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Abstract. In this paper we propose and analyze a class of N -player stochastic games that include finite
fuel stochastic games as a special case. We first derive sufficient conditions for the Nash equilibrium
(NE) in the form of a verification theorem. The associated Quasi-Variational-Inequalities include an
essential game component regarding the interactions among players, which may be interpreted as the
analytical representation of the conditional optimality for NEs. The derivation of NEs involves solving
first a multi-dimensional free boundary problem and then a Skorokhod problem. Finally, we present an
intriguing connection between these NE strategies and controlled rank-dependent stochastic differential
equations.

1. Introduction

Recently there are renewed interests in N -player non-zero-sum stochastic games, inspired by the
rapid growth in the theory of Mean Field Games (MFGs) led by the pioneering work of [23, 32, 33, 34].
In this paper, we formulate and analyze a class of stochastic N -player games that originated from the
classic finite fuel problem. There are many reasons to consider this type of games. Firstly, the finite fuel
problem [7, 8, 26] is one of the landmarks in stochastic control theory, therefore mathematically a game
formulation is natural. Secondly, in addition to the interest of stochastic control theory [4, 9, 11, 40, 41],
its simple yet insightful solution structures have had a wide range of applications including economics
and finance [2, 10, 12, 36], operations research and management [19, 29, 31], and queuing theory [28].
Thirdly, prior success in analyzing its stochastic game counterpart has been restricted to the special
case of two-player games [13, 21, 22, 27, 30, 37] or without the fuel constraint [14, 20].

In this paper, we will analyze a class ofN -player stochastic games that include the finite fuel stochastic
game as a special case. The class of stochastic games presented in this paper goes as follows. There are
N players whose dynamics XXXt = (X1

t , · · · , XN
t ) are governed by the following N -dimensional diffusion

process:

dXi
t = bi(XXXt−)dt+ σiσiσi(XXXt−)dBBBt + dξi+t − dξ

i−
t , Xi

0− = xi, (i = 1, · · · , N), (1.1)

where BBB := (B1, · · · , BN ) is a standard N -dimensional Brownian motion in a filtered probability space
(Ω,F , {Ft}t≥0,P), with drift bbb := (b1, · · · , bN ) and covariance matrix σσσ := (σ1σ1σ1, · · · ,σNσNσN ) satisfying appro-
priate regularity conditions. Player i’s control (ξi,+, ξi,−) is of finite variation. Each player has access to
some or all of M types of resources. Players interact through their objective functions hi(X1

t , · · · , XN
t ),

as well as their shared resources which are the “fuels” of their controls. The accessibility of these
resources to the players and how these resources are consumed by their respective players are governed
by a matrix AAA := (aij)i,j ∈ RN×M . For instance, when M = 1 and AAA = [1, 1, · · · , 1]T ∈ RN×1, this
game (CpCpCp) corresponds to the N -player finite fuel game where the N players share a fixed amount of
the same resource. When M = N and AAA = INININ , this is an N -player game (CdCdCd) where each player has
her individual fixed amount of resource. In general, this matrix AAA describes the network structure of
the N -player game.

The goal for player i in the game is to minimize

E
∫ ∞
0

e−αthi(X1
t , · · · , XN

t )dt,
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over appropriate admissible game strategies, which are specified in Section 2. Note that this N -player
game cannot be simply analyzed with an MFG approach as the network structure would collapse if an
aggregation approach was applied.

We will analyze the NEs of this stochastic game. We first derive sufficient conditions for the NE
policy in the form of a verification theorem (Theorem 3.1), which reveals an essential game element
regarding the interactions among players. This is the Hamilton–Jacobi–Bellman (HJB) representation
of the conditional optimality for NE in a stochastic game. To understand the structural properties of the
NEs, we proceed further to analyze this stochastic game in terms of the game values, the NE strategies,
and the controlled dynamics. Mathematically, the analysis involves solving first a multi-dimensional
free boundary problem and then a Skorokhod problem with a moving boundary. The boundary is
“moving” in that it moves in response to both changes of the system and controls of other players.
The analytical solution is derived by first exploring the two special games CpCpCp and CdCdCd. Analyzing these
two types of games provides key insights into the solution structure of the general game. Finally, we
reformulate the NE strategies in the form of controlled rank-dependent stochastic differential equations
(SDEs), and compare game values between games CpCpCp and CdCdCd.

Main contributions. (i) In the verification theorem for N -player games, we obtain the form of the
HJB equations for general stochastic games with singular controls. Unlike all previous analysis that
focused on two-player games, we show that in addition to the standard HJBs that correspond to
stochastic control problems, there is an essential term that is unique to stochastic games. This term
represents the interactions among players, especially the ones who are active and those who are waiting.
This critical term was hidden in two-player stochastic games and was previously (mis)understood as a
regularity condition.

(ii) The structural difference between games and control problems is further revealed in the explicit
solution to the NEs for N -player games. In a control problem, a free boundary depends on the state
of the system; in stochastic games, however, the “face” of the boundary moves based on the action
of herself and interaction among players in the game (Figure 3). Note that this free boundary for
stochastic games with an infinite time horizon moves in a different sense from the one in [11] for finite
time control problems where the boundary is time dependent. Rather it moves due to changes of the
system and the competition in the game.

(iii) This difference is further highlighted in the framework of controlled rank-dependent SDEs. To
the best of our knowledges, this is the first time a stochastic game is explicitly connected with rank-
dependent SDEs in a more general form. This new form of rank-dependent SDEs presents a fresh class
of yet-to-be studied SDEs (Section 7.2).

(iv) We recast the controlled dynamics of the game solution in the framework of controlled rank-
dependent SDEs. Compared with the well-known rank-dependent SDEs, rank-dependent SDEs with an
additional control component are new. We establish the existence of the solution by directly constructing
a reflected diffusion process. (See Section 7.2 for further discussions.)

(v) Finally, stochastic games considered in this paper are resource allocation games. Resource allocation
problems have a wide range of applications including inventory management, resource allocation, cloud
computing, smart power grid control, and multimedia wireless networks [16, 17, 35, 39]. However, the
existing literature has been unsuccessful in analyzing the resource allocation problem in the setting of
stochastic games. Besides the technical contributions, our analysis provides a useful economic insight:
in a stochastic game of resource allocations, sharing has lower cost than dividing and pooling yields the
lowest cost for each player.

Related work. There are a number of papers on non-zero-sum two-player games with singular con-
trols. By treating one player as a controller and the other as a stopper, Karatzas and Li [27] analyze
the existence of an NE for the game using a BSDE approach. Hernandez-Hernandez, Simon, and Zer-
vos [22] study the smoothness of the value function and show that the optimal strategy may not be
unique when the controller enjoys a first-move advantage. Kwon and Zhang [30] investigate a game of
irreversible investment with singular controls and strategic exit. They characterize a class of market
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perfect equilibria and identify a set of conditions under which the outcome of the game may be unique
despite the multiplicity of the equilibria. De Angelis and Ferrari [13] establish the connection between
singular controls and optimal stopping times for a non-zero-sum two-player game. Mannucci [37] and
Hamadene and Mu [21] consider the fuel follower problem in a finite-time horizon with a bounded
velocity, and establish via different techniques the existence of an NE of the two-player game. Very
recently, [20] compare the N -player game versus the MFG for the fuel follower problem. All these works
are without the fuel constraint and are essentially built on one-dimensional stochastic control problems.
Furthermore, except for [20], all of these papers are restricted to the case of N = 2. To the best of our
knowledge, our work is the first to complete the mathematical analysis on an N -player stochastic game
based on an original two-dimensional control problem.

In our work the controlled dynamics are recast in the framework of controlled rank-dependent SDEs.
Rank-dependent SDEs without controls arise in the “Up the River” problem [1] and in stochastic
portfolio theory [15], including the well-studied Atlas model [5, 24].

Notations and organization. Throughout the paper, we denote vectors/matrices by bold case letters,
e.g., xxx and XXX. The transpose of a real vector xxx is denoted as xxxT . For a vector xxx, ‖xxx‖ denotes its l2
norm. For a matrix XXX, ‖XXX‖ denotes its spectral norm.

The paper is organized as follows. Section 2 presents the mathematical formulation of the N -player
game. Section 3 provides a verification theorem for sufficient conditions of the NE of the game and
the existence of Skorokhod problem for NE strategies. Section 4 studies game CpCpCp and Section 5 studies
game CdCdCd. With the insight from these two games, Section 6 analyzes the general N -player game CCC.
Section 7 compares games CpCpCp, CdCdCd and CCC, discusses the game values and their economic implications,
and unifies their corresponding controlled dynamics in the framework of the controlled rank-dependent
SDEs.

2. Problem Setup

Controlled dynamics. Let (Xi
t)t≥0 be the position of player i, 1 ≤ i ≤ N . In the absence of controls,

XXXt = (X1
t , · · · , XN

t ) is governed by the stochastic differential equation (SDE):

dXXXt = bbb(XXXt)dt+ σσσ(XXXt)dBBBt, XXX0− = (x1, · · · , xN ), (2.1)

where BBB := (B1, · · · , BN ) is a standard N -dimensional Brownian motion in a filtered probability
space (Ω,F , {Ft}t≥0,P), with the drift bbb(·) := (b1(·), · · · , bN (·)) and the covariance matrix σσσ(·) :=
(σij(·))1≤i,j≤N . As will be explained later in Section 3.3, we consider a weak formulation of the
stochastic game. To ensure the existence and the uniqueness of the SDE, bbb(·) and σσσ(·) are assumed to
satisfy the condition:

H1. bbb(·) and σσσ(·) are bounded and continuous, and σσσ(·) is uniformly elliptic, i.e., there exists
α > 0 such that ξTσσσ(xxx)σσσ>(xxx)ξ ≥ α|ξ|2, for all xxx ∈ RN , ξ ∈ RN .

Assumption H1 ensures the existence of a weak solution to (2.1) [42]. Here and throughout the rest
of the paper, the infinitesimal generator L is

L :=
∑
i

bi(xxx)
∂

∂xi
+

1

2

∑
i,j

(σσσ(xxx)σσσ(xxx)T )i,j
∂2

∂xi∂xj
, (2.2)

where σσσ(xxx)σσσ(xxx)T is assumed to be positive-definite for every xxx ∈ RN .

If a control is applied to Xi
t , then Xi

t evolves as

dXi
t = bi(XXXt−)dt+ σσσi(XXXt−)dBBBt + dξi+t − dξ

i−
t , Xi

0− = xi, (2.3)

where σσσi is the ith row of the covariance matrix σσσ. Here the control (ξi+, ξi−) is a pair of non-decreasing
and càdlàg processes. In other words, (ξi+, ξi−) is the minimum decomposition of the finite variation
process ξi such that ξi := ξi+ − ξi−.
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Game objective. The game is for player i to minimize, for all (ξi+, ξi−) in an appropriate admissible
control set, over an infinite time horizon, the following objective function,

E
∫ ∞
0

e−αthi(X1
t , · · · , XN

t )dt. (2.4)

Here α > 0 is a constant discount factor. In this game, players interact through their respective
objective functions hi(xxx) : RN → R+.

H2. Each hi(xxx) is twice differentiable, with k ≤ ||∇2hi(xxx)|| ≤ K for some K > k > 0.

For example, hi(xxx) = h(xi−
∑N
j=1 x

j

N ) with h(·) ≥ 0 is a distance function between the position of player
i and the center of all players.

Note that in the objective function (2.4), there is no cost of control. With this formulation, the
explicit solution structure of the NE for game (2.4) is neat and insightful. It is entirely possible to
consider an N-player game with additional cost of control. For instance, one might study the game
formulation of [26] with a proportional cost of control. We conjecture that the solution structure would
be similar although the analysis will be more involved. This will be an interesting problem for future
analysis.

Admissible control policies. Denote ξ̌it as the cumulative amount of controls/resources consumed
by player i up to time t. When ξit is of finite variation, then there is a unique decomposition such that
ξit := ξi+t − ξ

i−
t , hence ξ̌it := ξi+t + ξi−t . Here ξi+ and ξi− are non-decreasing and càdlàg processes which

can be further decomposed in a differential form,

dξi±t = d(ξi±t )c + ∆ξi±t , (2.5)

where d(ξi±t )c is the continuous component and ∆ξi±t := ξi±t − ξi±t− is the jump component of dξi±t .

Equivalently, we can write ξi±t = (ξi±t )c +
∑

s≤t ∆ξi±s .

