

)jsk,iρsk,i(V ) ≤ 1 (cf.

(3.9)) where, due to the second equation in (3.21),

ρsk,i(V ) = inf{C > 0 : ‖P sk,i+1(I −Qsk,i+1)v‖ ≤ C‖P uk,i+1(I −Qsk,i+1)v‖ ∀v ∈ V }.

Then the estimate (3.10) leads for j ≥ k + jsk,i and i = 1 . . . , ` to

](Φγ(j, k)Vi,Φγ(j, k)Vi+1)) ≤
2√
3
K2

(
σ+i+1

σ−i

)j−k
ρsk,i(V ).

Since angles do not depend on scalings we can replace Φγ by Φ in this estimate. Finally,
observe P sk,`+1 = 0, Qsk,`+1 = 0 and thus V`+1 = P uk,`+1V` = V` = Tk(V ) due to (3.21). The

triangle inequality then yields for j − k ≥ j = maxi=1,...,` j
s
k,i

](Φ(j, k)V,Φ(j, k)Tk(V )) ≤
∑̀
i=1

](Φ(j, k)Vi,Φ(j, k)Vi+1)

≤ 2K2

√
3

(
max

i=1,...,`−1

σ+i+1

σ−i

)j−k ∑̀
i=1

ρsk,i(V ).

Some conclusions of Theorem 3.4 are summarized in Theorem 3.6 below. In particular,
we present an important characterization of outer angular values

ˆ
θ1, θ̂1 if all spectral

bundles are one-dimensional.

Theorem 3.6. Let the assumptions of Theorem 3.4 hold and define the quantities (see
(2.4))

a1,n(V ) =

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V ) n ∈ N, V ∈ G(s, d).
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Then the following holds for all V ∈ G(s, d)

(3.23) lim sup
n→∞

1

n
a1,n(V ) = lim sup

n→∞

1

n
a1,n(T0(V )),

and similarly with lim inf instead of lim sup. The outer angular values satisfy

(3.24) θ̂s = sup
V ∈D0(s,d)

lim sup
n→∞

1

n
a1,n(V ),

ˆ
θs = sup

V ∈D0(s,d)
lim inf
n→∞

1

n
a1,n(V ).

If dim(W i
m) = 1 for all i = 1, . . . , d and m ∈ N0, then the first lower and upper outer

angular values have the form

(3.25)
ˆ
θ1 = max

i=1,...,d
lim inf
n→∞

1

n

n∑
j=1

](W i
j−1,W i

j),

θ̂1 = max
i=1,...,d

lim sup
n→∞

1

n

n∑
j=1

](W i
j−1,W i

j).

Proof. From the triangle inequality (Proposition 2.2) we obtain

(3.26)

|a1,n(V )− a1,n(T0(V ))| ≤
n∑
j=1

{](Φ(j − 1, 0)V,Φ(j − 1, 0)T0(V ))

+ ](Φ(j, 0)V,Φ(j, 0)T0(V ))} ≤ 2
n∑
j=0

](Φ(j, 0)V,Φ(j, 0)T0(V )).

Theorem 3.4 shows that the angles decay geometrically for j ≥ j(0, V ), hence the right-
hand side is uniformly bounded by a constant depending on V only. Therefore (3.23)
follows, and (3.24) is an immediate consequence by taking the supremum with respect to
V .

In the case s = 1 and dim(W i
m) = 1 for i = 1, . . . , d the set D0(1, d) = {W i

0 : i =
1, . . . , d} becomes finite. Moreover, we have Φ(j, 0)W i

0 = W i
j by the invariance condition

(3.7). Thus, the formula (3.24) simplifies to (3.25).

In view of Theorem 3.4, we revisit crucial examples from [9, Section 3.2]. The first
model is defined for n ∈ N0 and 0 ≤ ϕ0 < ϕ1 ≤ π

2 by

An =


(

cos(ϕ0) − sin(ϕ0)
sin(ϕ0) cos(ϕ0)

)
, for n = 0 ∨ n ∈

⋃∞
`=1[2

2`−1, 22` − 1] ∩N,(
cos(ϕ1) − sin(ϕ1)
sin(ϕ1) cos(ϕ1)

)
, otherwise.

For this example, upper and lower angular values do not coincide in general, more precisely,
the diagram (2.7) now reads

ˆ
θ[1] <

ˆ
θ1 < θ̂1 < θ̂[1]= = = =

¯
θ[1] <

¯
θ1 < θ̄1 < θ̄[1].
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For the second example, defined for n ∈ N0 by

An :=

{(−1 0
0 1

)
, for n ∈

⋃∞
`=1[2 · 2` − 4, 3 · 2` − 5],(

1 0
0 1

2

)
, otherwise

inner and outer angular values differ, i.e. the diagram (2.7) turns into

ˆ
θ[1] =

ˆ
θ1 = θ̂1 = θ̂[1]= < < <

¯
θ[1] <

¯
θ1 < θ̄1 < θ̄[1].

The dichotomy spectrum of the first example is given by ΣED = {1} and for the second
example, we obtain ΣED = [12 , 1]. In both cases W1

k = R
2 for all k ∈ N. Thus one-

dimensional trace spaces agree with the given space. In particular, the detection of angular
values cannot be reduced by Theorem 3.4 and Theorem 3.6 to lower dimensional spaces.

3.3. Inner angular values and spectral bundles. Inner angular values are more diffi-
cult to handle, both numerically and theoretically, since the supremum over all subspaces
is taken before going to the limit. For general dimensions we do not have a result com-
parable to Theorem 3.4. However, for one-dimensional subspaces a reduction is possible
under a uniformity condition. Recall from (2.4) the notion

am,n(v) =

n∑
j=m

](Φ(j − 1, 0)v,Φ(j, 0)v) m,n ∈ N, v ∈ Rd, v 6= 0(3.27)

with am,n(v) = 0 for m > n. For a subspace V ⊆ Rd we introduce the quantity

θ1(V ) = lim sup
n→∞

sup
v∈V,v 6=0

a1,n(v)

n
.

Note that θ1(V ) is the maximum angular value for all one-dimensional subspaces of V . In
case V = R

d this value agree with θ1 as defined in (2.5).

