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Abstract

Finding latent structures in data is drawing increasing attention in
diverse fields such as image and signal processing, fluid dynamics, and
machine learning. In this work we examine the problem of finding the
main modes of gradient flows. Gradient descent is a fundamental process
in optimization where its stochastic version is prominent in training of
neural networks. Here our aim is to establish a consistent theory for gra-
dient flows ψt = P (ψ), where P is a nonlinear homogeneous operator. Our
proposed framework stems from analytic solutions of homogeneous flows,
previously formalized by Cohen-Gilboa, where the initial condition ψ0 ad-
mits the nonlinear eigenvalue problem P (ψ0) = λψ0. We first present an
analytic solution for Dynamic Mode Decomposition (DMD) in such cases.
We show an inherent flaw of DMD, which is unable to recover the essential
dynamics of the flow. It is evident that DMD is best suited for homoge-
neous flows of degree one. We propose an adaptive time sampling scheme
and show its dynamics are analogue to homogeneous flows of degree one
with a fixed step size. Moreover, we adapt DMD to yield a real spectrum,
using symmetric matrices. Our analytic solution of the proposed scheme
recovers the dynamics perfectly and yields zero error. We then proceed
to show that in the general case the orthogonal modes {φi} are approxi-
mately nonlinear eigenfunctions P (φi) ≈ λiφi. We formulate Orthogonal
Nonlinear Spectral decomposition (OrthoNS), which recovers the essential
latent structures of the gradient descent process. Definitions for spectrum
and filtering are given, and a Parseval-type identity is shown. Experi-
mental results on images, show the resemblance to direct computations
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of nonlinear sepctral decomposition. A significant speedup (by about two
orders of magnitude) is achieved for this application using the proposed
method.

Keywords— nonlinear decomposition, dynamic mode decomposition, homoge-
neous operators, gradient flows, nonlinear spectral theory.

1 Introduction

Finding latent structures in data is a fundamental task in diverse fields. Some canonical
examples are wavelets and dictionaries in image and signal processing [1, 2, 3], dynamic
modes in fluid dynamics analysis [4, 5], and dimensionality reduction and invariant
representations in machine learning [6, 7, 8]. Understanding the latent structures
allows to better model and to simplify the problem at hand, facilitating solutions
for broad applications such as denoising, prediction, and classification [9]. These
structures are formulated differently in different disciplines. For example, in image
processing, the structures can be formed via repetitive patches in different scales [10],
while in signal processing they can be a sum of audio frequencies, or of nonlinear
eigenfunctions [11, 12]. In fluid dynamics the structures are represented as a sum of
modes [13], and in machine learning they might be based on the recurrence of words
[14]. Despite this diversity, different techniques from different disciplines typically
share similar fundamental principles.

Gradient descent flow is a central process in control [15] and in machine learning
[16], where it is common to solve optimization problems. Thus, analysing the gradient
flow process draws attention in these areas and plays an important role, particularly
when the cost function is non-convex [17, 18], or when a model for a dynamical system
is investigated [19].

In this work, we propose a method to analyze latent structures of certain common
gradient decent flows by using Dynamic Mode Decomposition (DMD). DMD is often
used today in fluid dynamics for finding the main modes of a dynamical system. DMD
is an effective tool for analyzing nonlinear flows [20, 21, 22]. It is an approximation of
the linear infinite-dimensional Koopman operator [13, 23, 24]. We focus on a gradient
flow of a homogeneous functional R,

ψt = P (ψ), P = −∂Rψ, ψ(t = 0) = f,

where P is a homogeneous operator (typically with order of homogeneity in the range
[0, 1]). When a norm or a semi-norm is minimized, in its standard or quadratic form,
we obtain such flows. As shown in [25], the solution of this equation reaches its steady
state in finite time (for order strictly less than one). Moreover, the solution is separable
(in time and space) if f is a (nonlinear) eigenfunction of P , i.e. f solves the nonlinear
eigenvalue problem P (f) = λ · f . Precisely, the solution is a multiplication between
the initial condition f and a time dependant function a(t): ψ(t) = a(t) · f , where a(t)
has a closed form solution, which depends on the degree of the homogeneity of P and
on the eigenvalue λ.

With the purpose of better understanding DMD of homogeneous flows, we exam-
ine the analytic solutions of such flows. We present a closed form solution of DMD
in these cases and discover an inherent flaw. Specifically, for general homogeneous
flows, DMD can not recover the extinction time of the dynamics, and it induces a
significant reconstruction error. Our analysis further shows that DMD is well-suited
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for flows with one-homogeneous operators. Consequently and inspired by [26], we
suggest a new scheme which employs an adaptive time sampling instead of a fixed
time step size. We show that our temporal re-scaling is equivalent to evolving a one-
homogeneous flow. With this adaptation, DMD is able to recover homogeneous flows
of order [0, 1]. In the general case, we additionally obtain a much better mode recov-
ering scheme which captures the dynamics of the flow well. Next, we show that the
obtained modes approximate nonlinear eigenfunctions, allowing us to link DMD to
nonlinear spectral theory. In summary, our analysis and results yield a new and sim-
ple spectral decomposition framework. Our work generalizes previous studies which
directly formulated nonlinear spectral representations based on total-variation [27, 28]
and one-homogeneous functionals [11, 29] by applying (weak) time-derivatives to the
solution of a gradient flow. It is also related to previous research in which signals were
analyzed by their decay profile, as shown in [30, 31].

Main contributions and structure of paper Our contributions can be sum-
marized as follows:

1. It is shown that DMD is not effective for homogeneous flows with homogeneity
different than one. This inherent limitation is formulated by what we term
the DMD paradox, where as the step-size decreases, the standard DMD-error
approaches zero, whereas the reconstruction error has a strictly positive lower
bound.

2. We propose a temporal re-parametrization scheme of the data sampling. We
study cases with an analytic solution, and we show that our re-parametrization
yields a single mode in DMD which can be perfectly reconstructed. Finally, the
relation to an analogue one-homogeneous flow is shown.

3. The temporal re-parametrization of the data is generalized to arbitrary step
sizes and to any homogeneity. We term this adaptation as the blind homogeneity
normalization, where the blind is twofold, neither the operator nor the temporal
sampling are known.

4. We adapt the DMD algorithm to real valued spectrum systems, common in
smoothing-type (non-oscillatory) flows. We refer to it as Symmetric DMD
(S-DMD).

5. We introduce a new discrete analysis and synthesis framework of signals related
to homogeneous flows of homogeneity order in [0, 1]. Our framework is based on
orthogonal modes which approximate nonlinear eigenfunctions. We thus refer
to it as Orthogonal Nonlinear Spectral decomposition. We numerically compare
our decomposition to the method in [25], and we show that our scheme is simpler,
more general, and it is 1− 2 orders of magnitude faster than [25].

The paper is organized as follows. We briefly recall the necessary mathematical
definitions and previous results in Sec. 2. In Sec. 3 a closed form solution for DMD in
certain cases is given and the paradox for homogeneous flows is stated. Our solution is
proposed (in non-blind and blind versions) and analyzed. The OrthoNS representation
is formalized. In addition, we introduce the S-DMD method such that DMD is based
on a symmetric matrix. In Sec. 4 we demonstrate S-DMD, then show the main modes
of two gradient descent flows with respect to the p−Dirichlet energy (p = 1.01 and
p = 1.5), when initialized with a square peak. Filtering of signals by OrthoNS are
presented along with a comparison to [25]. We conclude our work and discuss future
directions in Sec. 5.
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2 Preliminaries

Let H be a real Hilbert space equipped with a norm ‖ · ‖. Typically, in a discrete
setting, we have H = RM and a Euclidean norm. A common optimization problem,
given some data f ∈ H, is to seek a solution ψ ∈ H which minimizes

G(ψ) = F (ψ, f) +R(ψ), (1)

where F : H → R+ is a fidelity (or data) term and R : H → R+ is a regularization
term. In the most simple case, the denoising problem, F can be the square `2 norm
and R is the Dirichlet energy or, alternatively, the total-variation energy (yielding
Tikhonov [32] or ROF [33] models, respectively).The solution ψ∗ = arg minψ G(ψ, f)
is a compromise between the noisy data and a regular solution. In this paper we focus
on regularization terms which are absolutely p-homogeneous functionals, admitting

R(a · ψ) = |a|p ·R(ψ), (2)

for any a ∈ R. One can obtain a local minimizer by evolving a gradient descent process
with respect to the total energy G. In the denoising case, when the fidelity is a simple
Euclidean norm, an alternative solution is to evolve gradient descent with respect to R
only and to stop at a certain desired time-point in the process. Given −P = ∂ψR(ψ)
the gradient descent flow is

ψt = −∂ψR(ψ) = P (ψ), ψ(0) = f, (3)

where ψt is the time derivative of the solution, and the initial condition is f . The
operator P is (p− 1)-homogeneous,

P (a · ψ) = a|a|p−2 · P (ψ), a ∈ R. (4)

We refer to Eq. (3) as a homogeneous flow.

