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Abstract

Given the noisy pairwise measurements among a set of unknown group elements, how to
recover them efficiently and robustly? This problem, known as group synchronization, has
drawn tremendous attention in the scientific community. In this work, we focus on orthog-
onal group synchronization that has found many applications, including computer vision,
robotics, and cryo-electron microscopy. One commonly used approach is the least squares
estimation that requires solving a highly nonconvex optimization program. The past few
years have witnessed considerable advances in tackling this challenging problem by convex
relaxation and efficient first-order methods. However, one fundamental theoretical question
remains to be answered: how does the recovery performance depend on the noise strength?
To answer this question, we study a benchmark model: recovering orthogonal group elements
from their pairwise measurements corrupted by additive Gaussian noise. We investigate the
performance of convex relaxation and the generalized power method (GPM). By applying
the novel leave-one-out technique, we prove that the GPM with spectral initialization en-
joys linear convergence to the global optima to the convex relaxation that also matches the
maximum likelihood estimator. Our result achieves a near-optimal performance bound on
the convergence of the GPM and improves the state-of-the-art theoretical guarantees on the
tightness of convex relaxation by a large margin.

1 Introduction

Group synchronization aims to recover group elements {gi}ni=1 from their pairwise measure-
ments:

gij = gig
−1
j + noise, (i, j) ∈ E

where E is a given edge set. It has attracted an increasing amount of attention in the past
few years as it can be often found in various applications. Examples include computer vision
(special orthogonal group SO(d)) [4, 15], robotics (special Euclidean group SE(d)) [51], cryo-
electron microscopy (SO(3)) [53, 55, 56], clock-synchronization on networks [28], sensor network
localization (Euclidean group) [22], joint alignment (Zn-group) [16] and community detection
(Z2-group) [1, 21]. Without noise, solving group synchronization is a trivial task since one
can recover every group element sequentially and they are uniquely determined modulo a global
group action. However, it is often highly challenging to solve the group synchronization problem
in the presence of noise. When the noise exists, sequential recovery no longer works as it would
amplify the noise.

Recent few years have seen many theoretical and algorithmic progresses in solving group
synchronization under various types of noise and with different underlying network structures [6,
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33, 40, 47, 51, 63]. In this work, we are interested in studying how to recover orthogonal group
elements Gi ∈ O(d) from the pairwise measurements corrupted by Gaussian noise,

Aij = GiG
⊤
j + σWij , (1.1)

O(d) := {O ∈ R
d×d : OO⊤ = O⊤O = Id},

where σ measures the noise strength and Wij = W⊤
ji ∈ R

d×d is a Gaussian random matrix with
each entry an independent standard normal random variable.

Why is (1.1) an interesting model to study? Orthogonal group is a generalization of many
useful groups such as Z2 := {1,−1} and unitary group U(1) := {ei θ : θ ∈ [0, 2π)}, and contains
permutation groups and special orthogonal group as subgroups. Moreover, the O(d) synchro-
nization plays an important role in the special Euclidean group synchronization problem SE(d),
a core problem in SLAM (simultaneous localization and mapping) [51] and sensor network lo-
calization [22]. Therefore, studying this benchmark model provides more insights into solving
many relevant problems.

Given this statistical model (1.1), one common approach is maximum likelihood estimation
(MLE) which is equivalent to finding the least squares estimator. Minimizing the least squares
cost function is a potentially NP-hard problem in general since it includes graph max-cut [29] as
a special case d = 1. On the other hand, many numerical simulations and previous theoretical
works indicate that despite its seeming NP-hardness, the O(d) synchronization is solvable with
an efficient algorithm if noise level is relatively low. The focus of this paper is analyzing the
performance of semidefinite relaxation and generalized power method in solving (1.1). More
precisely, we attempt to answer two questions:

When does convex relaxation recover the least squares estimator?

The first question concerns tightness: the solution to the relaxed convex program is not neces-
sarily equal to the least squares estimator in general. When are they the same?

Can we design an efficient algorithm to solve this orthogonal group synchronization?

The second question is about efficient recovery: in practice, we do not often use the SDP
(semidefinite programming) relaxation due to its expensive computational costs. As a result,
finding an efficient algorithm with global convergence will be very favorable. In particular, we
will study the convergence of generalized power method applied to the O(d) synchronization [9,
40, 41, 63]. The answers to both questions are closely related to the noise strength, namely σ.
As the noise strength increases, the recovery problem becomes more challenging. Therefore, we
aim to identify a regime for σ within which the generalized power method will successfully and
efficiently recover the maximum likelihood estimator.

1.1 Related works

Since there is an extensive literature on group synchronization, we are not able to provide an
exhaustive literature review. Instead, we will give a brief review of these works that inspire ours.
Group synchronization has been studied for several different groups including Z2 = {−1, 1} [1, 2,
6, 39], angular (phase) synchronization [5, 40, 54, 63], permutation group [20, 32, 46, 52], special
Euclidean group [22, 51], and finite cyclic group [16]. For the O(d) synchronization, it has found
broad applications in computer vision [4, 19, 45, 57], generalized Procrustes problem [37, 38, 53],
and cryo-electron microscopy [55, 56].

Due to the practical importance of O(d) synchronization, numerous efforts have been made
towards developing fast and reliable algorithms, as well as mathematical theory. One major
difficulty of solving O(d) synchronization is its severe nonconvexity in the least squares estima-
tion. The nonconvexity makes naive local search algorithms vulnerable to poor local optima.
Therefore, one needs to come up with alternative approaches to overcome these issues. Convex
relaxation, especially semidefinite relaxation, is viewed as one of the most powerful methods in
solving these highly nonconvex programs. The SDP relaxation of Z2 synchronization is studied
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in [1] which obtains a near-optimal performance bound for the exact recovery of hidden group
elements from corrupted measurements. The work [54] by Singer studies angular synchroniza-
tion by spectral methods and semidefinite program in presence of random noise. Later on, [5]
provides the first yet suboptimal theoretical guarantee for the tightness of the SDP relaxation
for angular synchronization. The near-optimal bound is first established in [63] which uses the
leave-one-out technique. In [61], the authors studies the SDP relaxation approach for SO(d)
synchronization with a subset of measurements corrupted by arbitrary random orthogonal ma-
trices, and obtained a near-optimal performance guarantee with respect to the corruption level.
The convex relaxation of O(d) synchronization under arbitrary noise is recently studied in [36]
which gives a sub-optimal performance bound.

However, even if the SDP relaxation works in many scenarios, its expensive computational
costs does not allow wide uses in practice. Instead, it is more practical to use fast low-rank
nonconvex optimization approach for O(d) synchronization including Riemannian optimiza-
tion [3, 8, 11, 12, 13, 24, 43, 51, 60, 62] since the solution is often low-rank. In particular,
the Burer-Monteiro factorization [12, 13] has gained substantial popularity due to its great em-
pirical successes in solving large-scale SDPs. However, since the objective function associated
with Burer-Monteiro factorization is nonconvex, there is always risk that the iterates might get
stuck at one of the poor local optima. Recent theoretical progresses have shown that as long
as the degree of freedom p in the search space is large (scales like p ≈

√
2n where n is the

number of constraints), the first and second order necessary optimality conditions are sufficient
to guarantee global optimality [11, 60], which provides a solid theoretical foundation for the
Burer-Monteiro approach. Moreover, even if one chooses a search space of much smaller dimen-
sion, the Burer-Monteiro factorization still works [10, 35] in the examples such as community
detection, and Z2- and O(d) synchronization, provided that the noise is sufficiently small (not
optimal). Other approaches of group synchronization includes the convenient spectral relax-
ation [35, 50, 54, 56], often providing a solution close to the ground truth but not as good as the
maximum likelihood estimator. Message passing type algorithms are also discussed in group
synchronization [33, 47] in which a general algorithmic framework is established to solve a large
class of compact group synchronization problems.

The performances of projected power method in joint alignment problem (Zm-cyclic group)
and angular synchronization are studied in a series of works [9, 16, 40, 63]. The algorithm
consists of an ordinary power iteration plus a projection to the group. One core question
regarding the power method is: when can we recover the maximum likelihood estimator (MLE)
via generalized power method? The answer depends on the noise level. The work [16] proves
that projected power method with proper initialization converges to the MLE for joint alignment
problem and achieves an information-theoretically optimal performance bound in the asymptotic
regime. Several papers [9, 40, 63] have been devoted to solving the angular synchronization by
using the generalized power method and to providing convergence analysis of the algorithm. The
inspiring work [63] employs the leave-one-out technique and is able to establish a near-optimal
bound on the noise strength to ensure the global convergence of the generalized power method
to the MLE. As a by-product, [63] also provides a near-optimal bound for the tightness of
the SDP relaxation. Recently, [41] proposes an algorithmic framework based on the generalized
power method to solve the synchronization of O(d) group and its subgroups such as permutation
group and special orthogonal group. The authors also provide a theoretical analysis on how far
the output from the GPM is away from the ground truth.

One important technical ingredient in our work is matrix perturbation theory [23, 49, 59, 26],
commonly used in statistics, signal processing, and machine learning. In particular, our analy-
sis relies on matrix perturbation argument to analyze the spectral initialization. However, the
classical Davis-Kahan theorem [23] is insufficient to directly provide a tight bound because we
need a block-wise operator norm bound for the eigenvectors while Davis-Kahan theorem only
gives an error bound in ℓ2-norm. Our work benefits greatly from the leave-one-out technique
in [2, 17, 27, 42, 63] which is used to overcome this technical challenge. This technique has
proven to be a surprisingly powerful method in dealing with the statistical dependence be-
tween the signal and noisy measurements, and allowing us to achieve near-optimal performance
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bounds. We have seen many successful examples including Z2-synchronization and community
detection under stochastic block model [2], statistical ranking problem [18], ℓ∞-norm eigenvec-
tor perturbation [27], spectral clustering [25], and phase retrieval/blind deconvolution [34, 42],
and matrix completion [17, 42].

Our main contribution of this work is multifold. The work studies the global convergence
of the generalized power method [41] and the performance of the SDP relaxation [8, 51, 11, 36]
in solving orthogonal group synchronization with data corrupted by Gaussian noise. Despite
the aforementioned progresses, there still exists a gap between the theory and practice. Nu-
merical experiments indicate that the SDP relaxation and generalized power methods work if
the noise strength σ .