Theorem 3.7. Let the assumptions of Theorem 3.4 hold. Further assume that the inner
and the uniform inner angular values (cf. (2.5), (2.6) and (2.7)) agree within each fiber,
i.e. for i = 1, . . . , ` the following holds

θ1(W i
0) = lim

n→∞

1

n
sup

v∈Wi
0,v 6=0

sup
k∈N0

ak+1,k+n(v).(3.28)

Then the first inner angular value θ = θ1(R
d) satisfies

θ1 = max
i=1,...,`

θ1(W i
0).

Proof. The main step is to show for i = 1, . . . , `

(3.29) θ1(R(P s0,i)) ≤ max
(
θ1(W i

0), θ1(R(P s0,i+1))
)
.
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Since P s0,1 = Id, P
s
0,`+1 = 0 and sup∅ = 0, we obtain by induction

θ1(R
d) ≤ max

i=1,...,`
θ1(W i

0).

The converse inequality “≥” is obvious, hence our assertion is proved.
In the following we choose j? such that (cf. (3.19))

2K2qj? ≤ 1, where q := max
i=1,...,`

σ+i+1

σ−i
< 1.

For the proof of (3.29) it is enough to consider v ∈ R(P s0,i) with v /∈ R(P s0,i+1)

and v /∈ W i
0. Figure 3.5 illustrates the idea of the proof. Vectors v close to but not

in R(P s0,i+1) may spend arbitrarily large time near R(P s0,i+1) until finally converging to
R(P u0,i+1). There is an exponentially growing initial phase switching at some index k?
to an exponentially decreasing final phase. Though the switching point k? depends on v
our uniformity assumption will allow estimates independent of v. We choose γ ∈ Ri+1

Figure 3.5: Idea of proof for Theorem 3.7. First, we construct a v-dependent index k?,
such that Φ(k?, 0)v is just above the diagonal. Then, we exploit geometric convergence
forward resp. backward in time for proving v-independent estimates.

and apply Theorem 3.3 to Φγ and V = span(v) as in Step 2 of the proof of Theorem
3.4. Note that the projector Qs0,i+1 : Rd → R(P s0,i+1) ∩ V from (3.15) is trivial since V
is one-dimensional and v /∈ R(P s0,i+1). Moreover, by (3.6) we have P0,iv = P u0,i+1P

s
0,iv =

P u0,i+1v 6= 0. Therefore, we can invoke inequality (3.11) from the proof of Theorem 3.3

with P̃ = P uk,i+1, ρ
s
k(v) =

‖P s0,i+1v‖
‖Pu0,i+1v‖

, αsαu ≤ q. This shows

‖P sk,i+1Φγ(k, 0)v‖ ≤ K2qkρsk(v)‖P uk,i+1Φγ(k, 0)v‖ ∀k ∈ N0.

We conclude that the following index, depending on v, exists

k? = k?(v) = min{k ∈ N0 : ‖P sk,i+1Φγ(k, 0)v‖ ≤ ‖P uk,i+1Φγ(k, 0)v‖}.
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Applying Theorem 3.3 once more to Φγ and V = span(Φγ(k?, 0)v) then shows for j ≥
k? + j?

](Φ(j, k?)Φ(k?, 0)v,Φ(j, k?)P
u
k?,i+1Φ(k?, 0)v)

= ](Φ(j, 0)v,Φ(j, 0)P u0,i+1v) ≤ 2K2

√
3
qj−k? .

Next we estimate angles for j ≤ k? by invoking (3.14) with k = k? − 1 and V =
span(Φγ(k? − 1, 0)v). Since v /∈ W i

0 the projector in (3.12) is trivial, and (3.13) holds
by the choice of j?. Hence we obtain for 0 ≤ j ≤ k? − 1− j?

](Φ(j, k? − 1)Φ(k? − 1, 0)v,Φ(j, k?)P
s
k?,i+1Φ(k?, 0)v)

= ](Φ(j, 0)v,Φ(j, 0)P s0,i+1v) ≤ 2K2

√
3
qk?−1−j .

Combining these estimates with the triangle inequality we find with suitable constants C
independent of n, j, v,

(3.30)

a1,n(v)

n
=

1

n

n∑
j=1

](Φ(j − 1, 0)v,Φ(j, 0)v)

≤ 1

n

[{ k?−1−j?∑
j=1

+
n∑

j=k?+1+j?

}
](Φ(j − 1, 0)v,Φ(j, 0)v) + (2j? + 1)

π

2

]

≤ 1

n

[4K2

√
3

(

k?−1−j?∑
j=0

qk?−1−j +
n∑

j=k?

qj−k?) + C

+

k?∑
j=1

](Φ(j − 1, 0)P s0,i+1v,Φ(j, 0)P s0,i+1v)

+

n∑
j=k?+1

](Φ(j − 1, 0)P u0,i+1v,Φ(j, 0)P u0,i+1v)
]

≤ 1

n

[
C + a1,k?(P

s
0,i+1v) + ak?+1,n(P u0,i+1v)

]
.

Given ε > 0, assumption (3.28) yields a number n0 = n0(ε) such that

(3.31)

1

n
sup
k∈N0

sup
v∈Wi

0

ak+1,k+n(v) ≤ θ1(W i
0) + ε, ∀n ≥ n0,

1

n
sup

v∈R(P s0,i+1)
a1,n(v) ≤ θ1(R(P s0,i+1)) + ε, ∀n ≥ n0.

Thus we have

ak?+1,n(P u0,i+1v) ≤

{
(n− k?)(θ1(W i

0) + ε), if n− k? ≥ n0,
n0

π
2 , if n− k? < n0,

a1,k?(P
s
0,i+1v) ≤

{
k?(θ1(R(P s0,i+1)) + ε), if k? ≥ n0,
n0

π
2 , if k? < n0.
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Summing up, we obtain for n ≥ n0(ε),

a1,n(v)

n
≤ 1

n

[
min(k?, n)(θ1(R(P s0,i+1)) + ε) + (n−min(n, k?))(θ1(W i

0) + ε)

+C + n0π] ≤ max(θ1(W i
0), θ1(R(P s0,i+1))) + ε+

1

n
(C + n0π).

Finally, the assertion (3.29) follows by taking the supremum over v and making the last
term small for n sufficiently large.

3.4. Uniform angular values and spectral bundles. In this section we extend Theorem
3.6 and Theorem 3.7 to uniform outer and inner angular values. As before, we show
that it is enough to compute angular values for subspaces which have their basis in the
fibers induced by the dichotomy spectrum. Since we deal with uniform angular values a
uniformity condition like (3.28) is no longer needed.

