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A strengthening on odd cycles in graphs of given chromatic number

Jun Gao∗ Qingyi Huo† Jie Ma‡

Abstract

Resolving a conjecture of Bollobás and Erdős, Gyárfás proved that every graph G of chromatic
number k + 1 ≥ 3 contains cycles of ⌊k

2
⌋ distinct odd lengths. We strengthen this prominent result

by showing that such G contains cycles of ⌊k

2
⌋ consecutive odd lengths. Along the way, combining

extremal and structural tools, we prove a stronger statement that every graph of chromatic number
k + 1 ≥ 7 contains k cycles of consecutive lengths, except that some block is Kk+1. As corollaries,
this confirms a conjecture of Verstraëte and answers a question of Moore and West.

1 Introduction

One of the basic results in graph theory says that every graph of chromatic number k contains a cycle of
length at least k. This leads to many natural studies on the relation between the chromatic number and
the distribution of cycle lengths. One cornerstone in this direction is the following celebrated theorem,
which was conjectured by Bollobás and Erdős [5] and proved by Gyárfás [9].

Theorem 1.1 (Gyárfás [9]). Let k ≥ 2 be an integer. If G is a graph of chromatic number k+ 1, then
G contains cycles of at least ⌊k2⌋ distinct odd lengths.

This result has inspired extensive research. Let k ≥ 2 be an integer and G be a graph of chromatic
number k + 1. Mihok and Schiermeyer [16] obtained an analogue for even cycles that every such G
contains cycles of at least ⌊k2⌋−1 distinct even lengths. Confirming a conjecture of Erdős [5], Kostochka,
Sudakov and Verstraëte [12] showed that if such G does not contain a triangle, then it contains at least
Ω(k2 log k) cycles of consecutive lengths. Recently, the authors and Liu [8] proved a conjecture of
Sudakov and Verstraëte [20] that such G contains k − 1 cycles of consecutive lengths. We remark that
Theorem 1.1 and these results of [8, 16] are all tight for G being the clique Kk+1. For related results,
we refer readers to [2, 7, 10,13,15,19,23].

The aim of this note is to provide a common extension of Theorem 1.1 and the aforementioned
results of [8, 16] on cycles of consecutive lengths in graphs of given chromatic number.

Theorem 1.2. Let k ≥ 6 be an integer. If G is a graph of chromatic number k+ 1, then G contains k
cycles of consecutive lengths, except that some block of G is Kk+1.

Depending on if the graphs contain a triangle or not, we treat the proof of Theorem 1.2 differently.
The proof for graphs without a triangle is motivated by [12] and utilizes extremal arguments, where we
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use a new lemma on A-B paths (see Lemma 3.2). On the other hand, the proof for graphs containing
a triangle follows the line of [8] and relies on the structural analysis.

As an attempt to have a common generalization of the results of [9] and [16], Verstraëte conjectured
in [22, Conjecure XVI] that for any k ≥ 2, if G is a graph of chromatic number k + 1, then G contains
k− 1 cycles of consecutive lengths which start with an odd number. The case k = 2 is obvious and the
cases k ≥ 6 follow as a direct corollary of Theorem 1.2. The following is another result of this paper.

Theorem 1.3. Let k ≥ 2 be an integer. If G is a graph of chromatic number k + 1, then there exists
some m such that G contains k − 1 cycles of lengths 2m+ 1, 2m+ 2, . . . , 2m+ k − 1, respectively.

Here we give a proof for every k ≥ 5. Unfortunately the proof of Theorem 1.3 for the cases k = 3, 4
requires different techniques and a lengthy argument, which we present in a separate note and upload
as an ancillary file to arXiv.

Using Theorem 1.2, we also can answer a recent question of Moore and West [17]. A graph is k-
critical if it has chromatic number k but deleting any edge will decrease the chromatic number. Moore
and West [17, Question 2] asked whether every (k+1)-critical non-complete graph has a cycle of length
2 modulo k. By Theorem 1.2, we can give an affirmative answer to this question in the following form.

Theorem 1.4. For k ≥ 6, every (k + 1)-critical non-complete graph contains cycles of all lengths
modulo k.

We remark that Theorem 1.4 also holds for 3 ≤ k ≤ 5. The case k = 3 follows by the results
in [4, 14, 18], while the complete proof of the cases k = 4, 5 can be found in [11] which was submitted
very recently. More results related to cycle lengths modulo k can be found in [3, 6, 8, 21].

Returning back to Theorem 1.2, we now give an example to show that the existence of k cycles of
consecutive lengths in graphs of chromatic number k + 1 which do not contain Kk+1 is almost tight:
for k ≥ 3, let Hk be obtained by joining every vertex of the complete graph Kk−2 to every vertex of
the cycle C5. Then Hk has chromatic number k + 1 and precisely k + 1 cycles of consecutive lengths
(namely 3, 4, . . . , k+3, respectively). Note that Hk is also (k+1)-critical. It seems plausible that every
non-complete (k + 1)-critical graph contains k + 1 cycles of consecutive lengths. Moreover, we wonder
if the following much stronger bound on consecutive cycle lengths can hold for (k + 1)-critical graphs.