√
n/(

√
d +

√
log n) holds, modulo a possible log-factor. However, the

state-of-the-art guarantee σ . n1/4/d3/4 in [36] is still far from this empirical observations in
O(d)-synchronization for d ≥ 3. We establish a near-optimal performance bound for the global
convergence to the maximum likelihood estimator as well as the tightness of the SDP relaxation.
Our result narrows the gap between theory and empirical observation by showing that the GPM
and the SDP relaxation work if σ .

√
n/

√
d(
√
d +

√
log n), only losing a factor of

√
d to the

detection threshold [48]. Moreover, we provide a near-optimal error bound between the MLE
and ground truth. Our work can be viewed as a generalization of the projected power method
for phase synchronization [63] to orthogonal group synchronization [41]. However, since U(1)
in [63] is a commutative group while orthogonal group O(d) is non-commutative for d ≥ 3, this
fundamental difference requires many different technical treatments in the proof. Moreover,
this result complements the work [41] by answering what the limiting point of the GPM is, i.e.,
the convergence to the MLE for the iterates from generalized power method under (1.1).

1.2 Organization

We will discuss the preliminaries including model setup and algorithm in Section 2. The main
results will be provided in Section 3 and the proofs are given in Section 4.

1.3 Notation

We denote vectors and matrices by boldface letters x and X respectively. For a given matrix
X, X⊤ is the transpose of X and X � 0 means X is positive semidefinite. Let In be the
identity matrix of size n×n. For two matrices X and Y of the same size, their inner product is
〈X,Y 〉 = Tr(X⊤Y ) =

∑
i,j XijYij. Let ‖X‖ be the operator norm, ‖X‖∗ be the nuclear norm,

and ‖X‖F be the Frobenius norm. We denote the ith largest and the smallest singular value
(and eigenvalue) of X by σi(X) and σmin(X) (and λi(X) and λmin(X)) respectively. For a
non-negative function f(x), we write f(x) . g(x) and f(x) = O(g(x)) if there exists a positive
constant C0 such that f(x) ≤ C0g(x) for all x.

2 Preliminaries

Recall the orthogonal group synchronization under Gaussian noise:

Aij = GiG
⊤
j + σWij ∈ R

d×d

whereGi ∈ O(d) andWij is a d×d Gaussian random matrix. LetG⊤ = [G⊤
1 , · · · ,G⊤

n ] ∈ R
d×nd.

Then we write the model into a more convenient block matrix form

A = GG⊤ + σW , W ∈ R
nd×nd (2.1)

whereW = [Wij ]1≤i,j≤n is an nd×nd symmetric Gaussian randommatrix whose entries are i.i.d.
standard normal. The task is to recover the group elements from their pairwise measurements
Aij .

Among many existing approaches for O(d) synchronization, one popular approach is maxi-
mum likelihood estimation (MLE). Under Gaussian noise, the likelihood function is equivalent
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to the least squares cost function:

min
Ri∈O(d)

∑

i<j

‖RiR
⊤
j −Aij‖2F

which is equivalent to

max
Ri∈O(d)

∑

i<j

〈RiR
⊤
j ,Aij〉. (2.2)

Directly maximizing (2.2) is not an easy task since (2.2) is a highly nonconvex optimization
program and potentially NP-hard. Convex relaxation is a powerful approach to overcome the
nonconvexity. Let R ∈ O(d)⊗n be a matrix of size nd × d whose ith block is Ri. Note that
every element in {RR⊤ : Ri ∈ O(d)} is positive semidefinite and its diagonal block equals Id.
The convex relaxation is obtained by “lifting” the feasible set:

max 〈A,X〉 such that X � 0, Xii = Id. (2.3)

This semidefinite relaxation is a generalization of Goemans-Williamson relaxation [29] for graph
max-cut. The global maximizer of (2.3) can be recovered by using a standard convex program
solver [30, 44]. However, due to the relaxation, it is likely that the solution to (2.3) does not
match that to (2.2). Therefore, one major theoretical question is the tightness, i.e., when (2.2)
and (2.3) share the same global maximizer. More generally, we are interested in when (2.2) is
solvable by an algorithm with polynomial time complexity. The answer depends on the value
of σ: for (2.2) with small σ, it is more likely to obtain the optimal solution.

Our discussion focuses on answering two questions: (a) when is the SDP relaxation tight?
How does the tightness depend on σ?; (b) if the SDP is tight, does there exist an efficient
algorithm to recover the optimal solution to (2.3) and (2.2)? Now we introduce the generalized
power method: the algorithm consists of a two-step procedure widely employed in nonconvex
optimization literature [14, 42, 63]: first we find a good initialization by using spectral method
and then show the global convergence of the generalized power method. Before proceeding to
the algorithm, we give a few useful definitions.

Definition 2.1 (Generalized “phase”). The generalized “phase” of a matrix Ψ ∈ R
d×d is defined

as
P(Ψ) := UV ⊤ +U⊥V

⊤
⊥ , Ψ = UΣV ⊤, (2.4)

where Ψ = UΣV ⊤ is the compact SVD of Ψ, i.e., U⊤U = V ⊤V = Ir and r = rank(Ψ). Here
U⊥ and V⊥ are d× (d− r) matrices satisfying U⊤

⊥U = V ⊤
⊥ V = 0 and U⊤

⊥U⊥ = V ⊤
⊥ V⊥ = Id−r.

For a block matrix X⊤ = [X⊤
1 , · · · ,X⊤

n ] ∈ R
d×nd with Xi ∈ R

d×d, we define Pn(·) as an
operator R

nd×d → O(d)⊗n:

Pn(X) :=



P(X1)

...
P(Xn)


 ∈ O(d)⊗n.

The operator P(·) is also known as the matrix sign function [2, 31]. Indeed, P(Ψ) is not
unique because there are multiple choices of U⊥ and V⊥ if Ψ is not full rank. Therefore, it
is more reasonable to treat P(·) as a set-valued function and P(Ψ) outputs one representative
from the set

{UV ⊤ +U⊥V
⊤
⊥ : U⊤

⊥U = V ⊤
⊥ V = 0}, Ψ = UΣV ⊤,

which is a subset of O(d). With a bit abuse of notation, a possibly simpler alternative way of
defining P(·) is to let Ψ = UΣV ⊤ be any full SVD of Ψ and

P(Ψ) := UV ⊤ ∈ O(d)

where U and V are both d × d orthogonal matrices. In particular, if Ψ ∈ R
d×d is invertible,

then
P(Ψ) := Ψ(Ψ⊤Ψ)−

1

2 = (ΨΨ⊤)−
1

2Ψ

5



is uniquely determined.
The operator Pn is essentially the projection operator which maps a matrix of R

nd×d to
O(d)⊗n since for each block Xi, P(Xi) is the orthogonal matrix closest to Xi:

P(Xi) := argminQ∈O(d) ‖Q−Xi‖2F .

In our discussion, we also need to introduce a new distance function between two matrices X
and Y in R

nd×d. Remember that for orthogonal group synchronization, the solution is equivalent
up to a global group action, i.e., for any fixed G ∈ O(d)⊗n, G and GQ are equivalent for any
Q ∈ O(d). This fact needs to be taken into consideration and we define the following distance
function for two matrices in R

nd×d:

dF (Y ,X) := min
Q∈O(d)

‖Y −XQ‖F , (2.5)

where Q = P(X⊤Y ) minimizes ‖Y −XQ‖F since

dF (Y ,X) = min
Q∈O(d)

√
‖X‖2F + ‖Y ‖2F − 2〈X⊤Y ,Q〉

=
√

‖X‖2F + ‖Y ‖2F − 2‖X⊤Y ‖∗.

This distance function satisfies triangle inequality. For three arbitrary nd× d matrices X,Y ,
and Z, we have

dF (X,Z) = ‖X −ZQZX‖F ≤ ‖X −ZQZY QY X‖F
≤ ‖X − Y QY X‖F + ‖Y QY X −ZQZYQY X‖F
≤ dF (X,Y ) + dF (Y ,Z)

where QZX = P(Z⊤X), QZY = P(Z⊤Y ), and QY X = P(Y ⊤X) all belong to O(d).
Now we are ready to present the algorithm, which has been proposed in [41, 63].

Algorithm 1 Generalized power methods for orthogonal group synchronization

1: Compute the top d eigenvectors Φ ∈ R
nd×d of A with Φ⊤Φ = nId.

2: Compute P(Φi) for all 1 ≤ i ≤ n where Φi is the ith block of Φ.
3: Initialize S0 = Pn(Φ).
4: St+1 = Pn(ASt), t = 0, 1, · · ·
5: Stop when the iteration stabilizes.

The algorithm begins with a spectral initialization which first computes the top d eigen-
vectors of A and then projects them onto O(d)⊗n. After that, each step of the algorithm is
essentially one step of the power iteration followed by projection. In order to better understand
this algorithm, we first take a closer look at this algorithm and its possible fixed point. Let St

i

be the ith block of St and the update rule for the ith block is

St+1
i = P




n∑

j=1

AijS
t
j


 = U t

i (V
t
i )

⊤, 1 ≤ i ≤ n,

where U t
i and V t

i are the left and right singular vectors of
∑n

j=1AijS
t
j. Note that

n∑

j=1

AijS
t
j = U t

iΣ
t
i(V

t
i )

⊤ = U t
iΣ

t
i(U

t
i )

⊤ ·U t
i (V

t
i )

⊤ = Λt
iiS

t+1
i (2.6)

where Λt
ii := U t

iΣ
t
i(U

t
i )

⊤ � 0. In other words, Λt
ii =

(
[ASt]i[ASt]⊤i

)1/2
is the matrix square

root of [ASt]i[ASt]⊤i and is uniquely determined. A more compact form of the update rule is

ASt = ΛtSt+1
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where Λt = blkdiag(Λt
11, · · · ,Λt

nn) is a block-diagonal matrix whose diagonal blocks consist of
{Λt

ii}ni=1.
Suppose {St}t≥0 finally converges under dF (·, ·), the limiting point S∞ is likely to satisfy

(we will justify why it holds later):
AS∞ = ΛS∞ (2.7)

where Λ = blkdiag(Λ11, · · · ,Λnn) ∈ R
nd×nd � 0. In fact, (2.7) arises again when we want to

characterize the global optimality of S∞(S∞)⊤ in (2.3): if S∞ satisfies (2.7) and Λ −A � 0,
then S∞(S∞)⊤ is a global maximizer to (2.3), which follows from the duality theory in convex
optimization.

3 Main theorems

The first result improves the state-of-the-art bound for the tightness of the SDP relaxation to
solve orthogonal group synchronization.