Theorem 3.8. Let the assumptions of Theorem 3.4 hold. Then the uniform outer an-
gular values θ̂[s],

ˆ
θ[s], s = 1, . . . , d, can be represented with the partial sums (2.4) and the

set of trace spaces (3.18) as follows:

θ̂[s] = sup
V ∈D0(s,d)

lim
n→∞

sup
k∈N0

1

n
ak+1,k+n(V ),(3.32)

ˆ
θ[s] = sup

V ∈D0(s,d)
lim
n→∞

inf
k∈N0

1

n
ak+1,k+n(V ).(3.33)

With the partial sums from (3.27), the first uniform inner angular value satisfies

(3.34) θ[1] = max
i=1,...,`

θ[1](W i
0), where θ[1](V ) = lim

n→∞
sup
v∈V

sup
k∈N0

1

n
ak+1,k+n(v).

Proof. Recall am,n(V ) from (2.4) and use (3.26), (3.19) to find that V ∈ G(s, d) satisfies
with some constant C depending on V but not on k, n,

(3.35)

|ak+1,k+n(V )− ak+1,k+n(T0(V ))| ≤ 2

k+n∑
j=k

](Φ(j, 0)V,Φ(j, 0)(T0(V )))

≤ 2C(0, V )

k+n∑
j=k

qj−k ≤ C.

Given ε > 0, choose n0 such that for n ≥ n0∣∣ 1
n

sup
k∈N0

ak+1,k+n(V )− lim
m→∞

1

m
sup
k∈N0

ak+1,k+m(V )
∣∣ ≤ ε.

Then select k(n) ∈ N0 such that 1
n |ak(n)+1,k(n)+n(V )− supk∈N0

ak+1,k+n(V )| ≤ ε holds for
n ≥ n0. This implies∣∣ 1

n
ak(n)+1,k(n)+n(V )− lim

m→∞

1

m
sup
k∈N0

ak+1,k+m(V )
∣∣ ≤ 2ε, n ≥ n0.
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With (3.35) we obtain for n ≥ n0

lim
m→∞

1

m
sup
k∈N0

ak+1,k+m(V ) ≤ 1

n
ak(n)+1,k(n)+n(V ) + 2ε

≤ C

n
+

1

n
ak(n)+1,k(n)+n(T0(V )) + 2ε

≤ C

n
+

1

n
sup
k∈N0

ak+1,k+n(T0(V )) + 2ε.

As n→∞ this shows

lim
n→∞

1

n
sup
k∈N0

ak+1,k+n(V ) ≤ 2ε+ lim
n→∞

1

n
sup
k∈N0

ak+1,k+n(T0(V )).

A corresponding inequality with V and T0(V ) exchanged, is proved in the same manner,
and (3.32) follows by taking the supremum over V ∈ G(s, d). The same type of estimate
leads to (3.33). The formula in (3.34) follows by adapting the proof of Theorem 3.7. For
the quantities θ[1](V ) from (3.34) we show

(3.36) θ[1](R(P s0,i)) ≤ max
(
θ[1](W i

0), θ[1](R(P s0,i+1))
)
, i = 1, . . . , `.

The estimate (3.30) for v ∈ R(P s0,i) \ (R(P s0,i+1) ∪W i
0) now reads

1

n
ak+1,k+n(v) ≤ 1

n

[
C + ak+1,k?−j?−1(P

s
0,i+1v) + amax(k,k?+j?+1),n+k(P

u
0,i+1v)

]
.

Recall am,n = 0 for m > n and note that there is no relation between k, k?(v) and n. The
condition (3.31) for n0 turns into

1

n
sup
v∈Wi

0

sup
k∈N0

ak+1,k+n(v) ≤ θ[1](W i
0) + ε, ∀n ≥ n0,

1

n
sup

v∈R(P s0,i+1)
sup
k∈N0

ak+1,k+n(v) ≤ θ[1](R(P s0,i+1)) + ε, ∀n ≥ n0.

This leads to

(3.37)

ak1,n+k(P
u
0,i+1v) ≤

{
(n+ k − k1)(θ[1](W i

0) + ε), if n+ k − k1 ≥ n0,
n0

π
2 , if n+ k − k1 < n0,

ak+1,k2(P s0,i+1v) ≤

{
(k2 − k − 1)(θ[1](R(P s0,i+1)) + ε), if k2 − k − 1 ≥ n0,
n0

π
2 , if k2 − k − 1 < n0,

where k1 = max(k, k? + j? + 1), k2 = k? − j? − 1. In both cases k ≥ k? + j? + 1 and
k < k? + j? + 1 we find the estimate n+ k− k1 + k2− k− 1 ≤ n for the sum of coefficients
in (3.37). Hence, we can continue

1

n
ak+1,k+n(v) ≤ 1

n

[
C + n0π + n

(
max(θ[1](W i

0), θ[1](R(P s0,i+1))) + ε
)]
.

Taking the supremum over k and v and then letting n→∞ yields the assertion (3.36) as
in the proof of Theorem 3.7.
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4. Numerical algorithms and results. The aim of this section is to develop an algo-
rithm for the numerical detection of outer angular values. The previous section provides
the essential reduction result in Theorem 3.6:

θ̂s = sup
V ∈G(s,d)

lim sup
n→∞

1

n

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V )

= sup
V ∈D0(s,d)

lim sup
n→∞

1

n

n∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V ).

The search for the supremum of V in D0(s, d) instead of G(s, d) reduces the computational
effort substantially and, in some cases, one needs to consider only finitely many subspaces.
This reduction method receives further support from the fact that some obvious numerical
approaches tend to fail:

• Algorithms based on a simple forward iteration cannot provide the largest angular
value. A generic subspace is pushed by the dynamics towards the most unstable
trace space of equal dimension, see the upper row in Figure 3.4. But in general,
the angular value is not achieved in this subspace. For the correct angular value,
also non-generic subspaces must be considered, as sketched in the lower row of
Figure 3.4. We refer to the Hénon example in Section 4.2.4 and to Figure 4.4
which illustrates the failure of a naive approach.
• Algorithms based on the computation of eigenvalues and eigenspaces, e.g. by ap-

plying the Schur decomposition, provide good results for autonomous systems.
This fits well to our theory, since in the autonomous case, spectral bundles w.r.t.
the dichotomy spectrum are indeed eigenspaces. The corresponding analysis for
autonomous systems is carried out in detail in [9]. For nonautonomous models,
eigenvalues of linearizations at a fixed time are known to be dynamically irrelevant
as was first shown by Vinograd; see [36]. Corresponding algorithms fail in testing
all trace subspaces.