Question 1.5. Let k ≥ 3 be an integer. Is there a function fk(n) which goes to infinity as n goes to
infinity such that every n-vertex (k + 1)-critical graph contains fk(n) cycles of consecutive lengths?

The rest of the paper is organized as follows. In Section 2, we introduce the notation and some
results in [8]. In Section 3, we give a new lemma on A-B paths. In Sections 4 and 5, we consider graphs
containing a triangle and graphs without a triangle of chromatic number at least seven, respectively.
In Section 6, we investigate graphs of chromatic number six. In Section 7, we complete the proofs of
Theorems 1.2 and 1.3.

2 Preliminaries

We follow the notation in [8,13]. Throughout the paper, we write [k] for the set {1, 2, ..., k} for a positive
integer k. Let G be a graph. For a non-trivial partition (A,B) of V (G),1 we say a path P is an A-B
path if one end of P is in A and another is in B. Let P be a path in a graph G. Let |P | be the number
of edges in P . We say P is an even (respectively, odd) path if |P | is an even (respectively, odd) number.

1A partition (A,B) is non-trivial if each of A and B is non-empty.
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Let C be a cycle with vertices v0, v1, . . . , vt−1 in cyclic order. Let Ci,j denote the subpath vivi+1 . . . vj
of C, where the indices are taken under the additive group Zt.

Let H be a subgraph of G. For a vertex v ∈ V (G), let NG(v) be the neighborhood of v in G. We say
that H and a vertex v ∈ V (G)−V (H) are adjacent in G if v is adjacent in G to some vertex in V (H). We
say that v is a neighbor of H if and only if v and H are adjacent. Let NG(H) =

⋃
v∈V (H)NG(v)−V (H)

be the neighborhood of H in G and NG[H] = NG(H) ∪ V (H) be the closed neighborhood of H in
G. For S ⊆ V (G), we say that a graph G′ is obtained from G by contracting S into a vertex s, if
V (G′) = (V (G) − S) ∪ {s} and E(G′) = E(G − S) ∪ {vs : v ∈ V (G) − S is adjacent to S in G}. For
two vertex-disjoint subgraphs H1 and H2 of G. Let NH1

(H2) := NG(H2) ∩ V (H1). A vertex v of a
connected graph G is a cut-vertex of G if G − v contains at least two components. A block B in G is
a maximal connected subgraph of G such that there is no cut-vertex of B. Note that a block is an
isolated vertex, an edge or a 2-connected graph. An end-block in G is a block in G containing at most
one cut-vertex of G.

We say that (G,x, y) is a rooted graph if G is a graph and x, y are two distinct vertices of G. The
minimum degree of a rooted graph (G,x, y) is min{dG(v) : v ∈ V (G)−{x, y}}. We also say that a rooted
graph (G,x, y) is 2-connected if G+xy is 2-connected. We say that k paths or k cycles P1, P2, . . . , Pk are
admissible if |P1| ≥ 2 and |P1|, |P2|, . . . , |Pk| form an arithmetic progression of length k with common
difference one or two. We need the following results in [8].

Theorem 2.1 ( [8], Theorem 3.1). Let k be a positive integer. If (G,x, y) is a 2-connected rooted graph
of minimum degree at least k + 1, then there exist k admissible paths between x and y in G.

Define K−

4 to be the graph obtained from K4 by deleting one edge.

Lemma 2.2 ( [8], Lemma 5.2). Let k ≥ 3 and G be a 3-connected graph of minimum degree at least k.
If G contains a K3 but does not contain a K−

4 , then G contains k cycles of consecutive lengths.

3 A new lemma on A-B paths

The following well-known lemma is due to Bondy and Simonovits [1] and, independently, Verstraëte [23].

Lemma 3.1 ( [1, 23]). Let G be a graph comprising a cycle with a chord and (A,B) be a non-trivial
partition of V (G). Then G contains A-B paths of every length less than |V (G)|, unless G is bipartite
with the bipartition (A,B).

We prove a modified version of Lemma 3.1 as follows.

Lemma 3.2. Let G be a connected graph of minimum degree at least three and (A,B) be a non-trivial
partition of V (G). For any cycle C in G, there exist A-B paths of every length less than |V (C)| in G,
unless G is bipartite with the bipartition (A,B).

Proof. We assume that (A,B) is not a bipartition of G (even if G is bipartite). Let C := v0v1 . . . vs.
First consider that V (C) ⊆ A. Since G is connected, there exists a path Q which links some u ∈ B

and a vertex say v0 in C internally disjoint from V (C). We may assume that V (Q)− u ⊆ A and write
Q = x0x1 . . . xt, where x0 = v0 and xt = u. It is straightforward to see that xixi+1 . . . xt and C0,j ∪Q
for 0 ≤ i ≤ t− 1 and j ∈ [s] form A-B paths of every length less than |V (C)|+ |V (Q)| − 1.