Meanwhile, we consider a weak formulation of the stochastic game. (See [43, Chapter 2, Section 4.2]
and [18, Section 5] for more discussions on weak formulations of stochastic control problems). That is,
(BBBt, t ≥ 0) is an N -dimensional Brownian motion with some filtration (Ft, t ≥ 0), and the admissible
control set SN (xxx,yyy) for the N -player game is

SN (xxx,yyy) :=

{
ξξξ : ξi ∈ U iN for 1 ≤ i ≤ N,

N∑
i=1

∫ ∞
0

aijY
j
t−∑M

k=1 aikY
k
t−
dξ̌it ≤ yj , 1 ≤ j ≤M,

P
(

∆ξit∆ξ
k
t 6= 0

)
= 0 for all t ≥ 0 and i 6= k

}
,

(2.6)

where

U iN :=
{

(ξ+, ξ−) : ξ+ and ξ− are Ft-progressively measurable, càdlàg, non-decreasing,

E
[∫ ∞

0
e−αtdξ±t

]
<∞ and ξ+0− = ξ−0− = 0

}
,

and

Y j
t = yj −

N∑
i=1

∫ t

0

aijY
j
s−∑M

k=1 aikY
k
s−
dξ̌is ∈ R+ and Y j

0− = yj , (2.7)

with aij = 0 or 1 for 1 ≤ i ≤ N and 1 ≤ j ≤ M ,
∑M

j=1 aij > 0 for all i = 1, · · · , N , and
∑N

i=1 aij > 0
for all j = 1, · · · ,M .

Here is the intuition for the admissible control set SN (xxx,yyy). In this game, each player i will make
decisions based on the current positions of all players and the available resources. In addition to this
adaptedness constraint, the admissible control set SN (xxx,yyy) specifies the resource allocation policy for
each player. For M different types of resources, define AAA := (aij)i,j ∈ RN×M to be the adjacent matrix
with aij = 0 or 1. Then AAA describes the relationship between the players and the types of available
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resources, with aij = 1 meaning that resource of type j is available to player i, and aij = 0 meaning

that resource of type j is inaccessible to player i. The condition
∑M

j=1 aij > 0 for all i = 1, · · · , N
implies that each player i has access to at least one resource, and the condition

∑N
i=1 aij > 0 for all

j = 1, · · · ,M indicates that each resource j is available to at least one player. When player i would
like to exercise control, she will consume resources proportionally to all the resources available to her.
She will stop consuming once all the available resources hit level zero. This results in the form of the
integrand in the expression of (2.7). Note that the denominator is always no smaller than the numerator
hence the integrand is well-defined with the convention 0

0 = 0.

Take an example of N = 4, M = 6, with the matrix AAA defined as in Figure 1. The resource allocation
policy is illustrated in Figure 1b, with the amount of available resource y1 and y2 of type one and two
respectively. When player one wishes to apply controls of amount ∆, say ∆ ≤ y1 +y2, she will consume

resources randomly from type one and two. So player one will take ∆ y1

y1+y2
from resource one and

∆ y2

y1+y2
from resource two. Finally, the condition P(∆ξit∆ξ

k
t 6= 0) = 0 for all t ≥ 0 and i 6= k excludes

the possibility of simultaneous jumps of any two out of N players, which facilitates designing feasible
control policies when controls involve jumps. This condition is not a restriction, and instead should be
interpreted as a regularization. See also [6, 20, 30]. When there are multiple players who would like to
jump at the same time, one can simply design a proper order, for instance by indexing the players and
their jump orders, so that they will move sequentially.

AAA =


1, 1, 0, 0, 0, 0
0, 0, 1, 0, 1, 0
0, 0, 0, 0, 0, 1
0, 0, 0, 1, 0, 0


(a) Relationship.

(b) Resource allocation pol-
icy.

Figure 1. Example of adjacent matrix AAA, relationship between the players and re-
sources when N = 4 and M = 6.

Game formulation and game criterion. Let ξξξ := (ξ1, · · · , ξN ) be the controls from the players.
Let xxx := (x1, · · · , xN ) and yyy := (y1, · · · , yM ). Then the stochastic game is for each player i to minimize

J i(xxx,yyy;ξξξ) := E
∫ ∞
0

e−αthi(XXXt)dt, (2.8)

subject to the dynamics in (2.3) and (2.7) with the constraint in (2.6). There are two special games of
particular interest. One is a game where all players pool their resources such that

N∑
i=1

ξ̌i∞ ≤ y <∞. (2.9)

When N = 1, this is a single player game corresponding to the finite fuel control problem which is well
studied in [8, 26]. We call this game a pooling game CpCpCp. Clearly in terms of the adjacent matrix AAA,
this corresponds to M = 1, and AAA = [1, 1, · · · , 1]T ∈ RN×1. Another is a game where players divide the
resource up front such that

ξ̌i∞ ≤ yi, (2.10)

where yi is the total amount of controls that player i can exercise. This game is called CdCdCd, with M = N ,
and AAA = INININ . Finally, we refer the game with a general matrix AAA as game CCC.

We will analyze the N -player game under the criterion of NE. Recall the definition of NE of N -player
games.
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Definition 2.1. A tuple of admissible controls ξξξ∗ := (ξ1∗, · · · ξN∗) is a NE of the N -player game (2.8),
if for each ξi ∈ U iN such that (ξξξ−i∗, ξi) ∈ SN (xxx,yyy),

J i (xxx,yyy;ξξξ∗) ≤ J i
(
xxx,yyy;

(
ξξξ−i∗, ξi

))
,

where ξξξ−i∗ = (ξ1∗, · · · , ξi−1∗, ξi+1∗, · · · , ξN∗) and (ξξξ−i∗, ξi) = (ξ1∗, · · · , ξi−1∗, ξi, ξi+1∗, · · · , ξN∗). Con-
trols that give NEs are called the Nash Equilibrium Points (NEPs). The associated value function
J i (xxx,yyy;ξξξ∗) (i = 1, 2, · · · , N) is called the game value for player i.

3. NE Game Solution: Verification Theorem and Skorokhod Problem

In this section, we present general strategies to get the NE solution. First we derive heuristically the
quasi-variational inequalities (QVIs) for the value function (Section 3.1), which is then used for deriving
sufficient conditions of an NEP via a verification theorem (Section 3.2). We emphasize that both the
QVIs in Section 3.1 and the verification theorem in Section 3.2 hold for general diffusion processes given
in (2.3). For explicitness, we assume further that

H1′. bi = 0, i = 1, 2, · · · , N, and σσσ = IIIN .

Moreover, we assume that hi(xxx) := h

(
xi −

∑N
j=1 x

j

N

)
, such that

H2′. h is symmetric, h(0) ≥ 0, h′′ is non-increasing on R+ and k ≤ h′′ ≤ K for some 0 < k < K.

These additional conditions are only used to facilitate the construction of the NEP, as well as solving
the corresponding Skorokhod problem presented in Section 3.3.

One basic example for h under assumption H2′ is a quadratic function h(x) = ax2 + b with a ∈ [k,K]
and b ≥ 0. Our assumption also holds for a more general class of functions. Take h an even function such
that h′′ = f , where f is an even function, non-increasing on R+ and bounded between k and K. There
are many such functions f . A particular example is f = a (constant), which will give h(x) = ax2 + b
(quadratic function). Another possible example is f = b + c exp(−dx2) with c > 0 and d > 0. In the
original finite fuel problem [8], the authors treated the quadratic cost h(x) = x2. Later Karatzas [26]
noticed that the results can be extended to any cost function which satisfies Assumption H2′.

3.1. Quasi-variational Inequalities. We first derive heuristically the associated QVIs of game value
under the notion of NE (see Definition 2.1) for game (2.8). The key idea is to utilize the conditional
optimality condition introduced in Definition 2.1. Namely, player i solves a single agent optimal control
problem with optimal solution ξi∗ when other agents are applying ξξξ−i∗. To start, we define the following
partition of RN×RM+ . Denote Ai ⊆ RN×RM+ as the ith player’s action region andWi := (RN×RM+ )\Ai
as her waiting region. Let A−i := ∪j 6=iAj and W−i := ∩j 6=iWj . Then players’ actions are as follows:
player i controls if and only if the process (XXXt,YYY t) enters Ai. This partition is usually defined through
the quasi-variational inequalities and is also part of the solution to be derived. Next, define the intervene
operator Γ as

Γjv
i(xxx,yyy) =

M∑
k=1

ajky
k∑M

s=1 ajsy
s
viyk(xxx,yyy), (3.1)

for (xxx,yyy) ∈ RN × RM+ and i, j = 1, 2, · · · , N . Here vi
yk

:= ∂vi

∂yk
(i = 1, 2, · · · , N and k = 1, 2, · · · ,M).

Suppose player j takes a possibly suboptimal action ∆ξj,+ > 0, then by the resource allocation policy
(2.7), for player i,

vi(xxx,yyy) ≤ vi
(
xxx−j , xj + ∆ξj,+, yyy −

(
aj1y

1∑M
k=1 ajky

k
, · · · ,

ajMy
M∑M

k=1 ajky
k

)
∆ξj,+

)
. (3.2)

By letting ∆ξj,+ → 0, we have

0 ≤ −Γjv
i(xxx,yyy) + vixj (xxx,yyy). (3.3)
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Next, we provide the heuristics for deriving the QVIs. Let ∆ξi := ∆ξi(xxx,yyy) be the control of player i
with joint state position (xxx,yyy). When (xxx,yyy) ∈ W−i, we have ∆ξj = 0 for j 6= i. Thus the game for
player i becomes a classical control problem with three choices: ∆ξi = 0, ∆ξi,+ > 0, and ∆ξi,− > 0.
The first case ∆ξi = 0 implies, by simple stochastic calculus, −αvi + hi (xxx) + Lvi ≥ 0. By a similar
argument as in (3.3), the second case ∆ξi,+ > 0 corresponds to −Γiv

i + vi
xi
≥ 0 and the third case

∆ξi,− > 0 corresponds to −Γiv
i − vi

xi
≥ 0. Since one of the three choices will be optimal, one of the

inequalities will be an equation. That is, for (xxx,yyy) ∈ W−i,
min

{
−αvi + hi (xxx) + Lvi,−Γiv

i + vixi ,−Γiv
i − vixi

}
= 0. (3.4)

When (xxx,yyy) ∈ Aj , player j will control with the amount of control being (∆ξj,+,∆ξj,−) 6= 0. There-
fore,

vj(xxx,yyy) ≤ vj
(
xxx−j , xj + ∆ξj,+, yyy −

(
aj1y

1∑M
k=1 ajky

k
, · · · ,

ajMy
M∑M

k=1 ajky
k

)
∆ξj,+

)
, (3.5)

vj(xxx,yyy) ≤ vj
(
xxx−j , xj −∆ξj,−, yyy −

(
aj1y

1∑M
k=1 ajky

k
, · · · ,

ajMy
M∑M

k=1 ajky
k

)
∆ξj,−

)
, (3.6)

and one of the inequalities in (3.5)-(3.6) will be an equality. This leads to the following condition

min
{
−Γjv

j + vj
xj
,−Γjv

j − vj
xj

}
= 0. (3.7)

For player i 6= j, we should have vi(xxx,yyy) = vi
(
xxx−j , xj + ∆ξj,+, yyy −

(
aj1y

1∑M
k=1 ajky

k
, · · · , ajMy

M∑M
k=1 ajky

k

)
∆ξj,+

)
when ∆ξj,+ > 0 is optimal for player j, and

vi(xxx,yyy) = vi
(
xxx−j , xj −∆ξj,−, yyy −

(
aj1y

1∑M
k=1 ajky

k
, · · · , ajMy

M∑M
k=1 ajky

k

)
∆ξj,−

)
when ∆ξj,− > 0 is optimal for

player j. This holds due to the “no simultaneous jump” condition (2.6). Intuitively, this implies that
player i has no incentive to jump when player j jumps. Thus,{

−Γjv
i + vi

xj
= 0, on {(xxx,yyy) ∈ RN × RM+

∣∣ − Γjv
j + vj

xj
= 0},

−Γjv
i − vi

xj
= 0, on {(xxx,yyy) ∈ RN × RM+

∣∣ − Γjv
j − vj

xj
= 0}.

(3.8)

Note that by letting ∆ξi,± → 0, equations (3.4),(3.7) and (3.8) describe the behavior in W i and near
boundary ∂Wi. Moreover, we can show that (3.4),(3.7) and (3.8) are consistent with the jump behaviors

inAi. To see this, −
∑M

j=1
aijy

j∑M
k=1 aiky

k
vi
yj
±vi

xi
= 0 has a linear solution vi(xxx,yyy) = a

(
±xi +

∑M
j=1 aijy

j
)

+

b for some a, b ∈ R. And it is easy to check that if
∑M

k=1 aiky
k ≥ ∆ > 0,

aijy
j − aijy

j∑M
k=1 aiky

k
∆∑M

k=1 aiky
k −∆

=
aijy

j∑M
k=1 aiky

k
,

which means that the allocation policy (jump direction) outside the waiting region is linear. Hence the
the non-infinitesimal jump also satisfies the HJB equation (3.4) in Ai. The consistency property also
holds for (3.8). In summary, we have the following QVIs:

min
{
−αvi + hi (xxx) + Lvi,−Γiv

i + vixi ,−Γiv
i − vixi

}
= 0,

on ∩j 6=i
{{
−Γjv

j + vj
xj
> 0
}
∩
{
−Γjv

j − vj
xj
> 0
}}

, (3.9a)

− Γjv
i + vixj = 0, on {−Γjv

j + vj
xj

= 0}, (3.9b)

− Γjv
i − vixj = 0, on {−Γjv

j − vj
xj

= 0}. (3.9c)

The above conditions are consistent with the conditional optimality of NE for each player and describe
interactions between the player in control and those who are not; these conditions ensure that all players
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control optimally and push sequentially the underlying dynamics until reaching the common waiting
region.