To resolve these issues, we first detect the dichotomy spectrum and the corresponding
spectral bundles. Then all trace subspaces become available, resulting in a numerically
expensive but reliable approximation of θ̂s. Finally, let us emphasize that this value aims
at finding the subspace of maximal rotation in the global attractor of the system (if it
exists). In general, our approach to angular values ignores other dynamically relevant
features of the system, such as invariant manifolds or unstable fixed points and unstable
periodic orbits if they do not belong to the ω-limit set of the current trajectory.

4.1. An algorithm for computing angular values. Consider the difference equation
(1.1) on an interval I that is bounded from below. We propose the following three steps
for the numerical approximation of θ̂s.

First, we compute the dichotomy spectrum in step 1 followed by an approximation of
the corresponding fiber bundles in step 2. To obtain accurate numerical results on the
discrete interval [0,M ]∩N0, buffer intervals of length b (we choose b = 50) are needed. The
algorithm from [20, 25] requires to solve least squares problems on the extended interval
I = [−b,M + b] ∩N0.

The crucial part of our algorithm is the approximation of θ̂s for s ∈ {1, 2} in step 3. It
is based on the reduction results from Section 3 and therefore needs the spectral bundles
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that are computed in step 2. Readers, familiar with the computation of dichotomy spectra
and spectral bundles may proceed directly with step 3.

Step 1: Computation of the dichotomy spectrum. The computation of Bohl expo-
nents leads to an efficient algorithm for the approximation of the dichotomy spectrum.
Upper and lower Bohl exponents of the scalar difference equation

un+1 = anun, n ∈ I, 0 < inf
n∈I
|an| ≤ sup

n∈I
|an| <∞

are defined as, see [26]

β(aI) := lim
n→∞

inf
κ∈I

κ+n−1∏
j=κ

|aj |

 1
n

, β(aI) := lim
n→∞

sup
κ∈I

κ+n−1∏
j=κ

|aj |

 1
n

.

It follows that ΣED = [β(aI), β(aI)].
For the d-dimensional difference equation (1.1), a corresponding result is more delicate

to obtain. One may first transform the system into upper triangular form, using a qr-
decomposition A = QT of a given matrix A into the product of an orthogonal matrix Q
and an upper triangular matrix T , see [24, Section 4.4] and [15]:

Q0T0 = qr(A0)
for j = 1, 2, . . . do

QjTj = qr(AjQj−1)
end for

Note that Aj = QjTjQ
>
j−1 for j ≥ 1. For non-degenerate models, the Bohl exponents

of the diagonal entries of Tj (denoted by Tj(i, i)) determine the dichotomy spectrum. We
refer to [33] for details on the corresponding theoretical background. More relations of
Bohl exponents to other exponents and a perturbation analysis may be found for discrete-
time systems in [6] and for continuous-time systems in [7]. In our case we fix a sufficiently
large H ∈ N (called the Steklov window) and compute

(4.1) β(i, κ) :=

κ+H∏
j=κ

|Tj(i, i)|

 1
H

, i = 1, . . . , d, κ = 0, 1, . . . .

With β(i) := minκ β(i, κ), β(i) := maxκ β(i, κ) we obtain the approximate spectrum

ΣED ≈
⋃d
i=1[β(i), β(i)] where the values are ordered according to β(1) ≥ · · · ≥ β(d). In

the numerical experiments the spectral values turned out to be rather insensitive to the
choice of Steklov window, and H = bM2 c was found to be suitable for all results below.

Step 2: Computation of spectral bundles. Recall for j ∈ N and i ∈ {1, . . . , `}
the representation (3.4), (3.6) of the spectral bundle W i

j = R(Pj,i) = R(P sj,iP
u
j,i+1) with

dim(W i
j) = di. For computing these sets numerically, we apply the ansatz, proposed in

[25, Section 2.5]. Take di random vectors rν ∈ Rd and obtain a basis of W i
j (in a generic

sense) by calculating Pj,irν for ν = 1, . . . , di. For this task, we choose γi ∈ Ri, γi+1 ∈ Ri+1

close to the boundary of the spectral interval Ii, cf. [25, Section 2.6]. We solve for each
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ν ∈ {1, . . . , di} and simultaneously for j ∈ [0,M ] ∩N0 the inhomogeneous linear systems

(4.2)

vνn+1 =
1

γi+1
Anv

ν
n + δn,j−1rν ,

uνn+1 =
1

γi
Anu

ν
n − δn,j−1Aj−1vνj−1,

n = −b, . . . ,M + b− 1

in a least squares sense. Here, δ denotes the Kronecker symbol. For the solutions of
(4.2) one has Pj,irν ≈ uνj , and we refer to [25, Section 2.6] for precise error estimates.

In this way, we obtain bases of W i
j for j ∈ [0,M ] ∩N0 and i ∈ {1, . . . , `}. If these fiber

bundles are two-dimensional, we choose an orthonormal basis at each time instance. Note
that an accurate computation of Φ(j, 0)v in (4.3) for v ∈ Bi0 can only be achieved by
projecting the results to the respective spectral bundles. Thus, it does not suffice to have
an approximation of the initial fiber W i

0, only.

Step 3: Computation of angular values. Assume that the spectral bundles W i
j ,

i = 1, . . . , `, j = 0, . . . ,M have been computed in step 2. We present a numerical scheme
for computing approximate values of θ̂s in the case s ∈ {1, 2}. Assume dim(W i

0) ∈ {1, 2}
and introduce the balls Bi0 = {v ∈ W i

0 : ‖v‖ = 1} for all i ∈ {1, . . . , `}. For a subspace
V ∈ G(s, d) (resp. a vector v ∈ Rd ) we abbreviate as in (2.4)

θs(V ) =
1

M
a1,M (V ) =

1

M

M∑
j=1

](Φ(j − 1, 0)V,Φ(j, 0)V ), θs(v) = θs(span(v)).(4.3)

Our goal is to use the M -dependent values θs(V ) for an approximation of

(4.4) θ̂s ≈ θ̂s,M := sup
V ∈G(s,d)

θs(V ).