So we may assume that V (C)∩B 6= ∅ and similarly, V (C)∩A 6= ∅. Then (A ∩ V (C), B ∩ V (C)) is
a non-trivial partition of V (C). We say that an edge in G is crossing if one of its endpoints is in A and
the other is in B, and internal otherwise.
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Suppose that there is an internal edge in G[V (C)]. Then (A∩ V (C), B ∩ V (C)) is not a bipartition
of G[V (C)]. By Lemma 3.1, we may assume that C is an induced cycle in G. So E(C) has an internal
edge. Since (A ∩ V (C), B ∩ V (C)) is non-trivial, there is also a crossing edge in E(C). Without loss
of generality, we can suppose that vs ∈ A and v0, v1 ∈ B. As δ(G) ≥ 3 and C is an induced cycle, v0
has a neighbor x ∈ V (G) \ V (C). If x ∈ A, then one of Cj,0 ∪ xv0 and Cj,1 is an A-B path of length
s− j + 2 for each 2 ≤ j ≤ s; otherwise x ∈ B, then one of xv0 ∪C0,j and Cs,j is an A-B path of length
j + 1 for each 1 ≤ j ≤ s− 1. Note that a crossing edge is an A-B path of length 1, such an edge exists
as (V (C)∩A,V (C)∩B) is a non-trivial partition. Hence in either case, G contains A-B paths of every
length less than |V (C)|.

Therefore, we may assume that every edge in G[V (C)] is crossing. This shows that s is odd. Since
(A,B) is not a bipartition of G, there exists at least one internal edge in G − E(G[V (C)]). By the
connectedness of G, there exists a path Q′ starting with an internal edge f and ending with a vertex
say v0 in C such that Q′ is internally disjoint from V (C) and all edges in E(Q′)− f are crossing. Then
Q′ ∪C0,s is a path of length at least s+ 1, whose first edge is internal and all other edges are crossing.
It is not hard to see that Q′ ∪ C0,s contains subpaths which are A-B paths of every length at most
s+ 1 = |V (C)|. This finishes the proof of Lemma 3.2.

4 Graphs containing a triangle

We devote this section to a sharp result on consecutive cycles in graphs containing a triangle. This
improves some results in [8, Lemmas 5.1 and 5.2 ] to 2-connected graphs.

Theorem 4.1. Let k ≥ 2 be an integer. Every 2-connected graph G of minimum degree at least k
containing a triangle K3 contains k cycles of consecutive lengths, except that G = Kk+1.

Proof. Assume that G is a 2-connected graph with δ(G) ≥ k such that it contains a triangle and
G 6= Kk+1. First, suppose that G contains a separating set S = {s1, s2}. Let X and Y form a partition
of V (G) − S, which are separated by S in G. Let T0 be a K3 in G and denote V (T0) by {u1, u2, u3}.
Since T0 is a clique, we may assume that T0 is contained in G[X ∪ S]. Note that (G[X ∪ S], s1, s2)
is 2-connected. There exist two disjoint paths L1, L2 from S to V (T0) internally disjoint from V (T0)
in G[X ∪ S]. Without loss of generality, we may assume that Li links si and ui for i = 1, 2. So
L′

1 := L1 ∪ u1u2 ∪ L2, L′

2 := L1 ∪ u1u3u2 ∪ L2 are 2 paths of consecutive lengths from s1 to s2 in
G[X ∪ S]. Also, it is easy to check that (G[Y ∪ S], s1, s2) is a 2-connected rooted graph of minimum
degree at least k. Then by Theorem 2.1, there exist k−1 admissible paths P1, P2, ..., Pk−1 from s1 to s2
in G[Y ∪ S]. Concatenating each of these paths with L′

1, L
′

2, we obtain k cycles of consecutive lengths.
Therefore, we may assume that G is 3-connected. So k ≥ 3. If G does not contain a K−

4 , then by
Lemma 2.2, G contains k cycles of consecutive lengths. Therefore, G contains a K−

4 . Let T1 be a K−

4

in G with V (T1) = {v1, v2, v3, v4}, where v1 has degree two in T1 and v2 is a neighbor of v1. Let K be
a maximal clique in G− {v1, v2} containing v3, v4 and let t = |V (K)|. We may assume that t ≤ k − 1
(as, otherwise, we can easily find k cycles of lengths 3, 4, . . . , k + 2, respectively).

Suppose that t = k − 1. Since G has minimum degree at least k and G 6= Kk+1, we may assume
that |V (G)| ≥ k+2. Let H := G[V (K)∪{v1, v2}]. Let x be a vertex in G−H. Since G is 3-connected,
there exist three internally disjoint paths M1,M2,M3 from x to V (H) internally disjoint from H. Let
yi be the end of Mi in H for i = 1, 2, 3. It is easy to see that there exists an i and j where i 6= j such
that there are k paths P1, . . . , Pk which up to relabelling, having lengths 1, 2, . . . , k from yi to yj in
H, respectively. Concatenating each of these paths with Mi ∪ Mj , we obtain k cycles of consecutive
lengths.
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Therefore, t ≤ k − 2. Let F be the component of G−K containing {v1, v2}. By the maximality of
K, every vertex in G− (K ∪ {v1, v2}) has at most t− 1 neighbors in K. So δ((F, v1, v2)) ≥ k − t+ 1.

