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Abstract

We consider a mean-variance portfolio selection problem in a financial market with contagion risk. The

risky assets follow a jump-diffusion model, in which jumps are driven by a multivariate Hawkes process

with mutual-excitation effect. The mutual-excitation feature of the Hawkes process captures the con-

tagion risk in the sense that each price jump of an asset increases the likelihood of future jumps not

only in the same asset but also in other assets. We apply the stochastic maximum principle, backward

stochastic differential equation theory, and linear-quadratic control technique to solve the problem and

obtain the efficient strategy and efficient frontier in semi-closed form, subject to a non-local partial

differential equation. Numerical examples are provided to illustrate our results.

Keywords: Efficient strategy; Hawkes process; Jump-diffusion; Linear-quadratic control; Optimal invest-

ment; Stochastic maximum principle

AMS subject classifications: 91G10, 91G80, 93E20

1 Introduction

Asset prices exhibit jumps, occasionally and persistently, in all financial markets across the world, which

has been well documented and empirically tested in the literature. Large price movements are unlikely to

be observed under standard financial models driven solely by Brownian motion(s), e.g., the Black-Scholes

model. The most popular models incorporating jumps are the jump-diffusion models, with the jump part

predominantly driven by a Poisson process or a more general Lévy process. Those models have enjoyed great
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popularity in option pricing, term structure and credit risk modelling, and other applications. One may

refer to the survey article Kou (2007), the monographs Cont and Tankov (2003) and Øksendal and Sulem

(2019), and the references therein for detailed discussions of those models.

More strikingly, empirical studies confirm that the price jumps of an asset (or a class of assets) are

likely to be accompanied by more jumps, over a short time period, from not only the same (class of) asset

but also different (classes of) assets, creating a contagion or clustering effect in the market (see Figure 1

for an example). This contagion effect is observed across different markets globally, in particular, during

financial crises. The cascade of market declines experienced during the global financial crisis of 2007-2008

is a prominent example (see Aı̈t-Sahalia et al. (2015) and Azizpour et al. (2018) for more examples). As

pointed out in Aı̈t-Sahalia et al. (2015), jumps under a standard Lévy jump-diffusion model are rare events,

and, as a result, the clustering of large price movements cannot be properly explained using a standard

jump-diffusion model. The interplay between jumps from different assets or markets is complex, leaving

the independent increment assumption of Lévy processes vulnerable.
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Figure 1. We plot the price changes in percentages for AAPL (Apple), AMZN (Amazon), FB (Facebook) and MSFT (Microsoft)

from 2/5/2018 9:30 am to 2/9/2018 4:00 pm during the 2018 February sell-off in the U.S. stock market. The price data are

in frequency 30m (minutes), and are taken to be the average of the highest and the lowest in each 30m window. Data are

downloaded from Yahoo!Finance.

Numerous approaches and models have been proposed to account for the clustering effect of jumps (ex-

treme events) in finance and beyond. Among them includes a successful candidate, Hawkes processes, first
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introduced by Hawkes (1971). In a multivariate Hawkes process N = (N1, N2, . . . , Nm)⊤, the occurrence

of a jump from one component (say N1) raises not only the jump intensity of itself (self-excitation feature)

but also those of other components N2, . . . , Nm (cross-excitation feature). The joint effect of self-excitation

and cross-excitation, called mutual-excitation, increases the likelihood of seeing more jumps both over small

time period and from different components, which provides a convincing explanation to the clustering of

jumps observed in the financial markets. An early paper using Hawkes processes to model financial data

is Bowsher (2007). (Its working paper version first appeared online in 2002.) More recent works that ap-

ply Hawkes processes to financial modeling include Embrechts et al. (2011), Chavez-Demoulin and McGill

(2012), Aı̈t-Sahalia et al. (2015), and Azizpour et al. (2018). Hawkes processes have also been applied to

risk analysis, credit risk, derivatives pricing, and other financial topics. See Chavez-Demoulin et al. (2005),

Errais et al. (2010), Dassios and Zhao (2011), Aı̈t-Sahalia et al. (2014), and Zhang et al. (2018), among

many others. In actuarial science, Dassios and Zhao (2012) and Zhu (2013) analyze ruin probabilities

when the arrivals of claims are modeled by a Hawkes process. We refer to the survey papers of Bacry et al.

(2015) and Hawkes (2018) for the overview and progress of Hawkes processes in finance.

In this paper, we consider the classical mean-variance (MV) portfolio selection problem (pioneered

by Markowitz (1952)) in a financial market with contagion risk. The asset prices are modeled by a

multi-dimensional jump-diffusion model, in which self-excited and cross-excited jumps are driven by a

multivariate Hawkes process. The mutual-excitation feature of the Hawkes process captures the clus-

tering and contagion effects in the financial market. It is well known that the MV portfolio selection

problem is a time inconsistent control problem, in the sense that an optimal strategy found at the cur-

rent time may cease to be optimal as time evolves. Two lines of research are developed to tackle such a

problem. The first method is to treat the problem as a precommitted problem and solve for an optimal

strategy; see Bajeux-Besnainou and Portait (1998), Li and Ng (2000), Zhou and Li (2000), Lim and Zhou

(2002), Zhou and Yin (2003), and Yin and Zhou (2004), among many others. The second approach is to

treat the problem under a game theoretical framework and seek an equilibrium strategy; see for instance

Basak and Chabakauri (2010) and Björk et al. (2014). Shen and Zou (2021) provide detailed comparisons

between these two approaches. We adopt the first precommitted framework in this paper, namely, we as-

sume that once an optimal strategy is obtained, the agent will commit herself to this strategy throughout

the entire investment horizon.

Although Hawkes processes have enjoyed great success in financial modeling, studies on control problems

with systems driven by Hawkes processes are still rare, especially when comparing to those driven by

Brownian motions and/or Poisson jump processes. To our knowledge, Aı̈t-Sahalia and Hurd (2016) is the

earliest paper which considers the portfolio selection problem in a contagious market driven by a Hawkes

process. Another related paper is Bo et al. (2019), which solves a portfolio optimization problem under a

defaultable market modeled by mean-reverting diffusion processes enhanced with self-excitation. Cao et al.
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(2020) apply a Hawkes process to model the claim frequency for an insurer and seek the optimal strategy

to the insurer’s optimal reinsurance problem. Liu et al. (2021) study an optimal investment, consumption,

and life insurance problem in a self-contagious market (i.e., there is only one risky asset) for a utility-

maximizing household with a bequest motive.

We summarize the key contributions and findings of this paper as follows:

• This paper contributes to the stochastic control literature when the controlled system is driven by

a Brownian motion and a Hawkes process. In particular, in the area of portfolio selection problems,

ours shall follow the work of Aı̈t-Sahalia and Hurd (2016) by modeling the contagion risk via a

Hawkes process, but with significant differences. The objective in Aı̈t-Sahalia and Hurd (2016) is to

maximize the expected utility of consumption over an infinite time horizon, while we consider the

MV problem over a finite horizon. The difference in methodology is further elaborated below.

• In all the related papers mentioned above, the standard dynamic programming principle is used and

the optimal strategy is found by solving the associated Hamilton-Jacobi-Bellman (HJB) equation. In

comparison, we apply the stochastic maximum principle, backward stochastic differential equation

(BSDE) theory, and linear-quadratic (LQ) control technique to solve our MV portfolio selection

problem. Given that the stochastic maximum principle can be applied to deal with non-Markovian1

control systems with random coefficients, our approach has the potential to tackle portfolio selection

problems under a more general setup with non-Markovian Hawkes processes (see Gao et al. (2018)).

• Numerical findings: In the numerical analysis of a univariate example, we find that as the initial

intensity value, mean-reversion level, or jump size of the intensity process increases, the efficient

frontier deteriorates and the MV investor is worse off. On the contrary, a larger mean-reversion

speed improves the efficient frontier. Compared with the Poisson-jump-diffusion model with the

same initial intensity, the Hawkes model may lead to either an improved or deteriorated efficient

frontier, depending on the relative size of the initial intensity and the mean-reversion level in the

Hawkes model.

The rest of the article is organized as follows. In Section 2, we introduce a contagious financial market

and present the MV portfolio selection problem. In Section 3, we carry out heuristic derivations to solve

an equivalent problem using the stochastic maximum principle and BSDE theory. In Section 4, we apply

the completing the square technique in LQ theory and formally obtain the efficient (optimal) strategy

and the efficient frontier of the MV problem. We conduct numerical analysis in Section 5 and summarize

concluding remarks in Section 6. Technical proofs are collected in Appendixes A-C. Particularly, Appendix

1The control systems are (joint) Markovian in Aı̈t-Sahalia and Hurd (2016), Cao et al. (2020), and Liu et al. (2021), while

Gao et al. (2018) study a self-exciting non-Markovian Hawkes process.
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C is devoted to the discussion of the connection between the stochastic maximum principle and the HJB

equation approach.

2 Problem formulation

In this section, we first introduce a multi-dimensional Hawkes process to model mutually exciting jumps,

which capture the contagion risk in the financial market. Then, we formulate the mean-variance portfolio

selection problem in (2.13).

2.1 Probabilistic setup and Hawkes jump modeling

Let [0, T ] be a finite time horizon, where T < ∞ represents the terminal time of planning. We consider a

complete probability space (Ω,F ,P) equipped with a filtration F := {Ft}t∈[0,T ], which is assumed to carry

all the random objects considered in the sequel and satisfy the usual conditions of right-continuity and

P-completeness. The operator E (resp. Var) denotes taking expectation (resp. variance) under P, and

Et := E[·|Ft]. On this probability space, two stochastic processes are defined: an n-dimensional standard

Brownian motion W := {(W1(t),W2(t), . . . ,Wn(t))
⊤}t∈[0,T ] and an m-dimensional càdlàg (right continuous

with left limits) point process N := {(N1(t), N2(t), . . . , Nm(t))⊤}t∈[0,T ]. Here, n and m are two positive

integers, and ⊤ denotes the usual transpose operator on a vector or a matrix. Let k be another positive

integer, we define three index sets by2

N := {1, 2, . . . , n}, M := {1, 2, . . . ,m}, and K := {1, 2, . . . , k}. (2.1)

Let us denote the intensity process of N by λ := {(λ1(t), λ2(t), . . . , λm(t))⊤}t∈[0,T ], where λl(t) is the

corresponding instantaneous intensity of Nl at time t for each l ∈ M and t ∈ [0, T ]. Hereinafter, we work

with the càglàd version of λ, i.e., λ is left continuous with right limits. Heuristically, we have (for rigorous

definitions see Daley and Vere-Jones (2007))

λ(t) = lim
∆t→0

Et [N(t+∆t)−N(t)]

∆t
, t ∈ [0, T ].

In addition, we define a new process Ñ := {(Ñ1(t), Ñ2(t), . . . , Ñm(t))⊤}t∈[0,T ], commonly referred to as the

compensated process of N , by

Ñ(t) := N(t)−

∫ t

0
λ(u) du, t ∈ [0, T ].

It is well known that Ñ is an m-dimensional (F,P)-local martingale.

2Set N is the index set of n components of the Brownian motion W , set M is the index set of m components of the Hawkes

process N , and K is the index set of k risky assets (introduced in the next subsection).
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In this paper, we use a Hawkes process, introduced in Hawkes (1971), to model the point process N .