Starting with s = 1 our scheme reads:

for i = 1, . . . , ` do
wi = max

v∈Bi0
θ1(v)

end for
θ̂1 = maxi=1,...,`w

i.

If dim(W i
0) = 1 then θ1(W i

0) is computed for a single one-dimensional subspace. The
detection of maxv∈Bi0

θ1(v) is a one-dimensional optimization problem if dimW i
0 = 2. For

this task, we apply the MATLAB-routine fminbnd that is based on golden section search
and parabolic interpolation. The corresponding scheme for s = 2 is given by:
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κ = 0
for i = 1, . . . , ` do

if dim(W i
0) = 2 then

κ = κ+ 1
wκ = θ2(W i

0)
end if

end for
for i1 = 1, . . . , `− 1 do

for i2 = i1 + 1, . . . , ` do
κ = κ+ 1
wκ = max

x∈Bi10 , y∈B
i2
0
θ2(span(x, y))

end for
end for
θ̂2 = maxi=1,...,κw

i.

Note that the algorithm avoids to distinguish cases. If dim(W i1
0 ) = dim(W i2

0 ) =
1 then θ2(W i1

0 ⊕ W
i2
0 ) is computed for a single two-dimensional subspace. In the case

dim(W i1
0 ) + dim(W i2

0 ) = 3, we solve a one-dimensional optimization problem with the
tools, described in the case s = 1. If dim(W i1

0 ) + dim(W i2
0 ) = 4, then the optimization

problem is two-dimensional, and we apply the MATLAB-command fminsearch, which
uses a derivative-free method for finding minima of unconstrained multivariable functions.

In all cases, we avoid numerical errors during the iteration of Φ(j, 0)x for x ∈ W i
0 (i.e.

convergence towards the most unstable direction) by renormalizing the resulting output
to W i

j after each step.

4.2. Numerical experiments. We apply our algorithm from Section 4.1 to several
models. First we reconsider some autonomous difference equations from cf. [9]. For this
class of systems the algorithm from [9, Section 6] uses a series of Schur decompositions and
one-dimensional optimization if necessary. Although this is more efficient for autonomous
systems, we still apply in the following our general algorithm to the autonomous case in
order to illustrate its performance. Furthermore, we apply both algorithms in Section
4.2.2 to autonomous systems and compare the results.

4.2.1. Two-dimensional models. We begin with several two-dimensional models for
which angular values are analytically known. For these examples we always find point
spectrum which we approximate by upper and lower Bohl exponents. In some cases
upper and lower exponents coincide up to machine accuracy, while in other models, we
numerically observe intervals of length ≈ 10−3. In the following we denote by Tϕ =(

cosϕ − sinϕ
sinϕ cosϕ

)
a rotation matrix.

The models from the first two rows in Table 4.1 are autonomous and we obtain approx-
imately the expected results, see [9]. The second example is a reflection which exhibits
the angular value θ̂1 = π

2 with a somewhat smaller error. The third model is constructed
via a nonautonomous similarity transformation with rotation matrices, and we obtain the
angular value θ̂1 = ϕ = 1

3 with high accuracy. Finally, in the last row of Table 4.1 we
consider a rotation by the angle ϕ = 1

3 which is an irrational multiple of π. The angle
](u, Tn·ϕu) is π

4 on average, in agreement with our numerical experiment.
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An spectral intervals θ̂1,num |θ̂1 − θ̂1,num|

( 2 0
0 3 )

I1 = [3, 3]
I2 = [2, 2]

5 · 10−15 5 · 10−15(
cosϕ sinϕ
sinϕ − cosϕ

)
I1 = [1, 1] π

2−3·10
−5 3 · 10−5

T(n+1)ϕ · ( 2 0
0 3 ) · T−n·ϕ

I1 = [2.996, 3.000]
I2 = [2.000, 2.002]

1
3+6·10−13 6 · 10−13

Tn·ϕ I2 = [1, 1] π
4 +3.1·10−4 3.1 · 10−4

Table 4.1: Spectral intervals and the first angular value for four examples. We set ϕ = 1
3

and use our algorithm with M = 2000 iterates.

4.2.2. Two autonomous examples. Next we apply our algorithm to autonomous ex-
amples and compare with the output of [9, Algorithm 6.2] based on Schur decompositions.
For this task we take the normal form

A(ρ, ϕ) =

(
cos(ϕ) −ρ−1 sin(ϕ)
ρ sin(ϕ) cos(ϕ)

)
, 0 < ρ ≤ 1, 0 < ϕ ≤ π

2
(4.5)

and consider first the matrix A(17 ,
1
3). The autonomous algorithm uses an in-depth analysis

of the first angular value of (4.5), given in [9, Theorem 6.1]. The resulting angular value
is θ̂1,auto = 0.32106. In coincidence with this result, the algorithm from Section 4.1 yields

the spectral interval I1 = [0.9991, 1.0009] and the angular value θ̂1,num = 0.32175.
Next, we analyze the four-dimensional matrix

A =

(
A(1, 12) I2

0 ηA(12 , 1.4)

)
with η = 1.2. This example is crucial since the angular values cannot be read off from
the diagonal blocks only. Rather, one has to compute orthogonal bases of both two-
dimensional invariant subspaces. The analysis and the corresponding algorithm in [9,
Section 6.3.2] provide the angular value θ̂1,auto = 1.355003. Our current algorithm from
Section 4.1 findes the spectral intervals

I1 = [1.1992, 1.2008] and I2 = [1.0000, 1.0000]

with corresponding angular values

θ̂1,num = θ1(W1
0 ) = 1.355095 and θ1(W2

0 ) = 0.500000.

This fits well to the results of the autonomous algorithm.

4.2.3. Angular values and tangent spaces. For a geometric interpretation of angular
values, we consider an invertible discrete-time dynamical system defined on Z. Let Fn :
R
d → R

d, n ∈ Z be a family of C2- diffeomorphisms and let

(4.6) xn+1 = Fn(xn), n ∈ Z.
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Denote by Ψ the solution operator of (4.6). For a bounded trajectory ξZ := (ξn)n∈Z, we
introduce the corresponding variational equation

(4.7) un+1 = DFn(ξn)un, n ∈ Z,

with solution operator Φ. Note that (4.6) has the form (1.1) with An = DFn(ξn). We
further assume that the bounded trajectory ξZ is hyperbolic, i.e. 1 is in the resolvent set
of the dichotomy spectrum of (4.7).