3.2. Verification Theorem. Next we present a verification theorem which gives sufficient conditions
of an NEP. Given functions vi (with sufficient regularity), we define the action and waiting regions (Ai
and Wi) in terms of vi (i = 1, 2, · · · , N) as the following:

Ai = A+
i ∪ A

−
i , (3.10)

where A+
i := {(xxx,yyy) ∈ RN ×RM+ | −Γiv

i− vi
xi

= 0} and A−i := {(xxx,yyy) ∈ RN ×RM+ | −Γiv
i + vi

xi
= 0}.

Moreover, Wi = (RN × RM+ ) \ Ai and W−i = ∩j 6=iWj .

Theorem 3.1 (Verification theorem). Assume H1-H2 hold and further assume Aj ∩ Ai = ∅ for all
i 6= j where Ai,Wi and W−i are defined according to (3.10). For each i = 1, · · · , N , suppose that the
ith player’s strategy ξi∗ ∈ U iN satisfies the following conditions

(i) ξξξ∗ := (ξ1∗, · · · , ξN∗) ∈ SN (xxx,yyy).

(ii) vi(·) satisfies the QVIs (3.9).

(iii) For any ξi ∈ U iN such that (ξξξ−i∗, ξi) ∈ SN (xxx,yyy), P((XXX−i∗t , Xi
t ,YYY t) ∈ W−i) = 1 for all t ≥ 0,

where (XXX−i∗t , Xi
t ,YYY t) is under (ξξξ−i∗, ξi).

(iv) vi(xxx,yyy) ∈ C2(W−i) and vi is convex for all (xxx,yyy) ∈ W−i,

(v) E
[∫ T

0 e−2αt
(
vi
xj

(XXX−i∗t , Xi
t ,YYY t)

)2
dt
]
<∞ for all T > 0 where (XXX−i∗t , Xi

t ,YYY t) is under (ξξξ−i∗, ξi) ∈
SN (xxx,yyy) such that (iii) holds.

(vi) For any (XXX−i∗t , Xi
t ,YYY t) under (ξξξ−i∗, ξi) ∈ SN (xxx,yyy) such that (iii) holds, vi(xxx,yyy) satisfies the

transversality condition

lim sup
T→∞

e−αTE
[
vi
(
XXX−i∗t , Xi

t ,YYY t

)]
= 0. (3.11)

(vii) For j 6= i, t ≥ 0, and (XXX−i∗t , Xi
t ,YYY t) under (ξξξ−i∗, ξi),

ξ̌j∗t =

∫
[0,t]

1{(XXX−i∗s− ,Xi
s−,YYY s−)∈Aj}

dξ̌j∗s , (3.12)

and in addition, for (XXX∗t ,YYY
∗
t ) under ξξξ∗,

ξ̌i∗t =

∫
[0,t]

1{(XXX−i∗s− ,YYY ∗s−)∈Ai}
dξ̌i∗s . (3.13)

Then ξξξ∗ is an NEP with value function vi a solution to (3.9). That is,

vi(xxx,yyy) ≤ J i(xxx,yyy; (ξξξ−i∗, ξi)),

for all ξ ∈ U iN such that (ξξξ−i∗, ξi) ∈ SN , and vi(xxx,yyy;ξξξ∗) = J i(xxx,yyy; (ξξξ−i∗, ξi∗)).

Proof. It suffices to prove that for all (ξξξ−i∗, ξi) ∈ SN (xxx,yyy), and for each i = 1, · · · , N ,

J i(xxx,yyy;ξξξ∗) ≤ J i(xxx,yyy; (ξξξ−i∗, ξi)).
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Recall (2.1) and (2.7). From condition (iii), under control (ξξξ−i∗, ξi) ∈ SN (xxx,yyy), (XXX−i∗t , Xi
t ,YYY t) ∈ W−i

a.s.. Applying Itô-Meyer’s formula [38, Theorem 21] to e−αtvi(XXX−i∗t , Xi
t ,YYY t) yields

E[e−αT vi(XXX−i∗T , Xi
T ,YYY T )]− vi(xxx,yyy)

= E
∫ T

0
e−αt

(
Lvi − αvi

)
dt+ E

∫ T

0
e−αt

N∑
j=1

vixjdB
j
t +

N∑
j=1,j 6=i

E
∫
[0,T )

e−αt(vixjdξ
j∗,+
t − vixjdξ

j∗,−
t )

−
N∑

j=1,j 6=i
E
∫
[0,T )

e−αtΓjv
i(XXX−i∗t− , Xi

t−,YYY t−)
(
dξj∗,+t + dξj∗,−t

)
+ E

∫
[0,T )

e−αt(vixidξ
i,+
t − vixidξ

i,−
t )

− E
∫
[0,T )

e−αtΓiv
i(XXX−i∗t− , Xi

t−,YYY t−)
(
dξi,+t + dξi,−t

)
+ E

∑
0≤t<T

e−αt

∆vi −
N∑
j=1

vixj∆X
j
t −

M∑
k=1

viyk∆Y k
t

 ,

where Γi and Γj are defined in (3.1). Here ∆vi := vi(XXX−i∗t , Xi
t ,YYY t) − vi(XXX−i∗t− , Xi

t−,YYY t−), vi
xj

:=

vi
xj

(XXX−i∗t− , Xi
t−,YYY t−), vi

yk
:= vi

yk
(XXX−i∗t− , Xi

t−,YYY t−), ∆Xj∗
t := Xj∗

t −X
j∗
t−, ∆Xi

t := Xi
t −Xi

t−, and ∆Y k
t :=

Y k
t −Y k

t− on the RHS of above equation for 1 ≤ i, j ≤ N and 1 ≤ k ≤M . By [3, Theorem3.2.1], condition

(v) implies that the itô integral
∫ T
0 e−αt

∑N
j=1 v

i
xj
dBj

t is a martingale. Hence E
[∫ T

0 e−αt
∑N

j=1 v
i
xj
dBj

t

]
=

0. The convexity condition in (iv) implies E
∑

0≤t<T e
−αt(∆vi−

∑N
k 6=i v

i
xk

∆Xk∗
t −vixi∆X

i
t−
∑M

j=1 v
i
yj

∆Y j
t ) ≥

0. Next we have

E
∫
[0,T )

e−αt(vixidξ
i,+
t − vixidξ

i,−
t )− E

∫
[0,T )

e−αtΓiv
i(XXX−i∗t− , Xi

t−,YYY t−)
(
dξi,+t + dξi,−t

)
= E

∫
[0,T )

e−αt
[
vixi(XXX

−i∗
t− , Xi

t−,YYY t−)− Γiv
i(XXX−i∗t− , Xi

t−,YYY t−)
]
dξi,+t

+ E
∫
[0,T )

e−αt
[
−vixi(XXX

−i∗
t− , Xi

t−,YYY t−)− Γiv
i(XXX−i∗t− , Xi

t−,YYY t−)
]
dξi,−t ≥ 0.

The last inequality holds due to conditions (ii) and (iv). More precisely, vi(xxx) satisfies the HJB equation
(3.9a) in W−i. Along with (iv), we have the following with probability one,

vixi(XXX
−i∗
t− , Xi

t−,YYY t−)− Γiv
i(XXX−i∗t− , Xi

t−,YYY t−) ≥ 0,

−vixi(XXX
−i∗
t− , Xi

t−,YYY t−)− Γiv
i(XXX−i∗t− , Xi

t−,YYY t−) ≥ 0.

For each j 6= i, almost surely, we have dξj∗t 6= 0 only when (XXXt,YYY t) ∈ ∂W−i ∩ ∂Aj . Along with the
condition (ii) and (3.9b)-(3.9c),

E
∫
[0,T )

e−αt(vixj (XXX
−i∗
t− , Xi

t−,YYY t−)dξj∗,+t − vixj (XXX
−i∗
t− , Xi

t−,YYY t)dξ
j∗,−
t )

−E
∫
[0,T )

e−αtΓjv
i(XXX−i∗t− , Xi

t−,YYY t)
(
dξj∗,+t + dξj∗,−t

)
= E

∫
[0,T )

e−αt
[
vixj − Γjv

i
]

(XXX−i∗t− , Xi
t−,YYY t)dξ

j∗,+
t +

[
−vixj − Γjv

i
]

(XXX−i∗t− , Xi
t−,YYY t)dξ

j∗,−
t = 0.

Condition (ii) also implies Lvi − αvi ≥ −h. Combining all of the above,

e−αTEvi(XXX−i∗T , Xi
T ,YYY T ) + E

∫ T

0
e−αth

(
XXX−i∗t , Xi

t

)
dt ≥ vi(xxx,yyy). (3.14)

By letting T →∞, the inequality (3.14) and condition (vi) lead to the desirable inequality.
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The equality in (3.14) holds for ξi = ξi∗ by (3.13), and P
(

(XXX∗t ,YYY
∗
t ) ∈ ∩Ni=1Wi

)
= 1 for all t ≥ 0 and

the “no simultaneous jump” condition in the admissible set (2.6), where (XXX∗t ,YYY
∗
t ) is the dynamics under

ξξξ∗. �

Suppose the game value vi (i = 1, 2, · · · , N) that satisfies the verification theorem (Theorem 3.1) are
given, the next step is to construct the corresponding NE strategies. This is by solving a Skorokhod
problem, discussed in the next subsection.

3.3. Skorokhod Problem. Here we present necessary tools to construct the NE strategies under
the additional Assumptions H1′-H2′. The key to the analysis is the weak construction of a reflected
Brownian motion in a general domain, due to Kang and Williams [25]. To proceed further, we need a
few vocabularies.

Let G = ∩i∈IGi be a nonempty domain in Rn+m, where I is a nonempty finite index set and for
each i ∈ I, Gi is a nonempty domain in Rn+m. For simplicity, we assume that I = {1, 2, · · · , I}, with
|I| = I. For each i ∈ I, let nnni : Rn+m → Rn+m be the unit normal vector field on ∂Gi that points into
Gi. And denote rrri(·) : Rn+m → Rn+m as the reflection direction on ∂Gi. Fix bbb ∈ Rn and σσσ ∈ Rn×n as
the constant drift and covariance of the diffusion process without reflection. Let ν denote a probability
measure on (G,B(G)), where B(G) is the Borel σ-algebra on G.

A Skorokhod problem is to find a reflected diffusion process in G such that the initial distribution
follows ν, the diffusion parameters are (bbb,σσσ), and the reflection direction is rrri on face ∂Gi. For each
reflection direction rrri (i ∈ I), denote rrr+i := (ri,1, · · · , ri,n) as the vector of the first n components

of rrri and denote rrr−i := (ri,n+1, · · · , ri,n+m) as the vector of the next m components of rrri. Note that

r−i,k = ri,k+n by the usual index rule (k = 1, · · · ,m). Specific to the stochastic game, the following

definition is a straightforward modification of [25, Definition 2.1].

Definition 3.2. A constrained semimartingale reflected Brownian motion (SRBM) associated with the
data (G,bbb,σσσ, {rrri}Ii=1, ν) is an {Ft}-adapted, n-dimensional process XXX defined on some filtered probability
space (Ω,F , {Ft},P) such that:

(i) P-a.s., XXXt = WWW t +
∑

i∈I
∫
[0,t) rrr

+
i (XXXs,YYY s)dη

i
s for all t ≥ 0,

(ii) under P, WWW t is an n-dimensional Ft-Brownian motion with drift vector bbb, covariance matrix
σσσ and initial distribution ν,

(iii) dY j
t =

∑
i∈I
∫
[0,t) rrr

−
i,j(XXXt,YYY t)dη

i
t and Y j

t ≥ 0 for j = 1, 2, · · · ,m,

(iv) for each i ∈ I, ηi is a one-dimensional process such that P-a.s.,
(a) ηi is continuous and nondecreasing with ηi0 = 0,
(b) ηit =

∫
(0,t] 1{(XXXs,YYY s)∈∂Gi∩∂G}dη

i
s for all t ≥ 0,

(v) P-a.s., (XXXt,YYY t) has continuous paths and (XXXt,YYY t) ∈ G for all t ≥ 0,

Here XXXt is the controlled diffusion process and YYY t is the resource levels. The domain G restricts the
dynamics of both XXXt and YYY t.

For each (xxx,yyy) ∈ Rn+m, let I(xxx,yyy) = {i ∈ I : (xxx,yyy) ∈ ∂Gi}. Let Uε(S) denote the closed set
{(xxx,yyy) ∈ Rn+m : dist((xxx,yyy), S) ≤ ε} for any ε > 0 and S ⊂ Rn+m. If S = ∅, set Uε(S) = ∅ for any
ε > 0. We list the following assumptions on domain G and reflection directions {rrri, i ∈ I}:

A1. G is the nonempty domain in Rn+m such that

G = ∩i∈IGi, (3.15)

where for each i ∈ I, Gi is a nonempty domain in Rn+m, Gi 6= Rm+n and the boundary
∂Gi is C1.