Theorem 3.1. Consider orthogonal group synchronization problem (2.1) under additive Gaus-
sian noise and its convex relaxation (2.3). The SDP relaxation is tight, i.e., the globally optimal
solution X to (2.3) is rank-d and can be factorized into X = SS⊤ where S ∈ R

nd×d equals the
maximum likelihood estimator (2.2), if

σ <
c0
√
n√

d(
√
d+

√
log n)

(3.1)

with high probability for a small constant c0. Moreover, its solution is unique and satisfies

min
Q∈O(d)

max
1≤i≤n

‖Ĝi −GiQ‖F . σ
√
n−1d(

√
d+

√
log n)

where Ĝi is the MLE and the solution to (2.3).

Here we have several remarks on Theorem 3.1. The maximum likelihood estimator Ĝ does
not have an explicit form and is not equal to the ground truth G. The best known bound
on σ for the tightness before this result is σ < c1n

1/4/d3/4 for some small constant c1 in [36].
The bound (3.1) greatly improves the scaling on n from n1/4 to a near-optimal dependence

√
n.

Note that in random matrix theory, it has been extensively studied when the top eigenvectors
of A are correlated with the planted signals (low-rank matrix), see e.g. [7, 48]. In fact, once
the noise level σ reaches σ >

√
n/d, spectral methods fail to provide useful information about

the planted signal. Moreover, spectral methods (PCA) achieve the optimal detection threshold
under certain natural priors for the spike. Therefore, the optimal bound on σ should scale like√

n/d up to a logarithmic factor and our bound differs from this threshold by a factor of
√
d.

Another relevant approach to solve the O(d) synchronization uses spectral relaxation. Note
that [35] implies that spectral relaxation provides a spectral estimator Ĝi,spec of Gi which

satisfies minQ∈O(d) max ‖Ĝi,spec −GiQ‖ . σ
√
n−1d with a near-optimal bound on σ, i.e., σ .√

n/(
√
d+

√
log n). However, the solution Ĝspec given by spectral relaxation is often not equal

to the maximum likelihood estimator (MLE).
The second result concerns establishing an efficient algorithm with guaranteed global con-

vergence. Despite that the spectral methods fail to give the MLE directly, it can be used as an
initialization step since S0 = Ĝspec is very close to G even in block-wise error bound. Using this
idea, we have the following theorem which provides a convergence analysis of the generalized
power method.

Theorem 3.2. Consider orthogonal group synchronization problem (2.1) with additive Gaussian
noise. Suppose

σ <
c0
√
n√

d(
√
d+

√
log n)

7



for some small constant c0, then the spectral initialization gives S0 which satisfies dF (S
0,G) ≤

ǫ
√
nd for ǫ < 1/(32

√
d) and the sequence {St}∞t=0 from the generalized power method converges

linearly to a limiting point S∞, i.e.,

dF (S
t,S∞) ≤ 2−tdF (S

0,S∞), ∀t ≥ 0,

with probability at least 1 − O(n−2). Moreover, S∞(S∞)⊤ is the unique global maximizer of
the SDP relaxation (2.3) and S∞ equals the maximum likelihood estimator, i.e., the global
maximizer to (2.2).

Theorem 3.2 is a generalization of the convergence analysis of the GPM on phase synchro-
nization (U(1) group) [63]. This extension is nontrivial since U(1) group considered in [63] is
commutative while O(d) group is non-commutative for d ≥ 3. The resulting technical difference
can be seen later in Lemma 4.5 and 4.6 which are used to show that the GPM behaves like a
contraction mapping on the iterates.

Now we discuss a few future directions. As discussed before, the dependence on n is near-
optimal but the scaling of d remains suboptimal by

√
d. In fact, the suboptimal dependence

of performance bound on the rank d is a general issue in the convergence analysis of noncon-
vex approaches in many signal processing and machine learning problems [17, 34]. It is an
open problem to have an exact recovery guarantee of the MLE via convex/nonconvex approach
provided that

σ = O

(√
n

d

)

holds modulo a log-factor. Resolving this open problem will potentially lead to a substantial
improvement of performance guarantees in many examples of low-rank matrix recovery via non-
convex approach. For the O(d) synchronization, one possible solution is to derive a performance
bound in terms of d2(X,Y ) := minQ∈O(d) ‖Y −XQ‖, which is significantly more challenging
since the norm is no longer equipped with an inner product. This will create technical difficulties
in proving that the Algorithm 1 is actually a contraction mapping within a basin of attraction,
more precisely discussed in Lemma 4.7 and 4.8.

Another future direction is about the optimization landscape associated with the Burer-
Monteiro factorization of (2.2). Empirical studies in the author’s earlier work [36] indicate
that even without spectral initialization, the generalized power method still outputs the global
maximizer to the SDP relaxation. Therefore, it would be very interesting to see how the
optimization landscape changes with respect to the noise strength σ or to justify why random
initialization works well enough for this synchronization problem. For the algorithmic aspect,
another commonly-used approach for the angular (phase) synchronization is the GPM with a
certain stepsize [9, 40]. Instead of running St+1 = Pn(ASt), one wants to recover the group
elements by

St+1 = Pn

(
(Ind + αA/n)St

)

for some α > 0. In particular, as α → ∞, this algorithm becomes the generalized power method
studied in this paper. It would be an interesting research problem to explore whether one can
establish the global convergence of this proposed approach.

Finally, note that our current manuscript only deals with the additive Gaussian noise
in (2.1). It is natural to consider general subgaussian noise. Examples include uniform corrup-
tion model [61], i.e., Aij = ξijGiG

⊤
j +(1−ξij)Oij , i < j where ξij is an independent Bernoulli(p)

random variable andOij is a random matrix sampled uniformly from the Haar measure on O(d),
and also general additive block-wise independent subgaussian noise, i.e., Aij = GiG

⊤
j + σ∆ij

where {∆ij}i≤j are centered independent random matrices with subgaussian tail on ‖∆ij‖. The
techniques introduced in this paper could be extended to both scenarios but a tight performance
bound requires a more careful analysis of the operator norm of the noise matrix.
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4 Proofs

This section is devoted to the proof of the main theorems. Our proof will follow a similar route
in [63]. However, since O(d) is non-commutative, many technical parts need different treatments
from those in [63]. Also we will use some supporting results in [35], especially regarding spectral
initialization, without giving the detailed proofs. To make this manuscript more self-contained,
the proof idea of each cited result will be discussed.

Instead of studying (2.1), we will focus on a statistically equivalent model. Note that
orthogonal transform will not change the distribution of Gaussian random matrix. It suffices
to consider

A = ZZ⊤ + σW ∈ R
nd×nd

after performing a simple change of variable to (2.1) where Z⊤ := [Id, · · · , Id] ∈ R
d×nd.

Our main goal is to show the tightness of the SDP relaxation (2.3), i.e., the global maximizer
to the SDP relaxation is of rank d, which corresponds to the global maximizer to (2.2). Similar
to phase synchronization, the global maximizer to (2.2) does not have an explicit form (Z is not
the global maximizer in general), which makes it harder to characterize the global maximum.
To resolve this issue, [63] developed a smart way of characterizing the global maximizer by
treating it as the limiting point of the sequences generated by the generalized power method.
We will show that the sequence {Sℓ}∞ℓ=0 always stays in the intersection of the following two
sets in Section 4.1 and 4.2:

Nǫ :=
{
S ∈ O(d)⊗n : dF (S,Z) ≤ ǫ

√
nd
}
,

Nξ,∞ :=
{
S ∈ O(d)⊗n :

∥∥∥W⊤
i S

∥∥∥
F
≤ ξ

√
nd(

√
d+ 4

√
log n), 1 ≤ i ≤ n

}
,

where ξ = 2 + 3ǫ > 0 is a constant determined in (4.11), ǫ is another constant which satisfies

ǫ ≤ 1

32
√
d
⇐⇒ ǫ2d ≤ 1

1024

and Wi ∈ R
nd×d is the ith block column of noise matrix W = [W1, · · · ,Wn].

Note that both Nǫ and Nξ,∞ are closed and compact sets in the Euclidean space. Then
if we can prove that {Sℓ}∞ℓ=0 converges to a limiting point, the limit also stays in Nǫ ∩ Nξ,∞.
Moreover, we have the following theorem.

Theorem 4.1. Suppose the generalized power iteration converges to a limiting point S∞ which
satisfies AS∞ = ΛS∞ where Λ = blkdiag(Λ11, · · · ,Λnn) � 0 is a symmetric block-diagonal
matrix with Λii ∈ R

d×d. Moreover, if S∞ is located in Nǫ ∩ N∞, then X∞ = S∞(S∞)⊤ is the
unique global maximizer to (2.3) if

σ <
1− 3ǫ2d/2

ξ + 3
·

√
n√

d(
√
d+ 4

√
log n)

. (4.1)

Therefore, our task becomes (a): to show that the sequence {Sℓ}∞ℓ=0 is located in the
Nǫ ∩ Nξ,∞ and converges to a limiting point; (b): to justify why the limiting point S∞ is the
global maximizer.

Now we first focus on completing the task (b) by providing a sufficient condition of the
global optimality in (2.3). Then we will show that if the limiting point is a fixed point of the
power iteration and is located in Nǫ∩Nξ,∞, then it must satisfy the following global optimality
condition. Finally, we will verify the assumptions in Theorem 4.1 hold in Section 4.3.

Theorem 4.2. The matrix X = SS⊤ with S ∈ O(d)⊗n is a global optimal solution to (2.3) if
there exists a block-diagonal matrix Λ ∈ R

nd×nd such that

AS = ΛS, Λ−A � 0. (4.2)

Moreover, if Λ−A is of rank (n− 1)d, then X is the unique global maximizer.

9



This optimality condition can be found in several places including [36, Proposition 5.1]
and [51, Theorem 7]. The derivation of Theorem 4.2 follows from the standard routine of duality
theory in convex optimization. In fact, the block-diagonal matrix Λ corresponds exactly to the
dual variable in (2.3). The first equation in (4.2) seems relatively simple to achieve as we have
seen that the fixed point of power iteration naturally satisfies this condition (2.6). The more
challenging part arises from achieving Λ−A � 0 which reduces to finding a tight lower bound for
the smallest eigenvalue of Λ. We will prove that a tight lower bound of λmin(Λ) can be obtained
if the limiting point is inside Nǫ ∩ Nξ,∞. Before proceeding to the proof of Theorem 4.1, we
introduce two useful supporting facts.

Lemma 4.3. Suppose W ∈ R
nd×nd is a symmetric Gaussian random matrix, then

‖W ‖ ≤ 3
√
nd (4.3)

with probability at least 1− exp(−nd/2).