Suppose that F is 2-connected. Then (F, v1, v2) is a 2-connected rooted graph of minimum degree
at least k− t+1. By Theorem 2.1, there exist k− t admissible paths Q1, Q2, ..., Qk−t from v1 to v2 in F .
Note that there exist t+ 1 paths of length 1, 2, . . . , t+ 1 from v1 to v2 in G[K ∪ {v1, v2}], respectively.
Concatenating each of these paths with Qi for i ∈ [k − t], we obtain k cycles of consecutive lengths.

Therefore F is not 2-connected. Suppose that there is a leaf y in F . Then y has at least k − 1
neighbors in K. It follows that |K| ≥ k− 1, a contradiction. So |V (F )| ≥ 3 and every end-block of F is
2-connected. Let B be an end-block of F with cut-vertex b such that v1, v2 /∈ V (B)− b. Let G1 be the
graph obtained from G[B ∪ (NG(B− b)∩K)] by contracting NG(B− b)∩K into a vertex w. It is clear
that (G1, w, b) is a 2-connected rooted graph of minimum degree at least k − t + 2. By Theorem 2.1,
there exist k− t+1 admissible paths from w to b in G1. Hence, G contains k− t+1 admissible paths Ri

from a vertex pi ∈ NG(B− b)∩K to b for i ∈ [k− t+1] internally disjoint from K ∪ (F − (B− b)). Let
L be a fixed path from b to {v1, v2} in F − (B − b). Without loss of generality, we may assume that L
links b and v1. Note that there exist t paths from v1 to pi in G[K ∪{v1, v2}] with lengths 2, 3, . . . , t+1,
respectively, for each i ∈ [k − t + 1]. Concatenating these paths with Ri ∪ L, we obtain k cycles of
consecutive lengths. This proves Theorem 4.1.

5 Graphs without a triangle

In this section, we prove the following result on K3-free graphs.2 Its proof ideas can be traced back
to [12]. Our new ingredient is Lemma 3.2, which assembles the parts of the proof.

Theorem 5.1. Let k ≥ 6 be an integer. If G is a K3-free graph of chromatic number k + 1, then G
contains k cycles of consecutive lengths.

To facilitate the use of Lemma 3.2, we need the following lemma.

Lemma 5.2. Let k ≥ 3 be an integer. Let G be a 2-connected graph of minimum degree at least k. If
G is K3-free, then G contains a cycle of length at least 2k + 2, except that G = Kk,n for some n ≥ k.

Proof. Suppose to the contrary that there exists a 2-connected graph G with δ(G) ≥ k, which is not
Kk,n for any n ≥ k and does not contain a cycle of length at least 2k+2. We first prove some properties
about the longest paths in G. Let P = v0v1 . . . vℓ be any longest path in G which has length ℓ.

Claim 1. The neighborhood of v0 is contained in V (P ). Further, NG(v0) consists of k vertices such
that either (a) ℓ ≥ 2k − 1 and NG(v0) = {v2i+1 : 0 ≤ i ≤ k − 1}, or (b) ℓ ≥ 2k and NG(v0) =
{v1, v3, . . . , vs−3, vs, vs+2, . . . , v2k} for some even integer 4 ≤ s ≤ 2k.

Proof of Claim 1. Since P is a longest path in G, it is clear that NG(v0) ⊆ V (P ). Let vp1 , vp2 , . . . , vpt
be all neighbors of v0 in P , where 1 = p1 < p2 < · · · < pt and t ≥ k. Since G is K3-free, pi+1 − pi ≥ 2
for each i. Also by the assumption we see pt ≤ 2k. The result now follows by an easy analysis.

Claim 2. There is no cycle of length ℓ+ 1 in G. Hence, v0vℓ /∈ E(G) and ℓ ≥ 2k.

Proof of Claim 2. Suppose to the contrary that there is a cycle C := x0x1 . . . xℓx0, where the indices
are taken under the additive group Zℓ+1. Since C0,ℓ is a longest path in G and G is connected, we have
V (G) = V (C) (otherwise one can find a longer path, a contradiction). As v0vℓ ∈ E(G), by Claim 1, we

2A graph is K3-free if it does not contain a triangle as a subgraph.
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see 2k − 1 ≤ ℓ ≤ 2k. Suppose that ℓ = 2k − 1. For each j ∈ Zℓ+1, the longest path Cj,j−1 always has
Claim 1(a) occur. So NG(xj) = {xj+2i−1 : i ∈ [k]}. This shows that G is a complete bipartite graph
Kk,k, a contradiction.

Therefore ℓ = 2k. Consider the longest path Cj,j−1 for each j. Since xjxj−1 ∈ E(G), Claim 1(b)
must occur for the endpoint xj of Cj,j−1. So there exists some even integer sj ∈ {4, 5, . . . , 2k} such that
NG(xj) = {xj+1, xj+3, . . . , xj+sj−3, xj+sj , xj+sj+2, . . . , xj+2k} where additions are taken under Zℓ+1. In
particular, there exist some xt, xt+3 which have a common neighbor say xm. Without loss of generality,
we may assume t = 0. Since G is K3-free, x0 cannot be adjacent to x3. This implies s0 = 4 and thus
x0 is adjacent to both of x1, x4. By the same argument, we can further derive that s1 = 4 and x1 is
adjacent to both of x2, x5. Continuing this, we conclude that sj = 4 for each 0 ≤ j ≤ 2k. This shows
x0xℓ−3 ∈ E(G). However, as s0 = 4, by Claim 1 we also see x0xℓ−2 ∈ E(G). Then x0xℓ−2xℓ−3 forms a
K3 in G, a contradiction. This proves the claim.