A2. For each ε ∈ (0, 1) there exists R(ε) > 0 such that for each i ∈ I, (xxx,yyy) ∈ ∂Gi ∩ ∂G and
(xxx′, yyy′) ∈ G satisfying ‖(xxx,yyy)− (xxx′, yyy′)‖ < R(ε), we have〈

nnni(xxx,yyy), (xxx′, yyy′)− (xxx,yyy)
〉
≥ −ε‖(xxx,yyy)− (xxx′, yyy′)‖.
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A3. The function D : [0,∞)→ [0,∞] is such that D(0) = 0 and

D(ε) = sup
I0∈I,I0 6=∅

sup {dist ((xxx,yyy),∩i∈I0(∂Gi ∩ ∂G)) : (xxx,yyy) ∈ ∩i∈I0Uε(∂Gi ∩ ∂G)} ,

for ε > 0 satisfies D(ε)→ 0 as ε→ 0.
A4. There is a constant L > 0 such that for each i ∈ I, rrri(·) is a uniformly Lipschitz continuous

function from Rn+m into Rn+m with Lipschitz constant L and ‖rrri(xxx,yyy)‖ = 1 for each
(xxx,yyy) ∈ Rn+m.

A5. There is a constant a ∈ (0, 1), and vector valued function ccc(·) = (c1(·), · · · , cI(·)) and
ddd(·) = (d1(·), · · · , dI(·)) from ∂G into RI+ such that for each (xxx,yyy) ∈ ∂G,

(i)
∑

i∈I(xxx,yyy) ci(xxx,yyy) = 1, mink∈I(xxx,yyy)

〈∑
i∈I(xxx,yyy) ci(xxx,yyy)nnni(xxx,yyy), rrrk(xxx,yyy)

〉
≥ a,

(ii)
∑

i∈I(xxx,yyy) di(xxx,yyy) = 1, mink∈I(xxx,yyy)

〈∑
i∈I(xxx,yyy) di(xxx,yyy)rrri(xxx,yyy),nnnk(xxx,yyy)

〉
≥ a.

Theorem 3.3. Given Assumptions A1-A5, there exists a constrained SRBM associated with the data
(G,bbb,σσσ, {rrri, i ∈ I}, ν).

The proof of Theorem 3.3 is easily adapted from [25, Theorem 5.1], where one constructs a sequence of
approximation (random walks) to the constrained SRBM and use the invariance principle to establish
the weak convergence.

4. Nash Equilibrium for Game CpCpCp

This section analyzes the NE of game CpCpCp. Section 4.1 derives the solution to the HJB equations.
Section 4.2 constructs the controlled process from the HJB solution. Section 4.3 derives the NE for the
game CpCpCp. Recall that in game CpCpCp, AAA = [1, 1, · · · , 1]T ∈ RN×1, and the unique resource

Yt = y −
N∑
i=1

ξ̌it and Y0− = y. (4.1)

4.1. Solving HJB equations. Define

x̃i := xi −
∑

j 6=i x
j

N − 1
for 1 ≤ i ≤ N, (4.2)

to be the relative position from xi to the center of (xj)j 6=i. For game CpCpCp, if Ai ∩ Aj = ∅, the HJB
system simplifies to

(HJB-Cp)



min

−αvi + h

(
N − 1

N
x̃i
)

+
1

2

N∑
j=1

vixjxj ,−v
i
y + vixi ,−v

i
y − vixi

 = 0,

for (xxx, y) ∈ W−i,
−viy − vixj = 0, for (xxx, y) ∈ A+

j , j 6= i,

−viy + vixj = 0, for (xxx, y) ∈ A−j , j 6= i.

Now we look for a threshold function fN : R+ → R such that

fN ∈ C1(R+,R), f ′N (x) < 0 for x > 0, limx↓0 fN (x) =∞,
and there exists a unique x0 > 0 such that fN (x0) = 0. (4.3)

It is easy to see that for such fN (x) satisfying condition (4.3), z− fN (z) = x̃i− y has a unique positive
root when x̃i ≥ f−1N (y), denoted as xi+. We consider an even extension of fN (x) to (−∞, 0) by defining

f̃N (x) = fN (−x) for x < 0. Then by symmetry, z + f̃N (z) = x̃i + y has a unique negative root when
x̃i ≤ −f−1N (y), denoted as xi−. See Figure 2 for an illustration. In particular, we have fN (xi+) ≥ 0 when

y ≥ x0 + x̃i and x̃i ≥ 0. Similarly f̃N (xi−) ≥ 0 holds when y ≥ −x0 − x̃i and x̃i ≤ 0. Such an fN is
constructed later in (4.14) and condition (4.3) is verified in Lemma 4.2.
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Then the action region Ai and the waiting region Wi of the ith player are specified as

A+
i := E+

i ∩Qi, A−i := E−i ∩Qi ,Ai = A+
i ∪ A

−
i , and Wi := (RN × R+) \ Ai, (4.4)

where

E+
i :=

{
(xxx, y) ∈ RN × R∗+ : x̃i ≥ f−1N (y)

}
, E−i :=

{
(xxx, y) ∈ RN × R∗+ : x̃i ≤ −f−1N (y)

}
, (4.5)

with

E+
i,1 :=

{
(xxx, y) ∈ E+

i : y ≥ x̃i + x0
}
, E+

i,2 :=
{

(xxx, y) ∈ E+
i : y < x̃i + x0

}
, (4.6)

E−i,1 :=
{

(xxx, y) ∈ E−i : y ≥ −x̃i − x0
}
, E−i,2 :=

{
(xxx, y) ∈ E+

i : y < −x̃i − x0
}
, (4.7)

and {Qi}Ni=1 disjoint and convex partitions of RN×R+ such thatQi∩Qj = (E+
i ∪E

−
i )∩(E+

j ∪E
−
j )∩∂WNE

for i 6= j, ∪Ni=1Qi = RN × R+ and αppp + (1 − α)qqq ∈ Qj for all α ∈ [0, 1] if ppp ∈ Qj and qqq ∈ Qj for some
j = 1, 2, · · · , N . Condition Qi ∩ Qj = (E+

i ∪ E
−
i ) ∩ (E+

j ∪ E
−
j ) ∩ ∂WNE for i 6= j implies that player

i and player j can not jump simultaneous but may apply continuous control (on the boundary of the
common waiting region) at the same time. We can define the following mapping

Π(xxx, y) =



((
xxx−i, xi+ +

∑
k 6=i x

k

N−1
)
, fN (xi+)

)
, if (xxx, y) ∈ Qi ∩ E+

i,1,(
(xxx−i, xi − y), 0

)
, if (xxx, y) ∈ Qi ∩ E+

i,2,((
xxx−i,

∑
k 6=i x

k

N−1 + xi−
)
, f̃N (xi−)

)
, if (xxx, y) ∈ Qi ∩ E−i,1,(

(xxx−i, xi + y), 0
)
, if (xxx, y) ∈ Qi ∩ E−i,2.

(4.8)

Mapping Π(·) is well-defined on ∪iAi since {Qi}Ni=1 are disjoint. Note that, Π(·) translates (xxx, y) to the
boundary of E+

i,1, i.e., ∂E+
i,1 := {(xxx, y) ∈ RN × R+ : y = fN

(
x̃i
)
, 0 < x ≤ x0} when (xxx, y) ∈ Qi ∩E+

i,1,

and translates (xxx, y) to the “zero resource” plane {(xxx, y) ∈ RN ×R+ : y = 0} when (xxx, y) ∈ Qi ∩E+
i,2,

both along the direction (0, 0, · · · ,−1, 0, · · · ,−1) ∈ RN+1 nonzero i-th and (N+1)-th components. Let

WNE : = {(xxx, y) ∈ RN+1 : |x̃i| < f−1N (y) with y > 0, 1 ≤ i ≤ N}∪{(xxx, y) ∈ RN × R+ : y = 0} (4.9)

= ∩Ni=1

(
E−i ∪ E

+
i

)c
,

be the common non-action region and assume that partitions {Qi}Ni=1 satisfies the following assumption:

H3-Cp. For any (xxx, y) ∈ ∪iAi, Π(xxx, y) ∈ WNE .

Condition H3-Cp implies that if (xxx, y) ∈ Ai, then the dynamics will be in region WNE after player
i’s control. For the special case of N = 2, we can take Q1 = {(x1, x2, y) ∈ R2 × R+|x1 − x2 ≥ 0} and
Q2 = {(x1, x2, y) ∈ R2×R+|x2−x1 > 0}. Thus Assumption H3-Cp is easily satisfied. The verification
is deferred to Appendix B.

We seek a solution vi(xxx, y) ∈ C2(W−i) such that if |x̃i| < f−1N (y), it is of the form,

vi(xxx, y) = pN (x̃i) +AN (y) cosh

(
x̃i
√

2(N − 1)α

N

)
, (4.10)

where

pN (x) := E
∫ ∞
0

e−αth

(
N − 1

N
x+

√
N − 1

N
Bt

)
dt, (4.11)

with Bt being a one-dimensional Brownian motion. Note that pN (x̃i) is a solution to −αvi+h(N−1N x̃i)+

1
2

∑N
j=1 v

i
xjxj

= 0, which corresponds to the waiting region, and cosh

(√
2(N−1)α

N x̃i
)

is a solution to

−αvi + 1
2

∑N
j=1 v

i
xjxj

= 0. If there is no resource, then vi(xxx, y) = pN (x̃i), so AN (0) = 0. The following
lemma summarizes basic properties of pN , which can be verified by straightforward calculations. The
proof is hence omitted.
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Lemma 4.1. Under Assumption H1′-H2′, pN (x) defined in (4.11) satisfies:

p′N (x) ≥ 0 and p′′′N (x) ≤ 0 for x ≥ 0; pN (x) = pN (−x) and k
α ≤ p

′′
N (x) ≤ K

α for x ∈ R.(4.12)

The smooth-fit principle states that, along the boundary y = fN (x̃i) between the continuation set
W−i and the action set Ai, vi has certain regularity properties across the hyperplane. Now applying
the smooth-fit principle, we get vi

xixi
= viyy = −vi

xiy
at the boundary y = fN (x̃i) with x̃i > 0. This

follows from vi
xi

+ viy = 0 and we expect vi ∈ C2(W−i). To see this, we differentiate the form (4.10)

twice, and the conditions vi
xi

+ viy = 0 and vi
xixi

+ vi
xiy

= 0 at the boundary y = fN (x̃i) lead to
A′N (fN (x)) = −p′N (x) cosh

(
x

√
2(N − 1)α

N

)
+ p′′N (x)

√
N

2(N − 1)α
sinh

(
x

√
2(N − 1)α

N

)∣∣∣∣∣
x=f−1

N (y)

,

AN (fN (x)) = p′N (x)

√
N

2(N − 1)α
sinh

(
x

√
2(N − 1)α

N

)
− p′′N (x)

N

2(N − 1)α
cosh

(
x

√
2(N − 1)α

N

)∣∣∣∣∣
x=f−1

N (y)

.

(4.13)

As a consequence,

f ′N (x) =
p′N (x)− N

2(N−1)αp
′′′
N (x)

p′′N (x)
√

N
2(N−1)α tanh

(
x

√
2(N−1)α

N

)
− p′N (x)

, (4.14)

and

AN (y) = p′N (x)

√
N

2(N − 1)α
sinh

(
x

√
2(N − 1)α

N

)
−p′′N (x)

N

2(N − 1)α
cosh

(
x

√
2(N − 1)α

N

)∣∣∣∣∣
x=f−1

N (y)

.

(4.15)

Lemma 4.2. Under Assumptions H1′-H2′, fN defined in (4.14) satisfies condition (4.3). Moreover,
the curve y = fN (x) intersects {x > 0} at x0 such that AN (fN (x0)) = 0 and x0 is the unique positive
root of √

2(N − 1)α

N
tanh

(
z

√
2(N − 1)α

N

)
=
p′′N (z)

p′N (z)
. (4.16)

Proof. First we prove that fN is decreasing on R+. Recall the expression of f ′N from (4.14), and we

claim that f ′N (z) < 0 when z ≥ 0 and limz↓0 f
′
N (z) = −∞. To see this, p′N (z) − N

2(N−1)αp
′′′
N (z) ≥ 0 for

z ≥ 0 by Lemma 4.1. Denote q(z) = p′′N (z)
√

N
2(N−1)α tanh

(
z

√
2(N−1)α

N

)
−p′N (z). It is easy to see that

q(0) = 0. Moreover, q′(z) = p′′′N (z)
√

N
2(N−1)α tanh

(
z

√
2(N−1)α

N

)
+ p′′N (z) 1

cosh2
(
z
√

2(N−1)α
N

) − p′′N (z) < 0

for z > 0 and q′(z) = 0 for z = 0. This is because p′′′N (z) ≤ 0 (z ≥ 0) by Lemma 4.1, cosh(z) ≥ 1

(z ≥ 0), and cosh(z) = 1 if and only if z = 0. Let s(x) = p′N (x)− N
2(N−1)αp

′′
N (x). So f ′N (x) = s(x)/q(x).