This is a quite standard result in random matrix theory, which can be found in many
places [5, 63, 58].

Lemma 4.4. For any S ∈ Nǫ, all the singular values of Z⊤S satisfy
(
1− ǫ2d

2

)
n ≤ σi(Z

⊤S) ≤ n, 1 ≤ i ≤ d.

Proof: Note that

d2F (S,Z) = ‖S −ZQ‖2F
= ‖S‖2F + ‖Z‖2F − 2〈Z⊤S,Q〉
= 2(nd− ‖Z⊤S‖∗) ≤ ǫ2nd

where Q = P(Z⊤S). Since ‖Z⊤S‖ ≤ n implies 0 ≤ σi(Z
⊤S) ≤ n, 1 ≤ i ≤ d , we have

ǫ2nd

2
≥

d∑

i=1

(n− σi(Z
⊤S)) ≥ n− σmin(Z

⊤S) =⇒ σmin

(
Z⊤S

)
≥
(
1− ǫ2d

2

)
n.

This bound is actually quite conservative due to the extra d factor in the lower bound. It
is also the reason why we obtain a sub-optimal scaling on σ in the main theorem. In fact,
numerical experiments indicate that this additional d factor is not tight. Therefore, we leave
this sub-optimality issue to the future work. Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Suppose the fixed point S∞ ∈ O(d)⊗n satisfies AS∞ = ΛS∞ for
some positive semidefinite block-diagonal matrix Λ = blkdiag(Λ11, · · · ,Λnn) ∈ R

nd×nd. Then
we have

Λii = [AS∞]i(S
∞
i )⊤ � 0, 1 ≤ i ≤ n,

where [AS∞]i = ΛiiS
∞
i , 1 ≤ i ≤ n. Remember our goal is to prove that Λ − A � 0 and its

(d+ 1)th smallest eigenvalue is strictly positive.
We first obtain a lower bound of the smallest eigenvalue of Λii as follows:

λmin(Λii) = σmin(Λii) = σmin




n∑

j=1

AijS
∞
j




= σmin


Z⊤S∞ + σ

n∑

j=1

WijS
∞
j




(Weyl’s theorem) ≥ σmin

(
Z⊤S∞

)
− σ

∥∥∥W⊤
i S∞

∥∥∥
F

(Lemma 4.4) ≥
(
1− ǫ2d

2

)
n− σξ

√
nd(

√
d+ 4

√
log n)
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where Λii � 0 is symmetric for all 1 ≤ i ≤ n and S∞ ∈ Nǫ. Note that (Λ−A)S∞ = 0 means
at least d eigenvalues are 0. To show that Λ −A � 0 with rank (n − 1)d, it suffices to ensure
the (d + 1)-th smallest eigenvalue of Λ −A is strictly positive, i.e., u⊤(Λ − A)u > 0 for any
nonzero unit vector u ∈ R

nd such that u⊤S∞ = 0. It holds that

u⊤Au = u⊤ZZ⊤u+ σu⊤Wu

= ‖u⊤(S∞ −ZQ)‖2 + σu⊤Wu

≤ ‖S∞ −ZQ‖2 + σ‖W ‖
(Use (4.3)) ≤ ǫ2nd+ 3σ

√
nd

where ‖W ‖ ≤ 3
√
nd, ‖S∞ −ZQ‖ ≤ ‖S∞ −ZQ‖F ≤ ǫ

√
nd and Q = P(Z⊤S∞). Thus if (4.1)

holds, we have

u⊤(Λ−A)u ≥ min
1≤i≤n

λmin(Λii)− max
u:u⊤S∞=0,‖u‖=1

u⊤Au

≥
(
1− ǫ2d

2

)
n− σξ

√
nd(

√
d+ 4

√
log n)−

(
ǫ2nd+ 3σ

√
nd
)

≥
(
1− 3ǫ2d

2

)
n− σ(ξ + 3)

√
nd
(√

d+ 4
√

log n
)
> 0.

Then we have Λ−A � 0 with the (d+1)th smallest eigenvalue strictly positive and the bottom
d eigenvalues equal to zero.

Roadmap: Now we provide an overview of what to do in the next few sections. To prove

the main results Theorem 3.1 and 3.2, Theorem 4.1 indicates that we need to show the iterates
{Sℓ}∞ℓ=0 stay in Nǫ∩Nξ,∞ for all ℓ ∈ Z≥0 and moreover, it will converge to a limiting point which
satisfies AS∞ = ΛS∞ for some positive semidefinite block-diagonal matrix Λ ∈ R

nd×nd. We
will justify why {Sℓ}∞ℓ=0 stay in Nǫ∩Nξ,∞ in Section 4.1 and 4.2. The existence and convergence
of limiting point, and its global optimality will be given in Section 4.3. In Section 4.4, we will
prove why the spectral initialization provides a good starting point within Nǫ ∩ Nξ,∞. All the
following results hold with high probability under the assumptions in Theorem 3.1 and 3.2.

4.1 Contraction mapping on Nǫ ∩Nξ,∞

The tricky part is that we do not know the explicit form of the MLE which is not necessarily
equal to Z. In order to show the convergence of iterates to the MLE, we start with proving the
power iteration essentially gives a contraction mapping on Nǫ ∩ Nξ,∞. Define

L := n−1A, LS :=
1

n
AS =

1

n
(ZZ⊤ + σW )S ∈ R

nd×d. (4.4)

Then the power iteration is equivalent to:

St+1 = Pn(LSt).

Now, we will prove that Pn ◦ L is a contraction mapping, by investigating L and Pn indi-
vidually. The main result in this subsection is Lemma 4.8. Ideally, if we manage to prove
that Pn ◦L maps Nǫ ∩Nξ,∞ to itself, then the proof is done which follows from the contraction
mapping theorem. However, it remains unclear how to prove/disprove this statement. Instead,
we will show that the iterates {Sℓ}∞ℓ=0 from the projected power method stay in the basin of
attraction. We will address this issue in the next subsection.

Lemma 4.5. Suppose X and Y ∈ O(d)⊗n with dF (X,Z) ≤ ǫ
√
nd and dF (Y ,Z) ≤ ǫ

√
nd, it

holds
dF (LX,LY ) ≤ ρ′ · dF (X,Y ),

11



where

ρ′ = 2ǫ
√
d+ 3σ

√
d

n
.

Under the assumption

ǫ
√
d ≤ 1

32
, σ ≤ 1

72

√
n

d
,

then

ρ′ ≤ 1

9
.

We give the proof of this lemma at the end of this subsection. Note that Lemma 4.5
generalizes Lemma 12 in [63] to the non-commutative scenario. The major difficulty in proving
Lemma 4.5 comes from estimating the error ‖Z⊤(X − Y Q)‖ for Q = P(Y ⊤X), which is very
different from the proof of Lemma 12 in [63]. Next, we turn our focus to Pn(·).

Lemma 4.6. For two invertible matrices X ∈ R
d×d and Y ∈ R

d×d, we have

‖P(X) − P(Y )‖F ≤ 2‖X − Y ‖F
σmin(X) + σmin(Y )

.

If only σmin(X) (or σmin(Y )) is known, then we can use

‖P(X) − P(Y )‖F ≤ 2σ−1
min(X)‖X − Y ‖F .

Lemma 4.6 is a generalization of Lemma 13 in [63] from d ≤ 2 to d ≥ 3, which says the
matrix sign function (generalized phase) in (2.4) is a Lipschitz continuous function in the region
where the input matrices have their smallest singular values bounded away from 0. We defer
the proof of Lemma 4.6 to the end of this section. The main idea of the proof follows from
applying the famous Davis-Kahan theorem to the augmented matrices of X and Y .

Now it seems combining Lemma 4.5 with 4.6 justifies the contraction of Pn ◦ L. The only
missing piece is to ensure that each block [LX]i has a lower bound on its smallest singular value
so that we can apply Lemma 4.6.

Lemma 4.7. Suppose X ∈ Nǫ ∩ Nξ,∞, then

σmin ([LX]i) ≥ 1− ǫ2d

provided that

σ ≤ ǫ2d

2ξ
·

√
n√

d(
√
d+

√
log n)

.

One can easily realize that the dependence of σ on d is sub-optimal by a factor of
√
d. This

is where the bottleneck is.

Lemma 4.8 (Contraction mapping). Suppose X and Y are in Nǫ ∩Nξ,∞, then we have

dF (Pn(LX),Pn(LY )) ≤ 2

1− ǫ2d
· dF (LX,LY )

≤ 2

1− ǫ2d

(
2ǫ
√
d+ 3σ

√
d

n

)
· dF (X,Y ).

We define

ρ =
2

1− ǫ2d

(
2ǫ
√
d+ 3σ

√
d

n

)
.

Under

ǫ
√
d ≤ 1

32
, σ ≤ min

{
1

72

√
n

d
,
ǫ2d

2ξ
·

√
n√

d(
√
d+ 4

√
log n)

}
,

then ρ < 1/2.
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Proof of Lemma 4.7 and 4.8. Over X ∈ N = Nǫ ∩ Nξ,∞, we have LX and its ith block as

LX =
1

n
(ZZ⊤ + σW )X, [LX]i =

1

n
Z⊤X +

σ

n
W⊤

i X.

Note that if dF (X,Z) ≤ ǫ
√
nd, σmin(Z

⊤X) ≥
(
1− ǫ2d/2

)
n holds. As a result,

σmin([LX]i) ≥
1

n
σmin(Z

⊤X)− σ

n

∥∥∥W⊤
i X

∥∥∥

(Lemma 4.4, X ∈ Nξ,∞) ≥
(
1− ǫ2d

2

)
− σ

n
· ξ
√
nd(

√
d+ 4

√
log n)

≥ 1− ǫ2d

when

σ ≤ ǫ2
√
nd

2ξ(
√
d+ 4

√
log n)

.

Similarly, we have σmin([LY ]i) ≥ 1− ǫ2d.
Now we are ready to obtain the contraction property of Pn ◦L on Nǫ ∩Nξ,∞. We pick Q as

the orthogonal matrix Q which minimizes

dF (LX,LY ) = min
Q∈O(d)

‖LX − LY Q‖F .