In particular, we assume that the intensity process λl of Nl is governed by

dλl(t) = αl(λl∞ − λl(t)) dt+

m∑

j=1

βlj dNj(t)

=

[
αl(λl∞ − λl(t)) +

m∑

j=1

βljλj(t)

]
dt+

m∑

j=1

βlj dÑj(t), (2.2)

where λl(0) = λl0 and l ∈ M. We assume that all the coefficients in (2.2) are constants, and λl0 > 0, αl > 0,

λl∞ ≥ 0 and βlj ≥ 0, for all l, j ∈ M. The dynamics equation given by (2.2) implies that the intensity

process λl mean reverts to the long-term rate λl∞ at speed αl, and jumps up by size βlj whenever process

Nj jumps, where j ∈ M. Alternatively, we can solve (2.2) and represent λl by

λl(t) = e−αlt λl0 +
(
1− e−αlt

)
λl∞ +

m∑

j=1

∫ t−

0
βlje

−αl(t−s)dNj(s), t ∈ [0, T ], l ∈ M.

Obviously, N is an m-dimensional Hawkes process with exponential decay.

With λl satisfying (2.2) for all l ∈ M, we write the dynamics of λ in the following vector form

dλ(t) = α(λ∞ − λ(t)) dt+ β dN(t) =
(
αλ∞ + (β − α)λ(t)

)
dt+ β dÑ(t), (2.3)

where we denote

λ(0) = λ0 := (λ10, λ20, . . . , λm0)
⊤, λ∞ := (λ1∞, λ2∞, . . . , λm∞)⊤,

α := Diag[(α1, α2, . . . , αm)⊤], β := [βlj ]l,j∈M.
(2.4)

Here, for a vector v, Diag[v] denotes the square matrix, whose diagonal vector is equal to v and other

entries are zero.

Remark 2.1. As can be easily seen from (2.3), a jump of Nl at time t not only increases its own instanta-

neous intensity λl(t) by βll ( self-excitation) but also increases the instantaneous intensities λj(t) of other

processes Nj by βjl ( cross-excitation), where j 6= l, j ∈ M. Furthermore, a jump occurring at time t has a

permanent impact on the intensity process λl(s) for all s ≥ t and l ∈ M, although such an impact decays

exponentially at rate αl. As a result, the intensity process λ depends on the past history of N , making N

a path-dependent process. The dynamics of λ in (2.3) indicate that (N,λ) is a joint Markov process. The

above Hawkes jump model is also used in Aı̈t-Sahalia and Hurd (2016), Cao et al. (2020), and Liu et al.

(2021).
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2.2 Financial market with contagion risk

We consider a financial market that consists of one risk-free asset (e.g., savings account) and k risky assets

(e.g., stocks). The risk-free asset earns interest continuously at a constant rate r > 0, and its price evolves

according to

dS0(t) = rS0(t) dt, S0(0) = 1.

The price processes of the risky assets are given by

dSi(t) = Si(t−)

[
µi dt+

n∑

j=1

σij dWj(t) +

m∑

l=1

Jil

(
Zl(t) dNl(t)− E[Zl(t)]λl(t) dt

)]
, i ∈ K, (2.5)

where Si(0) = si0 > 0 and Nl is the l
th entry of the m-dimensional Hawkes process N introduced in Section

2.1, for l ∈ M. Recall set K = {1, 2, . . . , k} (see (2.1)). The assumptions of model (2.5) will be presented

shortly after a brief introduction of notations. Our model (2.5) is similar to that of Aı̈t-Sahalia and Hurd

(2016) (see Eq.(2.2) in their paper), and both consider exponential decay for the intensity process (see

Eq.(2.2) or (2.3) in ours and Eq.(2.3) in theirs).

For notational simplicity, we introduce the expected return rate vector µ, the risk premium vector B,

the volatility matrix (of dimension k × n) σ, where

µ := (µ1, µ2, . . . , µk)
⊤, B := (µ1 − r, µ2 − r, . . . , µk − r)⊤, σ := [σij ]i∈K, j∈N, (2.6)

and the jump size matrix (of dimension k ×m) η, where

η(Z(t)) := [JilZl(t)]i∈K, l∈M, ∀ t ∈ [0, T ]. (2.7)

We summarize below the model assumptions that will be imposed throughout the paper.

Assumption 2.1. In the market model (2.5), the drift µi > 0, the volatility rate σij > 0, and the scaling

factor Jil ∈ [0, 1] are all constants, for all i ∈ K, j ∈ N, and l ∈ M. The jump size Zl = {Zl(t)}t∈[0,T ] is a

series of independent and identically distributed (i.i.d.) random variables, with common probability measure

νl supported on (−1,∞) and finite second moment, for all l ∈ M. Let us denote ν := (ν1, ν2, . . . , νl)
⊤. We

assume the following non-degenerate condition holds true for both the variance-covariance matrix σσ⊤ and

the precision matrix (σσ⊤)−1 (see for instance Zhou and Yin (2003) for similar assumptions):

ζ⊤ σσ⊤ζ ≥ ǫ|ζ|2, ζ⊤ (σσ⊤)−1ζ ≥ ǫ|ζ|2, ∀ ζ ∈ R
k,

where ǫ is a positive constant. The jumps in asset prices are modeled by the m-dimensional Hawkes process

N , whose intensity process λ is given by (2.3). Furthermore, we suppose that the Brownian motion W , the

Hawkes process N , and the jump size random variables Z = {Zl}l∈M are stochastically independent of each

other. The filtration F is the augmented filtration generated by W , N , and Z.
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Let u and v be two arbitrary vectors with the same dimension (say n), we define operator • by

u • v := (u1v1, u2v2, . . . , unvn)
⊤. (2.8)

Lemma 2.1. The generalized variance-covariance matrix, defined by

Σ(t) := σσ⊤ +

∫

(−1,∞)m
η(z)Diag[λ(t) • ν(dz)] η(z)⊤ (2.9)

is non-degenerate and positive definite. Moreover, Σ(t)−1 is positive semi-definite.

Proof. We first note that, in the definition of (2.9), σ and η are given by (2.6) and (2.7), ν is the distribution

function of jump random variables Z, and λ is the intensity process, which is positive and governed by

(2.3). Diag[λ(t) • ν(dz)] denotes the square (m × m) matrix with diagonal entries equal to λ(t) • ν(dz),

where

λ(t) • ν(dz) =
(
λ1(t)ν1(dz1), λ2(t)ν2(dz2), . . . , λm(t)νm(dzm)

)⊤
,

and all other entries are equal to 0.

By simple algebra, we obtain, for any ζ ∈ R
k, that

∫

(−1,∞)m
ζ⊤ η(z)Diag[λ(t) • ν(dz)] η(z)⊤ ζ =

m∑

l=1

∫

(−1,∞)

[
(ζ⊤ η(z))l

]2
λl(t) νl(dzl) ≥ 0,

where (ζ⊤η(z))l denotes the lth entry of the m-dimensional vector ζ⊤η(z), for all l ∈ M. Thus, by the

non-degenerate condition in Assumption 2.1, we have

ζ⊤Σ(t)ζ ≥ ζ⊤σσ⊤ζ ≥ ǫ|ζ|2, ∀ ζ ∈ R
k,

which implies Σ(t) is non-degenerate and positive definite. The positive semi-definiteness of Σ(t)−1 also

holds true because

ζ⊤Σ(t)−1ζ = (ζ⊤Σ(t)−1)Σ(t) (Σ(t)−1ζ) ≥ ǫ|Σ(t)−1ζ|2 ≥ 0, ∀ ζ ∈ R
k.

The proof is then completed.

Remark 2.2. The market model (2.5) naturally inherits both self-excitation and cross-excitation features

from the Hawkes process N (together called mutual-excitation). Such a financial market is contagious in the

sense that, a jump from one source will increase the jump intensity of all the sources and then likely lead to

more jumps from different sources in the near future, creating contagion effects and clustering phenomena.

We also point out that, by imposing Jil ∈ [0, 1] and Zl ∈ (−1,∞), the asset price Si stays strictly positive

for all i ∈ K. Aı̈t-Sahalia and Hurd (2016) focus on negative jumps only and further assume JilZl ∈ (−1, 0)

for all i ∈ K and l ∈ M.
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Moreover, we follow the standard notation of randommeasures (see, e.g., Eq.(1.1.2) in Øksendal and Sulem

(2019)) and define (with slight abuse of notations)

Nl(t, I) :=
∑

0<s≤t

χI(∆Nl(s)), ∀ l ∈ M, t ∈ [0, T ],

where I ⊂ (−1,∞), 0 6∈ Ī (the closure of I), and χ is an indicator function. Let us define

Ñl(dt,dzl) := Nl(dt,dzl)− λl(t) νl(dzl) dt, l ∈ M,

and Ñ(dt,dz) :=
(
Ñ1(dt,dz1), Ñ2(dt,dz2), . . . , Ñm(dt,dzm)

)⊤
. (2.10)

By using the random measure notation, we naturally have

∫ t

0
Jil
(
Zl(t) dNl(t)− E[Zl(t)]λl(t) dt

)
=

∫ t

0

∫

(−1,∞)
Jilzl Ñl(dt,dzl), ∀ t ∈ [0, T ], l ∈ M.

We can also rewrite the market model (2.5) in the following vector form

dS(t) = Diag[S(t−)]

(
µ dt+ σ dW (t) +

∫

(−1,∞)m
η(z) Ñ (dt,dz)

)
. (2.11)

We consider a representative agent (investor), who is a price-taker in the economy (i.e., her trading

does not move the prices of the assets). In the financial market with contagion risk, as described above,

the agent chooses her investment strategy π := {(π1(t), π2(t), . . . , πk(t))
⊤}t∈[0,T ], where πi(t) represents the

dollar amount invested in the ith risky asset at time t. Let us denote by Xπ := {Xπ(t)}t∈[0,T ] the wealth

process associated with strategy π. We consider self-financing strategies only, that means the remaining

amount of Xπ(t)−
∑k

i=1 πi(t) is fully invested in the risk-free asset at time t. We shall write X(t) := Xπ(t)

for simplicity, whenever there is no risk of confusion. Using (2.11), we obtain the dynamics of X by

dX(t) =
(
rX(t) + π(t)⊤B

)
dt+ π(t)⊤σ dW (t) +

∫

(−1,∞)m
π(t)⊤η(z)Ñ (dt,dz), (2.12)

where X(0) = x0 > 0 is the agent’s initial wealth, the risk premium B and volatility matrix σ are given

by (2.6), and η is the jump size matrix defined by (2.7).

Before introducing the MV problem, we define three spaces of processes that will be used in the

subsequent analysis.

Definition 2.1. Denote by P the F-predictable σ-field on Ω× [0, T ]. We define

• L2
F (0, T ;R

k) as the space of all Rk-valued, F-predictable processes ϕ = {ϕ(t)}t∈[0,T ] such that

E

[ ∫ T

0
|ϕ(t)|2 dt

]
< ∞;
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• L2,N
F (0, T ;Rm) as the space of all Rm-valued, P × B((−1,∞)m)-measurable processes ϕ = {ϕ(t, z)}

such that

E

[ ∫ T

0
|ϕ(t, ·)|2N dt

]
< ∞,

where B denotes the Borel set, ϕ(t, z) := (ϕ1(t, z1), ϕ2(t, z1), . . . , ϕm(t, zm))⊤, with (t, z) ∈ [0, T ] ×

(−1,∞)m, and

|ϕ(t, ·)|2N :=

m∑

l=1

∫

(−1,∞)
|ϕl(t, zl)|

2λl(t)νl(dzl);

• S2
F (0, T ;R) as the space of all real-valued, F-adapted, càdlàg processes ϕ = {ϕ(t)}t∈[0,T ] such that

E

[
sup

t∈[0,T ]
|ϕ(t)|2

]
< ∞.