For a longest path P = v0v1 . . . vℓ, we call (vα, vβ)P a crossing pair, if vα ∈ NG(vℓ), vβ ∈ NG(v0) and
vγ /∈ NG(v0)∪NG(vℓ) for each integer γ ∈ (α, β). Let β−α denote the gap of a crossing pair (vα, vβ)P .

Claim 3. Each longest path P has a crossing pair, and the gap of each crossing pair of P is at least 2.

Proof of Claim 3. First, we show the second assertion. Let (vα, vβ)P be any crossing pair of P . Clearly
we have β − α ≥ 1. If β − α = 1, then one can easily find a cycle of length ℓ + 1, a contradiction to
Claim 2. Hence, the gap of each crossing pair of P is at least two.

Let p be the maximum integer with vpv0 ∈ E(G) and q be the minimum integer with vqvℓ ∈ E(G).
It will suffice to show that p > q. First suppose that p < q. By Claim 1, there are two vertex disjoint
cycles C1, C2 of length at least 2k in G. Since G is 2-connected, there are two disjoint paths L1, L2

from V (C1) to V (C2). Then it is easy to find two cycles D1,D2 with |D1| + |D2| = |C1| + |C2| +
2(|L1| + |L2|) ≥ 4k + 4, which gives a cycle of length at least 2k + 2, a contradiction. Now suppose
p = q. Since G is 2-connected, there is a path L from vs ∈ {v0, v1, . . . , vp−1} to vt ∈ {vq+1, vq+2, . . . , vℓ}
in G internally disjoint from P − vp. Let r ∈ (s, p] be the minimum integer with v0vr ∈ E(G).
Let C ′

1 = v0v1 . . . vsLvtvt+1 . . . vℓvpvp−1 . . . vrv0 and C ′

2 = v0v1 . . . vsLvtvt−1 . . . vrv0 be two cycles. By
Claim 1, each of C ′

1 and C ′

2 contains at least 2k − 1 vertices in {v0, . . . , vp}. Thus, one of C ′

1 and C ′

2

contains at least (2k − 1) + k ≥ 2k + 2 vertices, where k ≥ 3. This contradiction finishes the proof.

Claim 4. Let (vα, vβ)P be an arbitrary crossing pair of P . Then the gap of (vα, vβ)P equals two.

Proof of Claim 4. We have β − α ≥ 2 from the previous claim and β − α ≤ 3 from the definition of
crossing pairs and Claim 1. Let us suppose for a contradiction that β − α = 3. Note that this forces
that both v0 and vℓ satisfy Claim 1(b). So α is odd, β is even and ℓ − β is odd, implying that ℓ is
odd. The cycle v0v1 . . . vαvℓvℓ−1 . . . vβv0 has length ℓ − 1, so ℓ − 1 ≤ 2k + 1, i.e., ℓ ≤ 2k + 2. By
Claim 2, we also see ℓ ≥ 2k. Combining with the above, we can conclude that ℓ = 2k + 1. Therefore,
NG(v0) = NG(vℓ) = {v1, v3, . . . , vα, vβ , vβ+2, . . . , v2k} := N , where β = α+ 3 and |N | = k.

Consider the longest path vα+2vα+1 . . . v0vβvβ+1 . . . vℓ. If vα+2 is adjacent to vα−1, then using
vℓvα ∈ E(G), we can find a cycle of length ℓ + 1, a contradiction. Hence by Claim 1, NG(vα+2) =
{vα+1, vα−2, . . . , v1, vβ , vβ+2, . . . , v2k} = (N\{vα, vβ}) ∪ {vα+1, vβ}. Similarly, by considering the path
vα+1vα+2 . . . vℓvαvα−1 . . . v0, we can derive NG(vα+1) = (N\{vα, vβ})∪{vα, vα+2}. Note that |N | = k ≥
3. So vα+1 and vα+2 have a common neighbor, which forces a triangle in G. This proves Claim 4.