Then

dF (Pn(LX),Pn(LY )) ≤ ‖Pn(LX)− Pn(LY Q)‖F

=

√√√√
n∑

i=1

‖P([LX]i)− P([LY Q]i)‖2F

(Lemma 4.6) ≤ 2

1− ǫ2d

√√√√
n∑

i=1

‖[LX]i − [LY Q]i)‖2F

=
2

1− ǫ2d
‖LX − LY Q‖F

=
2

1− ǫ2d
dF (LX,LY )

(Lemma 4.5) ≤ 2

1− ǫ2d

(
2ǫ
√
d+ 3σ

√
d

n

)
dF (X,Y ).

Now we present the proof of Lemma 4.5 and 4.6 which are used to justify Lemma 4.8.

Proof of Lemma 4.5. Under dF (X,Z) ≤ ǫ
√
nd and dF (Y ,Z) ≤ ǫ

√
nd, it holds that

σmin(X
⊤Z) ≥

(
1− ǫ2d

2

)
n, σmin(Y

⊤Z) ≥
(
1− ǫ2d

2

)
n.

Also by triangle inequality and Lemma 4.4, we have

dF (X,Y ) ≤ 2ǫ
√
nd, σmin(X

⊤Y ) ≥
(
1− 2ǫ2d

)
n.

Now we set Q = P(Y ⊤X) which minimizes ‖X − Y R‖F over R ∈ O(d).

dF (LX,LY ) ≤ 1

n
‖A(X − Y Q)‖F

≤ 1

n

(∥∥∥ZZ⊤(X − Y Q)
∥∥∥
F
+ σ‖W (X − Y Q)‖F

)

≤ 1√
n
‖Z⊤(X − Y Q)‖F + 3σ

√
d

n
· dF (X,Y )
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where A = ZZ⊤ + σW , ‖Z‖ =
√
n, and ‖W ‖ ≤ 3

√
nd.

The more tricky part is the estimation of ‖Z⊤(X − Y Q)‖F . Let Q = P(Y ⊤X), QX =
P(Z⊤X), and QY = P(Z⊤Y ). Then

‖Z⊤(X − Y Q)‖F ≤ ‖(Y −ZQY )⊤(X − Y Q)‖F + ‖Y ⊤(X − Y Q)‖F
≤ ǫ

√
nd‖X − Y Q‖F + ‖Y ⊤X − nQ‖F

where ‖Y −ZQY ‖ ≤ ‖Y −ZQY ‖F ≤ ǫ
√
nd. For the second term,

‖Y ⊤X − nQ‖2F = ‖Y ⊤X‖2F − 2n‖Y ⊤X‖∗ + n2d

=

d∑

i=1

(n− σi(Y
⊤X))2

≤ (n− σmin(Y
⊤X)) · (nd− ‖Y ⊤X‖∗)

≤ ǫ2nd‖X − Y Q‖2F

where 0 ≤ n − σmin(Y
⊤X) ≤ 2ǫ2nd follows from Lemma 4.4 and ‖X − Y Q‖2F = 2(nd −

‖Y ⊤X‖∗). As a result,

‖Z⊤(X − Y Q)‖F ≤ 2ǫ
√
nd‖X − Y Q‖F = 2ǫ

√
nd · dF (X,Y ).

To sum up, we have

dF (LX,LY ) ≤ 1√
n
· 2ǫ

√
nd · dF (X,Y ) + 3σ

√
d

n
· dF (X,Y )

≤
(
2ǫ
√
d+ 3σ

√
d

n

)
· dF (X,Y ).

Now we present the proof of Lemma 4.6 which relies on the famous Davis-Kahan theorem.

Theorem 4.9 (Davis-Kahan theorem [23]). Suppose Ψ and ΨE are the top d normalized eigen-
vectors of X and XE = X +E respectively, then

min
Q∈O(d)

‖ΨE −ΨQ‖ ≤
√
2‖(I −ΨΨ⊤)ΨE‖ ≤

√
2‖EΨE‖

δ

where Ψ⊤Ψ = Ψ⊤
EΨE = Id and δ = λd(X) − λd+1(XE) > 0 is the spectral gap. The bound

also holds when replacing ‖ · ‖ by ‖ · ‖F .

In particular, in order to obtain a meaningful bound, we would hope to have δ > ‖E‖ such
that ‖(I −ΨΨ⊤)ΨE‖ < 1.

By Theorem 4.9, we can establish a useful result about the projection operator P(·).

Proof of Lemma 4.6. The proof follows from the Davis-Kahan theorem. Consider the aug-
mented matrix:

X̃ =

[
0 X

X⊤ 0

]
, Ỹ =

[
0 Y

Y ⊤ 0

]
.

Let (UX ,VX) and (UY ,VY ) be the left and right singular vectors of X and Y respectively.

Then MX := 1√
2

[
UX

VX

]
and MY := 1√

2

[
UY

VY

]
are the eigenvectors associated with the top d
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eigenvalues of X̃ and Ỹ respectively which are also equal to the singular values of X and Y .
Applying the Davis-Kahan Theorem 4.9 gives

‖(I2d −MXM⊤
X)MY ‖F ≤ 1

λd(X̃)− λd+1(Ỹ )
· ‖(X̃ − Ỹ )MY ‖F

≤ 1

σmin(X) + σmin(Y )
· ‖X − Y ‖F ‖MY ‖

≤ ‖X − Y ‖F
σmin(X) + σmin(Y )

.

Here the spectral gap equals σmin(X) + σmin(Y ) since all the eigenvalues of X̃ and Ỹ are

{±σℓ(X)}dℓ=1 and {±σℓ(Y )}dℓ=1 respectively. Therefore, we have λd(X̃) = σmin(X) and λd+1(Ỹ ) =
−σmin(Y ). Using the definition of MX and MY , we have

(I2d −MXM⊤
X)MY =

1

2
√
2

[
Id −UXV ⊤

X

−VXU⊤
X Id

] [
UY

VY

]

=
1

2
√
2

[
−Id 0
0 VXU⊤

X

] [
UXV ⊤

X −UY V
⊤
Y

UXV ⊤
X −UY V

⊤
Y

]
VY .

Note that UX ,VX ,UY , and VY are all orthogonal. Therefore, it holds that

‖(I2d −MXM⊤
X)MY ‖F =

1

2
‖UXV ⊤

X −UY V
⊤
Y ‖F =

1

2
‖P(X) − P(Y )‖F .

Now we obtain the distance between P(X) and P(Y ) :

‖P(X) −P(Y )‖F = 2‖(I2d −MXM⊤
X)MY ‖F ≤ 2‖X − Y ‖F

σmin(X) + σmin(Y )
.

4.2 Keep the iterates in the basin of attraction

The challenging part is to keep the iterates Sℓ in the basin of attraction Nǫ∩Nξ,∞. In particular,
it is not trivial to estimate the “correlation” between Wm and Sℓ since Sℓ depends on Wm

implicitly for all 1 ≤ m ≤ n. The remedy is to use the very popular leave-one-out technique by
introducing an auxiliary sequence which is the output of the generalized power method based
on the data matrix:

A
(m)
ij :=

{
Id + σWij , if i 6= m and j 6= m,

Id, if i = m or j = m,

for every 1 ≤ m ≤ n. The matrix A(m) is exactly equal to A except its mth block row and
column. In other words,

A(m) := ZZ⊤ + σW (m) (4.5)

where

W
(m)
ij =

{
Wij , if i 6= m and j 6= m,

0, if i = m or j = m.

Denote Sℓ,m as the ℓth iterate from the generalized power method with

L(m) := n−1A(m) = n−1
(
ZZ⊤ + σW (m)

)
,

which means
Sℓ+1,m = Pn(L(m)Sℓ,m), 1 ≤ m ≤ n, ℓ ≥ 0.

By construction, {Sℓ,m}∞ℓ=0 is statistically independent of Wm and thus applying the con-
centration inequality to ‖W⊤

mSℓ,m‖F yields a tight bound. The missing piece is the difference
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between Sℓ,m and Sℓ for all 1 ≤ m ≤ n and ℓ ≥ 0. Note that A and A(m) differ up to only
one block row/column and thus we believe Sℓ and Sℓ,m are very close for all ℓ ∈ Z≥0 and
1 ≤ m ≤ n. As long as dF (S

ℓ,Sℓ,m) is small (in particular, of order
√
d), then ‖W⊤

mSℓ‖F is of
order

√
nd(

√
d+

√
log n).

Now we first start with bounding ‖W⊤
mSℓ,m‖F by using the fact that ‖W⊤

mSℓ,m‖2F satisfies
chi-square distribution.

Lemma 4.10. For X ∼ χ2
k, we have

P(X ≥ k + t) ≤ exp

(
−1

2

(
t− k log

(
1 +

t

k

)))

for t > 0. In particular, it holds

P(
√
X ≥

√
k + γ

√
log n) ≤ n−γ2/2, γ > 0.

Proof: This is a quite standard result which can be easily proven by using moment generating
function and Markov inequality. For any λ ∈ (0, 1/2),

P(X ≥ k + t) ≤ e−λ(k+t)
E eλX = e−λ(k+t)(1− 2λ)−k/2

= exp

(
−λ(k + t)− k

2
log(1− 2λ)

)
.

The upper bound is minimized when choosing λ = t
2(k+t) , which gives the bound.

If t = 2γ
√
k log n+ γ2 log n, then

P(X ≥ (
√
k + γ

√
log n)2) ≤ exp

(
−1

2

(
2γ
√

k log n+ γ2 log n− k log
(
√
k + γ

√
log n)2

k

))

(use log(1 + x) ≤ x, x > 0)) ≤ exp

(
−1

2

(
2γ
√

k log n+ γ2 log n− 2k · γ
√
log n√
k

))

= n−γ2/2 (4.6)

for any γ > 0.

By construction of Sℓ,m, we know that Sℓ,m is independent of Wm for all ℓ. Thus by taking
a union, we have the following lemma.

Lemma 4.11. It holds uniformly that

max
1≤m≤n

‖W⊤
mSℓ,m‖F ≤

√
nd(

√
d+ γ

√
log n) (4.7)

for 1 ≤ ℓ ≤ L with probability at least 1−Ln−γ2/2+1. In particular, we choose L = n and γ = 4.

Proof: For any fixed ℓ and m, we know that each entry of W⊤
mSℓ,m ∈ R

d×d is an i.i.d. N (0, n)
random variable. Thus

n−1‖W⊤
mSℓ,m‖2F ∼ χ2

d2 .