Stable and unstable fiber bundles of ξZ are defined at time k ∈ Z as

Fsk :=
{
x ∈ Rd : lim

n→∞
|Ψ(n, k)(x)− ξn| = 0

}
,

Fuk :=

{
x ∈ Rd : lim

n→−∞
|Ψ(n, k)(x)− ξn| = 0

}
,

and we denote corresponding tangent spaces by TξkFsk and TξkFuk . These tangent spaces
are related to spectral bundles from Section 3.1 as follows. Fix i ∈ {1, . . . , `} such that
1 ∈ Ri, where Ri denotes the i-th resolvent interval. We conclude from [32, Theorem
4.6.4] and (3.5) that

TξkF
s
k = R(P sk,i) =

⊕̀
j=i

Wj
k and TξkF

u
k = R(P uk,i) =

i−1⊕
j=1

Wj
k.

For two-dimensional systems with dim(Fsk) = dim(Fuk ) = 1, we observe that

θ1(W2
0 ) =

1

M

M∑
j=1

](Φ(j − 1, 0)W2
0 ,Φ(j, 0)W2

0 ) =
1

M

M∑
j=1

](Tξj−1
Fsj−1, TξjF

s
j ),

θ1(W1
0 ) =

1

M

M∑
j=1

](Φ(j − 1, 0)W1
0 ,Φ(j, 0)W1

0 ) =
1

M

M∑
j=1

](Tξj−1
Fuj−1, TξjF

u
j )

describes the angle between successive stable resp. unstable tangent spaces on average.
The maximum of these two averages is θ̂1 = max{θ1(W1

0 ), θ1(W2
0 )}.

In higher dimensional systems, a geometric interpretation of angular values is more
involved. If a three-dimensional model, for example, satisfies dim(Fuk ) = 1 and dim(Fsk) =
2, we get for the one-dimensional unstable subspace

θ1(W1
0 ) =

1

M

M∑
j=1

](Tξj−1
Fuj−1, TξjF

u
j ).

Next, we consider the two-dimensional stable subspace

Ws
0 :=

{
W2

0 , if dim(W2
0 ) = 2,

W2
0 ⊕W3

0 , otherwise.

The first angular value

θ1(Ws
0) = sup

v∈Tξ0F
s
0

1

M

M∑
j=1

](Φ(j − 1, 0)v,Φ(j, 0)v)
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describes on average the maximal angle between successive one-dimensional subspaces in
TξZFsZ. Combining these result gives θ̂1 = max{θ1(W1

0 ), θ1(Ws
0)}.

For three-dimensional models, also second angular values are of interest. The average
angle between successive two-dimensional stable subspaces is given by

θ2(Ws
0) =

1

M

M∑
j=1

](Tξj−1
Fsj−1, TξjF

s
j )

and the latter formula provides a nice geometrical interpretation. However, for computing
θ̂2, we have to consider further subspaces:

θ̂2 = max({θ2(Ws
0)} ∪ {θ2(V ) : V =W1

0 ⊕ span(u) : u ∈ Ws
0}).

As a consequence, second and higher angular values are in general not achieved within the
stable resp. unstable tangent bundle.

4.2.4. Models of Hénon type. We illustrate the geometric interpretation of angular
values from Section 4.2.3 with two autonomous, nonlinear systems. Of interest are the
two-dimensional Hénon map [22] as well as its three dimensional variant

F 2

(
x1
x2

)
=

(
1 + x2 − 1.4x21

0.3x1

)
, F 3

x1x2
x3

 =

1 + x3 − 1.4x21
x1 + x3

0.2x1 + 0.1x2

 .

The latter model is constructed similar to [10, Example 2], and possesses, like the original
Hénon map, a non-trivial attractor.

We choose M = 2000 and compute angular values for the corresponding variational
equation (4.7). Note that we apply the algorithm to these models even though we do not
know whether the hyperbolicity assumptions are satisfied.

The two-dimensional Hénon model. We choose the initial point close to the Hénon

attractor ξ−50 =
(
0.7555 0.1671

)>
and obtain the spectral intervals

I1 = [1.491, 1.549] and I2 = [0.194, 0.201]

with corresponding angular values

θ1(W1
0 ) = 0.3629, θ1(W2

0 ) = 0.7506.

The maximum θ̂1 = θ1(W2
0 ) is achieved by the angle between successive stable tangent

spaces. Stable and unstable tangent spaces are shown in Figure 4.1. In addition, we
present approximations of the stable and of the unstable manifold of the fixed point ξ.

Figure 4.2 shows the dependence of θ̂1,M from (4.4) on the length M of the finite
interval. We observe the typical slow convergence of the ergodic average (4.3) as M →∞.
So far the approximate value θ̂1,M in (4.4) was computed by starting at time k = 0. It is
instructive to compare these results with the values obtained from

(4.8) θ1(k,M) := sup
V ∈G(1,2)

1

M

k+M∑
j=k+1

](Φ(j − 1, k)V,Φ(j, k)V ),
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Figure 4.1: Upper panel: Stable (green) and unstable (red) manifolds of the fixed point ξ
of the two-dimensional Hénon model. Lower panel: Successive stable (left) and unstable
(right) tangent spaces.

102 103 104
0.68

0.7

0.72

0.74

0.76

Figure 4.2: Angular value θ̂1 in the two-dimensional Hénon model, computed for M ∈
[102, 104] ∩N.

where the computation starts at a later time k ∈ N. Taking the supremum over k results
in an approximation of uniform outer angular values θ̂[s] from Definition 2.6. Here we
analyze the dependence of (4.8) on k ∈ {0, . . . , 104} for the values M ∈ {102, 103, 104}.
Figure 4.3 shows the result for the two-dimensional Hénon model. The numerical data
suggest convergence as M →∞ uniformly in k. However, we argue that we do not expect
this to hold in theory for the following reason. Assume the orbit (ξn)n∈Z is dense in the
Hénon attractor, which contains the saddle fixed point and its unstable manifold. Then
there exist arbitrarily long time intervals on which the orbit is close to the local unstable
manifold. Thus, one finds arbitrarily large values of k for which θ1(k,M) is close to 0.
It will be extremely difficult to observe this non-uniformity w.r.t. k numerically since one
needs k-values which grow exponentially with the observation length M .
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Figure 4.3: Computation of θ1(k,M) for the two-dimensional Hénon map.