Therefore β − α = 2. Note that v0v1 . . . vαvℓvℓ−1 . . . vβv0 is a cycle of length ℓ. Hence, we have
2k ≤ ℓ ≤ 2k +1. First suppose that ℓ = 2k +1. If v0 satisfies Claim 1(b), then there exists s such that
vs−3, vs are neighbors of v0 for some even number 4 ≤ s ≤ 2k. By Claim 1, since s ≥ 4, vℓ must have
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a neighbor in {vs−3, vs−2, vs−1}. By Claim 2, vℓ is not adjacent to vs−1 and vs−4. Since G is K3-free,
exactly one of vs−3 and vs−2 can be adjacent to vℓ. By Claim 4, vℓ is not adjacent to vs−3. Therefore,
vℓvs−2 ∈ E(G). Since G is K3-free, vs−1 is not adjacent vs−3. Suppose vs−1 is adjacent to vs−4, then
v0v1 . . . vs−4vs−1 . . . vℓvs−2vs−3v0 is a cycle of length ℓ+1, contradicting Claim 2. So, both vs−1 and vℓ are
not adjacent to vs−4 and vs−3. Then the longest path vs−1vs−2 . . . v0vsvs+1 . . . vℓ would contain a crossing
pair of gap at least 3, contradicting Claim 4. Therefore, by symmetry, we may assume that both v0 and
vℓ satisfy Claim 1(a). So, we have NG(v0) = {v1, v3, . . . , v2k−1} and NG(vℓ) = {vℓ−1, vℓ−3, . . . , vℓ−2k+1}.
Then v0v1 . . . v2k−2v2k+1v2kv2k−1v0 is a cycle of length ℓ+ 1, contradicting Claim 2.

Hence we have ℓ = 2k. In this case, NG(v0) = NG(v2k) = {v1, v3, . . . , v2k−1} := Y . Let X =
V (P )\Y . For each even integer 2 ≤ j ≤ 2k − 2, Rj := vjvj−1 . . . v0vj+1vj+2 . . . v2k is a longest path in
G. By Claim 1(a), we have NG(vj) = Y for each even j. As G is K3-free, G[V (P )] consists of a copy
Kk,k+1 with two parts X and Y . For every vertex w of G− V (P ), if w has a neighbor in X, then there
is a path of length 2k+1 in G, a contradiction. Hence, NV (P )(G−V (P )) ⊆ Y . Suppose that G−V (P )
contains an edge e. Since G is 2-connected, there exist two vertex disjoint paths T1 and T2 from V (P )
to V (e) internally disjoint from V (P ). Since NV (P )(G−V (P )) ⊆ Y and G[V(P)] is a complete bipartite
graph. Without loss of generality, we may assume that V (T1)∩V (P ) = {v1} and V (T2)∩V (P ) = {v3}.
Then v0v1 ∪ T1 ∪ e ∪ T2 ∪ v3v4 . . . v2k is a path of length at least 2k + 1, a contradiction. Therefore,
G− V (P ) forms an independent set and every vertex of G− V (P ) can only be adjacent to vertices in
Y . Since δ(G) ≥ k and |Y | = k, we see that NG(v) = Y for each v ∈ V (G)− Y . Hence G is a complete
bipartite graph Kk,m for some m, a contradiction. This completes the proof of Lemma 5.2.

We remark that Lemma 5.2 is best possible by the following examples. For any integers k ≥ 3 and
m ≥ 2k, let K denote a complete bipartite graph Kk−1,m with two parts X and Y , where |X| = k − 1
and Y = Y1 ∪ Y2 has size m with |Yi| ≥ k for i ∈ {1, 2}. Let Gk,m be the graph obtained from K by
adding two new vertices x1, x2 and edges in {x1x2, x1u, x2v : ∀u ∈ Y1,∀v ∈ Y2}. We see that Gk,m is a
2-connected K3-free graph of minimum degree at least k, whose longest cycles have length 2k + 2.

Now we are ready to prove Theorem 5.1. Let T be a tree with root r. For a, b ∈ V (T ), let Ta,b be
the unique path between a and b in T .

Proof of Theorem 5.1. Let k ≥ 6 and G be a K3-free graph of chromatic number k+1. Fix a vertex
r and let T be the breadth first search tree in G with root r. Let L0 = {r} and Li be the set of vertices of
T at distance i from its root r for i ≥ 1. There exists some t ≥ 1 such that G[Lt] has chromatic number
at least ℓ := ⌈(k + 1)/2⌉ where ℓ ≥ 4. Let H be a ℓ-critical subgraph of G[Lt]. So H is a 2-connected
non-bipartite K3-free graph of minimum degree at least ℓ− 1 ≥ 3. By Lemma 5.2, H contains a cycle
of length at least 2ℓ. Let T ′ be the minimal subtree of T whose set of leaves is precisely V (H), and let
r′ be the root of T ′. Let h denote the distance between r′ and vertices in H in T ′. Since G is K3-free,
h ≥ 2. By the minimality of T ′, r′ has at least two children in T ′. Let x be one of its children. Let
A be the set of vertices in H which are the descendants of x in T ′ and let B = V (H) −A. Then both
A,B are nonempty and for any a ∈ A and b ∈ B, Ta,b has the same length 2h. By Lemma 3.2, there
are 2ℓ−1 paths of H from a vertex of A to a vertex of B of length 1, 2, . . . , 2ℓ−1, respectively. Putting
all together, we see that G contains 2ℓ− 1 = 2⌈(k + 1)/2⌉ − 1 ≥ k cycles of consecutive lengths.

6 Graphs of chromatic number 6

As a further exploration of the proof of Theorem 5.1, we now consider consecutive cycles in graphs of
chromatic number 6. The following is the main result of this section.
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Theorem 6.1. Every graph of chromatic number six contains four cycles of consecutive lengths which
start with an odd number.