It is clear that for x > 0, f ′N (x) < 0 (since s(x) > 0 and q(x) < 0). Now we consider the asymptotics
of s(x) and q(x) as x→ 0+. By Taylor’s expansion,

q(x) = p′′N (0)

√
N

2(N − 1)α
x

√
2(N − 1)α

N
+ o(x)− p′′N (0)x+ o(x) = o(x).

Since p′′N (x) < 0 for x > 0, we have s(x) ≥ p′N (x) = p′′N (0)x+o(x). Therefore, f ′N (x) = s(x)/q(x)→ −∞
as x → 0+. This implies that fN (x) → ∞ as x → 0+. Similarly, z + f̃N (z) = x̃i + y has a unique
negative root since fN (−x) = fN (x).
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We then prove the unique positive root of (4.16). Define r(z) =
p′′N (z)

p′N (z)
where pN (x) is defined in (4.11).

Note that r(0) =
p′′N (0)

p′N (0)
=

E
[∫∞

0 e−αth′′
(√

N−1
N

Bt

)
dt

]
E
[∫∞

0 e−αth′
(√

N−1
N

Bt

)
dt

] . By Assumption H2′, p′N (0) = 0, k
α < p′′N (0) < K

α ,

and r′(z) =
p′′′N (z)p′N (z)−(p′′N (z))2

(p′N (z))2
. Along with Lemma 4.1, we have r(0) =∞ and r′(z) ≤ 0. Furthermore,

since k ≤ h′′ ≤ K and h′ ≥ kx + c for some constant c, we have limx→∞ r(x) = 0. Moreover, define

f(x) =

√
2(N−1)α

N tanh

(
x

√
2(N−1)α

N

)
, then it is easy to check that f(0) = 0, f ′(x) > 0 for x ≥ 0, and

limx→∞ f(x) =

√
2(N−1)α

N . Therefore, f(x) = r(x) has a unique positive solution. �

4.2. Controlled dynamics. Given the candidate game value to (HJB-Cp), we derive the corresponding
NEP by showing the existence of a weak solution (XXXt, Yt) to a Skorokhod problem with an unbounded
domain, where the boundary of the domain depends on both the diffusion term XXXt and the degenerate
term YYY t.

Recall the regionWNE defined in (4.9) and note thatWNE is unbounded in RN+1 with 2N boundaries.
For i = 1, 2, · · · , N , define the 2N faces of WNE as

Fi = {(xxx, y) ∈ ∂WNE | (xxx, y) ∈ ∂E+
i }, Fi+N = {(xxx, y) ∈ ∂WNE | (xxx, y) ∈ ∂E−i }.

Then the normal direction of each face is given by (i = 1, 2, · · · , N)

nnni = ci

(
− 1

N − 1
, · · · ,− 1

N − 1
, 1,− 1

N − 1
, · · · ,− 1

N − 1
, (f−1N )′(y)

)
,

nnni+N = ci+N

(
1

N − 1
, · · · , 1

N − 1
,−1,

1

N − 1
, · · · , 1

N − 1
, (f−1N )′(y)

)
,

with the ith component to be ±1. ci, cN+i are normalizing constants such that ‖nnni‖ = ‖nnnN+i‖ = 1.

Denote the reflection direction on each face as

rrri = c′i (0, · · · ,−1, · · · , 0,−1) , rrrN+i = c′N+i (0, · · · , 1, · · · , 0,−1) ,

with the ith component to be ±1. c′i, c
′
N+i are normalizing constants such that ‖rrri‖ = ‖rrrN+i‖ = 1. NE

strategy is defined as follows.

Case 1: (XXX0−, Y0−) = (xxx, y) ∈ WNE . One can check that WNE defined in (4.9) and {rrri}2Ni=1 defined
above satisfies assumptions A1-A5. (See Appendix A for the satisfiability of A1-A5). According to
Theorem 3.3, there exists a weak solution to the Skorokhod problem with data

(
WNE , {rrri}2Ni=1, bbb,σσσ,xxx ∈ WNE

)
.

Case 2: (XXX0−, Y0−) = (xxx, y) /∈ WNE , that is, there exists i ∈ {1, · · · , N} such that (XXX0−, Y0−) ∈ Ai.
(1) If (xxx, y) ∈ A+

i ∩E
+
i,1, then x̃i ≥ f−1N (y) and y ≥ x̃i+x0. In this case, player i will move immediately

fromXi
0− = xi toXi

0 = xi++
∑
k 6=i x

k

N−1 at time 0, where xi+ is the unique positive root such that z−fN (z) =

x̃i − y. This will reduce the initial resource from Y0− = y to Y0 = fN (xi+) ≥ 0. fN (xi+) ≥ 0 holds since

y ≥ x0 + x̃i when (xxx, y) ∈ E+
i,1. Other players’ dynamics remain unchanged, i.e., Xj

0− = Xj
0 = xj for

j 6= i and 1 ≤ j ≤ N . By Assumption H3-Cp, we have (XXX0, Y0) =

((
xxx−i,

∑
k 6=i x

k

N−1 + xi+
)
, fN (xi+)

)
=

Π(XXX0−, Y0−) ∈ WNE . (2) If (xxx, y) ∈ A+
i ∩ E

+
i,2, then x̃i ≥ f−1N (y) and y < x̃i + x0. In this case, player

i will move immediately from Xi
0− = xi to Xi

0 = xi − y and the initial resource Y0− = y is decreased

to Y0 = 0 at time 0. Other players’ dynamics remain unchanged, i.e., Xj
0 = Xj

0− = xj for j 6= i and

1 ≤ j ≤ N . By Assumption H3-Cp, we have (XXX0, Y0) =
(
(xxx−i, xi − y), 0

)
= Π(XXX0−, Y0−) ∈ WNE .

(3) Similarly, if (xxx, y) ∈ A−i ∩ E
−
i,1, then x̃i ≤ −f−1N (y) and y ≥ −x̃i − x0. And player i will move

immediately from Xi
0− = xi to Xi

0 = xi− +
∑
k 6=i x

k

N−1 at time 0, where xi− is the unique negative root

such that z + f̃N (z) = x̃i + y, and Y0− = y is now Y0 = f̃N (xi−) ≥ 0. Other players’ dynamics
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Figure 2. Demonstration of the initial control when (XXX0−, Y0−) = (xxx, y) /∈ WNE .

remain unchanged, i.e., Xj
0 = Xj

0− = xj for j 6= i and 1 ≤ j ≤ N . By Assumption H3-Cp, we

have (XXX0, Y0) =

((
xxx−i,

∑
k 6=i x

k

N−1 + xi−
)
, f̃N (xi−)

)
= Π(XXX0−, Y0−) ∈ WNE . (4) If (xxx, y) ∈ A−i ∩ E

−
i,2,

then x̃i ≤ −f−1N (y) and y < −x̃i − x0. In this case, player i will move immediately from Xi
0− = xi

to Xi
0 = xi + y and this will change Y0− = y to Y0 = 0 at time 0. Other players’ dynamics remain

unchanged, i.e., Xj
0− = Xj

0 = xj for j 6= i and 1 ≤ j ≤ N . By Assumption H3-Cp, we have

(XXX0, Y0) =
((
xxx−i, xi + y

)
, 0
)

= Π(XXX0−, Y0−) ∈ WNE .

4.3. NE for the N-player game. Combining the results in Sections 4.1 and 4.2, and based on the
verification theorem developed in Section 3, we have the following theorem of the NE for the N -player
game (2.8) with constraint (4.1).

Theorem 4.3 (NE for the N -player game CpCpCp). Assume H1′-H2′ and H3-Cp. Define ui ∈ RN×R+ →
R by

ui(xxx, y) =



pN (x̃i) +AN (y) cosh

(
x̃i
√

2(N−1)α
N

)
if |x̃i| ≤ f−1N (y), and y = 0,

ui
((
xxx−i, xi+ +

∑
k 6=i x

k

N−1
)
, fN (xi+)

)
if (xxx, y) ∈ E+

i,1,

ui
(
(xxx−i, xi − y), 0

)
if (xxx, y) ∈ E+

i,2,

ui
(
xxx−i,

∑
k 6=i x

k

N−1 + xi−, f̃N (xi−)

)
if (xxx, y) ∈ E−i,1,

ui
(
(xxx−i, xi + y), 0

)
if (xxx, y) ∈ E−i,2,

(4.17)

and define vi : RN × R+ → R as

vi(xxx, y) =



ui(xxx, y) if (xxx, y) ∈ W−i,

vi
(
xxx−j , xj+ +

∑
k 6=j x

k

N−1 , fN (xj+)

)
if (xxx, y) ∈ A+

j ∩ E
+
j,1 for j 6= i,

vi
(
xxx−j , xj − y, 0

)
if (xxx, y) ∈ A+

j ∩ E
+
j,2 for j 6= i,

vi
(
xxx−j ,

∑
k 6=j x

k

N−1 + xj−, f̃N (xj−)

)
if (xxx, y) ∈ A−j ∩ E

−
j,1 for j 6= i,

vi
(
xxx−j , xj + y, 0

)
if (xxx, y) ∈ A−j ∩ E

−
j,2 for j 6= i,

(4.18)

where

• Ai and Wi are given in (4.4), and E±i,1 and E±i,2 are given in (4.6)- (4.7) with fN (·) defined by

(4.14)-(4.16), and f̃N (x) = fN (−x) for x < 0.
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• x̃i is defined by (4.2), and AN (·) is defined by (4.15).

• xi+ is the unique positive root of z − fN (z) = x̃i − y when x̃i ≥ f−1N (y), and xi− is the unique

negative root of z + f̃N (z) = x̃i + y when x̃i < −f−1N (y).

Then vi is the game value associated with an NEP ξξξ∗ = (ξ1∗, · · · , ξN∗). That is, vi(xxx, y) = J iCp(xxx, y;ξξξ∗).

Moreover, the controlled process (XXX∗, Y ∗) under ξξξ∗ is given in Section 4.2.

Proof. First, ui(xxx, y) ∈ C2(RN ×R+) by construction: the C2 regularity near y = 0 follows from (4.15),
and the facts that f−1N (y) → x0 as y → 0 and AN (fN (x0)) = 0. To see that z − fN (z) = x̃i − y has
a unique positive root, it suffices to prove that fN is decreasing on R+. This fact is shown in Lemma
4.2. Now let us check conditions (i)-(vii) in Theorem 3.1.

(i) Based on the analysis in Section 4.2, when (xxx, y) ∈ WNE , the NE strategy is a solution to the
Skorokhod problem specified in Case 2, which is a continuous process. When (xxx, y) /∈ WNE , the
initial push specified in Case 1 satisfies the “no simultaneous jump” condition. Note when the
fuel is used up, the dynamics XXXt will become uncontrolled and move freely without control.

(ii) Now we check condition (ii) in the verification theorem, i.e., vi defined in (4.18) satisfying the
QVI (3.9). It consists of the following three steps. The idea is to apply the Implicit Function
Theorem and the calculation follows the lemma in [8, p.58].
Step 1 is to verify that vi defined in (4.18) satisfies

−αvi + h

(
N − 1

N
x̃i
)

+
1

2

N∑
j=1

vixjxj ≥ 0 (4.19)

for (xxx, y) ∈ W−i and that the inequality is strict for (xxx, y) ∈ Ai and the equality holds in WNE .

Since pN (x̃i) is a solution to −αvi + h
(
N−1
N x̃i

)
+ 1

2

∑N
j=1 v

i
xjxj

= 0 and cosh

(√
2(N−1)α

N x̃i
)

is a solution to −αvi + 1
2

∑N
j=1 v

i
xjxj

= 0, pN (x̃i) +AN (y) cosh

(
x̃i
√

2(N−1)α
N

)
satisfies −αvi +

h
(
N−1
N x̃i

)
+ 1

2

∑N
j=1 v

i
xjxj

= 0. Therefore (4.19) holds for (xxx, y) ∈ WNE with equality.