As is standard in the literature (see Definition 2.1 in Zhou and Yin (2003)), we need to impose certain

integrability conditions on the investment strategy π, which are listed in the definition below.

Definition 2.2. An investment strategy π is said to be admissible if π is self-financing, π ∈ L2
F (0, T ;R

k)

and η⊤π ∈ L2,N
F (0, T ;Rm), where spaces L2

F (0, T ;R
k) and L2,N

F (0, T ;Rm) are defined in Definition 2.1.

Denote by A the set of all admissible strategies.

Remark 2.3. For any π ∈ A, the stochastic differential equation (SDE) of X given by (2.12) admits a

unique strong solution X, which belongs to the space S2
F (0, T ;R) (see Definition 2.1). In consequence, we

have E[X(T )] < ∞ and E[X2(T )] < ∞, implying that the variance Var[X(T )] is well defined. However,

for utility maximization problems, an additional requirement of X being bounded from below (e.g., X > 0

a.s.) is often imposed to exclude certain strategies (e.g., doubling strategies) and make the problems well

posed (see Karatzas and Shreve (1998)[Definition 3.2]).

We now proceed to formulate the MV portfolio selection problem that is of pivotal interest to this

paper.

Problem 2.1. The agent seeks to solve the following mean-variance portfolio selection problem:




min
π∈A

J(x0, λ0;π) := min
π∈A

E[(X(T )− ξ)2]

subject to




E[X(T )] = ξ,

X is the solution to (2.12),

(2.13)

where x0 is the agent’s initial wealth and λ0 is the initial value of the intensity process λ given by (2.3).

We call a solution π∗ to the above problem an optimal (investment) strategy or an efficient strategy. To

avoid trivial cases, we set ξ ≥ x0e
rT .
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Remark 2.4. The formulation of problem (2.13) is the same as that in Lim and Zhou (2002) and Zhou and Yin

(2003). In Zhou and Li (2000), an alternative formulation of the MV portfolio selection problem is consid-

ered:

min
π∈A

{−E[X(T )] + γVar(X(T ))} , γ > 0.

Due to the variance term, this alternative one is not a standard control problem, although it does not involve

expectation constraint. A standard approach to overcoming the difficulty caused by the variance term is the

embedding technique developed in Li and Ng (2000)[Theorem 2] and Zhou and Li (2000)[Theorem 3.1].

Notice that problem (2.13) is a constrained stochastic optimization problem, with an equality constraint.

To solve this problem, we consider a modified objective J1, defined by

J1(x0, λ0;π, θ) : = E
[
(X(T ) − ξ)2

]
+ 2θ

(
E[X(T )]− ξ

)
= E

[
(X(T )− (ξ − θ))2

]
− θ2,

where θ ∈ R is the Lagrange multiplier. Please refer to Lim and Zhou (2002) and Zhou and Yin (2003)

for similar ideas. As discussed in these two papers, it follows from the Lagrangian duality theorem that

solving the MV portfolio selection problem (2.13) is equivalent to solving the following max-min problem:





max
θ∈R

min
π∈A

J1(x0, λ0;π, θ) = max
θ∈R

min
π∈A

{
E
[
(X(T )− (ξ − θ))2

]
− θ2

}

subject to X given by (2.12).
(2.14)

To solve problem (2.14), we first solve the quadratic-loss minimization problem:





min
π∈A

J2(x0, λ0;π, c) := min
π∈A

E
[
(X(T )− c)2

]

subject to X given by (2.12),
(2.15)

where c ∈ R is a free parameter in problem (2.15). Let us denote by J2(x0, λ0; c) the value function of

problem (2.15), i.e., J2(x0, λ0; c) := J2(x0, λ0;π
∗
c , c), where π

∗
c is an optimizer to problem (2.15) associated

with the free parameter c. Once problem (2.15) is solved, we are able to solve problem (2.14) and the

primal problem (2.13) by considering

max
θ∈R

J3(x0, λ0; θ) := max
θ∈R

{
J2(x0, λ0; ξ − θ)− θ2

}
, (2.16)

where ξ is the target expected terminal wealth in problem (2.13). To be precise, given the solution θ∗

of (2.16), π∗ := π∗
c |c=ξ−θ∗ is the efficient strategy to problem (2.13), and (E[(X∗(T ) − ξ)2], ξ) is the

corresponding efficient frontier, where X∗(T ) is the terminal wealth associated with π∗ and ξ ≥ x0e
rT .

11



3 Heuristic derivations

As explained above, the key to solving the (constrained) mean-variance problem (2.13) is to analyze the

(unconstrained) quadratic-loss minimization problem (2.15). This section is devoted to the investigations

of problem (2.15). We obtain a candidate solution of π∗
c to problem (2.15) in (3.22).

Notice that the objective functional J2 of problem (2.15) is the expected value of a quadratic function

and no longer has the “annoying” equality constraint, which is different from the objective J of the original

MV problem (2.13). Namely, problem (2.15) is a standard stochastic control problem. As such, several ap-

proaches are available to solve such a problem, including the well-known Hamilton-Jacobi-Bellman (HJB)

method (via the application of the dynamic programming principle). Here we apply the stochastic maxi-

mum principle (see, e.g., Yong and Zhou (1999)[Chapter 3] for standard theory) to tackle problem (2.15).

One may refer to Appendix C for the connection between the stochastic maximum principle approach and

the HJB equation approach. One of the advantages of using the stochastic maximum principle is that it is

naturally related to BDSE that is pivotal to discuss the solvability of (3.24) and design the algorithm for

the numerical analysis in Section 5.

Since the standard maximum principle only serves as a necessary condition for optimality, the analysis

in this section is heuristic and π∗
c in (3.22) is a candidate for the optimal solution to problem (2.15). We do

not attempt to verify that π∗
c given by (3.22) solves problem (2.15), since our ultimate goal is to solve the

MV problem (2.13). (Under additional assumptions, the stochastic maximum principle becomes sufficient

and indeed leads to an optimal strategy; see for instance Øksendal and Sulem (2019)[Theorem 5.4] and

Yong and Zhou (1999)[Chapter 3, Section 5].) Instead, the main results of this section will pave the way to

Theorem 4.1 in the next section, which eventually provides a complete solution to the MV problem (2.13).

The candidate solution π∗
c in (3.22) to problem (2.15) has a similar representation form as the efficient

strategy π∗ in (4.1) to problem (2.13). The relation between π∗
c and π∗ will be established in Section 4 by

using the Lagrangian technique as in Lim and Zhou (2002) and Zhou and Yin (2003).

In what follows, we carry out heuristic derivations in four steps to solve the quadratic-loss minimization

problem (2.15). The main arguments are similar to those in Shen and Zeng (2014)[Lemma 3.1], where the

authors apply the stochastic maximum principle to solve a mean-variance investment and reinsurance

problem with delay. Please refer to Øksendal and Sulem (2019)[Section 5.2.5] for the application of the

stochastic maximum principle to a standard MV portfolio selection problem under the Black-Scholes model

without contagion risk. Note that the results in Øksendal and Sulem (2019)[Section 5.2.5] are also heuristic

or at least informal, as they do not verify the optimality and admissibility of the obtained candidate strategy.

Finally, we remark that, since the Hawkes intensity process λ is unbounded, the existing results of the

stochastic maximum principle for jump-diffusion control problems cannot be directly applied to verify the

optimality, which will be deferred to the next section by using the completing the square technique in LQ
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control theory.

Step 1. Write down the associated Hamiltonian system.

We define a new process X̂ := {X̂(t)}t∈[0,T ] by

X̂(t) := X(t)− ce−r(T−t), (3.1)

where c ∈ R is the same free parameter in problem (2.15). Notice that X̂ has the same flavor as the

auxiliary process y in Zhou and Li (2000). It is clear that X̂ is defined for any π ∈ A, and here we suppress

such dependency for notational brevity. By applying Itô’s formula to X̂, we obtain

dX̂(t) =
(
rX̂(t) + π(t)⊤B

)
dt+ π(t)⊤σ dW (t) +

∫

(−1,∞)m
π(t)⊤η(z)Ñ (dt,dz), (3.2)

with the initial value X̂(0) = x0 − ce−rT . The objective functional J2 of problem (2.15) can be rewritten

as

J2(x0, λ0;π, c) = E
[
(X(T )− c)2

]
= E

[
X̂2(T )

]
.

We treat process X̂ as the state process, and its dynamics equation (3.2) suggests that the Hamiltonian

of problem (2.15) reads as

H(t, x, π, p, q, u) :=
(
rx+ π⊤B

)
p+ π⊤σq +

∫

(−1,∞)m
π⊤η(z)Diag[λ(t) • ν(dz)]u(t, z), (3.3)

where operator • is defined by (2.8). The triplet (p, q, u) is the so-called adjoint process. Notice that

p := {p(t)}t∈[0,T ] ∈ R, q := {q(t)}t∈[0,T ] ∈ R
n, and u := {u(t, z)}(t,z)∈[0,T ]×(−1,∞)m ∈ R

m.

Step 2. Find the adjoint process (p, q, u).

According to the standard control theory (see, e.g., Yong and Zhou (1999) and Øksendal and Sulem

(2019)), the adjoint process (p, q, u) satisfies the following adjoint equation:





dp(t) = −rp(t) dt+ q(t)⊤ dW (t) +

∫

(−1,∞)m
u(t, z)⊤Ñ(dt,dz),

p(T ) = 2X̂(T ) = 2(X(T ) − c),

(3.4)

where r is the risk-free interest rate, W is the n-dimensional Brownian motion, and Ñ is the compensated

random measure defined in (2.10). In fact, the drift term in (3.4) is found by

−Hx(t, X̂(t), π(t), p(t), q(t), u(t)) = −rp(t).

To solve the adjoint equation (3.4), we try an ansatz for p in the form of

p(t) = Y (t)X̂(t), (3.5)
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where Y is the first component of the solution (Y, V ) to the following backward stochastic differential

equation (BSDE):



dY (t) = −f(t, Y (t), V (t)) dt+ V (t)⊤ dÑ(t),

Y (T ) = 2.
(3.6)

In (3.6), the process V is not a priori known. Instead, Y and V need to be solved at the same time. The

driver f of the BSDE (3.6) is unknown at the moment, but will be determined later. Notice that the BSDE

(3.6) is driven by the jump process Ñ only.

Using (3.2) and (3.6), and the stochastic product rule on p = Y X̂, we get

dp(t) = X̂(t−) dY (t) + Y (t−) dX̂(t) + d[Y (t), X̂(t)]

=

[
− f(t, Y (t), V (t))X̂(t) + Y (t)(rX̂(t) + π(t)⊤B)

+

k∑

i=1

m∑

l=1

∫

(−1,∞)
πi(t)ηil(zl)Vl(t)λl(t)νl(dzl)

]
dt+ Y (t)π(t)⊤σ dW (t) (3.7)

+
m∑

l=1

∫

(−1,∞)

[
X̂(t−)Vl(t) +

k∑

i=1

πi(t)ηil(zl)
(
Y (t−) + Vl(t)

)]
Ñl(dt,dzl).