2.1 The p-Framework

Based on nonlinear spectral representations of one-homogeneous functionals [28, 11,
29], an extension to functionals of homogeneity p ∈ (1, 2) was proposed in [25]. As in
previous studies, the representation is based on manipulating a gradient flow process.
In [25] the flow of Eq. (3) was analyzed. A special case was investigated more deeply,
where the solution of Eq. (3) admits a separation of variables,

ψ(t) = a(t) · f. (5)

In this case the initial condition f remains unchanged (spatially), while its scale
changes over time. This form of solution is obtained iff f is a (nonlinear) eigenfunction
of P , i.e. it solves the following nonlinear eigenvalue problem,

P (f) = λ · f, (EF)

where λ ∈ R is the eigenvalue. The function a(t) can be viewed as a decay profile. The
decay depends on the eigenvalue and the order of homogeneity, and it is given by,

a(t) =
[
(1 + (2− p)λ · t)+

] 1
2−p , (6)
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where (a)+ = max{0, a}. We note that the operator −P (·) is assumed to be maximally
monotone. Therefore, its spectrum is non-positive, where λ ≤ 0. The decay profile (6)
has thus a finite support in time. The solution reaches its steady state in finite time,
termed as the extinction time. The extinction time is given by

T = − 1

λ(2− p) . (7)

It can also be shown that under mild conditions on P the flow (3) converges in finite
time for arbitrary initial conditions. A particular example for R is the p-Dirichlet
energy, thoroughly studied in the context of image processing by Kuijper (c.f. [34]),

R(ψ) = Jp(ψ) =
1

p
‖∇ψ‖p. (8)

Kuijper suggested to use the respective gradient descent flow as a nonlinear scale space,

ψt = ∆pψ, ψ(0) = f, (p-Flow)

where ∆p(·) is the p-Laplacian operator,

∆p(ψ) =∇ · {|∇ψ|p−2∇ψ}. (9)

The p-Dirichlet is an absolutely p-homogeneous functional and the p-Laplacian oper-
ator is coercive and maximally monotone. Therefore, the discussion above is valid for
(p-Flow) for p ∈ [1, 2). If the initial condition, f , admits (EF), for P = ∆p, then the
solution of (p-Flow) is given by Eqs. (5), (6) and the extinction time is (7). In Fig.
1 the process (p-Flow) is depicted for p = 1.5.

(a) Decay profile (b) T = 0

· · ·

(c) T = 12

· · ·

(d) T = 28

· · ·

(e) T = 74

Figure 1: The solution of ψt = ∆pψ initialized with an eigenfunction
(p = 1.5, λ = −0.0269). Left to right: (a) The decay profile, (6), (b)-(e)
snapshots of the solution, ψ(t), at different time points.

2.2 Time discretisation of homogeneous flows

The explicit scheme of Eq. (3) reads,

ψk+1 = ψk + P (ψk) · dtk, ψ0 = f. (10)

If the initial condition, f , is an eigenfunction (EF), then the solution of (10) is

ψk = ak · f, ak ∈ R. (11)

For (p− 1)-homogeneous operator P the recurrence relating ak+1 to ak is [26]

ak+1 = ak
(
1 + |ak|p−2λdtk

)
, a0 = 1. (12)
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In standard explicit implementations one needs to regularize the functional (and re-
spective operator) to obtain a practical step size (dictated by the CFL condition).
This yields either very small step-sizes or strong deviation from the original flow. In
[26] an alternative scheme was proposed which uses an adaptive step size. We will
later see how this scheme directly connects to our proposed time re-sampling.

Adaptive step size policy In [26] an adaptive step-size policy was proposed for
the explicit scheme (10), given by

dtk = −〈P (ψk), ψk〉
‖P (ψk)‖2

· δ, δ ∈ (0, 2), (13)

where δ is a free parameter controlling the speed of the process. It was shown that
the scheme is stable for arbitrary f and δ ∈ (0, 2). For f which is an eigenfunction the
solution is Eq. (11), where

ak = (1− δ)k. (14)

We note that although [26] focused on the p-Laplacian flow, the above results are
valid for any homogeneous operator of order between zero and one which is coercive
and maximally monotone. See a recent general study [35] on the relations between
statistical estimators of order p and their respective PDE’s in the limit.

2.3 Dynamic Mode Decomposition (DMD)

DMD [13] is an analysis tool used to recover the main spatial structures in a fluid flow.
Its stages are detailed in Algorithm 1. We first present the rationale, notations and
definitions of the algorithm. Vectors are denoted by boldface and matrices by capital
letters. We depict here the general case, however, in the following sections we focus
on the representation of the data matrices over the real field.

Matrices of the dynamics The data consists of N + 1 snapshots in time of a
flow ψk ∈ RM , {ψk}Nk=0. We construct two M ×N matrices as follows,

ΨN−1
0 =

[
ψ0 · · · ψN−1

]
ΨN

1 =
[
ψ1 · · · ψN

]
.

(15)

Dimensionality reduction A main assumption of DMD is that the data can
be well represented in a lower dimensional space. To reduce the dimensionality we
need to find the singular vectors that span the columns of ΨN−1

0 . Singular Vector
Decomposition (SVD) is used to find these vectors since the matrix ΨN−1

0 is not square.
This decomposition is an extension of the eigenvector problem for non square matrices
(for details see e.g. [36] Ch. I.8), and it is given by

ΨN−1
0 = UΣV ∗. (16)

The superscript ∗ denotes the conjugate transpose. The matrix U is an M × N
orthogonal matrix (U∗U = IN×N ), V is an N ×N orthogonal matrix (V ∗V = IN×N ),
and Σ is an N ×N diagonal matrix, where the entries on the diagonal are the singular
values.
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We denote by Ur and Vr the submatrices, containing the first r columns of U and
V , respectively (r �M). Σr is the a submatrix of Σ, containing the r × r left upper
entries of Σ. The dimensionality reduction of the data is obtained by setting

X = U∗rΨN−1
0 , Y = U∗rΨN

1 . (17)

The kth column in the matrix X, denoted by xk, is the lower dimensional representa-
tion of the kth snapshot, ψk, i.e. xk = U∗rψk. Note that the columns of Ur are a basis
of a linear space and the entries of xk can be viewed as coordinates of the snapshot
ψk in that space.

Mode, spectrum and coordinates calculation In the lower-dimensional
space we seek a linear mapping F from X to Y that minimizes the Frobenius norm

ERRDMD = min
F
‖Y − FX‖2F . (18)

The solution of this optimization problem is given by,

F = Y XT ·
(
XXT

)−1

= U∗rΨN+1
1 VrΣ

−1
r , (19)

termed as the DMD matrix. Then, the k + 1th sample can be expressed as

xk ≈ F · xk−1. (20)

We denote by ≈ the linear, dimensionality-reduced approximation of the dynamical
system. The linear mapping approximation, F , minimizes the Frobenius norm of the
error with respect to the first r dominant singular vectors of the data. Assuming the
matrix F is full rank, we can reformulate Eq. (20) as

xk ≈WDW ∗ · xk−1, (21)

where D is a diagonal matrix containing the eigenvalues of F , and the matrix W
contains the corresponding eigenvectors.

Reconstructing the Dynamics

Discrete time setting We can reconstruct the dynamics projected on the
lower dimensional space, e.g. the initial condition is reconstructed by ψ̃0 = Urx0.
More generally, to reconstruct a snapshot at stage k we can apply the mapping F k
times,

ψ̃k =Ur · F kx0 = Ur ·WDkW ∗U∗rψ0

=Ur ·
[
w1 · · · wr

]
·

µ
k
1 0

. . .