Using Lemma 4.10 with k = d2 and t = 2γd
√
log n+ γ2 log n gives

n−1‖W⊤
mSℓ,m‖2F ≤ (d+ γ

√
log n)2

with probability at least 1−n−γ2/2. Now taking a union bound over 1 ≤ m ≤ n and 1 ≤ ℓ ≤ L,
we have

max
1≤ℓ≤L,1≤m≤n

‖W⊤
mSℓ,m‖F ≤ √

n
(
d+ γ

√
log n

)
≤

√
nd(

√
d+ γ

√
log n)

with probability at least 1− Ln−γ2/2+1 = 1− n−γ2/2+2.
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Now we can see that in order to show that ‖W⊤
mSℓ‖F is small, it suffices to bound the error

between Sℓ and Sℓ,m for all 1 ≤ m ≤ n and 1 ≤ ℓ ≤ L. In fact, for the initialization S0 and
S0,m, we have the following result which will be proven in Section 4.4.

Lemma 4.12. Under

σ < c0 min

{
ǫ

√
n

d
,

κ
√
n√

d+ 4
√
log n

}

for a sufficiently small constant c0, then the initialization satisfies:

dF (S
0,Z) ≤ ǫ

√
nd

2
, (4.8)

dF (S
0,S0,m) ≤ κ

√
d

2
, 1 ≤ m ≤ n, (4.9)

‖W⊤
mS0‖F ≤

(
1 +

3κ

2

)√
nd(

√
d+ 4

√
log n) (4.10)

uniformly for all 1 ≤ m ≤ n.

Note that if we only want to prove the tightness of the SDP relaxation, the initialization step
is not necessary since we can simply pick S0 = Z for the purpose of proof. The initialization step
works mainly for the global convergence of the efficient projected generalized power method.
We defer the proof of this lemma in Section 4.4. From now on, we set

ξ = 2 +
3κ

2
, κ = 2ǫ, ǫ

√
d <

1

32
(4.11)

in Nξ,∞. Under this set of parameters, we can see all the lemmas in this section hold under the
assumption of Theorem 3.1 and 3.2.

Lemma 4.13. Conditioned on (4.3) and (4.7), we have for 1 ≤ ℓ ≤ L,

dF (S
ℓ,Sℓ,m) ≤ κ

√
d

2
, 1 ≤ m ≤ n, (4.12)

max
1≤m≤n

∥∥∥W⊤
mSℓ

∥∥∥
F
≤
(
1 +

3κ

2

)√
nd(

√
d+ 4

√
log n), (4.13)

dF (S
ℓ,Z) ≤ǫ

√
nd

2
, (4.14)

if

σ < min

{
ǫ2d

(3κ+ 2)
√
d
,
κ

24

} √
n√

d+ 4
√
log n

, κ = 2ǫ

which is guaranteed by (3.1) in Theorem 3.1.
Combined with Lemma 4.8, we have

dF (S
ℓ+1,Sℓ) ≤ 1

2
dF (S

ℓ,Sℓ−1) ≤ 2−ℓdF (S
1,S0), 1 ≤ ℓ ≤ L− 1 (4.15)

since Sℓ ∈ Nǫ ∩ Nξ,∞, ∀0 ≤ ℓ ≤ L.

Proof of Lemma 4.13. The proof is based on induction. First of all, the initial value S0

and S0,m satisfy (4.12), (4.13), and (4.14) in Lemma 4.12. Suppose all the three inequali-
ties (4.12), (4.13), and (4.14) hold true for 0, 1, · · · , ℓ, we will prove the case for ℓ + 1 with
ℓ ≤ L− 1.

Step 1: Proof of (4.12). Note that Sℓ is in Nǫ ∩ Nξ,∞ implies σmin([LSℓ]i) > 1− ǫ2d for
all 1 ≤ i ≤ n which follows from Lemma 4.7. Applying Lemma 4.8 gives

dF (S
ℓ+1,Sℓ+1,m) ≤ 2

1− ǫ2d
dF (LSℓ,L(m)Sℓ,m)

≤ 9

4
dF (LSℓ,L(m)Sℓ,m), 1 ≤ m ≤ n,

17



where ǫ
√
d ≤ 1/32. We proceed by using triangle inequality:

dF (S
ℓ+1,Sℓ+1,m) ≤ 9

4

(
dF (LSℓ,LSℓ,m) + dF (LSℓ,m,L(m)Sℓ,m)

)

≤ 9

4
dF (LSℓ,LSℓ,m) +

9σ

4n
‖(W −W (m))Sℓ,m‖F . (4.16)

Since dF (S
ℓ,Sℓ,m) ≤ κ

√
d/2 and κ = 2ǫ hold, then

dF (S
ℓ,m,Z) ≤ dF (S

ℓ,Z) + dF (S
ℓ,Sℓ,m) ≤ ǫ

√
nd

2
+

κ
√
d

2
< ǫ

√
nd

implies Sℓ,m ∈ Nǫ. Then Lemma 4.5 implies that

dF (LSℓ,LSℓ,m) ≤ 1

9
dF (S

ℓ,Sℓ,m). (4.17)

Note that the jth block of (W −W (m))Sℓ,m satisfies

[(W −W (m))Sℓ,m]j =

{
WjmS

ℓ,m
m , j 6= m,

W⊤
mSℓ,m, j = m,

where S
ℓ,m
m ∈ R

d×d, the mth block of Sℓ,m, is orthogonal. Therefore, we have

‖(W −W (m))Sℓ,m‖F ≤ ‖WmSℓ,m
m ‖F + ‖W⊤

mSℓ,m‖F
(use Lemma 4.11) ≤ ‖Wm‖F +

√
nd(

√
d+ 4

√
log n)

≤ 3
√
nd ·

√
d+

√
nd(

√
d+ 4

√
log n)

< 4
√
nd(

√
d+ 4

√
log n). (4.18)

Then combining (4.12), (4.16), (4.17) and (4.18) together gives

dF (S
ℓ+1,Sℓ+1,m) ≤ 1

4
dF (S

ℓ,Sℓ,m) +
9σ

4n
‖(W −W (m))Sℓ,m‖F

≤ 1

4
· κ

√
d

2
+

9σ

4n
· 4
√
nd(

√
d+ 4

√
log n) ≤ κ

√
d

2

where σ ≤ κ
√
n

24(
√
d+4

√
logn)

.

Step 2: Proof of (4.13). Let R be the orthogonal matrix which minimizes ‖Sℓ+1 −
Sℓ+1,mR‖F over R ∈ O(d). Then

∥∥∥W⊤
mSℓ+1

∥∥∥
F
≤
∥∥∥W⊤

m (Sℓ+1 − Sℓ+1,mR)
∥∥∥
F
+ ‖W⊤

mSℓ+1,m‖F
(use Lemma 4.11) ≤ ‖Wm‖ · dF (Sℓ+1,Sℓ+1,m) +

√
nd(

√
d+ 4

√
log n)

≤ 3
√
nd · κ

√
d

2
+

√
nd(

√
d+ 4

√
log n)

≤
(
1 +

3κ

2

)√
nd(

√
d+ 4

√
log n).

Step 3: Proof of (4.14). Since both Sℓ and Z ∈ Nǫ ∩ Nξ,∞, then

dF (S
ℓ+1,Z) = dF (Pn(LSℓ),Pn(Z)) ≤ 2

1− ǫ2d
· dF (LSℓ,Z)

≤ 9

2
· dF (LSℓ,Z), Sℓ ∈ Nǫ ∩Nξ,∞

which follows from Lemma 4.8.
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For dF (LSℓ,Z), it suffices to estimate max1≤i≤n ‖[LSℓ]i −R‖F for some orthogonal matrix
R = P(Z⊤Sℓ) ∈ O(d). We look at the ith block of LSℓ :

[LSℓ]i =
1

n
Z⊤Sℓ +

σ

n
W⊤

i Sℓ

Then

min
R∈O(d)

max
1≤i≤n

‖[LSℓ]i −R‖F ≤ min
R∈O(d)

∥∥∥∥
1

n
Z⊤Sℓ −R

∥∥∥∥
F

+
σ

n
max
1≤i≤n

‖W⊤
i Sℓ‖F .

For the first term, we have minR∈O(d) ‖Sℓ −ZR‖F ≤ ǫ
√
nd/2 which is equivalent to

2nd− 2‖Z⊤Sℓ‖∗ ≤
ǫ2nd

4
=⇒ ‖Z⊤Sℓ‖∗ ≥

(
1− ǫ2

8

)
nd.

Note that

‖Z⊤Sℓ − nR‖2F =

d∑

i=1

(
σ2
i (Z

⊤Sℓ)− 2nσi(Z
⊤Sℓ)

)
+ n2d

=

d∑

i=1

(σi(Z
⊤Sℓ)− n)2

≤ (nd− ‖Z⊤Sℓ‖∗)2

≤ ǫ4n2d2

64

where 0 ≤ σi(Z
⊤Sℓ) ≤ n. This implies ‖Z⊤Sℓ − nR‖F ≤ ǫ2nd/8. Then

min
R∈O(d)

max
1≤i≤n

‖[LSℓ]i −R‖F ≤ min
R∈O(d)

∥∥∥∥
1

n
Z⊤Sℓ −R

∥∥∥∥
F

+
σ

n
max
1≤i≤n

‖W⊤
i Sℓ‖F

(use (4.13)) ≤ ǫ2d

8
+

σ

n
·
(
1 +

3κ

2

)√
nd(

√
d+ 4

√
log n)

≤ ǫ2d

8
+

ǫ2d

2
<

ǫ
√
d

9

where ǫ is a constant satisfying ǫ
√
d ≤ 1/32 and

σ ≤ ǫ2d

3κ+ 2
·

√
n√

d(
√
d+ 4

√
log n)

.

Therefore, it holds

dF (S
ℓ+1,Z) ≤ 9

2
· dF (LSℓ,Z) ≤ 9

2
· ǫ

√
nd

9
≤ ǫ

√
nd

2
.

Now we have proven Sℓ+1 ∈ Nǫ∩Nξ,∞. By induction, we have Sℓ ∈ Nǫ∩Nξ,∞ for all 1 ≤ ℓ ≤ L.
Now we can immediately invoke Lemma 4.8 and get

dF (S
ℓ+1,Sℓ) = dF (Pn(LSℓ),Pn(LSℓ−1)) ≤ 1

2
dF (S

ℓ,Sℓ−1).