By comparing the dynamics of p in (3.4) and (3.7), we obtain

−rY (t)X̂(t) = −f(t, Y (t), V (t))X̂(t) + Y (t)(rX̂(t) + π(t)⊤B)

+

k∑

i=1

m∑

l=1

∫

(−1,∞)
πi(t)ηil(zl)Vl(t)λl(t)νl(dzl), (3.8)

q(t) = σ⊤π(t)Y (t), (3.9)

ul(t, zl) = X̂(t−)Vl(t) +
k∑

i=1

πi(t)ηil(zl)
(
Y (t−) + Vl(t)

)
, ∀ l ∈ M. (3.10)

In the above system of equations (3.8), (3.9) and (3.10), the unknowns are Y , V = (V1, . . . , Vm)⊤, f , q,

and u = (u1, · · · , um)⊤. The three equations are not enough to fully solve all the five unknowns. At this

stage, the adjoint equation (3.4) is partially solved subject to Y and V satisfying the BSDE (3.6).

Step 3. Find a candidate for the optimal solution to problem (2.14).

Under the maximum principle, the candidate for the optimal solution is given by

π∗
c (t) = argmax

π∈Rk

H
(
t, X̂∗(t), π, p∗(t), q∗(t), u∗(t, ·)

)
,

whereH is defined in (3.3) and X̂∗ and (p∗, q∗, u∗) are the wealth process and the adjoint process associated

with strategy π∗
c . The subscript in π∗

c indicates that problem (2.15) is parameterized by c ∈ R, and note
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that the same parameter c also enters the definition of X̂ in (3.1). As a result, we obtain π∗
c via the

first-order condition

p(t)B + σq(t) +

∫

(−1,∞)m
η(z)Diag[λ(t) • ν(dz)]u(t, z) = 0, (3.11)

where B is the risk premium vector of dimension k × 1, σ is the volatility matrix of dimension k × n, and

η is the jump size matrix of dimension k ×m (see their definitions in (2.6) and (2.7)).

Substituting (3.5), (3.9) and (3.10) into the above equation (3.11), we get

π∗
c (t) = −Θ(t, Y (t−), V (t))−1Z(t, Y (t−), V (t)) X̂∗(t−), (3.12)

where the k × k matrix Θ and the k-dimensional vector Z are defined by

Θ(t, Y (t−), V (t)) := Y (t−)

(
σσ⊤ +

∫

(−1,∞)m
η(z)Diag[λ(t) • ν(dz)]η(z)⊤

)

+

∫

(−1,∞)m
η(z)Diag[V (t) • λ(t) • ν(dz)] η(z)⊤, (3.13)

and Z(t, Y (t−), V (t)) := BY (t−) +

∫

(−1,∞)m
η(z)Diag[λ(t) • ν(dz)]V (t). (3.14)

We end this step by noting that π∗
c given by (3.12) is in closed form, once Y and V are identified, which

will be achieved in the next step.

Step 4. Solve the BSDE (3.6) to obtain Y and V .

We first plug π∗
c , given by (3.12), back to (3.8), and identify the driver f of the BSDE (3.6) as follows:

f(t, Y (t), V (t)) =
(
2r −B⊤Θ−1Z

)
Y (t)−

∫

(−1,∞)m
V (t)⊤ Diag[λ(t) • ν(dz)]η(z)⊤Θ−1Z

= 2rY (t)−Z(t, Y (t), V (t))⊤Θ(t, Y (t), V (t))−1Z(t, Y (t), V (t)), (3.15)

where we have suppressed the arguments of both Θ and Z in the first equality above.

Now with the driver f given by (3.15), the BSDE (3.6) is fully specified. We try the following ansatz

for the solution (Y, V ) to (3.6):

Y (t) = 2e2r(T−t)+g(t, λ(t)), (3.16)

Vl(t) = 2e2r(T−t)+g(t, λ(t))
(
e g(t, λ(t)+β(l))−g(t, λ(t)) − 1

)
, l ∈ M, (3.17)

where g(t, λ) is yet to be determined and β(l) is the lth column of the matrix β = [βjl]j,l∈M, i.e.,

β(l) := (β1l, β2l, . . . , βml)
⊤.

Recall that β captures the impact of mutual-excitation on the intensity process λ; see (2.3) and (2.4).
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Applying Itô’s formula to Y in (3.16), we have

dY (t) = Y (t)

[
− 2r + gt + g⊤λ

(
αλ∞ + (β − α)λ(t)

)
+

m∑

l=1

(
eg(t, λ(t)+β(l))−g(t, λ(t)) − 1 (3.18)

−
m∑

j=1

βjlgλl

)
λl(t)

]
dt+ Y (t−)

m∑

l=1

(
eg(t, λ(t)+β(l))−g(t, λ(t)) − 1

)
dÑl(t),

where g· denotes the partial derivative of g with respect to the corresponding argument (e.g., gt =
∂g
∂t
(t, λ)),

and the arguments of g are suppressed in its partial derivatives.

To simplify notations, let us introduce

U(t, λ) :=

(
eg(t, λ+β(1))−g(t, λ) − 1, . . . , eg(t, λ+β(m))−g(t, λ) − 1

)⊤

, (3.19)

Γ(t, λ) :=
1

Y (t−)
Θ(t, Y (t−), V (t))

= σσ⊤ +

∫

(−1,∞)m
η(z)Diag[(U(t, λ) + 1m) • λ • ν(dz)] η(z)⊤, (3.20)

Ẑ(t, λ) :=
1

Y (t−)
Z(t, Y (t−), V (t))

= B +

∫

(−1,∞)m
η(z)Diag[λ • ν(dz)]U(t, λ), (3.21)

where Θ and Z are defined respectively by (3.13) and (3.14), and 1m is the m-dimensional vector with all

elements equal to 1. It is important to notice that, with the ansatz of Y and V in (3.16) and (3.17), Γ

and Ẑ defined above are indeed functions of t and λ only, and are independent of Y and V . By the above

definitions, we easily see

V (t) = Y (t)U(t, λ(t)), Θ(t, Y (t−), V (t)) = Y (t−) Γ(t, λ(t)), Z(t, Y (t−), V (t)) = Y (t−)Ẑ(t, λ(t)).

In addition, we reorganize π∗
c in (3.12) and obtain

π∗
c (t) = −Γ(t, λ(t))−1 Ẑ(t, λ(t)) X̂∗(t−). (3.22)

Using U and Γ in (3.19) and (3.20), we rewrite the BSDE (3.6) in the differential form

dY (t) =− Y (t)

[
2r − Ẑ(t, λ(t))⊤Γ(t, λ(t))−1Ẑ(t, λ(t))

]
dt+ Y (t−)U(t, λ(t))⊤ dÑ(t). (3.23)

By matching the drift terms in (3.18) and (3.23), we obtain the following non-local partial differential

equation of g : [0, T ]× R
m
+ → R





gt(t, λ) + gλ(t, λ)
⊤ α(λ∞ − λ) + U(t, λ)⊤λ = Ẑ(t, λ)⊤Γ(t, λ)−1Ẑ(t, λ), t < T,

g(t, ·) = 0, t = T.
(3.24)
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Recall matrix α and vector λ∞ are defined by (2.4), while U , Γ and Ẑ are defined respectively by (3.19),

(3.20) and (3.21). In (3.24), U has a non-local dependence on g (see (3.19)), which originates from the

mutual-excitation feature of the Hawkes process. This completes the 4-step procedure.

We next present a technical result regrading the bounds of eg(t,λ), where g solves (3.24).

Lemma 3.1. Let g(·, ·) be the solution to (3.24). Then there exists ǫ > 0 such that

ǫ ≤ eg(t,λ(t)) ≤ 1, ∀ t ∈ [0, T ], and ǫ ≤ eg(0,λ0) < 1.

where λ(·) is the intensity process satisfying the Hawkes model (2.3).

Proof. See Appendix A.

We provide the solvability results of (3.24) in the following lemma.

Lemma 3.2. The non-local partial differential equation (3.24) admits a unique solution.

Proof. See Appendix B.

We end this section with several important remarks on the above heuristic analysis of problem (2.15)

and explain how the analysis here will help solve the MV problem (2.13) in Section 4.

• Notice that problem (2.15) aims to minimize the expectation of a convex function of X̂(T ) and the

admissible set A is also convex, as easily seen from Definition 2.2. In consequence, we can also

apply the HJB equation approach to solve problem (2.15); see Appendix C. Indeed, the solution

obtained by the HJB equation approach matches that obtained by the stochastic maximum principle

approach, which is due to the inherent relationship between the two approaches. One can refer to

Øksendal and Sulem (2019) for such relationship under the Poisson jump case. If the jump process

is not a Hawkes process but a standard Poisson process, one can follow the standard procedure to

verify that π∗
c given by (3.22) is indeed the optimal solution to problem (2.15). We refer interested

readers to Yong and Zhou (1999)[Chapter 3, Section 5] for the sufficient conditions of optimality on

general stochastic control problems without jumps. However, jumps in our model are derived from a

multivariate Hawkes process and, due to the unboundedness of its intensity process λ, existing results

cannot be readily applied to confirm the optimality of π∗
c .

• Given that the wealth SDE (2.12) is linear and the objective J2 is quadratic, problem (2.15) is a linear-

quadratic (LQ) control problem. By LQ theory, we naturally conjecture that Y X̂2 is a submartingale

for any π ∈ A and a martingale under π∗
c . Assume for now that such a conjecture is correct, which

will be verified in the next section, then we immediately have

1

2
E

[
Y (T )

(
X̂∗(T )

)2]
=

1

2
Y (0)

(
X̂∗(0)

)2
≤

1

2
E

[
Y (T )

(
X̂(T )

)2]
,
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where X̂∗ denotes the wealth process under the “optimal” strategy π∗
c . As a result, we observe after

noticing Y (T ) = 2 that

J2(x0, λ0; c) = min
π∈A

1

2
E

[
Y (T )

(
X̂(T )

)2]
= e 2rT+g(0,λ0)

(
x0 − c e−rT

)2
, (3.25)

where we have used (3.1) and (3.16).

• Once the value function to problem (2.15) is found via (3.25), we next solve problem (2.16), a simple

quadratic problem of θ (i.e., the Lagrangian multiplier), and obtain its solution θ∗. Now applying

the arguments at the end of Section 2 (see also Lim and Zhou (2002) and Zhou and Yin (2003)), we

conclude that π∗
c with c replaced by ξ − θ∗ is the efficient strategy to the MV problem (2.13), upon

a successful verification of π∗
ξ−θ∗ ∈ A.

4 Efficient strategy and efficient frontier

In this section, we provide a complete solution to the mean-variance portfolio selection problem (2.13).

Theorem 4.1 obtains the efficient strategy and the efficient frontier to problem (2.13), both in semi-closed

form. To prove this theorem, we follow the key steps outlined in the above remarks in the previous

section. In particular, to show Y X̂2 is a martingale under the optimal strategy π∗
c , we apply the idea

of “completing the square” in LQ control theory (see Yong and Zhou (1999) and Zhou and Li (2000)). A

technical difficulty in the proof of Theorem 4.1 is to verify that the candidate efficient strategy is admissible.