0 µkr

 ·
w
∗
1

...
w∗r

 · U∗rψ0 =

r∑
i=1

αiµ
k
iφi,

(22)

where the modes, {φi}ri=1, and coordinates {αi}ri=1 are

φi = Urwi, αi = wi
∗U∗r ψ0,
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Algorithm 1 Standard DMD [13]

1: Inputs:
Data sequence {ψk}N0

2: Arrange the data into the matrices ΨN−1
0 and ΨN

1 according to Eq. (15).
3: Compute the Singular Vector Decomposition (SVD) of ΨN−1

0 (see [37]) to
the multiplication in Eq. (16).

4: Dimensionality reduction. Reformulate the data matrices, ΨN−1
0 , ΨN

1 (de-
noted by X and Y , respectively) with the first r singular vectors from the
matrix, U , Eq. (17).

5: Find the optimal linear mapping, F , between X and Y in the sense of Eq.
(18). The solution is given by Eq. (19).

6: Under the assumption that F is a full rank matrix, compute eigenvalues µ
and right eigenvectors v of F , the corresponding modes φ, and the corre-
sponding coordinates α by

Fw = µw, φ , Urw, α , w∗U∗
rψ0. (23)

7: Outputs:

{µi,φi, αi}r1

and {µi}ri=1 are the eigenvalues of the matrix F (the spectrum). Note that, the linear
mapping from ψ̃k to ψ̃k+1, denoted by A is give by,

A = Ur · F · U∗r . (24)

This mapping can be interpreted as a linear approximation of the dynamical system.
The modes {φi} are the right eigenvectors of the matrix A and the corresponding
eigenvalues are {µi}. For reconstruction, we define the (time-discrete) reconstruction
error, ERRdRec, as

ERRdRec =

N∑
k=0

∥∥∥ψ̃k −ψk

∥∥∥2, (25)

where ψ̃k is defined in Eq. (22).

Continuous time setting One can expand the reconstruction, Eq. (22), to
the continuous time setting. The discrete reconstruction is a sampling of a continuous
exponential function, therefore, with the identity,

µi = eµ̃idt,

where dt is the sampling time step Thus, in the time continuous setting, the dynamics
reconstruction and the corresponding error take the form,

ψ̃(t) =

r∑
i=1

αiφie
µ̃it, µ̃i =

ln(µi)

dt
, ERRcRec =

∫
(ψ̃(t)− ψ(t))2dt. (26)

8



We would like also to consider the limit case, as the step size between consecutive
snapshots, dt, approaches zero. In that case, the eigenvalue µ̃i is the limit of the
quotient written above.

We note that this is the classical algorithm and several variations and extensions
were further proposed. It was shown in [38] that DMD is sensitive to noisy data .
Specifically, the spectrum estimation is systematically biased in the presence of noise.
This bias is not relaxed when more data is gathered [39]. The effect of small sensor
noise on DMD and on the Koopman expansion was studied and characterized in [40].
Several attempts have been made to remove this bias. Dawson et al. proposed the
forward and backward dynamics to reduce the noise [41]. Hemati et al. formulated the
problem as a total least squares optimization [39]. A variational approach was proposed
in [42]. The authors in [43, 44] used Kalman filters to cope with the noise. Williams
et al. [45] suggested to extend the basis of the sampled data snapshots, while [46] uses
deep learning to learn the basis dictionary of the operator. More recent approaches
harness the benefits of neural networks to propose effective Koopman-based designs
[47].

3 DMD for homogeneous and symmetric flows

This section presents the main novelties of the paper. DMD is analyzed for homoge-
neous flows, its flaws are exposed and a solution is presented in the form of a time
re-sampling scheme. For non-oscillatory flows we propose S-DMD. Finally, we show
connections of the modes to nonlinear eigenfunctions and propose the OrthoNS anal-
ysis and synthesis framework.

3.1 DMD for homogeneous flows

There are two prominent assumptions in DMD; first, the dynamics can be represented
linearly in a lower dimensional space; second, the data is sampled uniformly in time.
These assumptions allow us to interpret the system as a linear one [13] and to consider
DMD as an exponential data fitting algorithm [20]. Thus, the finite extinction time of
homogeneous flows is inherently hard to model in this framework. In what follows, we
show the inconsistency and error of DMD applied to flows initiated with eigenfunctions.

3.1.1 Closed from solution of DMD

We begin by computing the DMD modes of the homogeneous flow, Eq. (3), when
the initial condition is an eigenfunction. Let us recall that the solution is Eq. (5).
Therefore, by sampling this solution with respect to time (with a fixed step size) we
get

ψk = ak · f, ak ∈ R, a0 = 1. (27)

Therefore, the data matrices ΨN
1 and ΨN−1

0 (Eq. (15)) are in the form of

ΨN
1 = f ·

(
aN1

)T
, ΨN−1

0 = f ·
(
aN−1
0

)T
, (28)

where amk =
[
ak · · · am

]T
. The following Lemma formulates an analytic solution

of the classical DMD for these cases.
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Lemma 1 (Analytic solution). Let the dynamical system be Eq. (3) and the ini-
tial condition f is an eigenfunction per Eq. (EF). We obtain the following analytic
solution and error for classical DMD, Algo. 1, for r = 1:

µ =
〈aN1 ,aN−1

0 〉∥∥aN−1
0

∥∥2 , φ =
f

‖f‖ , α = ‖f‖. (29)

The DMD error (Eq. (18)) is

ERRDMD =
∥∥∥aN1 ∥∥∥2 − 〈aN1 ,aN−1

0 〉2∥∥aN−1
0

∥∥2 , (30)

where aN0 and aN+1
1 are defined in (28). For r > 1 the solution does not exist.

Proof.
The data matrix ΨN−1

0 (in Eq. (28)) can be reformulated as

ΨN−1
0 = U · Σ · V ∗ =

f

‖f‖ · ‖f‖
∥∥∥aN−1

0

∥∥∥ · aN−1
0∥∥aN−1
0

∥∥ .
The SVD of this matrix is ΨN−1

0 = UΣV ∗ where, U is the column vector f/‖f‖
concatenated by a zero matrix of size (M × (N − 1)), Σ is N ×N matrix with zeros
everywhere except the entry (1, 1) where Σ(1, 1) = ‖f‖

∥∥aN−1
0

∥∥, and V is the column

vector aN−1
0 /

∥∥aN−1
0

∥∥ concatenated by a zero matrix of size (N × (N − 1)). More
formally,

U =
[
f
‖f‖ 0 · · · 0

]
, Σ = diag

([
‖f‖

∥∥aN−1
0

∥∥ 0 · · · 0
])
, V =

[
aN−1
0

‖aN−1
0 ‖ 0 · · · 0

]
,

where U ∈ RM×N , Σ ∈ RN×N , V ∈ RN×N , and 0 is a column zero vector in RM or RN .
If r = 1 then U1, V1 are vectors and Σ1 is a scalar, where they accurately reconstruct
ΨN−1

0 . This is an expected result since the rank of ΨN−1
0 is one. Consequently, Y and

X are the following vectors,

Y = U∗1 ·ΨN
1 = ‖f‖aN1 , X = U∗1 ·ΨN−1

0 = ‖f‖aN−1
0 .

The DMD matrix becomes a scalar, µ, which minimizes the following term

µmin = arg min
µ
{‖Y − µX‖2F } = arg min

µ
{
∥∥∥aN1 − µaN−1

0

∥∥∥2} =
〈aN1 ,aN−1

0 〉∥∥aN−1
0

∥∥2 .

The eigenvector is v = 1. Using the above results and (23), (18) yields (29) and (30).
The error is strictly positive unless the vectors aN1 and aN−1

0 are co-linear. This case
does not happen for a fixed step size.

If r > 1 then neither the matrix XXT nor Σr are invertible. Therefore, the solution
of Eq. (19) does not exist.
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3.1.2 Sampling and Dimensionality vs. Error - The DMD paradox

The linear mapping, F , minimizes the Frobenius norm of the recurrence relation error.
As a conclusion from Lemma 1, ERRDMD decreases by increasing the sampling rate,
since µ approaches zero as the step size approaches zero. In the next Lemma, we
formulate the DMD solution when the step size approaches zero.