Lemma 4.14. Conditioned on the Lemma 4.13, we have

dF (S
L+t,SL+t−1) ≤ 2−tdF (S

L,SL−1), ∀t ∈ Z≥0 (4.19)
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and {SL+t}t≥0 belong to Nǫ ∩ Nξ,∞, i.e.,

max
1≤m≤n

∥∥∥W⊤
mSℓ

∥∥∥
F
≤
(
2 +

3κ

2

)√
nd(

√
d+ 4

√
log n), (4.20)

dF (S
ℓ,Z) ≤ ǫ

√
nd, (4.21)

for all ℓ ∈ Z≥0. Given (4.15) in Lemma 4.13, we have

dF (S
ℓ,Sℓ−1) ≤ 2−ℓ+1dF (S

1,S0), ∀ℓ ∈ Z≥0.

Here we set L = n.

Proof: We will prove (4.19) for all t ∈ Z≥0 by induction. This is true if t = 0. Now we assume
that this also holds for all 0 ≤ t ≤ k and prove the case for t = k+1. In fact, it suffices to show
that SL+k ∈ Nǫ ∩ Nξ,∞. If so, we have

dF (S
L+k+1,SL+k) = dF (Pn(LSL+k),Pn(LSL+k−1)) ≤ 1

2
dF (S

L+k,SL+k−1),

following from Lemma 4.8.
Now we will start proving SL+k ∈ Nǫ ∩Nξ,∞. Combining Lemma 4.13 with the assumption

indicates that

SL ∈ Nǫ ∩ Nξ,∞, dF (S
ℓ,Sℓ−1) ≤ 2−ℓ+1dF (S

1,S0), 1 ≤ ℓ ≤ L+ k.

By triangle inequality and the assumption that (4.19) holds for 0 ≤ t ≤ k, then

dF (S
L+k,SL) ≤

k∑

t=1

dF (S
L+t,SL+t−1) ≤

k∑

t=1

2−tdF (S
L,SL−1)

(Use (4.15)) ≤ dF (S
L,SL−1) ≤ 2−L+1dF (S

1,S0)

≤ 2−L+1 · ǫ
√
nd

(Use ǫ
√
d ≤ 1/32) ≤ 2−n+1√n · 1

32
<

1

3

where dF (S
1,S0) ≤ dF (S

1,Z)+dF (S
0,Z) ≤ ǫ

√
nd follows from (4.14) and L is n. As a result,

we have

dF (S
L+k,Z) ≤ dF (S

L+k,SL) + dF (S
L,Z) ≤ 2−n+1 · ǫ

√
nd+

ǫ
√
nd

2
≤ ǫ

√
nd

which implies SL+k ∈ Nǫ. DenoteR as the orthogonal matrix which minimizes ‖SL+k−SLR‖F .
For ‖W⊤

mSL+k‖F , we have

‖W⊤
mSL+k‖F ≤ ‖W⊤

m (SL+k − SLR)‖F + ‖W⊤
mSL‖F

(use (4.13)) ≤ ‖Wm‖ · dF (SL+k,SL) +

(
1 +

3κ

2

)√
nd(

√
d+ 4

√
log n)

(dF (S
L+k,SL) ≤ 1/3) ≤ 3

√
nd · 1

3
+

(
1 +

3κ

2

)√
nd(

√
d+ 4

√
log n)

≤
(
2 +

3κ

2

)√
nd(

√
d+ 4

√
log n)

≤ ξ
√
nd(

√
d+ 4

√
log n)

where ‖Wm‖ ≤ 3
√
nd, the bound on ‖W⊤

mSL‖F follows from (4.13), and ξ = 3κ/2 + 2 with
κ = 2ǫ.

Now we have shown that SL+k and SL+k−1 are in the contraction regionNǫ∩Nξ,∞. Applying
Lemma 4.8 finishes the proof:

dF (S
L+k+1,SL+k) = dF (Pn(LSL+k),Pn(LSL+k−1)) ≤ 1

2
dF (S

L+k,SL+k−1).
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4.3 Proof of Theorem 3.1 and 3.2: Convergence to global maximizer

Proof of Theorem 3.1 and 3.2. The proofs of Theorem 3.1 and 3.2 are exactly the same
except the initialization part. For the tightness of SDP, it suffices to let S0 = Z since we only
need to show the global optimum of the SDP is exactly the MLE. For the generalized power
method, we show that spectral initialization provides a sufficiently good starting point which is
addressed in Section 4.4.

To prove Theorem 3.1 and 3.2, it suffices to show that the iterates have a limiting point S∞

which satisfy AS∞ = ΛS∞ and is also located in Nǫ ∩Nξ,∞, according to Theorem 4.1.
Step 1: The existence and convergence of the limiting point in Nǫ ∩ Nξ,∞.
Conditioned on Lemma 4.14, it holds that dF (S

ℓ,Sℓ−1) ≤ 2−ℓ+1dF (S
1,S0) for all ℓ ∈ Z≥0.

Then {Sℓ}∞ℓ=0 is a Cauchy sequence since

dF (S
ℓ+k,Sℓ) ≤

ℓ+k−1∑

t=ℓ

dF (S
t+1,St)

≤
ℓ+k−1∑

t=ℓ

2−tdF (S
1,S0) ≤ 2−ℓ+1dF (S

1,S0), ∀k ∈ Z≥0 (4.22)

is arbitrarily small for any sufficiently large ℓ. Note that Nǫ ∩Nξ,∞ is a closed and compact set
in the Euclidean space. The distance function dF (·, ·) is equivalent to the Frobenius norm on
the quotient set O(d)⊗n/O(d) where O(d) is also a compact set. Thus since Sℓ is a Cauchy
sequence, we know there must exist a limiting point S∞. From (4.22), we also have the linear
convergence of Sℓ to the limiting point:

dF (S
∞,Sℓ) ≤ 2−ℓ+1dF (S

1,S0). (4.23)

Now we want to prove that S∞(S∞)⊤ is the unique global maximizer to (2.3) by using Theo-
rem 4.1.

Note that (4.20) and (4.21) hold for all ℓ. Therefore, sending ℓ to ∞ gives

max
1≤m≤n

‖W⊤
mS∞‖F ≤

(
2 +

3κ

2

)√
nd(

√
d+

√
log n), dF (S

∞,Z) ≤ ǫ
√
nd (4.24)

since Nǫ and Nξ,∞ are compact sets. This implies S∞ ∈ Nǫ ∩ Nξ,∞.
Step 2: The limiting point S∞ satisfies AS∞ = ΛS∞ for some block-diagonal positive

semidefinite matrix Λ.
Note that

dF (Pn(LS∞),Sℓ) ≤ dF (Pn(LS∞),Pn(LSℓ)) + dF (Pn(LSℓ),Sℓ).

By letting ℓ go to ∞ and using Lemma 4.8, it holds

lim
ℓ→∞

dF (Pn(LS∞),Pn(LSℓ)) ≤ 1

2
lim
ℓ→∞

dF (S
∞,Sℓ) = 0.

For dF (Pn(LSℓ),Sℓ), we have

dF (Pn(LSℓ),Sℓ) = dF (S
ℓ+1,Sℓ) ≤ 2−ℓdF (S

1,S0) → 0, ℓ → ∞,

which follows from Lemma 4.13. Therefore, dF (Pn(LS∞),S∞) = 0 and we have Pn(LS∞) =
S∞O for some orthogonal matrix O.

Note that dF (S
∞,Z) ≤ ǫ

√
nd and

∥∥W⊤
i S∞∥∥

F
≤ (2 + 3κ/2)

√
nd(

√
d +

√
log n) imply

σmin([LS∞]i) > 0. Therefore, the limiting point dF (Pn(LS∞),S∞) = 0 satisfies:

P([LS∞]i) = ([LS∞]i[LS∞]⊤i )
− 1

2 [LS∞]i = S∞
i O, ∀1 ≤ i ≤ n

where O is an orthogonal matrix. It means

[LS∞]i = ([LS∞]i[LS∞]⊤i )
1

2S∞
i O. (4.25)

21



Next, we will show that O = Id.
From (4.25), we know that

n∑

i=1

(S∞
i )⊤[LS∞]i =

n∑

i=1

(S∞
i )⊤([LS∞]i[LS∞]⊤i )

1

2S∞
i O

For the term on the left side,

n∑

i=1

(S∞
i )⊤[LS∞]i =

1

n

∑

i,j

(S∞
i )⊤(I + σWij)S

∞
j

=
1

n
(S∞)⊤ZZ⊤S∞ +

σ

n
(S∞)⊤WS∞

� (n−1σ2
min(Z

⊤S∞)− σ‖W ‖)Id

≥
(
n

(
1− ǫ2d

2

)2

− 3σ
√
nd

)
Id ≻ 0

where

σmin(Z
⊤S∞) ≥

(
1− ǫ2d

2

)
n, σ <

1

3

(
1− ǫ2d

2

)2√
n

d
.

Now we let

X =

n∑

i=1

(S∞
i )⊤[LS∞]i ≻ 0, Y =

n∑

i=1

(S∞
i )⊤([LS∞]i[LS∞]⊤i )

1

2S∞
i � 0.

For X ≻ 0 and Y � 0 which satisfy X = Y O, we will show O must be Id. This follows from

X− 1

2Y X− 1

2 = X
1

2O⊤X− 1

2

The left hand side is still positive semidefinite and all its eigenvalues are real and nonnegative.
The right hand side has eigenvalues which are in the form of {exp(i θi)}ni=1 since O is orthogonal.
Thus θi must be zero and its means O = Id.

Therefore, following from (4.25), the limiting point satisfies

AS∞ = ΛS∞

whereΛii = n([LS∞]i[LS∞]⊤i )
1

2 ≻ 0. Moreover, we have shown that S∞ ∈ Nǫ∩Nξ,∞. Applying
Theorem 4.1 immediately gives the global optimality of S∞(S∞)⊤ in the SDP relaxation (2.3).

Step 3: A block-wise error bound between S∞ and Z.
Now we will derive a block-wise error bound of S∞,

min
O∈O(d)

max
1≤i≤n

‖S∞
i −O‖F .