Theorem 4.1. Let g(·, ·) be the solution to (3.24), and Γ(·, ·) and Ẑ(·, ·) be defined by (3.20) and (3.21),

respectively. The efficient strategy π∗ = {π∗(t)}t∈[0,T ] of the mean-variance portfolio selection problem

(2.13) is given by

π∗(t) = −Γ(t, λ(t))−1 Ẑ(t, λ(t))
(
X∗(t−)− (ξ − θ∗)e−r(T−t)

)
, (4.1)

and the efficient frontier is given by

Var[X∗(T )] =
eg(0,λ0)

1− eg(0,λ0)

(
x0e

rT − ξ
)2

, ξ ≥ x0e
rT , (4.2)

where the corresponding Lagrange multiplier θ∗ is obtained by

θ∗ =
eg(0,λ0)

1− eg(0,λ0)

(
x0e

rT − ξ
)
. (4.3)

Here, X∗ is the solution to the SDE (2.12) under strategy π∗, and is called the optimal wealth process.

Proof. We divide the proof into three steps.

Step 1: Apply the “completing the square” to obtain π∗
c .
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Recall that the dynamics of X̂ is given by (3.2) and that of Y in (3.23) from Section 3. By applying

Itô’s formula to X̂2 and Y X̂2, we obtain

dX̂2(t) =

(
2rX̂2(t) + 2X̂(t)π(t)⊤B + π(t)⊤σσ⊤π(t) +

∫

(−1,∞)m
π(t)⊤η(z)Diag[λ(t) • ν(dz)] η(z)⊤π(t)

)
dt

+ 2X̂(t)π(t)⊤σ dW (t) +

∫

(−1,∞)m
2X̂(t−)π(t)⊤η(z)Ñ (dt,dz)

+

∫

(−1,∞)m
π(t)⊤η(t, z)Diag[Ñ(dt,dz)] η(z)⊤π(t),

and

dY (t)X̂2(t) = Y (t)

[
π(t) + Γ(t, λ(t))−1Ẑ(t, λ(t))X̂(t)

]⊤
Γ(t, λ(t))

[
π(t) + Γ(t, λ(t))−1Ẑ(t, λ(t))X̂(t)

]

︸ ︷︷ ︸
:=U(t,λ(t))

dt

+ 2Y (t)X̂(t)π(t)⊤σ dW (t) +

∫

(−1,∞)m
Y (t−)π(t)⊤η(z)Diag[U(t, λ(t)) • Ñ(dt,dz)] η(z)⊤π(t)

+

∫

(−1,∞)m
Y (t−)X̂(t−)

(
2π(t)⊤η(z) + X̂(t−)U(t, λ(t))

)
Ñ(dt,dz). (4.4)

Define a sequence of stopping times {τi}i=1,2,... by

τi := inf
{
t ≥ 0

∣∣∣ |Y (t)X̂(t)| > i
}
, i = 1, 2, . . . .

It is easily seen that τi ↑ ∞ and (T∧τi) ↑ T , as i → ∞. We apply the localization technique, i.e., integrating

from 0 to T ∧ τi and taking expectations on both sides of (4.4), and eventually get

1

2
E
[
Y (T ∧ τi)(X(T ∧ τi)− c)2

]
−

1

2
Y (0)

(
x0 − ce−rT

)2
=

1

2
E

[∫ T∧τi

0
Y (t)U(t, λ(t))⊤Γ(t, λ(t))U(t, λ(t))dt

]
,

(4.5)

where we have used the integrability conditions in Definition 2.2. Note that X(·) ∈ S2
F (0, T ;R), Y (·) is

bounded, and the integrand on the right-hand of the above equality is positive. Then by the dominated

and monotone convergence theorems to the left-hand side and the right-hand side of (4.5), we obtain, when

sending i to ∞, that

E
[
(X(T ) − c)2

]
−

1

2
Y (0)

(
x0 − ce−rT

)2
=

1

2
E

[∫ T

0
Y (t)U(t, λ(t))⊤ Γ(t, λ(t))U(t, λ(t))dt

]
,

where we have used the terminal value Y (T ) = 2.
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Therefore, by setting U(t, λ(t)) = 0, we find the (candidate) optimal control by

π∗
c (t) = −Γ(t, λ(t))−1

(
B +

∫

(−1,∞)m
η(z)Diag[λ(t) • ν(dz)]U(t, λ(t))

)

︸ ︷︷ ︸
=Ẑ(t,λ(t))

(
X∗(t−)− ce−r(T−t)

)

︸ ︷︷ ︸
=X̂∗(t−)

, (4.6)

which coincides with the one in (3.22).

We end this step with an important observation. In Section 3, we obtain π∗
c in (3.22) by the stochastic

maximum principle as a necessary condition for optimality. Here by the so-called “completing the square”

technique, we easily see that π∗
c given by (4.6) is indeed optimal to the quadratic-loss minimization problem

(2.15) (a sufficient condition for optimality). Note that sufficiency is guaranteed by the facts that Y > 0

and Γ is positive definite; see (3.16) and (3.20).

Step 2: Solve problem (2.16) to get θ∗ and obtain the efficient strategy and the efficient frontier.

Recall that problem (2.16) is to maximize J2(x0, λ0; ξ − θ) − θ2 over all θ ∈ R, where J2 is the value

function to problem (2.15) and is obtained by (see (3.25))

J2(x0, λ0; c) = E
[
(X̂∗(T ))2

]
= E

[
(X∗(T )− c)2

]
=

1

2
Y (0)

(
x0 − ce−rT

)2
. (4.7)

Now noting c = ξ − θ, we obtain θ∗ by

θ∗ = argmax
θ∈R

{
1

2
Y (0)

(
x0 − (ξ − θ)e−rT

)2
− θ2

}

=
e−2rTY (0)

2− e−2rTY (0)

(
x0e

rT − ξ
)
,

which reduces to (4.3) by using (3.16). The result of Lemma 3.1 guarantees that the first-order condition

to problem (2.16) is also sufficient and the above θ∗ is indeed the optimal solution to problem (2.16).

With θ∗ obtained as in (4.3), we immediately get the efficient strategy π∗ by using π∗ = π∗
ξ−θ∗ and the

general expression of π∗
c in (4.6). Using the definition of X̂ in (3.1) again then leads to the result of π∗ in

(4.1). Finally, by the Lagrangian duality theorem, we obtain the efficient frontier in (4.2) via

Var[X∗(T )] = E
[(
X∗(T )− (ξ − θ∗)

)2]
− (θ∗)2.

Step 3: Verify that π∗ given by (4.1) is admissible (i.e., π∗ ∈ A).

The previous two steps have justified all the results in Theorem 4.1, only contingent on π∗ ∈ A. Hence,

in the final step, we verify that the efficient strategy π∗ in (4.1) is admissible.

To start, by using (4.7) and eg(0,λ0) < 1 from Lemma 3.1, we have

E
[
(X∗(T )− (ξ − θ∗))2

]
= Var[X∗(T )] + (θ∗)2 =

eg(0,λ0)

(1− eg(0,λ0))2

(
x0e

rT − ξ
)2

< ∞.
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Thus, X̂∗(T ) = X∗(T ) − (ξ − θ∗) is square integrable. This fact implies that the adjoint equation (3.4),

associated with the efficient strategy π∗, admits a unique solution such that (p∗, q∗, u∗) ∈ S2
F (0, T ;R) ×

L2
F (0, T ;R

n)× L2,N
F (0, T ;Rm).

Next we proceed to show that Y (t) is bounded below from 0. That is, there exists a positive constant

δ such that Y (t) ≥ δ. Since the efficient strategy does not correspond to a risk-free investment, eg(0,λ0)

must be positive. Otherwise, it can be seen from (4.2) that the minimum variance is always zero regardless

of the expected return, i.e., Var[X∗(T )] = 0, for any ξ ∈ (x0e
rT ,+∞), which is unreasonable. Therefore,

using (A.3), we obtain

Y (t) = 2e2r(T−t)+g(t,λ(t)) ≥ 2e2rT · eg(0,λ0) := δ > 0. (4.8)

It then follows from (3.5) and p∗ ∈ S2
F (0, T ;R) that

X̂∗(t) =
p∗(t)

Y (t)
≤

p∗(t)

δ
for all t ∈ [0, T ] ⇒ X̂∗ ∈ S2

F (0, T ;R)

and from (A.3) that Vl is bounded, for all l ∈ M. Note

k∑

i=1

π∗
i (t)ηil(zl)Y (t) =

k∑

i=1

π∗
i (t)ηil(zl)

(
Y (t−) + Vl(t)

)
= ul(t, zl)− X̂∗(t−)Vl(t).

Thus, we have

Y η⊤π∗ = u− X̂∗V ∈ L2,N
F (0, T ;Rm)

and η⊤π∗ =
u− X̂∗V

Y
≤

u− X̂∗V

δ
∈ L2,N

F (0, T ;Rm).

Combining the above results, the non-degenerate condition in Lemma 2.1 and q∗ ∈ L2
F (0, T ;R

n) leads to

ǫ δ2 E

[∫ T

0
|π∗(t)|2 dt

]
≤ E

[ ∫ T

0
|Y (t)|2π∗(t)⊤Σ(t)π∗(t) dt

]

= E

[ ∫ T

0
|q∗(t)|2 dt+

∫ T

0
|Y (t)η(z)⊤π∗(t)|2N dt

]
< ∞.

That is, π∗ ∈ L2
F (0, T ;R

k). All the conditions in Definition 2.2 are now confirmed, and the proof is

completed.

For comparison, let us consider a standard Poisson-jump-diffusion market model without contagion risk,

in which jumps of asset prices are modeled by an m-dimensional Poisson process NP with a deterministic

intensity λP . More specifically, the asset prices follow the SDE:

dS(t) = Diag[S(t−)]

(
µ dt+ σ dW (t) +

∫

(−1,∞)m
η(z) ÑP (dt,dz)

)
, (4.9)
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where ÑP is defined similarly as Ñ in (2.10), but with the stochastic intensity λ replaced by the deter-

ministic intensity λP . For a given investment strategy π, the investor’s wealth process evolves according

to

dX(t) =
(
rX(t) + π(t)⊤B

)
dt+ π(t)⊤σ dW (t) +

∫

(−1,∞)m
π(t)⊤η(z)ÑP (dt,dz).

The MV problems with Poisson jumps are considered by Framstad et al. (2004) and Shen and Siu (2013).

We directly provide solutions to the MV problem (2.13) in the Poisson-jump-diffusion model (4.9) as a

corollary, which recovers the results obtained in these papers.

Corollary 4.1. In the standard Poisson-jump-diffusion model, described in (4.9), we obtain the efficient

strategy to problem (2.13) by

π∗
P (t) = −ΓP (λP (t))

−1 B
(
X∗(t−)− (ξ − θ∗P )e

−r(T−t)
)
, (4.10)

where

ΓP (λ) := σσ⊤ +

∫

(−1,∞)m
η(z)Diag[λ • ν(dz)] η(z)⊤, (4.11)

and

θ∗P =
e−

∫ T

0 B⊤ΓP (λP (t))−1B dt

1− e−
∫ T

0 B⊤ΓP (λP (t))−1B dt

(
x0e

rT − ξ
)
.

The efficient frontier is given by

Var[X∗
P (T )] =

e−
∫ T

0 B⊤ΓP (λP (t))−1B dt

1− e−
∫ T

0
B⊤ΓP (λP (t))−1B dt

(
x0e

rT − ξ
)2

, ξ ≥ x0e
rT .