Denote ppp = (www, z) with www ∈ RN and z ∈ R+. When ppp ∈ A+
i ∩ E

+
i,1, we have vi(ppp) = vi(qqq)

where qqq :=

(
www−i, wi+ +

∑
k 6=i w

k

N−1 , fN (wi+)

)
= Π(ppp) translates ppp to the boundary of E+

i , i.e.,

∂E+
i := {(xxx, y) | y = f−1N

(
x̃i
)
} along the direction (0, 0, · · · ,−1, 0, · · · ,−1) ∈ RN+1 with all

components zero except the i-th and (N + 1)-th components being −1. Note that when ppp =
(www, z) ∈ E+

i,1, we have z ≥ w̃i + x0 and fN (wi+) ≥ 0. (See Figure 2). By the Implicit Function

Theorem, vi
xixi

(ppp) =
vi
xixi

(qqq)+f ′N (wi+)vi
xiy

(qqq)

1−f ′N (wi+)
= vi

xixi
(qqq), the last equality holds since vi

xixi
= −vi

xiy

on y = fN (x̃i). To see this more clearly, Denote ppp := (www, z) with www ∈ RN and y ∈ R+ such that
ppp ∈ Ai ∩ E+

i,1. And also denote qqq := (www−i, wi − θ, z − θ) such that z − θ = fN (w̃i − θ). Then

we have vi(ppp) = vi(qqq) by the definition of vi. Taking the derivative of z − θ = fN (w̃i − θ) with

respect to wi leads to − ∂θ
∂wi

= f ′N (w̃i − θ)
(

1− ∂θ
∂wi

)
, and hence ∂θ

∂wi
= − f ′N (w̃i−θ)

1−f ′N (w̃i−θ) . Then

vixi(ppp) =
∂vi

∂wi
(www−i, wi − θ, z − θ)

=

(
1− ∂θ

∂wi

)
vixi(www

−i, wi − θ, z − θ)− viy(www−i, wi − θ, z − θ)
∂θ

∂wi

=

(
1− ∂θ

∂wi

)
vixi(www

−i, wi − θ, z − θ) + vixi(www
−i, wi − θ, y − θ) ∂θ

∂wi

= vixi(www
−i, wi − θ, z − θ).
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The second last equation holds since vi
xi

+ viy = 0 on W i ∩ A
+
i . Similarly,

vixixi(ppp) =
∂vii
∂wi

(www−i, wi − θ, z − θ)

=

(
1− ∂θ

∂xi

)
vixixi(www

−i, wi − θ, z − θ)− vixiy(www
−i, wi − θ, z − θ) ∂θ

∂wi

=

(
1− ∂θ

∂wi

)
vixixi(www

−i, wi − θ, z − θ) + vixixi(www
−i, wi − θ, z − θ) ∂θ

∂xi

= vixixi(www
−i, wi − θ, z − θ). (4.20)

The second last equation holds since vi
xixi

+ vi
xiy

= 0 on W i ∩ A
+
i .

Similarly, we have vi
xjxj

(ppp) = vi
xjxj

(qqq) for j 6= i. To prove this, take the derivative of z − θ =

fN (w̃i− θ) with respect to wj for j 6= i and j ≤ N , we have − ∂θ
∂wj

= f ′N (w̃i− θ)
(
− 1
N−1 −

∂θ
∂wi

)
,

and hence ∂θ
∂wj

= 1
N−1

f ′N (w̃i−θ)
1−f ′N (w̃j−θ) . Therefore,

vixj (ppp) =
∂vi

∂wj
(www−i, wi − θ, z − θ)

= −vixi(www
−i, wi − θ, z − θ) ∂θ

∂wj
− viy(www−i, wi − θ, z − θ)

∂θ

∂wj
+ vixj (www

−i, wi − θ, z − θ)

= vixj (www
−i, wi − θ, z − θ).

The last equation holds since vi
xi

+ viy = 0 on W i ∩ A
+
i . Similarly, we have

vixjxj (ppp) =
∂vi

xj

∂wj
(www−i, wi − θ, z − θ)

= −vixixj (www
−i, wi − θ, z − θ) ∂θ

∂wj
− vixjy(www

−i, wi − θ, z − θ) ∂θ
∂wj

+ vixjxj (www
−i, wi − θ, z − θ)

= vixjxj (www
−i, wi − θ, z − θ) = vixjxj (qqq).

The second last equation holds since vi
xixj

+ vi
xjy

= 0 on W i ∩ A
+
i .

Therefore when ppp = (www, z) ∈ A+
i ∩ E

+
i,1,

−αvi(ppp) + h

(
N − 1

N
p̃i
)

+
1

2

N∑
j=1

vixjxj (ppp)

=
(
− αvi(qqq) + h

(
N − 1

N
q̃i
)

+
1

2

N∑
j=1

vixjxj (qqq)
)

+ h

(
N − 1

N
p̃i
)
− h

(
N − 1

N
q̃i
)

> −αvi(qqq) + h

(
N − 1

N
q̃i
)

+
1

2

N∑
j=1

vixjxj (qqq),

in which q̃i = qi −
∑N
j=1,j 6=i q

j

N−1 and p̃i = pi −
∑N
j=1,j 6=i p

j

N−1 = w̃i. The last inequality holds since

p̃i > q̃i > 0 and h is convex and symmetric to 0. Now for qqq ∈ ∂E+
i , we have−αvi(qqq)+h

(
N−1
N q̃i

)
+

1
2

∑N
j=1 v

i
xjxj

(qqq) = 0. Therefore, −αvi+h
(
N−1
N x̃i

)
+ 1

2

∑N
j=1 v

i
xjxj
≥ 0 for ppp := (www, z) ∈ Wi∩E+

i,1.

When ppp := (www, z) ∈ A+
i ∩ E

+
i,2, we have vi(ppp) = vi(qqq) where qqq :=

(
www−i, wi − z, 0

)
= Π(ppp) trans-

lates ppp to {(xxx, y) ∈ RN × R+ | y = 0} along the direction (0, 0, · · · ,−1, 0, · · · ,−1) ∈ RN+1.

In this case, vi(ppp) = pN (w̃i − z) + AN (0) cosh

(
(w̃i − z)

√
2(N−1)α

N

)
by definition. Hence
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−αvi(ppp) + h
(
N−1
N p̃i

)
+ 1

2

∑N
j=1 v

i
xjxj

(ppp) = 0 holds by straightforward calculation. Similar anal-

ysis holds for ppp := (www, z) ∈ A−i .

Step 2 is to show

vixi + viy ≤ 0, and − vixi + viy ≤ 0, for (xxx, y) ∈ W−i, and (4.21){
vi
xi

+ viy = 0, for (xxx, y) ∈ A+
i

−vi
xi

+ viy = 0, for (xxx, y) ∈ A−i .
(4.22)

Let us first check (4.22). When ppp := (www, z) ∈ A+
i ∩E

+
i,1, denote qqq :=

(
wwwi, wi+ +

∑
k 6=i w

k

N−1 , fN (wi+)

)
=

Π(ppp) which translate ppp to the boundary of E+
i , i.e., ∂E+

i := {(xxx, y) | y = fN
(
x̃i
)
} along the di-

rection (0, 0, · · · ,−1, 0, · · · ,−1) ∈ RN+1. Then by the definition of (4.18), vi(ppp) = vi(qqq) = ui(qqq),

vi
xi

(ppp) = 1
1−f ′N (wi+)

vi
xi

(qqq)+
f ′N (wi+)

1−f ′N (wi+)
viy(qqq), and viy(ppp) = − 1

1−f ′N (wi+)
vi
xi

(qqq)− f ′N (wi+)

1−f ′N (wi+)
viy(qqq). There-

fore, vi
xi

(ppp) + viy(ppp) = 0. When ppp := (www, z) ∈ A+
i ∩ E

+
i,2, we have vi(ppp) = vi(qqq) where

qqq :=
(
www−i, wi − z, 0

)
= Π(ppp) translates ppp to {(xxx, y) ∈ RN × R+ | y = 0} along the direction

(0, 0, · · · ,−1, 0, · · · ,−1) ∈ RN+1. In this case, vi(ppp) = pN (w̃i−z)+AN (0) cosh

(
(w̃i − z)

√
2(N−1)α

N

)
by definition. Then vi

xi
(ppp) + viy(ppp) = 0 holds by straightforward calculations. Similarly,

−vi
xi

+viy = 0 for (xxx, y) ∈ A−i . As for (4.21), by symmetry it suffices to check the first inequality

for 0 ≤ x̃i ≤ f−1N (y). In this case,

viy + vixi = A′N (y) cosh

(
x̃i
√

2(N − 1)α

N

)
+ p′N (x̃i) +AN (y) sinh

(
x̃i
√

2(N − 1)α

N

)√
2(N − 1)α

N

= p′N (x̃i)

(
1− cosh

((
f−1N (y)− x̃i

)√2(N − 1)α

N

))
+ p′′N (f−1N (y))

√
N

2(N − 1)α
×sinh

((
f−1N (y)− x̃i

)√2(N − 1)α

N

)
−
p′N (f−1N (y))− p′N (x̃i)

p′′N (f−1N (y))
√

N
2(N−1)α

cosh

((
f−1N (y)− x̃i

)√2(N − 1)α

N

)
≤ p′N (x̃i)

(
1− cosh

((
f−1N (y)− x̃i

)√2(N − 1)α

N

))

+p′′N (f−1N (y))

√
N

2(N − 1)α

[
sinh

((
f−1N (y)− x̃i

)√2(N − 1)α

N

)

−

((
f−1N (y)− x̃i

)√2(N − 1)α

N

)
cosh

((
f−1N (y)− x̃i

)√2(N − 1)α

N

)]
≤ 0.

The second to the last inequality holds since p′N is a concave function and p′′N (f−1N (y)) > 0. The

last inequality holds since p′N (x̃i) ≥ 0, |x̃i| ≤ f−1N (y), and p′′N (f−1N (y)) > 0.
Step 3 is to check{

−viy − vixj = 0, for (xxx, y) ∈ A+
j , j 6= i,

−viy + vixj = 0, for (xxx, y) ∈ A−j , j 6= i.
(4.23)

By symmetry it is sufficient to check the first gradient condition. When ppp := (www, z) ∈ A+
j ∩

E+
j,1, denote qqq :=

(
wwwj , wj+ +

∑
k 6=j w

k

N−1 , fN (wj+)

)
= Π(ppp) which translates ppp to the boundary of
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E+
j , i.e., ∂E+

j := {(xxx, y) | y = f−1N
(
x̃j
)
} along the direction (0, 0, · · · ,−1, 0, · · · ,−1) ∈ RN+1

with all components zero except the j-th and (N + 1)-th components being −1. Then by

the definition of (4.18), we have vi(ppp) = vi(qqq), vi
xj

(ppp) = 1
1−f ′N (q̃j)

vi
xj

(qqq) +
f ′N (q̃j)

1−f ′N (q̃j)
viy(qqq), and

viy(ppp) = − 1
1−f ′N (q̃j)

vi
xj

(qqq)− f ′N (q̃j)

1−f ′N (q̃j)
viy(qqq) where q̃i = qi−

∑N
j=1,j 6=i q

j

N−1 . Therefore, vi
xj

(ppp)+viy(ppp) = 0.

When ppp := (www, z) ∈ A+
j ∩ E

+
j,2, we have vi(ppp) = vi(qqq) where qqq :=

(
www−j , wj − z, 0

)
= Π(ppp)

translates ppp to {(xxx, y) ∈ RN ×R+ | y = 0} along the direction (0, 0, · · · ,−1, 0, · · · ,−1) ∈ RN+1.

In this case, vi(ppp) = pN (w̃j − z) + AN (0) cosh

(
(w̃j − z)

√
2(N−1)α

N

)
holds by definition, and

vi
xj

(ppp) + viy(ppp) = 0 by straightforward calculations.

(iii) By the construction of Case 1 and Case 2, when (xxx, y) /∈ W−i, there is a push at time 0 to
move the joint position to some point (x̂xx, ŷ) ∈ ∂W−i such that ∆Y0 ≤ y. when (xxx, y) ∈ W−i,
(ξξξ−i∗, ξi) forms a solution to the Skorokhod problem in ∩j 6=i(E−j ∪E

+
j )c. It is easy to verify that

∩j 6=i(E−j ∪E
+
j )c ⊂ W−i and the Skorokhod problem with ∩j 6=i(E−j ∪E

+
j )c has a weak solution.

When the fuel is used up, the dynamics XXXt will become uncontrolled and move freely without
control. Therefore condition (iii) is satisfied.

(iv) Solution (4.18) satisfies the smooth-fit principle in Section 4.1, therefore, vi ∈ C2(W−i). Let
us define a two-dimensional auxiliary function

ṽ(x, y) = pN (x) +AN (y) cosh

(
x

√
2(N − 1)α

N

)
.

We first show that ṽ(x, y) is convex when |x| ≤ f−1N (y) and then show that vi(xxx, y) defined in

(4.18) is convex in W−i.
Step 1 is to show that ṽ(x, y) is convex when |x| ≤ f−1N (y). By straightforward calculation,

ṽxx(x, y) = p′′N (x)+2(N−1)α
N AN (y) cosh

(
x

√
2(N−1)α

N

)
, ṽxy(x, y) =

√
2(N−1)α

N A′N (y) sinh

(
x

√
2(N−1)α

N

)
,

and ṽyy(x, y) = A′′N (y) cosh

(
x

√
2(N−1)α

N

)
. When 0 ≤ x < f−1N (y), plugging (4.13) into the for-

mula for ṽxx(x, y) we have,

ṽxx(x, y) = p′′N (x) + p′N (f−1N (y))

√
2(N − 1)α

N
sinh

(
f−1N (y)

√
2(N − 1)α

N

)
cosh

(
x

√
2(N − 1)α

N

)

−p′′N (f−1N (y)) cosh

(
f−1N (y)

√
2(N − 1)α

N

)
cosh

(
x

√
2(N − 1)α

N

)
.