In the next experiment we show that a naive approach to compute the angular values
by forward iteration tends to fail. We consider

θ1(Vϕ) with Vϕ = span

(
cos(ϕ)
sin(ϕ)

)

for 105 equidistant values of ϕ ∈ [0, π] and display the values θ1(Vϕ) from (4.3) with

M = 2000 fixed, in Figure 4.4. As we know, the angular value θ̂1 = 0.7506 is achieved by

0
0.3625

0.363

0.3635

0.364

0.3645

Figure 4.4: Computation of θ1(Vϕ) for the two-dimensional Hénon map for 105 values of
ϕ ∈ [0, π].

the tangent space to the stable fiber. However, each subspace Vϕ with ϕ chosen from a
very fine grid, is pushed during M = 2000 iterations towards the unstable subspace. The
peak at ϕ ≈ 1.1 indicates the appropriate stable subspace, but the observed maximum
value is only slightly larger than θ1(W1

0 ) = 0.3629� 0.7506 = θ̂1.
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The three-dimensional Hénon model. We choose ξ−81 =
(
0.2 0.1 0

)>
as initial

point and obtain the spectral intervals

I1 = [1.406, 1.442], I2 = [0.378, 0.387] and I3 = [0.318, 0.333].

The corresponding unstable fibers W1
k = TξkFuk are one-dimensional and the direct sum

of the stable fibers W2
k ⊕W3

k = TξkFsk is two-dimensional. These subspaces are shown in
Figure 4.5 for 0 ≤ k ≤ 4.

The angular value θ̂1 = 0.8129 is achieved in W1
0 :

θ1(W1
0 ) = 0.825, θ1(W2

0 ) = 0.693, θ1(W3
0 ) = 0.757.

While the first angular value θ̂1 describes the angle between successive unstable tangent
spaces TξkFuk on average, the average angle between successive stable tangent spaces TξkFsk
is given by the second angular value θ̂2 = 0.839, see Figure 4.5. This value is found as the
maximum of the following numerical computations

θ2(W2
0 ⊕W3

0 ) = 0.839, θ2(W1
0 ⊕W2

0 ) = 0.611, θ2(W1
0 ⊕W3

0 ) = 0.703.

Note that generally, angular values are not achieved within stable respectively unstable
subspaces. The three-dimensional Hénon model seems to be exceptional in this regard.
In general, invariant subspaces (in a nonautonomous sense) in which angular values are
achieved, are not characterized by contracting or expanding dynamics; see Section 4.2.3
and 4.2.5.

4.2.5. A three-dimensional toy model. We construct a three-dimensional nonau-
tonomous model which depends on a parameter but has constant angular values. However,
the parameter changes the spectrum and the stability properties as well as the spectral
bundles. We show that the algorithm succeeds in finding the correct angular value regard-
less whether or not the optimization step is invoked.

With ϕ = 1
3 and parameter λ > 0 the model has the form

(4.9) An = T 1,2
ϕ(n+52) ·

1
2 0 0
0 λ 0
0 0 3

 · T 1,2
−ϕ(n+51) with T 1,2

ϕ =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


and point spectrum {12 , λ, 3}. One can show that both angular values are independent of

the parameter λ and satisfy θ̂1 = θ̂2 = ϕ = 1
3 . By choosing λ = 1

2 and λ = 2 we vary the
dimensions of the corresponding spectral bundles and study the consequences.

λ = 1
2 . The numerical spectral intervals are I1 = [3, 3] and I2 = [12 ,

1
2 ], and we obtain

the first angular value

θ1(W1
0 ) = 0, max

x∈B20
θ1(x) =

1

3
, θ̂1 =

1

3
,

and the second angular value

θ2(W2
0 ) = 0, max

x∈B20
θ2(W1

0 ⊕ span(x)) =
1

3
, θ̂2 =

1

3
,

cf. Figure 4.6. Note that the subspaces, in which the maximum is achieved are not unique.
The component in W2

0 can be chosen arbitrarily.
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Figure 4.5: Upper panel: Stable (green) and unstable (red) manifolds of the fixed point ξ
of the three-dimensional Hénon model. Lower panel: Successive one-dimensional unstable
(left) and two-dimensional stable (right) tangent spaces.

λ = 2. In this example, we obtain three spectral intervals I1 = [3, 3], I2 =
[1.9955, 2.0000] and I3 = [0.5000, 0.5011]. We find that

θ1(W1
0 ) = 0, θ1(W2

0 ) =
1

3
, θ1(W3

0 ) =
1

3
.

Thus θ̂1 = 1
3 , where the maximum is achieved for two fibers. In Figure 4.7, the algorithm

chooses W3
0 . The second angular value is also achieved for two different trace spaces:

θ2(W1
0 ⊕W2

0 ) =
1

3
, θ2(W1

0 ⊕W3
0 ) =

1

3
, θ2(W2

0 ⊕W3
0 ) = 0, θ̂2 =

1

3
.

30



Figure 4.6: Spectral bundles (blue) of (4.9) for λ = 1
2 . The angular values θ̂1,2 are achieved

at subspaces which are shown in red.

Figure 4.7: Spectral bundles (blue) of (4.9) for λ = 2. The angular values θ̂1,2 are achieved
at subspaces which are shown in red.

4.2.6. A random dynamical system. For ϕ = 0.2, we define

B1 =

2 cos(ϕ) −2 sin(ϕ) 0
2 sin(ϕ) 2 cos(ϕ) 0

0 0 3

 , B2 =

1 0 0
0 1 0
0 0 5


and construct the 3-dimensional random dynamical system

An = Br, where r ∈ {1, 2} is uniformly distributed for each n ∈ I.

This random dynamical system allows an explicit study of the dichotomy spectrum, see
[1, Remark 4.2.9], and of angular values. One has ΣED = {λ1, λ2} with

λ1 =
√

3 · 5 ≈ 3.872, λ2 =
√

1 · 2 ≈ 1.414

and the corresponding fiber bundles are

W1
0 = span

(
0
0
1

)
, W2

0 = span
((

1
0
0

)
,
(

0
1
0

))
.
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The first and second angular values are equal to 1, since

θ1(W1
0 ) = 0, ∀x ∈ B20 : θ1(x) =

0.2 + 0

2
= 0.1

and
θ2(W2

0 ) = 0, ∀x ∈ B20 : θ2(W1
0 ⊕ span(x)) = 0.1.