Remark 4.1. In Corollary 4.1, the intensity λP of the Poisson process is deterministic. In comparison,

the intensity λ of the Hawkes process N is stochastic, given by (2.2). However, if we set βlj = 0 for all

l, j ∈ M, the intensity λ in (2.2) reduces to the deterministic case, denoted by λP , and the non-local partial

differential equation (3.24) becomes an ODE given as follows:

dg(t)

dt
= B⊤

(
σσ⊤ +

∫

(−1,∞)m
η(z)Diag[λP (t) • ν(dz)] η(z)

⊤

)−1

B = B⊤ ΓP (λP (t))
−1 B,

where ΓP is defined in (4.11). Solving the above ODE yields the following closed-form solution

g(t) = −

∫ T

t

B⊤ΓP (λP (s))
−1B ds. (4.12)

By comparing (4.1) with (4.10), we conclude that the efficient strategy π∗
P in the Poisson-jump-diffusion

model can be seen as a special case of the efficient strategy π∗ in the Hawkes-jump-diffusion model. In
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(4.10), the term ΓP (λP (t))
−1 B represents the product of the precision matrix and the risk premium vector,

which is standard in the literature on portfolio selection problems, while in (4.1), Γ(t, λ(t))−1 Ẑ(t, λ(t)) is

the counterpart term, in which both Γ(t, λ(t))−1 and Ẑ(t, λ(t)) are related to the precision matrix Σ(t)−1

and the risk premium vector B, but adjusted by the non-local terms in U(t, λ(t)). Please refer to equations

(3.19)-(3.21) for the definitions of U(·, ·), Γ(·, ·), and Ẑ(·, ·).

5 Numerical analysis

In this section, we conduct numerical analysis to illustrate the theoretical findings of Theorem 4.1. The

main objective is to obtain qualitative results from the rather abstract expressions of the efficient frontier

in Theorem 4.1.

In the numerical analysis, we study a univariate example with m = k = 1 (i.e., there is only one risky

asset whose price jumps are modeled by a one-dimensional Hawkes process). We follow Aı̈t-Sahalia et al.

(2015) and Liu et al. (2021) to assign the model parameters for this example as in Table 1.

r µ σ J E[Z] E[Z2] α β λ∞ T x0

2% 9% 20% 1 -2% 6% 5 0.1 0.48 2 1

Table 1: Model parameters in the numerical example

5.1 The solution to (3.24)

Recall from Theorem 4.1 that both the efficient strategy (4.1) and the efficient frontier (4.2) depend on

g(0, λ0), where g(·, ·) solves the non-local partial differential equation (3.24) and λ0 = λ(0) is the initial

intensity value of the Hawkes process N . Equation (3.24) does not have an analytic solution and is difficult

to solve numerically as well, due to the presence of the non-local component. In particular, Equation (3.24)

dictates that the partial derivatives of g at (t, λ) relate to not only its value at the same point, g(t, λ),

but also its value at the corresponding post-jump points, g(t, λ + β(l)), where l = 1, . . . ,m. (Here in this

example β(l) = β since m = 1.) In order to solve g from (3.24), we apply an exponential transform and

study g̃(t, λ) = e g(t,λ). Based on the analysis in Appendix B, we obtain g̃(t, λ) in (B.1), which can be seen

as the Feynman-Kac representation of g̃(t, λ). We then use this result to numerically solve for g̃(t, λ) via

Monte Carlo simulation, which is briefly discussed below.

Given t ∈ [0, T ] and λ ∈ [λ, λ̄], we choose time step ∆t and space step ∆λ, and partition [0, T ]× [λ, λ̄] to

obtain discrete grid points (ti, λj), where i = 1, 2, . . . , 1 +NT (i.e., NT = T/∆t) and j = 1, 2, . . . , 1 +N
(i)
λ

(e.g., N
(1)
λ = (λ̄−λ)/∆λ) with ∆t and ∆λ properly chosen so that NT and N

(i)
λ are integers. Note that the

spatial dimension 1+N
(i)
λ varies as time moves forward; see Remark 5.1 for details. The pseudo-algorithm
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for computing
(
g̃(t1, λj)

)
j=1,2,...,N

(1)
λ

is given below:

1. Initialize g̃(t1+NT
, λj) = 1 for all j = 1, 2, . . . ,N

(1+NT )
λ , since g̃(T, λ) = 1 for all λ > 0.

2. With all
{
g̃(tk, ·)

}
k≥i+1

computed, we calculate
{
g̃(ti, ·)

}
at time ti by the following two steps:

(i) Simulate M different paths for the intensity process between ti and T via (2.3) starting with

λ(ti) = λj , denoted by {λ(m)(tk) : k = i, i+ 1, . . . , 1 +NT with λ(ti) = λj}, where m = 1, . . . ,M ;

(ii) For each path, compute the right hand side of (B.1), denoted by g̃(m)(ti, λj), and obtain g̃(ti, λj) =
1
M

∑M
m=1 g̃(m)(ti, λj).

With the above algorithm in hand, we set T = 2, λ = 0.1 and λ̄ = 2 (the rest are given in Table 1), and

plot g̃ over [0, 2] × [0.1, 2] in Figure 1. It can be seen from Figure 1 that g̃ (or g) is an increasing function

of both time argument t and spatial argument λ. Such an observation in comparative statics is consistent

with the result derived from the Poisson model in Corollary 4.1. To be precise, the corresponding g under

the Poisson model is obtained in (4.12), from which we can easily see that g is increasing with respect to t.

By writing λP (s) = λ+
∫ s

t
λ′(u) du (here we assume the deterministic intensity λP (s) is differentiable over

[0, T ]) and using the definition of ΓP in (4.11), we obtain that ΓP is an increasing function of λ = λP (t)

and so is g.

0.85
2

0.9

1.5 2

ex
p(

g(
t,

)) 0.95

1.51

t
1

1

0.5 0.5
0 0

Figure 1: Graph of g̃(t, λ) = e g(t,λ) over (t, λ) ∈ [0, 2] × [0.1, 2]

Remark 5.1. We have mentioned in the above algorithm that the dimension of spatial points varies along

the time grid, and here we explain why this is the case for the non-local partial differential equation (3.24).
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Given ∆λ, the spatial dimension at time t1 (t1 = 0) is easily obtained via 1+N
(1)
λ = 1+(λ̄−λ)/∆λ. Now we

investigate what spatial points must be included at time t2 (t2 = ∆t) in order to calculate g̃(t1, λ(t1)), where

λ(t1) ∈ [λ, λ̄]. To compute g̃(t1, λ(t1)) via (B.1), we need g̃(t2, λ(t2)) and g̃(t2, λ(t2) + β) for all possible

λ(t2) at t2 that can be reached from λ(t1). Given any λ(t1) ∈ [λ, λ̄] on the spatial grid, by discretization

of (2.3), λ(t2) takes two possible values: (1) λ(t2) = λ(t1) + α(λ∞ − λ(t1))∆t (no jump case); and (2)

λ(t2) = λ(t1) + α(λ∞ − λ(t1))∆t + β (jump case). In addition, we also need the values g̃(t2, λ(t2) + β),

which are evaluated at λ(t2) + β, i.e., the post-jump point of λ(t2). In summary, not only the dynamics

of the intensity process and but also the non-local equation (3.24) (see U in (3.19)) involve jumps, both of

which may lead to the change of the spatial dimension along time.

5.2 Sensitivity analysis

In this subsection, we focus on the sensitivity analysis of the efficient frontier under the Hawkes-jump-

diffusion model (hereafter Hawkes model), which is given by (4.2) in Theorem 4.1. We are particularly

interested in how the parameters of the Hawkes intensity process affect the efficient frontier. In all the

analysis below, we only allow one parameter to vary at different levels and fix the rest as in Table 1.

We first investigate how the initial intensity value λ0 and the mean-reversion level λ∞ affect the efficient

frontier under the Hawkes model (see (2.4) for their definitions). The results are plotted in Figure 2. In

the left panel of Figure 2, we consider three levels for the initial intensity λ0: (1) low level λ0 = 0.1; (2)

mean-reversion level λ0 = λ∞ = 0.48; and (3) high level λ0 = 1.9. We observe from the graphs that the

efficient frontier moves downward (i.e., it deteriorates) as λ0 increases. To see this result, notice when the

current intensity level increases, all the subsequent intensity increases as well (although the impact of the

current increment decays exponentially), which makes the MV investor worse off. In the right panel of

Figure 2, we fix λ0 = λ∞ and consider three levels for the mean-reversion level λ∞: λ∞ = 0.3, 0.48, 0.8.

The graphs show that the MV investor benefits when λ∞ decreases. To understand this finding, note that

the higher the λ∞, the higher the intensity λ on average, as λ mean reverts to λ∞. A comparison between

the two panels indicates that λ∞ has a more significant impact on the efficient frontier than λ0.

We next study the impact of α and β on the efficient frontier. Recall from (2.3) that α is the mean-

reversion speed and β is the jump size of the intensity process λ. We plot the results in Figure 3. In the

left panel of Figure 3, we consider three different levels for α: α = 1, 2, 5. When α increases, the intensity

process mean reverts to λ∞ faster, which improves the efficient frontier. The reason for such a result is

that with a higher α, the intensity λ spends less time at an abnormal level and is more likely to be around

λ∞, which reduces the uncertainty of the risky asset. In the right panel of Figure 3, we consider three

different levels for β: β = 0.1, 0.5, 2. It is readily seen that when β increases, the efficient frontier worsens.

Recall β is the jump size of the intensity λ upon a jump of the Hawkes process N . Therefore, given a
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Figure 2: Impact of λ0 (Left) and λ∞ (Right) on the efficient frontier under the Hawkes model

bigger β, the increment of λ upon a jump of N is larger, which further “excites” more jumps in the near

future and increases the variance in the efficient strategy. For both panels in Figure 3, we set λ0 = 1, so

that the difference among the three efficient frontiers is more visible. We emphasize that all the findings

remain the same for a smaller λ0.
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Figure 3: Impact of α (Left) and β (Right) on the efficient frontier under the Hawkes model

5.3 Comparisons with the Poisson model

In the last part of the numerical analysis, we conduct a comparison study between the Hawkes model (2.11)

and the Poisson-jump-diffusion model (hereafter, Poisson model) (4.9). In the first study, we consider a

relatively small value for the initial intensity (λ0 = 0.3) in the Hawkes model, and three different levels
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for the constant intensity (λP = 0.3, 0.4, 0.5) in the Poisson model. The corresponding efficient frontiers

are plotted in the left panel of Figure 4. In the second study, we consider a relatively large value for

the initial intensity (λ0 = 0.7) in the Hawkes model, and three different levels for the constant intensity

(λP = 0.4, 0.7, 0.8) in the Poisson model. The corresponding efficient frontiers are plotted in the right panel

of Figure 4. We observe from Figure 4 that if λ0 < λ∞ = 0.48 (resp. λ0 > λ∞ = 0.48), the Hawkes model

with the initial intensity λ0 yields a worse (resp. better) efficient frontier than the Poisson model with the

same constant intensity λP = λ0. To understand this finding, let us recall from Table 1 that λ∞ = 0.48

(mean-reversion level of the Hawkes intensity λ), α = 5 (mean-reversion speed), β = 0.1 (jump size)

and T = 2 (investment horizon). In consequence, under the given parameters, the mean-reversion effect

dominates the jump effect in the dynamics of the Hawkes intensity process λ given by (2.2). Therefore, if

λ0 < λ∞ (resp. λ0 > λ∞), setting λP = λ0 underestimates (resp. overestimates) the overall jump intensity,

while the increase of the (stochastic or deterministic) jump intensity deteriorates the efficient frontier (see

both Figures 3 and 4), which together explain the comparative finding of Figure 4.
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Figure 4: Comparisons of the efficient frontiers under the Hawkes and Poisson models (β = 0.1)

When a more subtle analysis of Figure 4 is performed, we find that the efficient frontier of the Hawkes

model with λ0 = 0.3 (resp. 0.7) is very close to that of the Poisson model with λP = 0.47 (resp. 0.51).