Lemma 2 (Time-continuous reconstruction). Let the conditions of Lemma 1 hold.
Let the dynamical system be sampled N times in the interval [0, Text], where the step
size is dt. We denote by ψ̃(t) = ψ̃k, where t = k · dt and ψ̃k is defined in (22). As
N →∞ (dt→ 0), the time-continuous reconstruction is

ψ̃(t) = f · eµ̃t,

where

µ̃ = λ
4− p

2
. (31)

Proof. According to Lemma 1 the eigenvalue is

µ =
〈aN1 ,aN−1

0 〉∥∥aN−1
0

∥∥2 =

∑N
k=1 akak−1∑N
k=1 a

2
k−1

,

where the series {ak} is the sampled solution, Eq. (6), i.e. ak = a(tk) = a(k · dt).
Then,

µ̃ =
ln (µ)

dt
=

1

dt
ln

(∑N
k=1 akak−1∑N
k=1 a

2
k−1

)
=

1

dt
ln

(∑N
k=1 a

2
k−1 −

∑N
k=1 a

2
k−1 +

∑N
k=1 akak−1∑N

k=1 a
2
k−1

)

=
1

dt
ln

(
1 +

∑N
k=1 ak−1 (ak − ak−1)∑N

k=1 a
2
k−1

)
=

1

dt
ln

(
1 +

∑N
k=1 ak−1

ak−ak−1

dt
dt∑N

k=1 a
2
k−1

)
.

As N →∞ the denominator approaches infinity whereas the numerator is finite. We
thus use Taylor’s series for the ln function to get

µ̃ =

∑N
k=1 ak−1

ak−ak−1

dt
dt∑N

k=1 a
2
k−1dt

=

∑N
k=1 a(tk − dt) · a(tk)−a(tk−dt)dt

dt∑N
k=1 a

2
k−1dt

.

Taking the limit dt→ 0 for the above expression yields∫ Text
0

a(t)a′(t)dt∫ Text
0

a2(t)dt
.

Substituting a(t) by the decay profile Eq. (6) we obtain

µ̃ =
1
2
a2(t)

∣∣Text
0

1
2

2−p+1

1
λ(2−p) [0− 1]

=
1
2

1
2

2−p+1

1
λ(2−p)

= λ
4− p

2
.

Remark 1 (Continuous reconstruction from the explicit scheme). One can reach
similar results as in Lemma 2 by taking the explicit scheme (10) to the limit dt → 0.

11



Here the recurrence relation between ak and ak+1 is Eq. (12). The eigenvalue can be
expressed by,

µ̃ =
ln (µ)

dt
=

1

dt
ln

(∑N
k=1 akak−1∑N
k=1 a

2
k−1

)

=
1

dt
ln

(∑N
k=1 a

2
k−1 + λ

∑N
k=1 |ak−1|pdt∑N

k=1 a
2
k−1

)
=

1

dt
ln

(
1 + λdt

∑N
k=1 |ak−1|p∑N
k=1 a

2
k−1

)

Taking the limit dt→ 0, we have

lim
dt→0

∑N
k=1 |ak−1|p∑N
k=1 a

2
k−1

= lim
dt→0

∑N
k=1 |ak−1|pdt∑N
k=1 a

2
k−1dt

=

∫ Text
0

a(t)pdt∫ Text
0

a(t)2dt
=

1
p

2−p+1

1
2

2−p+1

=
4− p

2
.

Using Taylor’s series for ln(1 + x) we get

µ̃ = lim
dt→0

1

dt
ln

(
1 + λdt

4− p
2

)
= λ

4− p
2

.

We show now that though ERRDMD approaches zero as dt → 0, DMD does not
reconstruct the dynamics correctly and the reconstruction error, ERRRec, is positive.
It implies that in certain cases, neither increasing the sampling density nor increasing
the sub-space dimensionality improves the recovery of the dynamics. We refer to it as
the DMD paradox. This is formalized in the following theorem.

12



Theorem 1 (The DMD paradox). Let the conditions of Lemma 2 hold.

1. If the dimensionality is one, r = 1, and, N → ∞, then ERRDMD → 0 (Eq.
18), however, the reconstruction error (Eq. (26)) ERRcRec ≥ B, where

B = −‖f‖2 1

λ(4− p)

[
1−
√

1− e−
4−p
2−p

]2
> 0.

2. One cannot reduce ERRcRec by increasing the dimensionality, r > 1.

Proof.

1. Following Lemma 2 we have

ERRDMD =
∥∥∥aN1 ∥∥∥2 − 〈aN1 ,aN−1

0 〉2∥∥aN−1
0

∥∥2 =
∥∥∥aN1 ∥∥∥2 − 〈aN1 − aN−1

0 + aN−1
0 ,aN−1

0 〉2∥∥aN−1
0

∥∥2
=
∥∥∥aN1 ∥∥∥2 − (〈aN1 − aN−1

0 ,aN−1
0 〉+ 〈aN−1

0 ,aN−1
0 〉

)2∥∥aN−1
0

∥∥2
=

(∥∥∥aN1 ∥∥∥2 − ∥∥∥aN−1
0

∥∥∥2)− 2〈aN1 − aN−1
0 ,aN−1

0 〉 − 〈a
N
1 − aN−1

0 ,aN−1
0 〉2∥∥aN−1

0

∥∥2 .

We can now calculate the limit of each term as N →∞. For the first term,

lim
N→∞

(∥∥∥aN1 ∥∥∥2 − ∥∥∥aN−1
0

∥∥∥2) = lim
N→∞

(
N∑
k=1

a2k −
N−1∑
k=0

a2k

)
= a20 = 1.

For the second term,

lim
N→∞

(
〈aN1 − aN−1

0 ,aN−1
0 〉

)
= lim
N→∞

(
N∑
k=1

(ak − ak−1)ak−1

)

= lim
dt→0

∫ Text

0

a(t+ dt)− a(dt)

dt
a(t)dt

= lim
dt→0

∫ Text

0

d

dt
{a(t)}a(t)dt =

a2(t)

2

∣∣∣∣Text
0

=
1

2
.

For the third term, the inner product in the numerator equals 1/2 in the limit (as
just calculated for the second term). The denominator approaches ∞, therefore
this term is zero in the limit and we get ERRDMD = 1− 2 1

2
− 0 = 0.

For the reconstruction error, we have µ̃ = λ(4− p)/2 and according to Lemma
1 the reconstructed dynamics is

ψ̃(t) = f · eµ̃t = f · e
λ(4−p)

2
t.

The reconstruction error (26) is

ERRcRec = ‖f‖2
∫ Text

0

[a(t)− â(t)]2 dt.

13



Using the expressions for a(t) and â(t) we get

ERRcRec = ‖f‖2
∫ Text

0

[a(t)− â(t)]2 dt

= ‖f‖2
∫ Text

0

[[
(1 + λ(2− p)t)+

] 1
2−p − eλ

4−p
2
t

]2
dt

= ‖f‖2
∫ Text

0

(1 + λ(2− p)t)
2

2−p dt+

∫ Text

0

eλ(4−p)tdt

− 2

∫ Text

0

(1 + λ(2− p)t)
1

2−p eλ
4−p
2
tdt

≥ ‖f‖2
[
− 1

λ(4− p) +
1

λ(4− p)

(
e
− 4−p

2−p − 1
)]

− 2‖f‖2
√∫ Text

0

(1 + λ(2− p)t)
2

2−p dt

√∫ Text

0

eλ(4−p)tdt

= ‖f‖2
[√
− 1

λ(4− p) −

√
1

λ(4− p)

(
e
− 4−p

2−p − 1
)]2

= −‖f‖2 1

λ(4− p)

[
1−
√

1− e−
4−p
2−p

]2
> 0.

2. According to Lemma 1, we do not obtain solutions for r > 1.

Error in extinction time Other than the inherent error in the decay profile, the
extinction time cannot be restored with classical DMD. The difference between the
analytic decay profile and the approximated exponential function is shown in Fig. 2.

Figure 2: The DMD paradox. The blue line is the polynomial decay. The
red line depicts the closest exponential function in the sense of ERRDMD (18).
Though ERRDMD → 0 the reconstruction error, ERRc

Rec (26), (the orange
area) is not.

Corollary 1 (Properties of the time-continuous setting). 1. As dt→ 0 the eigen-
value µ→ 1 (coincides with Eq. (12)), ak → 1 for all k, and ERRDMD → 0.

2. For p = 2, µ̃ = λ, as expected in the linear case.
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3. To solve this paradox the vectors aN−1
0 and aN1 must be co-linear. Therefore,

the recurrence relating ak+1 to ak should be geometric.

The third part of the corollary implies the DMD paradox can be solved by sampling
the data non-uniformly. For example, we can sample the dynamics at time points

tk =
|1− δ|k(2−p)

λ(2− p) − 1

λ(2− p) . (32)

With this time sampling policy the solution, Eq. (5), gets the geometric decay form

ψk = ak · f, ak = |1− δ|k.