These analytic results are in coincidence with the output of our numerical algorithm.
One realization gives the spectral intervals I1 = [3.86, 3.92] and I2 = [1.39, 1.42] and the
first angular value

θ1(W1
0 ) = 0, max

x∈B20
θ1(x) = 0.099631 = θ̂1.

A numerical computation of the second angular value yields

θ2(W2
0 ) = 0, max

x∈B20
θ2(W1

0 ⊕ span(x)) = 0.099631 = θ̂2.

4.2.7. Coupled oscillators. We consider a canonical model for two nonlinear oscilla-
tors with a linear diffusion-like coupling originating from [3]. It has been frequently used
as a model problem for analyzing and computing invariant tori [18, 16, 34]:

(4.10) x′ = G(x), G(x) =


x1 + p1x2 − (x21 + x22)x1 − λ(x1 + x2 − x3 − x4)
−p1x1 + x2 − (x21 + x22)x2 − λ(x1 + x2 − x3 − x4)
x3 + p2x4 − (x23 + x24)x3 + λ(x1 + x2 − x3 − x4)
−p2x3 + x4 − (x23 + x24)x4 + λ(x1 + x2 − x3 − x4)

 .

For parameter values λ in some interval [0, λcrit) the model possesses an invariant torus
which breaks down at a critical value λcrit > 0; see [17], [34] for a thorough analysis
of this phenomenon and numerical results for p1 = p2 = 0.55 where λcrit ≈ 0.2607. It
is worth noting that this system has a Z2-symmetry which can be written as G(Sx) =
SG(x), x ∈ R4 for the permutation S(x1, x2, x3, x4)

> = (x3, x4, x1, x2)
>. In the following

we consider the 1-flow F : R4 → R
4 of (4.10) which inherits the symmetry S ◦F = F ◦S.

In particular, the symmetric space Xs = {x ∈ R4 : Sx = x} and the antisymmetric space
Xa = {x ∈ R4 : Sx = −x} are invariant. As in Section 4.2.3 we determine angular values
of the variational equation along an F -orbit. The 1-flow is approximated by the explicit
Euler scheme which respects the symmetry. The following data are obtained with step
size h = 0.01, and orbit length M = 1000. For 21 equidistant values of λ ∈ [0.1, 0.3], we
compute the first and second angular value in Figure 4.8. We choose for each value of λ
a random initial point in [−1, 1]4.

The breakdown of the invariant torus can be understood by comparing Lyapunov-type
numbers which measure the contraction within the torus and toward the torus; see [17].
Angular values are not suitable for this task. They measure the maximal average rotation
of one- and two-dimensional subspaces in an attractor of the system. In the coupled
oscillator system almost all trajectories converge to the in-phase symmetric orbit (lying
on the torus if it exists). Thus the spectral bundle consists of the Floquet spaces (including
the flow direction) and the angular values represent the maximal rotation of one- or two
dimensional subspaces composed of Floquet spaces. In case of an antisymmetric initial
value (and since the computation preserves antisymmetry) the orbit converges towards
the unstable antisymmetric periodic orbit (lying on the invariant torus if it exists). Then
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0.1 0.2 0.3
0.5

0.55

0.6

0.65

Figure 4.8: First (blue) and second angular value (red) for λ ∈ [0.1, 0.3].

angular values measure the maximum rotation of Floquet subspaces belonging to this
unstable orbit. For both initial data the corresponding angular value passes smoothly
through the parameter domain where the torus breaks down. Close to the breakdown
of the invariant torus, we compute two orbits for λ = 0.26 with antisymmetric initial
value xa = (0.1, 1,−0.1,−1)> and nonsymmetric initial value xr = (0.1, 1, 0.2, 0.1)> at
time −50, shown in Figure 4.9. Table 4.2 and 4.3 contain the corresponding spectral
intervals and angular values. Note that one spectral interval always contains the trivial
Floquet multiplier 1 and that the symmetric periodic orbit is orbitally stable while the
antisymmetric one is unstable. The findings are in accordance with the results in [34]. The
corresponding (Floquet-) subspaces at time 50 are depicted in Figure 4.10. It is worth
noting that the 2D fibers W1

0 ⊕ W3
0 and W2

0 ⊕ W4
0 agree with the symmetric resp. the

antisymmetric space. Their invariance ensures that the second angular value is zero as
confirmed by the corresponding entries in Table 4.3.

1

0.5
-1 0-0.5

-1

0 -0.5
0.5

-11

0

1

Figure 4.9: Two orbits for λ = 0.26 with antisymmetric and arbitrary initial value.
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initial data antisymmetric xa nonsymmetric xr
1D trace space interval θ1 interval θ1

W1
0 [1.186, 1.195] 0.194 [0.999, 1.000] 0.550

W2
0 [0.995, 1.005] 0.179 [0.621, 0.624] 0.549

W3
0 [0.902, 0.918] 0.213 [0.132, 0.133] 0.550

W4
0 [0.379, 0.383] 0.179 [0.074, 0.0749] 0.550

Table 4.2: First angular values for the trace spaces (≈ 1D Floquet spaces) of the orbits
from Figure 4.9 converging to the antisymmetric resp. the symmetric periodic orbit. The
maximum is θ̂1 = 0.213 resp. θ̂1 = 0.550.

initial data antisymmetric xa nonsymmetric xr
2D trace space θ2 θ2
W1

0 ⊕W2
0 0.301 0.625

W1
0 ⊕W3

0 0.000 0.000

W1
0 ⊕W4

0 0.256 0.625

W2
0 ⊕W3

0 0.311 0.625

W2
0 ⊕W4

0 0.000 0.000

W3
0 ⊕W4

0 0.258 0.625

Table 4.3: Second angular value for the trace spaces (≈ 2D Floquet spaces) of the orbits
from Figure 4.9 converging to the antisymmetric resp. the symmetric periodic orbit. The
maximum is θ̂2 = 0.311 resp. θ̂2 = 0.625

Figure 4.10: Spectral bundle of 4 subspaces (≈ Floquet spaces) at time 50 for λ = 0.26
and antisymmetric (left) resp. nonsymmetric initial data (right). Coloring: green (stable),
red (unstable), blue (neutral ≈ flow direction).
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