Proof. It suffices to consider 6-critical graphs G. Suppose that G does not contain four cycles of lengths
2m+1, 2m+2, 2m+3, and 2m+4 for any integer m. Since G is 2-connected with δ(G) ≥ 5, by Theorem
4.1, we may assume that G is K3-free. Fix a vertex r and let T be the breadth first search tree in G
with root r. Let L0 = {r} and Li be the set of vertices of T at distance i from its root r.

We first show that every component of G[Li] for i ≥ 0 has chromatic number at most 3. Suppose to
the contrary that there exists a component D of G[Lt] which has chromatic number at least 4 for some
t. Then using the exactly same arguments as in the proof of Theorem 5.1 (taking ℓ = 4 therein).3 one
can derive that G contains 2ℓ− 1 = 7 cycles of consecutive lengths, a contradiction to our assumption.

We now prove a claim which is key for this proof. For a connected graph D, a vertex x ∈ V (D) is
called good if it is not contained in the minimal connected subgraph of D which contains all 2-connected
blocks of D, and bad otherwise.

Claim. Let H1 be a non-bipartite component of G[Li] and H2 be a non-bipartite component of G[Li+1]
for some i ≥ 1. If NH1

(H2) 6= ∅, then every vertex in NH1
(H2) is a good vertex of H1.

Proof of Claim. Suppose that there exists a bad vertex v of H1 which has a neighbor u in H2. Let T ′

be the minimal subtree of T whose set of leaves is precisely V (H1), and let r′ be the root of T ′. Let h
denote the distance between r′ and vertices in H1 in T ′. Since G is K3-free, h ≥ 2. By the minimality
of T ′, r′ has at least two children in T ′. Fix a child x of r′ in T ′ and let Y be the set of the children of
r′ in T ′ other than x. Let A be the set of vertices in H1 which are the descendants of x in T ′ and let
B = V (H1)−A. Note that every vertex in B is a descendant of a vertex in Y in T ′. Let A′ be the set
of vertices in Li −A which are the descendants of x in T . Let B′ be the set of vertices in Li −B which
are the descendants of Y in T . Let M := Li − (A ∪A′ ∪B ∪B′). Note that A,A′, B,B′ and M form a
partition of Li.

Let C = v0v1 . . . vn be an odd cycle of H1, where n ≥ 4. Suppose that V (C) ⊆ A. Let b be a
vertex in B. Since H1 is connected, there exists a path P from b to V (C) internally disjoint from
V (C). Without loss of generality, we assume that V (P ) ∩ V (C) = {v0}. Then P ∪ C0,i ∪ Tb,vi for
i = 0, 1, ..., 4 gives 5 cycles of consecutive lengths, a contradiction. Therefore, B ∩ V (C) 6= ∅, and
similarly, A∩ V (C) 6= ∅. Then there must be an A-B path of length 4 in C (otherwise, since 4 and |C|
is co-prime and |C| ≥ 5, one can deduce that all vertices of C are contained in one of the two parts A
and B, a contradiction).

Since C is an odd cycle, we may assume that v0, v1 ∈ A and v2 ∈ B. Then Tv1,v2∪v2v1, Tv0,v2∪v2v1v0
are two cycles of lengths 2h+1, 2h+2, respectively. We have showed that there exists some A-B path
of length 4 in C which gives a cycle of length 2h + 4, so we may assume that there is no A-B path of
length 3 in C. This would force that v3i, v3i+1 ∈ A and v3i+2 ∈ B for each possible i ≥ 0. So |C| ≥ 9
and G contains a cycle of length ℓ ∈ {2h + 1, 2h + 2, 2h + 4, 2h + 5, 2h + 7, 2h + 8}. Moreover, for any
path P ′ = u0u1 . . . um in H1 with u0 ∈ V (C) and (V (P )− u0) ∩ V (C) = ∅, we can derive that uj ∈ B
if j ≡ 0 modulo 3 and uj ∈ A if j ≡ 1 or 2 modulo 3; call this property (⋆). In particular, since H1 is
connected, for any vertex b ∈ B, there exists a path of length 2 in H1 from b to some vertex in A.

Case 1. The component H2 has a neighbor in M .
Note that every vertex of H2 has a neighbor in Li. Suppose that there exists a vertex c ∈ V (H2)

which has a neighbor c′ in M . Recall that v is a bad vertex in H1 and let u ∈ NH2
(v). Clearly there

exists a path z1z2z3z4z5 of length 4 in H1 with z1 = v. It is easy to see that Tzi,c contains r
′ for i ∈ [5], so

3We remark that this method applies only to 4-critical graphs, as Lemma 3.2 does not hold for 3-critical graphs.
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they have the same length. Let P ′′ be a fixed path from u to c in H2. Then P ′′∪uz1z2 . . . zi∪Tzi,c′ ∪cc′,
for i ∈ [5] are 5 cycles of consecutive lengths in G, a contradiction.