Evolving the explicit scheme (10) with the adaptive step size

dtk = −〈P (ψk), ψk〉
‖P (ψk)‖2

δ, (33)

yields the solution as in (14),

ψk = ak · f, ak = (1− δ)k. (34)

In both cases, the solution converges when δ ∈ (0, 2) and they are identical when
δ ∈ (0, 1].

Theorem 2 (Zero reconstruction error for time-rescaled DMD). For the following two
cases:

1. A time-continuous homogeneous flow (3) initialized with an eigenfunction and
sampled at time-points as in Eq. (32).

2. An explicit scheme of a homogeneous flow (10) initialized with an eigenfunction
with step-size dtk as in (13).

Applying DMD perfectly reconstructs the flow, ERRdRec = 0.

Proof. We prove this theorem for the explicit scheme. The proof for adaptive sampling
(the first case) is similar, by replacing (1− δ) with |1− δ|.

The solution of the explicit scheme, following (34), is

ψk = (1− δ)k · f.

Consequently, if there is a linear mapping, A, from ψk−1 to ψk then the initial condi-
tion, ψ0 = f , should be its right eigenvector and the corresponding eigenvalue is 1− δ.
In addition, the requirement for A is to be with minimal rank which is one in this
case. Therefore, the linear mapping A is

A = (1− δ) 1

‖f‖2
f · fT .

The solution of DMD is given in Lemma 1 when the eigenvalue is

µ = 1− δ.

With this solution both DMD and reconstruction errors are zero.

Remark 2. One can conclude that the data must exponentially decay to be precisely
reconstructed by DMD. The decay profile is a result of the homogeneity of the system.
Therefore, not only linear systems can be precisely reconstructed, but also one homo-
geneous ones. And, the adaptive step size policy can be understood as a homogeneity
normalization. Namely, this policy mimics a flow derived by a one-homogeneous op-
erator, with a fixed time step.
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3.2 Proposed general time re-scaling

Following the insights gained by the above analysis for the case of initialization with
eigenfunctions, we formulate a general scheme, which applies to any initial condition.
Naturally, we cannot expect that a linear approximation as DMD will maintain a zero
reconstruction error in the general case. However, the proposed solution models much
better the nonlinear dynamics. We require that for the case of a single eigenfunction,
we obtain the solutions stated in the previous section, yielding perfect reconstruction.

3.2.1 Prior time re-scaling

Continuous setting We introduce first the time re-scaling in the continuous time
setting. Specifically, the original flow is factorized by the functional λ−1

ψ ,

ψt = G(ψ) = λ−1
ψ · P (ψ), ψ(0) = f, (TRC)

where

λ−1
ψ = −〈P (ψ), ψ〉/‖P (ψ)‖2. (35)

Note that an eigenfunction of P is an eigenfunction of G with the corresponding
eigenvalue 1. The factorization term λψ can be viewed as a generalized Rayleigh
quotient, as discussed, for instance, in [48].

Theorem 3 (Convergence of (TRC)). Let R(ψ) be a convex functional, −P (ψ) be
the gradient of R(ψ), and ψ(t) be the solution of (TRC). Then,

1. If the zero function belongs to the kernel of the functional R then R(ψ) converges
to zero exponentially.

2. If P is a homogeneous operator and the initial condition, f , is an eigenfunction
of P (and it is not trivial) the solution is ψ(t) = f · e−t.

The proof is in Appendix C.

Discrete setting The discrete time re-scaling is done by plugging λ−1
ψk
δ as the

adaptive step size of the explicit scheme,

ψk+1 = ψk − P (ψk) · λ−1
ψk
δ, ψ0 = f, δ ∈ R. (TRD)

This explicit scheme was studied in [26]. The flow is proven to converge to the steady
state exponentially under this scheme when δ ∈ (0, 2).

This adaptation is possible if we know the operator in advance and we can control
the step size as well, which is not always the case. In what follows, we suggest two
ways of time re-scaling when the data is already sampled. We propose ways to re-scale
the time axis also in cases when the operator or step size are not known.

3.2.2 Posterior time re-scaling

To adapt arbitrary data snapshots to our time-rescaled DMD we first associate a
datum to a certain time point. Then, we interpolate the data and sample at the
appropriate time points. Let us denote by dtk the original step size, representing the
time difference between sample ψk and sample ψk+1. The point at time, associated
with ψk is tk =

∑k−1
i=0 dti. We rescale the time axis such that dtk is mapped to d̃tk
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and accordingly tk to t̃k =
∑k−1
i=0 d̃ti. We do that by reformulating the explicit scheme

of the original flow, i.e.

ψk+1 = ψk + P (ψk) · dtk

= ψk − P (ψk) · 〈P (ψk), ψk〉
‖P (ψk)‖2

·
(
− ‖P (ψk)‖2

〈P (ψk), ψk〉
dtk

)
.

Thus, the following mapping is obtained

d̃tk = − ‖P (ψk)‖2

〈P (ψk), ψk〉
dtk, t̃k =

k−1∑
i=0

d̃ti = −
k−1∑
i=0

‖P (ψi)‖2

〈P (ψi), ψi〉
dtk. (36)

Blind time sampling and flow When P and dt are unknown, the step size
rescaling, Eq. (36), can be reformulated as

d̃tk = − ‖P (ψk)‖2

〈P (ψk), ψk〉
dtk = − ‖P (ψk)‖2

〈P (ψk), ψk〉
dt2k
dtk

= − ‖P (ψk) · dtk‖2

〈P (ψk) · dtk, ψk〉
.

Since P (ψk) · dtk = ψk+1 − ψk we get

d̃tk = − ‖ψk+1 − ψk‖2

〈ψk+1 − ψk, ψk〉
, t̃k =

k−1∑
i=0

d̃ti = −
k−1∑
i=0

‖ψi+1 − ψi‖2

〈ψi+1 − ψi, ψi〉
. (37)

Our data is now framed within a proper time-rescale, {ψk, t̃k}Nk=0. In order to make
it suitable for DMD, we interpolate the data and sample it with a fixed step size (for
instance, by linear interpolation). We note that when the operator is known (non-
blind case), naturally the estimations are better and we obtain less reconstruction
errors, as our experiments show in the Results section. We note that previous works
have proposed non-uniform data sampling (e.g. [22, 21]). However, the context and
motivation are different.

Remark 3. The time rescaling, Eq. (TRC), can be seen as homogeneity normal-
ization. The new operator G(·) is one-homogeneous for any homogeneity order of P ,
thus, it decays exponentially. In addition, the factorization term, λ−1

ψ , is not unique
to change the homogeneity of the flow to one. It can be any (2 − p)-homogeneous
functional. For example, the term ‖ψ‖2−p changes the homogeneity to one but the
convergence (Theorem 3) is not clear.

3.3 DMD for symmetric operators

According to Theorem 3, one can conclude that a homogeneous functional decays
exponentially under the adaptive step size policy. It was discussed in [26] that the
adaptive step size flow can yield negative eigenvalues but not complex. Thus, it is
natural to constrain the DMD matrix to be symmetric and real. This requirement
coincides with the analytic expression of nonlinear diffusion in [49, chapter 3.4]. In
this monograph, Weickert investigates the following nonlinear PDE for the continuous
and semi-discrete settings,

ψt =∇ · (D(∇ψ)∇ψ) ,

where D is a tensor R2×2 → R2×2. Weickert shows that the above flow can be
discretized by

ψk+1 = A(ψk)ψk,
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where A(·) is symmetric. Note that this evolution is not linear and the operator A
change with iterations. However, the DMD matrix, F (Algo. 1, State 5), is not limited
to be symmetric. If F is symmetric, it can be written as

F = BTB, (38)

where B belongs to Cr×r. Then, we can embed this requirement in the standard DMD
(see Appendix A). We refer to this as Symmetric DMD (Algo. 2). This algorithm is
identical to the classic DMD other than calculating F . Restricting F to be symmetric
is equivalent to solving

FXXT +XXTF = XY T + Y XT .

For more details we refer the reader to Appendix A.

Algorithm 2 Symmetric DMD (S-DMD)

1: Inputs:
Data sequence {ψk}N+1

0 .
2: Repeat the steps detailed in Algorithm 1. The fifth step is changed to: Find

the optimal linear mapping, F , between X and Y in the sense of

min
F
‖Y − FX‖2F , s.t. F = BTB.