Again recall from Table 1 that λ∞ = 0.48. It then seems necessary to investigate the case of λ0 = λ∞ = 0.48

to further compare the Hawkes model with the Poisson model. To see how the self-excitation effect of the

Hawkes process affects the efficient frontier, we consider a larger jump size with β = 2. (Each jump of

the Hawkes process dNt = 1 “excites” its own intensity by β.) We plot the results in Figure 5. A clear

message from Figure 5 is that the self-excitation feature of Hawkes processes increases the variance of the

terminal wealth under the efficient strategy (for any chosen expectation target ξ ≥ x0e
rT ) and thus leads

to a worsened efficient frontier, comparing to the Poisson model with intensity λP = λ0 = λ∞, where λ0
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(resp. λ∞) is the initial value (resp. long-term value) of the Hawkes intensity process. (We comment that

the finding of Figure 5 remains the same when β = 0.1 from Table 1 is used, though one needs to zoom in

to observe the difference between the two efficient frontiers.)
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Figure 5: Comparisons of the efficient frontiers under the Hawkes and Poisson models (β = 2)

Remark 5.2. In this remark, we offer some discussions on the difficulty of solving (3.24) numerically when

the spatial dimension is greater than 1 (often known as the “curse of dimensionality”). For this purpose,

we first review the computational complexity of the one-dimensional case (m = k = 1) in Subsections 5.1-

5.3. To solve (3.24) numerically in the one-dimensional case, we choose ∆t = 0.02 and T = 2, implying

the time dimension is 101, and ∆λ = 0.01 and λ0 ∈ [0.1, 2], implying the spatial dimension at time 0

is 191. Recall from Remark 5.1 that the spatial dimension is varying as time evolves, and the maximum

spatial dimension number is 239 over the total 101 time grid points, corresponding to maxλ = 2.48,

under the given parameters. The computation algorithm moves backward in time with the terminal values

g̃(T = t101, λj) = 1, and, at each grid point (ti, λj), simulates M (chosen to be 5,000) paths to compute

g̃(ti, λj), yielding a complexity of approximately 100 × 235 × 5000 = 1.175 × 108 (the mean of the spatial

dimensions is about 235). We also mention that computing the integrand in (B.1) is also time consuming

when time t is getting close to 0.

Now we are ready to discuss the simplest high dimensional case with m = 2 and k = 2 (i.e., there

are two risky assets whose jumps are derived from a bivariate Hawkes process). Assume the self-excitation

effect parameters β11 = β22 = 0.1 (i.e., a jump of Ni(t) at time t “excites” its own intensity λi(t) by 0.1,

where i = 1, 2) and the cross-excitation effect parameters β12 = β21 = 0.08 (i.e., a jump of Ni(t) at time

t “excites” the other’s intensity λj(t) by 0.08). Due to the additional cross-excitation effect, the mean of

the spatial dimensions in the bivariate case is about 300 (recall the number is 235 in the univariate case).
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As such, the total number of simulations quickly grows to 100 × 3002 × 5000 = 4.5 × 1010. In addition,

computing the integrand in (B.1) now involves finding the inverse of a matrix within each time step ∆t.

In fact, the computation is so complex that we cannot even obtain g̃(0, λ0) for a single set of parameter

configuration in three days on a personal laptop (MacBook Pro 2017 with 3.1G Dual Core i5 CPU, 8GB

memory, and 512G SSD). This is not entirely surprising though, as solving a multi-dimensional partial

differential equation with a non-local component remains an open question to our knowledge, and there are

no universally efficient numerical methods to tackle such a problem.

6 Conclusion

In this paper, we consider a mean-variance portfolio selection problem in a contagious financial market,

where the prices of risky assets are subject to mutually exciting jumps of a multivariate Hawkes process.

The contagion risk is then captured by the fact that a price jump of an asset will increase the jump

intensities of both the same asset and all the other assets in the market. Aı̈t-Sahalia and Hurd (2016)

study portfolio selection problems under the utility maximization criterion in a similar market model with

contagion risk, and apply the standard HJB equation method to obtain optimal investment strategies.

Here we obtain semi-explicit solutions to the efficient strategy and the efficient frontier via the stochastic

maximum principle, BSDE theory, and LQ control technique. Our paper is among one of the few papers

concerning optimal control of dynamical systems with Hawkes-type jumps in the literature of mathematical

finance, and we hope that our work could motivate further research in this area. An interesting future

research direction is to consider non-Markovian Hawkes processes with non-exponential decay functions.

In that case, the HJB equation approach will not be applicable, while the stochastic maximum principle

together with BSDEs still works.
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A Proof to Lemma 3.1

Proof to Lemma 3.1. We start by rewriting the dynamics of Y in (3.23) by

dY (t) = Y (t)
(
−2r + Ẑ(t, λ(t))⊤Γ(t, λ(t))−1Ẑ(t, λ(t))

)
dt+ Y (t−)U(t, λ(t))⊤dÑ(t),

which implies that {e2rtY (t)}t∈[0,T ] is a sub-martingale, and thus

e2rtY (t) ≤ Et

[
e2rTY (T )

]
, ∀ t ∈ [0, T ].

Recall Y (T ) = 2 and (3.16), we have

2e2r(T−t) · eg(t,λ(t)) = Y (t) ≤ 2e2r(T−t), ∀t ∈ [0, T ]

and thereby

0 ≤ eg(t,λ(t)) ≤ 1, ∀t ∈ [0, T ]. (A.1)

Moreover, the lower bound of Y established in (4.8) leads to a strictly positive lower bound for eg(t,λ(t)),

that is,

eg(t,λ(t)) ≥
δ

2
e−2rT := ǫ, ∀t ∈ [0, T ]. (A.2)

This completes the proof of ǫ ≤ eg(t,λ(t)) ≤ 1, for any t ∈ [0, T ].

Next we focus on the case t = 0. Note that (A.2) holds for any t ∈ [0, T ]. Hence, it remains to show

that eg(0,λ0) < 1. To that end, we recall (3.24) and apply Itô’s formula to eg(t,λ(t)):

deg(t,λ(t)) = eg(t,λ(t))
[
gt(t, λ(t)) + g⊤λ (t, λ(t))α(λ∞ − λ(t)) + U(t, λ(t))⊤λ(t)

]
dt+ eg(t,λ(t))U(t, λ(t))⊤dÑ(t)

= eg(t,λ(t))Ẑ(t, λ(t))⊤Γ(t, λ(t))−1Ẑ(t, λ(t))dt+ eg(t,λ(t))U(t, λ(t))⊤dÑ(t).

Since eg(t,λ(t))U(t, λ(t))⊤ is bounded, the jump component in the above equation is a martingale. Thus,

integrating from t1 to t2 and conditioning on t1, where 0 ≤ t1 ≤ t2 ≤ T , we have

0 ≤ eg(t2,λ(t2)) − eg(t1,λ(t1)) = Et1

[ ∫ t2

t1

eg(s,λ(s))Ẑ(s, λ(s))⊤Γ(s, λ(s))−1Ẑ(s, λ(s))ds

]
≤ 1. (A.3)

Hence, we have eg(t,λ(t)) ≥ eg(0,λ0), for any t ∈ [0, T ]. If eg(0,λ0) = 1, it then follows from (A.1) that

eg(t,λ(t)) ≡ 1, for any t ∈ [0, T ]. In that case, from (A.3), we obtain

E

[ ∫ T

0
Ẑ(s, λ(s))⊤Γ(s, λ(s))−1Ẑ(s, λ(s))ds

]
= 0.
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On the other hand, if eg(t,λ(t)) ≡ 1, then

U(t, λ(t)) ≡ −1m = (−1, . . . ,−1)⊤ ∈ R
m, Γ(t, λ(t)) ≡ σσ⊤, ∀t ∈ [0, T ].

Recall that the non-degeneracy of the precision matrix (σσ⊤)−1 is postulated. The above results lead to

Ẑ(t, λ(t)) = B −

∫

(−1,∞)m
η(z)Diag[λ(t) • ν(dz)]1m = 0k, P-a.s., ∀t ∈ [0, T ],

which cannot hold for all t since λ is a stochastic process. Therefore, eg(0,λ0) < 1 must hold true.

B Proof of Lemma 3.2

Proof to Lemma 3.2. To analyze (3.24), we apply exponential transformation to study g̃(t, λ) := eg(t,λ).

Recalling (A.3), we have

g̃(t, λ) = eg(t,λ) = 1− Et,λ

[ ∫ T

t

eg(s,λ(s))Ẑ(s, λ(s))⊤Γ(s, λ(s))−1Ẑ(s, λ(s)) ds

]

= 1− Et,λ

[ ∫ T

t

g̃(s, λ(s))Ẑ g̃(s, λ(s))⊤Γg̃(s, λ(s))−1Ẑ g̃(s, λ(s)) ds

]
, (B.1)

where we use Et,λ, instead of Et, to emphasize that the expectation is take under the condition λ(t) = λ,

and the functions in the integrand are defined by

Γg̃(t, λ) := σσ⊤ +

∫

(−1,∞)m
η(z)Diag[(U g̃(t, λ) + 1m) • λ • ν(dz)] η(z)⊤,

Ẑ g̃(t, λ) := B +

∫

(−1,∞)m
η(z)Diag[λ • ν(dz)]U g̃(t, λ),

U g̃(t, λ) :=

(
g̃(t, λ+ β(1))

g̃(t, λ)
− 1, · · · ,

g̃(t, λ+ β(m))

g̃(t, λ)
− 1

)⊤

.

Next we apply Schauder’s fixed point theorem to prove the existence of a solution to (B.1). To that

end, we consider a Banach space X := SF ,L(0, T ;R) equipped with the sup norm ‖ · ‖X

‖g̃‖X := E

[
sup

t∈[0,T ]
e−L(T−t)

∣∣g̃(t, λ(t))
∣∣
]
.

where L is a positive constant.

Define a map T from M := SF ,L(0, T ; [ǫ, 1]) onto itself as follows:

(T g̃)(t) := 1− Et,λ

[ ∫ T

t

g̃(s, λ(s))Ẑ g̃(s, λ(s))⊤Γg̃(s, λ(s))−1Ẑ g̃(s, λ(s)) ds

]
.