This is bounded by max1≤i≤n ‖S∞
i −Q‖F where Q = P(Z⊤S∞). Note that S∞ satisfies (4.24)

and Lemma 4.4 implies σmin

(
Z⊤S∞) ≥

(
1− ǫ2d/2

)
n. For each 1 ≤ i ≤ n, we have S∞

i =
P([LS∞]i) and

‖S∞
i −Q‖F = ‖P([LS∞]i)− P(n−1Z⊤S∞)‖F

≤ 2

1− ǫ2d
‖[LS∞]i − n−1Z⊤S∞‖F

=
2

1− ǫ2d

∥∥∥σ
n
W⊤

i S∞
∥∥∥
F

(use (4.24)) ≤ 2

1− ǫ2d
· σ
n
·
(
2 +

3κ

2

)√
nd(

√
d+ 4

√
log n)

. σ
√
n−1d(

√
d+ 4

√
log n)

which follows from Lemma 4.6 and (4.24).
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4.4 Proof of Lemma 4.12: Initialization

Recall that the initialization in Algorithm 1 involves two steps: (a) compute the top d eigen-
vectors Φ of A = ZZ⊤ + σW ; (b) round each d× d block Φi of Φ into an orthogonal matrix
and use S0

i = P(Φi) as the initialization. Note that Lemma 4.12 requires the initial value S0

to be very close to the ground true Z and also not highly “aligned” with the noise Wm. It is a
seemingly simple task to justify that: if the noise is small, then applying Davis-Kahan theorem
would provide a tight bound of minQ∈O(d) ‖Φ−ZQ‖. Then we believe that Pn(Φ) is also close
to Z. However, due to the rounding procedure in the initialization, we actually need a more
careful analysis of the eigenvectors Φ.

In order to obtain dF (S
0,Z) ≤ ǫ

√
nd, we actually need to establish a block-wise bound

between Φ and Z, i.e.,
min

Q∈O(d)
max
1≤i≤n

‖Φi −Q‖.

As a result, what we need is much more than classical eigenspace perturbation bound given by
Davis-Kahan theorem [23] which provides an error bound in ‖ · ‖ or ‖ · ‖F .

The block-wise perturbation bound on the eigenvectors is a natural generalization of recent
entrywise error bound on eigenvectors arising from spectral clustering, Z2-synchronization, and
matrix completion. The author’s early work [35] uses the popular leave-one-out technique to
obtain such a block-wise error bound in several applications, including the scenario discussed
in this paper. One core result for the initialization reads as follows:

Theorem 4.15 (Theorem 5.1 in [35]). Suppose (Φ,Λ) are the top d eigenvectors and eigenvalues
of A satisfying AΦ = ΦΛ, Φ⊤Φ = nId and Q = P(Z⊤Φ). Let

η := σn− 1

2 (
√
d+

√
log n), σ < C−1

0

√
n(
√
d+

√
log n)−1 (4.26)

where C0 > 0 is an absolute large constant. Then with probability at least 1 − O(n−1d−1), it
holds

‖Φi − [AZ]iQΛ−1‖ . η max
1≤i≤n

‖Φi‖, (4.27)

uniformly for all 1 ≤ i ≤ n where [AZ]i is the ith block of AZ. Moreover, we have

|σj(Φi)− 1| . η, ∀1 ≤ i ≤ n, 1 ≤ j ≤ d. (4.28)

Interested readers may refer to [35] for more details and we do not repeat the proof again
here. For the completeness of presentation, we will discuss the main idea of proving (4.27) and
how to derive (4.28) from (4.27). Note that our goal is to estimate each block of Φ. The idea
is to apply one step power iteration and use the outcome to approximate Φ:

Φ−AZQΛ−1 = A(Φ−ZQ)Λ−1

where AΦ = ΦΛ. Therefore, the error bound on the ith block is

‖Φi − [AZ]iQΛ−1‖ ≤ ‖[A(Φ −ZQ)]i‖‖Λ−1‖

Here λmin(Λ) ≥ n − σ‖W ‖ > n/2 follows from Weyl’s theorem and thus ‖Λ−1‖ ≤ 2/n. It
suffices to bound ‖[A(Φ−ZQ)]i‖. However, the ith block column of A and Φ are statistically
dependent and thus we cannot apply concentration inequality directly to obtain a tight bound.
To overcome this issue, we apply the leave-one-out technique again: approximate Φ with Φ(i)

which consists of the top d eigenvectors of A(i) defined in (4.5):

‖A⊤
i (Φ−ZQ)‖ = ‖(Z + σWi)

⊤(Φ−ZQ)‖
≤ ‖Z⊤(Φ−ZQ)‖ + σ‖W⊤

i (Φ−Φ(i))‖+ σ‖W⊤
i (Φ(i) −ZQ)‖

≤ √
n‖Φ −ZQ‖ + σ‖Wi‖‖Φ−Φ(i)‖+ σ‖W⊤

i (Φ(i) −ZQ)‖.
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The first term is bounded by using standard Davis-Kahan argument; for the second term, we
first use Davis-Kahan theorem again to bound ‖Φ−Φ(i)‖ which is quite small and then control
the term by ‖Wi‖‖Φ − Φ(i)‖; for the third term, due to the independence between Wi and
Φ(i) − ZQ, one can also get a tight bound by using concentration inequality of a Gaussian
random matrix [58]. This finishes the proof of (4.27).

With (4.27), we can derive (4.28). First of all, max1≤i≤n ‖Φi‖ = O(1) holds since (4.27)
gives

max
1≤i≤n

‖Φi‖ .
1

1− C ′η
‖[AZ]iQΛ−1‖ ≤ C0‖[AZ]i‖‖Λ−1‖ ≤ 4C0.

Here C0 and C ′ are two constants, and the bound on ‖[AZ]i‖ follows from

‖[AZ]i‖ =

∥∥∥∥∥∥

n∑

j=1

(Id + σWij)

∥∥∥∥∥∥
≤ n+ σ‖W⊤

i Z‖ ≤ 2n

if σ < c0
√
n/(

√
d+

√
log n) where ‖W⊤

i Z‖ = O(
√
n(
√
d+

√
log n)) holds with high probability

for all 1 ≤ i ≤ n implied by [58, Theorem 4.4.5]. Now we have

‖Φi −Q‖ ≤ ‖Φi − [AZ]iQΛ−1‖+ ‖[AZ]iQΛ−1 −Q‖
(use (4.27)) . η + ‖(nId +W⊤

i Z)QΛ−1 −Q‖
. η + σ‖W⊤

i ZQΛ−1‖+ ‖Q(nΛ−1 − In)‖
. η + σ‖W⊤

i Z‖‖Λ−1‖+ ‖Λ− nId‖‖Λ−1‖

. η + σ
√
n(
√
d+

√
log n) · 2

n
+ σ‖W ‖ · 2

n
. 6η

where ‖Λ− nId‖ ≤ σ‖W ‖. These arguments lead to (4.28) in Lemma 4.15.
The next lemma is used to estimate the distance dF (S

0,S0,m) in (4.9). In fact, it suffices
to estimate the distance between Φ and Φ(m), i.e., the top d eigenvectors of A and A(m)

respectively. Note that A and A(m) differ only by one block column and row, and thus their
eigenvectors are also very close, following from Davis-Kahan theorem.

Lemma 4.16 (Lemma 5.9 in [35]). Let Φ and Φ(m) be the top d eigenvectors of A and A(m)

with Φ⊤Φ = (Φ(m))⊤Φ(m) = nId respectively. Then

‖Φ−Φ(m)Qm‖ ≤
√
2‖(I − n−1ΦΦ⊤)Φ(m)‖ . σn− 1

2 (
√
d+

√
log n) · max

1≤i≤n
‖Φi‖.

where Qm = P((Φ(m))⊤Φ). In other words,

n− σℓ

(
Φ⊤Φ(m)

)
. σ(

√
d+

√
log n) max

1≤i≤n
‖Φi‖, 1 ≤ ℓ ≤ d

and
‖(Φ⊤Φ(m)(Φ(m))⊤Φ)1/2 − nId‖ . σ(

√
d+

√
log n) max

1≤i≤n
‖Φi‖.

Proof: The proof follows from setting X = A and XE = A(m) and then applying Davis-
Kahan perturbation bound in Theorem 4.9.

Now we will show that the initialization step produces S0 which satisfies (4.8), (4.9),
and (4.10).

Proof of Lemma 4.12. By the Davis-Kahan theorem with X = ZZ⊤ and XE = X + σW ,
it holds that

‖Φ−ZQ‖F ≤
√
2

∥∥∥∥
(
Ind −

1

n
ΦΦ⊤

)
Z

∥∥∥∥
F

≤
√
2 · 1

n− σ‖W ‖ · ‖(A−ZZ⊤)Z‖F

. σn−1 · ‖WZ‖F

. σn−1 · 3
√
nd ·

√
nd . σd
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where ‖Z‖F =
√
nd and Q = P(Z⊤Φ). Note that all the blocks of Φ have smallest singular

values greater than 1/2, following from Lemma 4.15. Thus

dF (S
0,Z) ≤ ‖Pn(Φ)− Pn(ZQ)‖F

≤

√√√√
n∑

i=1

‖P(Φi)− P(Q)‖2F

≤ 2

√√√√
n∑

i=1

‖Φi −Q‖2F

= 2‖Φ −ZQ‖F
. σd

where the third equality follows from Lemma 4.8. Note that if

σ ≤ c0ǫ
√

n/d,

for some small constant c0, then dF (S
0,Z) ≤ ǫ

√
nd which gives (4.8).

Also note that Lemma 4.16 implies

‖Φ−Φ(m)Qm‖F . σn−1/2d1/2(
√
d+

√
log n)

where Qm = P((Φ(m))⊤Φ) and |σj(Φi) − 1| . σn−1/2(
√
d +

√
log n) < 1/2 for all 1 ≤ j ≤ d

and 1 ≤ i ≤ n. As a result, we have (4.9) which follows from

‖S0 − S0,mQm‖F = ‖Pn(Φ)− Pn(Φ
(m)Qm)‖F

≤ 8‖Φ −Φ(m)Qm‖F
. σn−1/2d1/2(

√
d+

√
log n)

≤ κ
√
d

2

provided that

σ < c0
κ
√
n√

d+
√
log n

for some small constant c0.
Then for the correlation between Wm and S0, we have

‖W⊤
mS0‖F ≤ ‖W⊤

m (S0 − S0,mQm)‖F + ‖W⊤
mS0,m‖F

≤ ‖Wm‖ · ‖S0 − S0,mQm‖F + ‖W⊤
mS0,m‖F

≤ 3
√
nd · κ

√
d

2
+

√
nd(

√
d+ γ

√
log n)

with probability at least 1−n−γ2/2 following from Lemma 4.10 where all entries of n−1/2W⊤
mS0,m ∈

R
d×d are i.i.d. standard normal random variables and n−1‖W⊤

mS0,m‖2F ∼ χ2
d2 . Now taking the

union bound over 1 ≤ m ≤ n gives

‖W⊤
mS0‖F ≤

(
1 +

3κ

2

)√
nd(

√
d+ γ

√
log n)

holds uniformly for all 1 ≤ m ≤ n with probability at least 1− n−γ2/2+1 with γ = 4.
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