Equivalently, solve the Sylvester equation

FXXT +XXTF = XY T + Y XT .

Algorithms for solving this are given in Appendix A.
3: Outputs:

{µi,φi, αi}r1
.

3.4 Modes as nonlinear eigenfunctions

In what follows, we examine the modes of applying DMD on the time-rescaled snap-
shots, as explained above. We attempt to draw a relation between the modes and the
eigenfunctions of the operator P . Let us recall, first, the definition of the modes {φi}

Φ =
[
φ1 · · · φr

]
= Ur

[
w1 · · · wr

]
= Ur ·W,

where {wi}ri=1 is the eigenvector set of the DMD matrix, F . The mode set {φi}ri=1,
is an orthonormal set,

〈φi, φj〉 = φ∗i φj = (Urwi)
∗ Urwj = wi

∗U∗rUrwj = wi
∗wj = δi,j ,

where δi,j is the Kronecker delta. In general, the dynamical system reconstruction
with DMD is given by (Eqs. (24) and (22))

A = Ur · F · U∗r .
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The modes are eigenvectors of the dynamics matrix, A

A · φi = Ur · F · U∗r · Urwi = Ur · F ·wi = µiUrwi = µiφi.

The eigenvalues correspond to those of the DMD matrix. We focus on the adaptive
step-size explicit scheme (TRD). The linear system defined by A is its approximation.
We can thus write

ψk+1 ≈ Aψk.

Using (TRD) for ψk+1 we get

Aψk ≈ ψk −
〈P (ψk), P (ψk)〉
‖P (ψk)‖2

P (ψk)δ.

This approximation is valid for any input, in particular for a mode φ,

µφ = Aφ ≈ φ− 〈P (φ), φ〉
‖P (φ)‖2

P (φ) · δ.

Rearranging this equation yields

P (φ) ≈
[

1− µ
δ

‖P (φ)‖2

〈P (φ), φ〉

]
φ. (39)

The expression in the brackets is a (real) number. Thus, we can conclude that the
orthonormal mode set approximates a set of nonlinear eigenfunctions of the operator
P . This introduces an interesting new relation between DMD and nonlinear spectral
theory [50, 31].

3.5 Eigenvalue evaluation

The interpretation of the nonlinear eigenvalue, λ, is twofold. The first, the eigenvalue
is the value of the generalized Rayleigh quotient at a local extremum. The second, the
eigenvalue dictates the decay profile as well as the extinction time. Thus, the nonlinear
eigenvalues can be approximated accordingly.

Generalized Rayleigh quotient An eigenvalue approximation according to the
eigenvector is straightforward. The approximated relation between the operator P
and the eigenvector φ is defined in Eq. (39). Thus, the nonlinear eigenvalue is the
coefficient of the mode φ, i.e.

λφ =
1− µ
δ

‖P (φ)‖2

〈P (φ), φ〉 . (40)

The subscript denotes that the eigenvalue is based on the eigenvector φ. Notice that if
the initial condition f is an eigenfunction, the solution of DMD is given by Eq. (29).
Then, the eigenvalue, µ, is equal to 1− δ and the nonlinear eigenvalue, λφ, is equal to
the generalized Rayleigh quotient, which is precisely the eigenvalue λ.
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Decay profile As discussed above, the adaptive step size policy causes the flow to
decay similarly to a one homogeneous flow. Thus, we can compare between the decay
profiles. We compare the decay profile function at time tk, a(tk) to the exponential
attenuation by the eigenvalue µk. We propose here to compute the eigenvalue by
minimizing,

E(λ) =

N∑
k=0

(
a(tk)2−p − µk(2−p)

)2
=

N∑
k=0

[
1 + λµ(2− p)tk − µk(2−p)

]2
. (41)

Solving ∂λE(λ) = 0 yields

λµ =

∑N
k=0 µ

k(2−p)tk −
∑N
k=0 tk

(2− p)
∑N
k=0 t

2
k

. (42)

The subscript denotes that the eigenvalue is based on µ. Note that, if the flow is
initialized with an eigenfunction and sampled at time points tk as in Eq. (32) then
µ = |1− δ|. Using (41) we can solve for E(λ) by,

E(λ) =

N∑
k=0

[
1 + λµ(2− p)tk − µk(2−p)

]2
=

N∑
k=0

[
1 + λµ(2− p)

(
|1− δ|k(2−p)

λ(2− p) − 1

λ(2− p)

)
− |1− δ|k(2−p)

]2

=

N∑
k=0

[
1− λµ

λ
+
λµ
λ
|1− δ|k(2−p) − |1− δ|k(2−p)

]2

=

N∑
k=0

[(
1− λµ

λ

)
+

(
λµ
λ
− 1

)
|1− δ|k(2−p)

]2

=

(
1− λµ

λ

)2 N∑
k=0

[
1− |1− δ|k(2−p)

]2
Therefore, the optimal λµ is λ.

3.6 Orthogonal Nonlinear Spectral decomposition (OrthoNS)

We now summarize the above results and methods into a simple coherent analysis and
synthesis framework for homogeneous gradient flows, based on DMD. Two versions
of the mode decomposition are given in Algorithms 3 and 4. We distinguish between
two scenarios. The first, when the operator is known and the step size is controllable.
In that case, we refer the reader to Algorithm 3. For a data provided beforehand the
posterior rescaling is called for, detailed in Algorithm 4.

A dynamical system reconstruction Here we propose a simple alternative
reconstruction of the flow, which can be expressed analytically using the modes. Each
mode is related to an eigenfunction with its corresponding eigenvalue and decay profile.
A linear approximation of the flow (3) is expressed as a weighted summation of the
orthonormal modes,

ψ̂(t) =
r∑
i=1

αiφi
[
(1 + λi(2− p)t)+

] 1
2−p . (43)
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Algorithm 3 Orthogonal Nonlinear Spectral decomposition

1: Inputs:
Given a dynamical system Eq. (3)

2: Evolve the solution of Eq. (3) explicitly by Eq. (10) or sample the dynamics,
where the step size dtk is given by

dtk =
〈P (ψk), ψk〉
‖P (ψk)‖2

· δ, δ ∈ (0, 2).

And we get the data sequence, {ψk}Nk=0, homogeneously normalized.
3: Apply the Symmetric DMD Algorithm 2. The result is {µi,φi, αi}.
4: Relate the eigenvalues {µi}ri=1 or the modes {φi}ri=1 to the nonlinear eigen-

values {λi}ri=1 with Eqs. (40) or (42), accordingly.
5: Outputs:

{λi,φi, αi}r1

Algorithm 4 Posterior Orthogonal Nonlinear Spectral decomposition

1: Inputs:
Given the data sequence {φk}Nk=0.

2: if The operator and the sample times are known then
3: Rescale the time axis according to Eq. (36).
4: else
5: Rescale the time axis according to Eq. (37).
6: end if
7: Interpolate the data according to the new time axis at fixed step size. Then,

we get a new sequence of data, homogeneously normalized, {ψ̄k}Nk=0.
8: Apply the Symmetric DMD Algorithm 2. The result is {µi,φi, αi}.
9: Relate the eigenvalues {µi}ri=1 or the modes {φi}ri=1 to the nonlinear eigen-

values {λi}ri=1 with Eqs. (40) or (42), accordingly.
10: Outputs:

{λi,φi, αi}r1
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Definition 1 (Orthogonal Nonlinear Spectral decomposition (OrthoNS)). The OrthoNS
of an image f and a homogneous operator P is the set {φi, Ti, αi}ri=1 (Algorithms 3,
4).

With this definition, we can reconstruct the initial condition, f , as f̂ = ψ̂(0) =∑
i αiφi. The error,

∥∥∥f − f̂∥∥∥, depends on the dimensionality, r [51].

Theorem 4 (Parseval Identity). The OrthoNS admits the Parseval’s identity with
respect to f̂ .

Proof.

∥∥∥f̂∥∥∥2 = f̂T f̂ =

(
r∑
i=1

αiφi

)T r∑
j=1

αjφj =

r∑
i=1

r∑
j=1

αiαj〈φi, φj〉 =

r∑
i=1

α2
i

Definition 2 (Spectrum). The OrthoNS spectrum of a function f is the set {Ti, |αi|2}ri=1,
where Ti and αi are the extinction time and the coefficient of the mode φi, respectively.