Obviously, M = SF ,L(0, T ; [ǫ, 1]) is a non-empty, convex, and compact space.
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In what follows, we show that the map T : M ⊂ X → M is continuous. For such a purpose, let us

choose any g̃1, g̃2 ∈ M. Then, we have

‖(T g̃1)− (T g̃2)‖X

= E

{
sup

t∈[0,T ]

e
−L(T−t)

∣∣∣∣Et,λ

[ ∫ T

t

g̃1(s, λ(s))Ẑ
g̃1(s, λ(s))⊤Γg̃1(s, λ(s))−1Ẑ g̃1 (s, λ(s))ds

−

∫ T

t

g̃2(s, λ(s))Ẑ
g̃2(s, λ(s))⊤Γg̃2(s, λ(s))−1Ẑ g̃2(s, λ(s))ds

]∣∣∣∣

}

≤ K1E

{
sup

t∈[0,T ]

e
−L(T−t)

Et,λ

[ ∫ T

t

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣|λ(s)|2ds

]}

≤ K1E

{
sup

t∈[0,T ]

e
−L(T−t)

Et,λ

[
sup

s∈[0,T ]

e
−L(T−s)

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣
∫ T

t

e
L(T−s)|λ(s)|2ds

]}

≤ K1E

{
sup

t∈[0,T ]

e
−L(T−t)

{
Et,λ

[
sup

s∈[0,T ]

e
−L(T−s)

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣2
]} 1

2

{
Et,λ

[(∫ T

t

e
L(T−s)|λ(s)|2ds

)2]} 1

2

}

≤ K1E

{
sup

t∈[0,T ]

e
−L(T−t)

{
Et,λ

[
sup

s∈[0,T ]

e
−L(T−s)

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣2
]} 1

2

{
Et,λ

[
sup

s∈[t,T ]

|λ(s)|4
]} 1

2

(∫ T

t

e
L(T−s)

ds

)}

≤
K1

L
(1− e

−LT )

{
E

[
sup

t∈[0,T ]

Et,λ

[
sup

s∈[0,T ]

e
−L(T−s)

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣2
] p

2

]} 1

p
{
E

[
sup

t∈[0,T ]

Et,λ

[
sup

s∈[t,T ]

|λ(s)|4
]q

2

]} 1

q

,

where p and q are two positive constants such that 1/p + 1/q = 1 and p > 2.

Next we apply the Doob martingale inequality and derive

{
E

[
sup

t∈[0,T ]
Et,λ

[
sup

s∈[0,T ]
e−L(T−s)

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣2
] p

2
]} 1

p

≤ K2

{
E

[
ET

[
sup

s∈[0,T ]
e−L(T−s)

∣∣g̃1(s, λ(s)) − g̃2(s, λ(s))
∣∣2
] p

2
]} 1

p

≤ K2

{
E

[
sup

s∈[0,T ]
e−L(T−s)

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣p
]} 1

p

≤ K2

{
E

[
sup

s∈[0,T ]
e−L(T−s)

∣∣g̃1(s, λ(s))− g̃2(s, λ(s))
∣∣
]} 1

p

.

On the other hand, since the SDE (2.3) for the Hawkes process satisfies the Lipschitz and linear growth

conditions, from the moment estimates in the standard theory of SDEs (see, e.g., Theorem 1.9.4 in

Platen and Bruti-Liberati (2010)), we can derive

{
E

[
sup

t∈[0,T ]
Et,λ

[
sup

s∈[t,T ]
|λ(s)|4

] q

2
]} 1

q

≤ K3

{
E

[
sup

t∈[0,T ]
(1 + |λ(t)|4)

q

2

]} 1
q

≤ K3

{
1 + E

[
sup

t∈[0,T ]
|λ(t)|4

]} 1
2
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≤ K3

{
1 + |λ0|

4
} 1

2 .

Note that in all the above derivations, K1, K2, and K3 are generic positive constants and their values may

vary from line to line.

Therefore, combining the above derivations, we have

‖(T g̃1)− (T g̃2)‖X ≤ C{‖g̃1 − g̃2‖X }
1
p ,

where C is a positive constant depending on K1, K2, K3, L, and λ0. This indicates that T is a con-

tinuous map. Using Schauder’s fixed point theorem, we can conclude that (B.1) admits a solution

g̃ ∈ SF ,L(0, T ; [ǫ, 1]). From the relationship between g and g̃, we can confirm that (3.24) admits a so-

lution g := log[g̃].

Next we show the uniqueness of the solution g̃. For that purpose, recall that the quadratic-loss minimiza-

tion problem (2.15) belongs to the class of stochastic LQ control problems, which admits a unique optimal

control/strategy (see Zhang et al. (2020)). Specifically, for (2.15), the unique optimal strategy π∗
c is given

by (4.6). As in Step 3 of the proof for Theorem 4.1, we can show that (i) π∗
c ∈ L2

F (0, T ;R
k); (ii) the corre-

sponding wealth process, denoted by X̂∗, is square-integrable at the terminal time, i.e., E[(X̂∗(T ))2] < ∞.

Combining Assertion (i) and the uniqueness of π∗
c , we have that the wealth equation (3.2) associated

with π∗
c admits a unique solution X̂∗(·) ∈ S2

F (0, T ;R). On the other hand, combining Assertion (ii)

and the uniqueness of X̂∗ implies that the adjoint equation (3.4) admits a unique solution such that

(p∗, q∗, u∗) ∈ S2
F (0, T ;R) × L2

F (0, T ;R
n)× L2,N

F (0, T ;Rm).

Therefore, (3.24) must have a unique solution. Otherwise, suppose that there exist two solutions g1

and g2 to (3.24). Denote by Yi(t) := 2e2r(T−t)+gi(t, λ(t)), for i = 1, 2, as defined in (3.16). Following the

derivations in Section 3, we can show that both p∗1 := Y1X̂
∗ and p∗2 := Y2X̂

∗ are the solutions to the adjoint

equation (3.4). This is a contradiction and violates the uniqueness of p∗. This completes the proof of the

uniqueness.

C Connection with the HJB equation approach

In this appendix, we briefly discuss the connection between the stochastic maximum approach and the HJB

equation approach, since both approaches can be applied to solve the quadratic-loss minimization problem

(2.15). We refer interested readers to Aı̈t-Sahalia and Hurd (2016), Cao et al. (2020), and Liu et al. (2021)

for the applications of the HJB approach to optimal investment problems under the Hawkes jump models.

Let us start by considering the dynamic version of the quadratic-loss minimization problem (2.15) at

(t, x, λ), defined as follows:

V(t, x, λ) := min
π∈A

E
[
X̂2(T )

∣∣X̂(t) = x, λ(t) = λ
]
, (C.1)
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where the dynamics of X̂ is given by (3.2).

Firstly, we write down the HJB equation for problem (2.15) (or problem (C.1) to be precise):

inf
π∈R

Lπ[V(t, x, λ)] = 0, (C.2)

with the terminal condition V(T, x, λ) = x2. The partial differential operator Lπ acting on any smooth

function ϕ and admissible π is defined by

Lπ[ϕ(t, x, λ)] := ϕt(t, x, λ) +
(
rx+ π⊤B

)
ϕx(t, x, λ) +

(
αλ∞ + (β − α)λ

)⊤
ϕλ(t, x, λ)

+
1

2
π⊤σσ⊤πϕxx(t, x, λ) +

m∑

j=1

∫

(−1,∞)

[
ϕ(t, x + (π⊤η(z))(j), λ+ β(j))

− ϕ(t, x, λ) − ϕx(t, x, λ)(π
⊤η(z))(j) − β⊤

(j)ϕλ(t, x, λ)
]
λjνj(dzj)

with (π⊤η(z))(j) being the jth component of the vector π⊤η(z) and dependent on only the jth coordinate

of z (i.e., zj), and β(j) being the jth column vector of the matrix β.

We try the following ansatz for the value function V in (C.1):

V(t, x, λ) = e2r(T−t)+κ(t,λ)x2,

with the terminal condition κ(T, λ) = 0. Substituting this into (C.2) and after some algebraic manipulation,

we obtain

inf
π∈R

{
2xπ⊤B + π⊤σσ⊤π +

m∑

j=1

∫

(−1,∞)

[
(π⊤η(z))2(j)e

κ(t,λ+β(j))−κ + 2x(π⊤η(z))(j)(e
κ(t,λ+β(j))−κ − 1)

]
λjνj(dzj)

}

+ x2
{
κt + κ⊤λ

(
αλ∞ + (β − α)λ

)
+

m∑

j=1

∫

(−1,∞)

[
eκ(t,λ+β(j))−κ − 1− β⊤

(j)κλ
]
λjνj(dzj)

}
= 0,

where we have suppressed the arguments (t, λ) for κ and its partial derivatives, except the post-jump ones.

The first-order condition to the above minimization problem yields

2x Ẑκ(t, λ) + 2Γκ(t, λ)π = 0m,

where

Γκ(t, λ) := σσ⊤ +

∫

(−1,∞)m
η(z)Diag[(Uκ(t, λ) + 1m) • λ • ν(dz)] η(z)⊤,

Ẑκ(t, λ) := B +

∫

(−1,∞)m
η(z)Diag[λ • ν(dz)]Uκ(t, λ),
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are defined similarly as (3.20) and (3.21) but with U(t, λ) in (3.19) replaced by

Uκ(t, λ) :=

(
eκ(t, λ+β(1))−κ(t, λ) − 1, · · · , eκ(t, λ+β(m))−κ(t, λ) − 1

)⊤

.

Thus, the optimal strategy can be represented in the following feedback form:

π∗
c (t, x, λ) = −Γκ(t, λ)−1 Ẑκ(t, λ) x.

Plugging π∗
c (t, x, λ) into (C.2) gives

κt(t, λ) + κλ(t, λ)
⊤ α(λ∞ − λ) + Uκ(t, λ)⊤λ = Ẑκ(t, λ)⊤Γκ(t, λ)−1Ẑκ(t, λ). (C.3)

Indeed, the above equation (C.3) is exactly the same as (3.24). It then follows from the existence and

uniqueness result in Appendix B that κ(t, λ) = g(t, λ), for any (t, λ) ∈ [0, T ] × R
m
+ . Therefore, the

stochastic maximum principle approach and the HJB equation approach lead to the same solution for

problem (2.15).

Indeed, such a conclusion is guaranteed by the relationship between the two approaches. That is, the

value function and the adjoint process are related as follows:

p∗(t) = 2e2r(T−t)+g(t,λ(t))X̂∗(t) = Vx(t, X̂
∗(t), λ(t)),

q∗(t) = σ⊤π∗
c (t)Y (t) = σ⊤π∗

c (t)Vxx(t, X̂
∗(t), λ(t)),

u∗l (t, zl) = X̂∗(t−)Vl(t) +

k∑

i=1

π∗
ci(t)ηil(zl)

(
Y (t−) + Vl(t)

)

= Vx(t, X̂
∗(t−) + (π∗

c (t)
⊤η(z))(l), λ(t) + β(l))− Vx(t, X̂

∗(t−), λ(t)).

Moreover, substituting p∗(t) = Vx(t, X̂
∗(t), λ(t)) into the adjoint equation (3.4) and matching the drift

gives the relationship between the Hamiltonian and the value function as below:

Lπ∗
c [Vx(t, X̂

∗(t), λ(t))] = −Hx(t, X̂
∗(t), π∗

c (t), p
∗(t), q∗(t), u∗(t)).

One can refer to Theorem 3.1 in Framstad et al. (2004) and Theorem 5.6 in Øksendal and Sulem (2019) for

the relationship between the stochastic maximum principle and dynamic programming principle in general

jump-diffusion control systems.
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