Given Lemma 4.1, p′N (x) is concave when x > 0. Therefore for y ≥ 0,

p′N (f−1N (y)) ≥ p′N (0) + p′′N (f−1N (y))(f−1N (y)− 0) = p′′N (f−1N (y))f−1N (y).

The last equality holds since h′(0) = 0 from Assumption H2’. Combining the fact that sinh(z) ≥
0 and cosh(z) ≥ 0 when z ≥ 0, we have
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ṽxx(x, y) ≥ p′′N (f−1N (y))f−1N (y)

√
2(N − 1)α

N
sinh

(
f−1N (y)

√
2(N − 1)α

N

)
cosh

(
x

√
2(N − 1)α

N

)

+p′′N (x)− p′′N (f−1N (y)) cosh

(
f−1N (y)

√
2(N − 1)α

N

)
cosh

(
x

√
2(N − 1)α

N

)

≥ p′′N (x) + p′′N (x) cosh

(
x

√
2(N − 1)α

N

)
×(

x

√
2(N − 1)α

N
sinh

(
x

√
2(N − 1)α

N

)
− cosh

(
x

√
2(N − 1)α

N

))
(4.24)

= p′′N (x)
[
1 + z sinh(z) cosh(z)− cosh2(z)

] ∣∣∣∣∣
z=x

√
2(N−1)α

N

≥ 0 (4.25)

(4.24) holds since p′′N is non-increasing (Lemma 4.1) and g1(z) := z sinh(z) − cosh(z) is non-

decreasing when z ≥ 0. (4.25) holds since g2(z) := 1+z sinh(z) cosh(z)−cosh2(z) is non-negative
when z ≥ 0. To see this, g2(0) = 0 and

g′2(z) = cosh(z)[z cosh(z)− sinh(z)] + z sinh2(z) ≥ 0, when z ≥ 0.

On the other hand, denote g3(z) := −p′N (z) cosh

(
z

√
2(N−1)α

N

)
+p′′N (z)

√
N

2(N−1)α sinh

(
z

√
2(N−1)α

N

)
,

then g′3(z) = −
√

2(N−1)α
N p′N (z) sinh

(
z

√
2(N−1)α

N

)
+p′′′N (z)

√
N

2(N−1)α sinh

(
z

√
2(N−1)α

N

)
. From

Lemma 4.1, we have p′N (z) ≥ 0 and p′′′N (z) ≤ 0 when z ≥ 0, and hence g′3(z) ≤ 0 when

z ≥ 0. Along with the fact that f
′
N (z) < 0 when z > 0 from Lemma 4.2, we have A′′N (y) =

g′3(f
−1
N (y)) 1

f ′N (f−1
N (y))

≥ 0. Therefore ṽyy(x, y) ≥ 0. Finally we show that ṽxx ṽyy − (ṽxy)
2 ≥ 0

when 0 ≤ x ≤ f−1N (y). To see this, denote z = f−1N (y),

ṽxx ṽyy − (ṽxy)
2 =

(
p′′N (x) +

2(N − 1)α

N
AN (y) cosh

(
x

√
2(N − 1)α

N

))(
A′′N (y) cosh

(
x

√
2(N − 1)α

N

))
−
(√2(N − 1)α

N
A′N (y) sinh

(
x

√
2(N − 1)α

N

))2
=

2(N − 1)α

N

(
−p′N cosh

(
z

√
2(N − 1)α

N

)
+ p′′N

√
N

2(N − 1)α
sinh

(
z

√
2(N − 1)α

N

))
×(

p′N cosh

(
x

√
2(N − 1)α

N

)
− p′N cosh

(
z

√
2(N − 1)α

N

))
≥ 0.

Similar result holds when −f−1N (y) ≤ x < 0 by symmetry.

Step 2 is to show that vi(xxx, y) defined in (4.18) is convex in W−i. We take player one as an

example to show v1(xxx, y) = ṽ(x̃1, y) is convex in W−1 where x̃1 = x1 −
∑N
k=2 xk
N−1 . The convexity

of other players’ value functions can be verified similarly. When (xxx, y) ∈ W−1, we have |x̃1| ≤ y
hence ṽ(x̃1, y) is non-negative definite. By chain rule, for 2 ≤ k 6= j ≤ N ,

v1x1x1(xxx, y) = ṽxx(x̃1, y), vx1xk(xxx, y) = − 1
N−1 ṽxx(x̃1, y), vx1y(xxx, y) = ṽxy(x̃1, y), vyy(xxx, y) = ṽyy(x̃1, y),

v1xkxj (xxx, y) = 1
(N−1)2 ṽxx(x̃1, y), vx1xk(xxx, y) = − 1

N−1 ṽxx, vxky(xxx, y) = − 1
N−1 ṽxy(x̃1, y).
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Denote H(xxx, y) := ∇2v1(xxx, y) ∈ R(N+1)×(N+1) as the Hessian matrix of v1 at some point
(xxx, y) ∈ W−1. Then for any ddd = (b1, · · · , bN , c) ∈ RN+1,

dddTH(xxx, y)ddd =

(
b1 −

1

N − 1

N∑
k=2

bk

)2

ṽxx + 2

(
b1 −

1

N − 1

N∑
k=2

bk

)
cṽxy + c2ṽyy = eeeT H̃(x̃1, y)eee ≥ 0,

where eee =
(
b1 − 1

N−1
∑N

k=2 bk, c
)

and H̃(x̃1, y) = ∇2ṽ(x̃1, y). The last inequality follows from

the convexity of ṽ(x̃1, y) when |x̃1| ≤ y. Therefore v1 is convex in W−1.
(v) Denote W−i(y) = {(xxx, z) : (xxx, z) ∈ W−i and z ≤ y}. (XXX−i∗t , Xi

t , Yt) ∈ W−i(y) holds a.s. when

(ξ−i∗t , ξit) ∈ SN (xxx, y). This is because 0 ≤ Yt ≤ y a.s. ∀t ≥ 0 under (ξ−i∗t , ξit) ∈ SN (xxx, y). First,

we show that vixj is bounded for (xxx, z) ∈ E+
i,1 ∩ W−i(y), (xxx, z) ∈ E−i,1 ∩ W−i(y) and (xxx, z) ∈

B(y) := W−i(y) ∩ {(xxx, z) : |x̃i| ≤ f−1N (z)}. For (xxx, z) ∈ B(y), |x̃i| ≤ f−1N (z) ≤ f−1N (y) < ∞
since f−1N is non-increasing. This implies that x̃i is bounded in B(y). By the definition of

AN (z) in (4.10), AN (z) is bounded in B(y). Hence vixk is bounded on B(y) (k = 1, 2, · · · , N).
Following Step 2 in (ii), there exists qqq ∈ ∂B(y) such that vxk(qqq) = vxk(xxx, z) (k = 1, 2, · · · , N)

for (xxx, z) ∈ E+
i,1 ∩ W−i(y). Similar result holds for (xxx, z) ∈ E−i,1 ∩ W−i(y). Hence vixk is

bounded on (xxx, z) ∈ E+
i,1 ∩W−i(y) and (xxx, z) ∈ E−i,1 ∩W−i(y). Second, vi(xxx, 0) = pN (x̃i) holds

since AN (0) = 0 (Lemma 4.2). By the definition of vi and following Step 2 in (ii), we have

vi
xk

(xxx, z) = vi
xk

((xxx−i, xi− z), 0) (k = 1, 2, · · · , N) and 0 < x̃i− z < x̃i for (xxx, z) ∈ E+
i,2 ∩W−i(y).

From Lemma 4.1, 0 ≤ p′N (x̃i − z) ≤ p′N (x̃i). Hence |vi
xk

(xxx, z)| ≤ |p′N (x̃i)| for (xxx, z) ∈ E+
i,1 ∩

W−i(y) and the same result holds for (xxx, z) ∈ E−i,2 ∩ W−i(y). Combine above analysis with

Lemma 4.1, there exists a constant C(y) > 0 such that |vi
xj

(xxx, z)| ≤ C(y) + |p′N (x̃i)| ≤ C(y) +
K
α |x̃

i| for (xxx, z) ∈ W−i(y). Hence by Tonelli’s Theorem, E
[∫ T

0 e−2αt(vi
xj

(
XXX−i∗t , Xi

t , Yt)
)2
dt
]
≤

C0

(
C2(y) + (xi −

∑
j 6=i xj
N−1 )2 + y2 + T

)
<∞ for some C0 > 0 and (v) is satisfied.

(vi) Recall the definition ofW−i(y) in (v) and the fact that (XXX−i∗t , Xi
t , Yt) ∈ W−i(y) when (ξ−i∗t , ξit) ∈

SN (xxx, y). Following the same argument as in (v), there exists C̃(y) > 0 such that |vi(xxx, z)| ≤
C̃(y) for (xxx, z) ∈ E+

i,1 ∩W−i(y), (xxx, z) ∈ E−i,1 ∩W−i(y) and (xxx, z) ∈ B(y) := W−i(y) ∩ {(xxx, z) :

|x̃i| ≤ f−1N (z)}. In addition, vi(xxx, 0) = pN (x̃i) holds since AN (0) = 0 (Lemma 4.2). By the

definition of vi, vi(xxx, z) = vi((xxx−i, xi − z), 0) and 0 < x̃i − z < x̃i for (xxx, z) ∈ E+
i,2 ∩ W−i(y).

From Lemma 4.1, 0 ≤ pN (x̃i − z) ≤ pN (x̃i). Hence vi(xxx, z) ≤ pN (x̃i) for (xxx, z) ∈ E+
i,2 ∩W−i(y)

and the same result holds for (xxx, z) ∈ E−i,2 ∩W−i(y). Combine above analysis with Lemma 4.1,

|v(xxx, y)| ≤ pN (x̃i)+C̃(y) ≤ pN (0)+K
α (x̃i)2+C̃(y). Given (ξξξ−i∗, ξi) ∈ SN (xxx,yyy),

∑
j 6=i ξ̌

j∗
T +ξ̌iT ≤ y

holds a.s.. Therefore E

[(
Xi
T −

∑
j 6=iX

j∗
T

N−1

)2
]
≤ C̃0

((
xi0 −

∑
j 6=i xj
N−1

)2
+ y2 + T

)
for some C̃0 >

0. Hence lim sup
T→∞

e−αTE
[
pN

(
Xi
T −

∑
j 6=iX

j∗
T

N−1

)]
= 0 and the transversality condition (vi) holds.

(vii) This condition is satisfied by the property of the Skorokhod problem and the initial jump
described in Section 4.2.

�

5. Nash Equilibrium For Game CdCdCd

In this section, we study the NEP of the N -player game CdCdCd. That is A = INININ ∈ RN×N , and

Y i
t = yi − ξ̌it with Y i

0− = yi. (5.1)
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Recall that the major difference between game CpCpCp and game CdCdCd is that, in the former all N players share
a fixed amount of the same resource, while in the latter each player has her own individual fixed resource
constraint. This difference is reflected in (HJB−Cp) and (HJB−Cd) in terms of their dimensionality,
and in each player’s control based on the remaining resources. In particular, (HJB−Cp) and the state
space (xxx, y) of CpCpCp are of dimension N + 1, whereas (HJB − Cd) and the state space (xxx,yyy) of CdCdCd are
of dimension 2N . Moreover, in game CpCpCp, the gradient constraint is −viy ± vixi for player i. In contrast,

in game CdCdCd, each player controls her own resource level, the gradient constraint becomes −vi
yi
± vi

xi
for

player i. So if Ai ∩ Aj = ∅, the HJB equation for vi(xxx,yyy) in game CCCd is as follows.

(HJB-Cd)



min

−αvi + h

(
N − 1

N
x̃i
)

+
1

2

N∑
j=1

vixjxj ,−v
i
yi + vixi ,−v

i
yi − v

i
xi

 = 0,

for (xxx,yyy) ∈ W−i,
−viyj − v

i
xj = 0, for (xxx, y) ∈ A+

j , j 6= i,

−viyj + vixj = 0, for (xxx, y) ∈ A−j , j 6= i.

Note that the control policy of the ith player only depends on (xxx, yi) in W−i. As seen in Section 4,
for the controlled process of type CpCpCp, upon hitting the boundary of the polyhedron, the polyhedron
will expand in all directions. While for the controlled process of type CdCdCd, only one direction of the the
polyhedron will move once hit.