Definition 3 (Filtering). Given a filter h ∈ Rr, the OrthoNS filtering is,

fh =

r∑
i=1

φiαihi. (44)

This yields an amplification or attenuation of the modes.

We note that the coefficients {αi}ri=1 are optimal with respect to the initial condi-
tion, f . Hence, the reconstruction accuracy is excellent near t ≈ 0 but may detoriorate
as time increases (as seen in our experiments). We currently examine ways to improve
this.

4 Results

In this section we show numerical implementations of the theory presented above. We
choose the operator P to be the p-Laplacian operator where p ∈ (1, 2), and assume
Neumann boundary conditions. We follow the numerical implementation as detailed in
[25, 26]. The eigenvectors presented here were generated numerically by the algorithm
of [48]. In this section, we show results of the (posterior) time rescaling (Sec. 4.1);
the dynamical system reconstruction (Sec. 4.2); and image analysis and processing
with OrthoNS (Sec. 4.3). We compare the running time of OrthoNS and nonlinear
p-decomposition [25] as a function of image size in Sec. 4.4. Finally, we examine the
robustness to noise of S-DMD compared to DMD [13], tlsDMD [39] and fbDMD [41]
in Appendix B. All experiments were run on an i7-8700k CPU machine @ 3.70 GHz,
64 GB RAM.

4.1 DMD with time rescaling

We demonstrate the time rescaling techniques and show quantitative results of The-
orem 2, along results of Algorithms 3 and 4. In Tables 1 and 2 we show results of
an experiment in which the p−Laplacian flow (p-Flow) is evolved, initialized with
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an eigenfunction, p = 1.5, λ = −0.0269, ‖f‖2 = 249.1, Text = 74.3. We set r = 20
and, as expected, the system is close to singularity. We list the five most significant
modes sorted according to their coefficients. In both cases, a single significant mode
is obtained which perfectly matches the parameters of the initial condition (power,
eigenvalue and extinction time).

α2 T λ

249.1 74.3 -2.69e-2
5.8e-07 0.2 -1e1
8.2e-17 0.3e-3 -7.22e3
4.9e-23 2.6e-10 -7.56e9
3.2e-23 5.8e-10 -3.44e9

Table 1: OrthoNS of an eigenfunc-
tion. The result of Algo. 3, P is the
p−Laplacian and f is an eigenfunc-
tion.

α2 T λ

249.1 74.3 -2.69e-2
5.8e-07 0.2 -1e1
2.2e-17 0.2e-3 -1.15e4
5e-23 2.6e-10 -7.74e9

4.7e-23 4.8e-09 -4.13e8

Table 2: Posterior OrthoNS of an
eigenfunction. The result of Algo.
4 for the same case as in Table 1.

4.2 OrthoNS and dynamical system reconstruction

We examine the main modes and the reconstruction (Eq. (43)) on a simple 1D pulse
signal. The experiment is repeated twice, with p = 1.01 and with p = 1.5. In both
cases, the dimensionality is set to r = 5. In Fig. 3 the initial condition reconstruction
and the OrthoNS modes (Algorith 3) are shown for p = 1.01. On the left, the initial

Figure 3: OrthoNS of a pulse, when p = 1.01 and r = 5. Left plot, the pulse
is in red, the reconstruction is blue. From the second left to the right, the five
main OrthoNS modes φi, sorted according to α.

condition is in red (dashed) and its reconstruction is in blue. The five plots on the
right are the modes, in decreasing order with respect to α (their “power”). A pulse
is very close to an eigenfunction of the p-Laplacian for p → 1 (total variation). As
expected, the first mode is very dominant, containing most of the signal’s power.

In Fig. 4 we illustrate how each mode evolves separately, according to its decay
profile, based on the nonlinear eigenvalue λµ (Eq. (42)). Fig. 5 shows the ground
truth flow, an approximation of the flow by a linear combination of the modes (Eq.
(43)), and the difference between them.

We repeat this experiment for p = 1.5 with the same initial condition, as shown
in Figs. 6, 7, and 8. In this case, we obtain less accuracy in the reconstruction with
the same number of modes, as the modes are smoother and do not resemble a pulse.
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Figure 4: Dynamics reconstruction. The change of the modes (from Fig.
3) over the time according to the approximated decay profile, Eq. (43). Five
significant modes for pulse smoothing when p = 1.01.

(a) Diffusion p = 1.01 (b) Reconstructed flow p = 1.01 (c) Difference

Figure 5: Dynamics reconstruction. Fig. 5a is the GT of ψt = ∆pψ initial-
ized with a pulse. Fig. 5b the reconstructed pulse smoothing by Eq. (43). Fig.
5c the difference between these two signals.
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As expected, the main mode, in terms of α, is not that dominant, where power is
scattered more evenly between modes compared to the case with p = 1.01.

Figure 6: OrthoNS of a pulse, when p = 1.5 and r = 5. In the left plot, the
pulse is the red line, the reconstruction one is the blue line. From the second
left to the right, the five modes are sorted according to their amplitude.

Figure 7: Dynamics reconstruction. The change of the modes (from Fig.
6) over the time according to the approximated decay profile, Eq. (43). Five
significant modes for pulse smoothing when p = 1.5.

(a) Diffusion p = 1.5 (b) Reconstructed flow p = 1.5 (c) Difference

Figure 8: Dynamics reconstruction. Fig. 8a is the GT of ψt = ∆pψ initial-
ized with a pulse. Fig. 8b the reconstructed pulse smoothing by Eq. (43). Fig.
8c the difference between these two signals.

Note, that the error between the flow and the reconstruction is almost zero for
t = 0 (Figs. 5c and 8c). The reason is that the coefficients {αi}ri=1 are optimized
based on the initial condition. However, the error increases fast and then diminishes
with time. We plan to investigate in the future alternative optimization models to
improve the reconstruction of the entire flow.
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4.3 Signal analysis and processing via OrthoNS

We show here that OrthoNS precisely and quickly distinguishes between different parts
of data. This distinction is done by filtering, as defined in Def. 3. It is demonstrated
here by denoising artificial and natural images.

4.3.1 Denoising an eigenfunction with noise

In Fig. 9 an eigenfunction of the p-Laplacian with additive Gaussian noise (N ∼
N (0, 0.3)) is denoised. We apply OrthoNS and get the spectrum as shown in Fig. 9f.
By filtering out the blue component from the spectrum, we restore the eigenfunction
(Fig. 9e) and the noise image (Fig. 9d).

(a) A p-Laplacian
eigenfunction

p = 1.5, λ = 0.0269

+

(b) Noise Image

=

(c) An
eigenfunction with

additional noise
PSNR = 10.5dB

(d) Filtered noise (e) Filtered
eigenfunction

PSNR = 30.2dB

(f) The discrete spectrum

Figure 9: Filtering via OrthoNS and Def. 3 - Recovering an eigenfunction,
corrupted with Gaussian noise. See the text for further details.

4.3.2 Denoising a natural image

In Fig. 10 a natural image with additive white Gaussian noise (N ∼ N (0, 0.2),
PSNR = 14dB) is denoised. Filtering is performed using OrthoNS, based on the
p-Laplacian with p = 1.01. Modes with high eigenvalues (lower extinction time) are
filtered out. This yields an edge preserving denoising. As expected, we lose some small
details but the zebra’s texture in general is preserved.

4.3.3 Spectrum

In Fig. 11 we demonstrate a qualitative comparison between the nonlinear spectral
p-decomposition of [25], the OrthoNS decomposition and the posterior OrthoNS. We
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(a) A zebra (b) A noisy zebra
PSNR = 14dB

(c) A filtered zebra
PSNR = 22.6dB

Figure 10: Denoiser - Using the definition of filtering, Def. 3, we filter out the
noise.

apply these methods on the zebra (Fig. 10a) for p = 1.01. On the left column, the
spectra of the p-decomposition, the OrthoNS, and the posterior scheme are given.
The images from the second left column to the right represent four different bands in
the spectra. One can see that the bands are automatically sorted from fine to coarse
spatial structures.

4.4 Run time Vs. Image size

A prominent advantage of this method is the running time. The p-decomposition [25]
requires evaluating the (p-Flow) with a uniform small step size. Then, fractional
derivative is calculated pointwise. This involves applying FFT and IFFT (along the
sampling time axis) for every point in the image. In Fig. 12, we show the computation
time versus the size of the image. The X-axis indicates the size of the image (number
of pixels) in log scale and the Y -axis indicates the running time taken to compute the
decomposition. The running time of OrthoNS is considerably lower than [25] in 1-2
orders of magnitude.