Case 2. The component H2 has a neighbor in B ∪B′ where NM (H2) = ∅.
Suppose that NB∪B′(H2) 6= ∅. If NA∪A′(H2) 6= ∅, then since H2 is connected and every vertex of H2

has a neighbor in A∪A′∪B∪B′, there exist two adjacent vertices p, q of H2 such that p has a neighbor
p′ in A∪A′ and q has a neighbor q′ in B ∪B′. Then p′pqq′ ∪ Tp′,q′ is a cycle of length 2h+3. It follows
that G contains 4 cycles of lengths 2h+1, 2h+2, 2h+3, 2h+4, respectively. Therefore NA∪A′(H2) = ∅.
Since NA∪B(H2) 6= ∅, we have that v ∈ B. Let u be any vertex in NH2

(v). Choose w1 ∈ V (H2) such
that there exists a path Q of length 2 from u to w1 in H2. Let w2 be a neighbor of w1 in B ∪ B′.
Suppose that w2 6= v. We have showed that there exists a path R of length 2 in H1 from v to some
vertex say v′ in A. Then R∪ vu∪Q∪w1w2 ∪ Tw2,v′ is a cycle of length 2h+6. So G contains cycles of
lengths 2h+ 5, 2h + 6, 2h + 7, 2h + 8, a contradiction. Therefore w2 = v and w1 ∈ NH2

(v). That says,
every vertex in H2 of distance 2 from a neighbor of v is a neighbor of v. Continuing to apply this along
with a path from u to an odd cycle C0 in H2, we could obtain that v is adjacent to all vertices of C0,
which contradicts that G is K3-free.

Case 3. Neighbors of H2 which belong to Li belong to A ∪A′.
Now we see that NLi

(H2) ⊆ A ∪ A′. This forces that v ∈ A. For any neighbor u of v in H2, let
w3 ∈ V (H2) satisfies that there exists a path Q′ of length 2 from u to w3 in H2. By property (⋆) and
the fact that v ∈ A is bad in H1, we can infer that there exists a path t3vt1t2 in H1 such that t1 ∈ A
and t2, t3 ∈ B. Note that v and t1 are symmetric. Let w4 be a neighbor of w3 in A ∪A′. Suppose that
w4 /∈ {v, t1}. Then vu ∪ Q′ ∪ w3w4 ∪ Tw4,t2 ∪ t2t1v is a cycle of length 2h + 6. So again, G contains
cycles of lengths 2h + 5, 2h + 6, 2h + 7, 2h + 8, a contradiction. Therefore, w4 ∈ {v, t1}. That is, every
vertex in H2 of distance 2 from a neighbor of v or t1 is adjacent to one of v, t1. Continuing to apply
this along with a path from u to an odd cycle C1 in H2, we could obtain that every vertex of C1 is
adjacent to one of v, t1. But this would force a K3 in G. This final contradiction completes the proof
of this claim.

Now, we define a coloring c : V (G) → {1, 2, 3, 4, 5} as following. Let D be any bipartite component
of G[Li] for some i. If i is even, we color one part of D with color 1 and the other part with color 2,
and if i is odd, we color one part of D with color 4 and the other part with color 5. Let F be any
non-bipartite component of G[Lj ] for some j. If j is even, by using the block structure of F , we can
properly color V (F ) with colors 1, 2 and 3 by coloring bad vertices with colors 1, 2 and 3 and coloring
good vertices with colors 1 and 2. If j is odd, then we also can properly color V (F ) with colors 3, 4 and
5 by coloring bad vertices with colors 3, 4 and 5 and coloring good vertices with colors 4 and 5.

Next, we argue that c is a proper coloring on G. Let H1 be a component of G[Li] and H2 be a
component of G[Li+1] for i ≥ 0 such that there exists an edge between H1 and H2. If one of them is
bipartite, then c is proper on V (H1) ∪ V (H2) . Therefore, both H1 and H2 are non-bipartite. By the
above claim, all vertices of H2 are not adjacent to vertices of color 3 in H1. It follows that c is proper
on V (H1)∪V (H2). Therefore, c is a proper 5-coloring of G, which contradicts that G is 6-critical. This
completes the proof of Theorem 6.1.

7 Proofs of Theorems 1.2 and 1.3

We conclude with the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let G′ be a (k + 1)-critical subgraph of G. Then G′ is a 2-connected graph
of minimum degree at least k. If G′ is K3-free, then by Theorem 5.1, G′ contains k cycles of consecutive
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lengths. If G′ contains a K3, then by Theorem 4.1, either G′ contains k cycles of consecutive lengths or
G′ is Kk+1. In the latter case, let B be the block of G containing G′. If there exists x ∈ V (B)\V (G′),
then there are two internally disjoint paths from x to two vertices in G′ and then we can easily find k
cycles of consecutive lengths. Therefore, the block B of G is a copy of Kk+1.

Proof of Theorem 1.3. This follows from Theorems 1.2 and 6.1.
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[16] P. Mihók and I. Schiermeyer, Cycle lengths and chromatic number of graphs, Discrete Math. 286
(2004), 147–149.

10



[17] B. Moore and D. B. West, Cycles in color-critical graphs, arXiv:1912.03754v2.

[18] A. Saito, Cycles of length 2 modulo 3 in graphs, Discrete Mathematics 101 (1992), 285–289.
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