5 Conclusion and future work

In this work we investigated how to recover the main modes of homogeneous gradient
flows through a linear dimensionality reduction algorithm. We examined DMD, a
leading method for this purpose in fluid-dynamics. We used explicit analytic solutions
of such flows for cases where the initial condition is an eigenfunction of the nonlinear
operator. The analytic solution of DMD in these cases clearly shows its inability to
express such flows faithfully. A significant observation is that DMD can recover well
homogeneous flows which are of degree one. We thus proposed a time re-scaling of the
sampling points, such that it mimics the dynamics of 1-homogeneous flows sampled
with uniform time steps. It was shown how this adaptation allows to fully recover the
dynamics with analytic solutions.

Following these insights, two algorithms were proposed for time re-scaling, also
when the original time samples and the operator of the flow are not known. Addi-
tionally, a different DMD optimization was suggested in order to obtain a symmetric
DMD matrix (for non-oscillating flows). We have shown that the modes correspond
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(a) The p-spectrum S vs.
time

(b) 0% − 1.5% (c) 1.5%− 7.5%(d) 7.5% − 20%(e) 20% − 100%

(f) The OrthoNS (g) Blue items (h) Red items (i) Yellow items (j) Purple
items

(k) The posterior OrthoNS (l) Blue items (m) Red items (n) Yellow
items

(o) Purple
items

Figure 11: Orthogonal Nonlinear Spectral decomposition (OrthoNS)
The first row shows an image decomposition with p = 1.01 from [25]. In the
second row, OrthoNS is applied to the zebra image for p = 1.01, whereas in the
third row, the posterior OrthoNS method is used where neither the operator
nor the step size are known.

102 103

100

102

Figure 12: Running time Vs. Image size
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to approximations of nonlinear eigenfunctions (with respect to the operator of the
flow). The OrhoNS mode decomposition was proposed. It yields a small set of the
main modes of the flow and can be viewed as a linearization of the nonlinear spectral
decomposition (p-spectra) introduced in [25]. We believe this analysis and proposed
representation can further advance the understanding of gradient flows and be used in
various fields, wherever such flows are relevant.

List of Symbols

P A nonlinear homogeneous operator
f An initial condition
λ An eigenvalue of P
a(t) A decay profile
F (ψ, f) A fidelity term
R(ψ) A regularization term
∂psiR The variational derivative of R
Text The extinction time. The smallest time for which

the system gets its steady state
∇ The gradient of a function
Jp The Dirichlet energy
∆p The p-Laplacian operator
dt, dtk A fixed step size, a step size from k− 1th sample to

the kth
f Belongs to RM (column vector), the initial condition

of the dynamical system
ψk The snapshot of the system after kth step in RM (re-

sulted from sampling or evolving a explicit scheme)

ΨN−1
0 ,ΨN

1 Data matrices [ψ0, · · · , ψN−1], [ψ1, · · · , ψN ]

U,Σ, V Singular Vector Decomposition (SVD) of ΨN−1
0

Ur, Vr Sub-matrices of U, V containing the first r columns
Σr Sub-matrix of Σ containing the most significant r

eigenvalues of the SVD which are the diagonal of Σ

X,Y Dimensional reduced matrices of ΨN−1
0 ,ΨN

1 , respec-
tively

F The DMD matrix ,approximating a linear mapping
from X to Y (size r × r)

wi A column vector, the ith right eigenvectors of F
W W = [w1, · · · ,wr]
{φi, µi, αi}ri=1 Modes, eigenvalues, and coefficients resulted form

Dynamic Mode Decomposition (DMD)
D D = diag([µ1, · · · , µr])
ψ̃k Data reconstruction by DMD (discrete time setting)
A M × M matrix, approximating a linear mapping

from ΨN−1
0 to ΨN

1

˜ψ(t) Data reconstruction by DMD (continuous time set-
ting)

ERRDMD, ERRdRec, ERR
c
Rec The DMD, the (time-discrete) and the (time-

continuous) reconstruction errors
{µ̃}ri=1 Eigenvalues in the time continuous setting

d̃tk, t̃k Rescaled step size and time point
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λφ, λµ A nonlinear eigenvalue restoration via the mode φ,
the eigenvalue µ

A Finding a symmetric DMD matrix

We are looking for linear mapping, F , between X and Y when the mapping is sym-
metric, i.e.

min
F
‖Y − FX‖2F , s.t. F = FT . (45)

In addition, according to the spectral theorem every symmetric real matrix can be
diagonalized. Therefore, we can express the matrix as F = QTDQ when Q and
D are orthogonal and diagonal matrices. We can rewrite this expression as F =

QT
√
D
T√

DQ. Then, we can reformulate the optimization problem as

min
F
‖Y − FX‖2F , s.t. F = BTB. (46)

Note, that B is over the complex field and T denotes for the transpose operator.
Embedding the constrain in the optimization expression, we get

min
B

∥∥∥Y −BTBX∥∥∥2
F
.

Using
∥∥Y −BTBX∥∥2

F
= Tr

{
Y −BTBX

}T {Y −BTBX} and the derivatives

∂

∂B
Tr{FBG} = FTGT

∂

∂B
Tr
{
FBTG

}
= GF,

we get that the minimizer, B, admits

BTBXXT +XXTBTB = XY T + Y XT .

Substituting BTB with F , we get that for the minimizer, F , of (45) the following
Sylvester equation holds

FXXT +XXTF = XY T + Y XT . (47)

The solution for F exists and unique in this case. There are plenty of algorithm
to solve this equation (see e.g. [52][53][54]). In addition, for the specific form of
the Sylvester equation (47) a farther study was conducted in [55][56][57]. We use
the Matlab implementation (command “sylvester”) for solving the Sylvester equation,
which is based on the algorithm of Hessenberg-Schur method. The implementation is
based on the routines SB04QD.

B Symmetric DMD (S-DMD)

Here, we implement the S-DMD on a discrete stable linear system

ψk+1 =

[
0.1 0.6
0.6 0.1

]
ψk. (48)
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Figure 13: Spectrum Reconstruction. We compare DMD [13], tlsDMD [39],
fbDMD [41] and S-DMD based on their approximation for the eigenvalue of
system (48) when various levels of noise are introduced, −4 ≤ SNR ≤ 4.
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The eigenvalues are λ1,2 = −0.5, 0.7 and the initial condition is a normalized sum-
mation of the eigenvectors (namely [1, 0]T ). We approximate the eigenvalues of this
system based on 8 snapshots in presence of white Gaussian noise. We repeat our ex-
periment N = 1000 times and average of each of the methods. In Fig. 13 we showcase
the results and plot the ellipses which enclose the region of 95% of the estimates that
are closest to the true eigenvalue for each of the techniques (see [41]). One can see
that for this kind of systems, DMD is superior on the tlsDMD and the fbDMD. In
particularly, a method that takes into account the system and its inverse is doom to
fail for every stable system since the inverse system is not stable. Therefore, whilst the
fbDMD has good performances when the roots are on the unit cycle (BIBO stability)
it fails when the roots are in the unit cycle.

C Proof of Theorem 3

Proof.

1. The functional R(ψ) is convex, therefore

R(ψ)−R(0) ≤ −〈P (ψ), ψ − 0〉.

The functional R is zero at the point 0 (it is assumed to be in its kernel). And
thus

R(ψ) ≤ −〈P (ψ), ψ〉.
Applying the Brezis chain rule [58], we can write

d

dt
R(ψ) = 〈−P (ψ), ψt〉 = 〈−P (ψ),−〈P (ψ), ψ〉

‖P (ψ)‖2
P (ψ)〉 = 〈P (ψ), ψ〉 ≤ −R(ψ).

Using the Grönwall’s inequality, we can write R(ψ(t)) ≤ R(ψ(0)) · e−t = R(f) ·
e−t. Therefore, it converges.

2. Let the initial condition, f , be an eigenfunction of P with a corresponding
eigenvalue λ 6= 0 (f is not trivial). Then, the initial condition is an eigenfunction
of the operator G with the corresponding eigenvalue −1

G(f) = −〈P (f), f〉
‖P (f)‖2

P (f) = − λ

λ2

〈f, f〉
‖f‖2

λf = −f.

In addition, the operator G(·) from Eq. (TRC) is a one-homogeneous operator.
Then, the solution is [25] ψ(t) = f · e−t.
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