To proceed, similar to Section 4, define the action region Ai∈ RN × RN+ and the waiting region Wi

of the ith player by

A+
i := E+

i ∩Qi, A−i := E−i ∩Qi ,Ai = A+
i ∪ A

−
i , and Wi := RN × RN+ \ Ai, (5.2)

where

E+
i :=

{
(xxx,yyy) ∈ RN × (R∗+)N : x̃i ≥ f−1N (yi)

}
, E−i :=

{
(xxx,yyy) ∈ RN × (R∗+)N : x̃i ≤ −f−1N (yi)

}
, (5.3)

with

E+
i,1 :=

{
(xxx,yyy) ∈ E+

i : yi ≥ x̃i + x0
}
, E+

i,2 :=
{

(xxx,yyy) ∈ E+
i : yi < x̃i + x0

}
, (5.4)

E−i,1 :=
{

(xxx,yyy) ∈ E−i : yi ≥ −x̃i − x0
}
, E−i,2 :=

{
(xxx,yyy) ∈ E+

i : yi < −x̃i − x0
}
, (5.5)

and {Qi}Ni=1 convex partitions of RN × R+ such that Qi ∩Qj = (E+
i ∪E

−
i ) ∩ (E+

j ∪E
−
j ) ∩ ∂WNE for

i 6= j, ∪Ni=1Qi = RN × R+, and αppp + (1 − α)qqq ∈ Qj for all α ∈ [0, 1] if ppp ∈ Qj and qqq ∈ Qj for some
j = 1, 2, · · · , N . We can define the following mapping

Π(xxx,yyy) =



(
(xxx−i, xi+ +

∑
k 6=i x

k

N−1 ),
(
yyy−i, fN (xi+)

))
, if (xxx,yyy) ∈ Qi ∩ E+

i,1,(
(xxx−i, xi − yi), (yyy−i, 0)

)
, if (xxx,yyy) ∈ Qi ∩ E+

i,2,(
(xxx−i,

∑
k 6=i x

k

N−1 + xi−), (yyy−i, f̃N (xi−))

)
, if (xxx,yyy) ∈ Qi ∩ E−i,1,(

(xxx−i, xi + yi), (yyy−i, 0)
)
, if (xxx,yyy) ∈ Qi ∩ E−i,2,

(5.6)

in which the threshold function fN (·) is defined in (4.14)-(4.16), xi+ is the unique positive root such that

z − fN (z) = x̃i − yi and xi− is the unique negative root such that z + f̃N (z) = x̃i + yi.Note that, Π(·)
translates (xxx,yyy) to the boundary of E+

i,1, i.e., ∂E+
i,1 := {(xxx,yyy) ∈ RN×RN+ : yi = f−1N

(
x̃i
)
, 0 < x̃i ≤ x0}

when (xxx,yyy) ∈ Qi ∩E+
i,1, and translates (xxx,yyy) to the “zero-resource” plane {(xxx,yyy) ∈ RN ×RN+ : yi = 0}

when (xxx,yyy) ∈ Qi ∩E+
i,2, both along the direction (0, · · · ,−1, 0, · · · ,−1, · · · , 0) ∈ R2N with nonzero i-th

and (N + i)-th components. Let

WNE : = {(xxx,yyy) ∈ RN × RN+ : |x̃i| < f−1N (yi) for 1 ≤ i ≤ N}∪ {(xxx,yyy) ∈ RN × RN+ : yyy = 0}, (5.7)

and assume {Qi}Ni=1 satisfies the following assumption:
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H3-Cd. For any (xxx,yyy) ∈ ∪iAi, Π(xxx,yyy) ∈ WNE .

Condition H3-Cd implies that if (xxx,yyy) ∈ Ai, then the dynamics will be in region WNE after player i’s
control.

We now investigate control of player i which only depends on (xxx, yi) inW−i. That is, for |x̃i| < f−1N (yi),

vi(xxx,yyy) = pN (x̃i) +AN (yi) cosh

(
x̃i
√

2(N − 1)α

N

)
, (5.8)

is a solution to (HJB-Cd), where pN (·) is defined by (4.11), and AN (·) defined by (4.15).

The next step is to construct the controlled process (XXX,YYY ) corresponding to the HJB solution (5.8).

Note that WNE is an unbounded domain in R2N with 2N boundaries. For i = 1, 2, · · · , N , define
the 2N faces of WNE

Fi = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E+
i }, Fi+N = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E−i }.

The normal direction on each face is given by

nnni = ci

(
1

N − 1
, · · · , 1

N − 1
− 1,

1

N − 1
· · · , 1

N − 1
; 0, · · · , 0, (f−1N )′

(
yi
)
, 0, · · · , 0

)
,

nnnN+i = cN+i

(
− 1

N − 1
, · · · ,− 1

N − 1
, 1,− 1

N − 1
, · · · ,− 1

N − 1
; 0, · · · , 0, (f−1N )′

(
yi
)
, 0, · · · , 0

)
.

with the ith component to be ±1 and the (N + i)th component to be (f−1N )′(yi). ci and cN+i are
normalizing constants such that ‖nnni‖ = ‖nnnN+i‖ = 1.

Denote the reflection direction on each face as

rrri = c′i (0, · · · , 0,−1, 0, · · · 0; 0, · · · , 0,−1, 0, · · · , 0) , rrrN+i = c′N+i (0, · · · , 0, 1, 0, · · · 0; 0, · · · , 0,−1, 0, · · · , 0) ,

with the ith component to be ±1 and the (N + i)th component to be ±1. c′i and c′N+i are normalizing
constants such that ‖rrri‖ = ‖rrrN+i‖ = 1. The NE strategy is defined as follows.

Case 1: (XXX0−,YYY 0−) = (xxx,yyy) ∈ WNE . One can check that WNE defined in (5.7) and {rrri}2Ni=1 defined
above satisfies assumptions A1-A5. Therefore, there exists a weak solution to the Skorokhod problem
with data

(
WNE , {rrri}2Ni=1, bbb,σσσ,xxx ∈ WNE

)
. See Appendix A for the satisfiability of A1-A5.

Case 2: (XXX0−,YYY 0−) = (xxx,yyy) /∈ WNE . There exists i ∈ {1, · · · , N} such that (XXX0−,YYY 0−) ∈ Ai. (1)

If (xxx,yyy) ∈ A+
i ∩ E

+
i,1, then player i will move immediately from Xi

0− = xi to Xi
0 = xi+ +

∑
k 6=i x

k

N−1
at time 0, where xi+ is the unique positive root such that z − fN (z) = x̃i − yi. This will reduce of

player i’s resource from Y i
0− = yi to Y i

0 = fN (xi+) ≥ 0. Other players’ dynamics and resources remain

unchanged, i.e., Xj
0 = Xj

0− = xj and Y j
0 = Y j

0− = yj for j 6= i and 1 ≤ j ≤ N . By Assumption

H3-Cd, we have (XXX0,YYY 0) =

(
(xxx−i, xi+ +

∑
k 6=i x

k

N−1 ),
(
yyy−i, fN (xi+)

))
= Π((XXX0−,YYY 0−)) ∈ WNE . (2) If

(xxx,yyy) ∈ A+
i ∩E

+
i,2, then player i will move immediately from Xi

0− = xi to Xi
0 = xi−yi and her resource

changes from Y i
0− = yi to Y i

0 = 0 at time 0. Other players’ positions and resources remain unchanged,

i.e., Xj
0 = Xj

0− = xj and Y j
0 = Y j

0− = yj for j 6= i and 1 ≤ j ≤ N . By Assumption H3-Cd, we

have (XXX0,YYY 0) =
(
(xxx−i, xi − yi,

(
yyy−i, 0

))
= Π((XXX0−,YYY 0−)) ∈ WNE . (3) Similarly, if (xxx,yyy) ∈ A−i ∩ E

−
i,1,

then player i will move immediately from Xi
0− = xi to Xi

0 = xi− +
∑
k 6=i x

k

N−1 at time 0, where xi− is the

unique negative root such that z + f̃N (z) = x̃i + yi. This will reduce her resource from Y i
0− = y to

Y i
0 = fN (xi−) ≥ 0. Other players’ dynamics and resources remain unchanged, i.e., Xj

0 = Xj
0− = xj

and Y j
0 = Y j

0− = yj for j 6= i and 1 ≤ j ≤ N . By Assumption H3-Cd, we have (XXX0,YYY 0) =(
(xxx−i,

∑
k 6=i x

k

N−1 + xi−), (yyy−i, f̃N (xi−))

)
= Π((XXX0−,YYY 0−)) ∈ WNE . (4) If (xxx,yyy) ∈ A−i ∩ E

−
i,2, then player

i will move immediately from Xi
0− = xi to Xi

0 = xi + yi and her resource reduces from Y i
0− = yi to
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Y i
0 = 0 at time 0. Other players’ dynamics and resources remain unchanged, i.e., Xj

0 = Xj
0− = xj

and Y j
0 = Y j

0− = yj for j 6= i and 1 ≤ j ≤ N . By Assumption H3-Cd, we have (XXX0,YYY 0) =(
(xxx−i, xi + yi), (yyy−i, 0)

)
= Π((XXX0−,YYY 0−)) ∈ WNE .

In summary, the NE for the N -player game (2.8) with constraint CdCdCd is stated as follows.

Theorem 5.1 (NE for the N -player game CdCdCd). Assume H1′-H2′ and H3-Cd. Define ui ∈ RN×R+ →
R as

ui(xxx, y) =



pN (x̃i) +AN (y) cosh

(
x̃i
√

2(N−1)α
N

)
if |x̃i| ≤ f−1N (y), and y = 0,

ui
(
xxx−i, xi+ +

∑
k 6=i x

k

N−1 , fN (xi+)

)
if x̃i > f−1N (y) and y ≥ x̃i + x0,

ui
(
xxx−i, xi − y, 0

)
if x̃i > f−1N (y) and y < x̃i + x0,

ui
(
xxx−i,

∑
k 6=i x

k

N−1 + xi−, f̃N (xi−)

)
if x̃i < −f−1N (y) and y ≥ −x̃i + x0,

ui
(
xxx−i, xi + y, 0

)
if x̃i < −f−1N (y) and y < −x̃i + x0,

(5.9)

and define vi : RN × RN+ → R as

vi(xxx,yyy) =



ui(xxx, yi) if (xxx,yyy) ∈ W−i,

vi
(
xxx−j , xj+ +

∑
k 6=j x

k

N−1 ,
(
yyy−j , fN (xj+)

))
if (xxx,yyy) ∈ A+

j ∩ E
+
j,1 for j 6= i,

vi
(
xxx−j , xj − yj ,

(
yyy−j , 0

))
if (xxx,yyy) ∈ A+

j ∩ E
+
j,2 for j 6= i,

vi
(
xxx−j ,

∑
k 6=j x

k

N−1 + xj−,
(
yyy−j , f̃N (xj−)

))
if (xxx,yyy) ∈ A−j ∩ E

−
j,1 for j 6= i,

vi
(
xxx−j , xj + yj ,

(
yyy−j , 0

))
if (xxx,yyy) ∈ A−j ∩ E

−
j,2 for j 6= i,

(5.10)

where

• Ai and Wi are given in (5.2), E±i,1 and E±i,2 are given in (5.4)-(5.5) with fN (·) defined by (4.14)-

(4.16),and f̃N (x) = fN (−x) for x < 0.

• x̃i is defined by (4.2), and AN (·) is defined by (4.15).

• xi+ in (5.9) is the unique positive root of z − fN (z) = x̃i − y when x̃i ≥ f−1N (y), and xi− is the

unique negative root of z + f̃N (z) = x̃i + y when x̃i < −f−1N (y).

• xj+ in (5.10) is the unique positive root of z − fN (z) = x̃j − yj if x̃j ≥ f−1N (yj), and xj− is the

unique negative root of z + f̃N (z) = x̃i + yj if x̃j < −f−1N (yj).

Then vi is the game value associated with an NEP ξξξ∗ = (ξ1∗, · · · , ξN∗). That is, vi(xxx,yyy) = J iCd(xxx,yyy;ξξξ∗).

Moreover, the controlled process (XXX∗,YYY ∗) under ξξξ∗ is given in this section: Case 1 if (xxx,yyy) ∈ WNE,
and Case 2 if (xxx,yyy) /∈ WNE.

The proof of Theorem 5.1 is similar to that of Theorem 4.3 and hence omitted.

6. Nash Equilibrium for game CCC

In the previous two sections, we have dealt with two special games CpCpCp and CdCdCd. Analysis of these two
games provides important insight into the solution structure of the general game CCC. Namely, the NE
strategy depends on the positions of players and their remaining resource levels. With these two special
cases in mind, now recall that in game CCC,

dY j
t = −

N∑
i=1

aijY
j
t−∑M

k=1 aikY
k
t−
dξ̌it and Y j

0− = yj≥ 0. (6.1)



FINITE FUEL GAME 25

For the HJB equation (HJB −C), the gradient constraint is more complicated than the two special
cases CpCpCp and CdCdCd. When Ai ∩ Aj = ∅,

(HJB-C)


min

{
− αvi + h+

1

2

N∑
j=1

vixjxj ,Γiv
i + vixi ,−Γiv

i − vixi

}
= 0,

for (xxx,yyy) ∈ W−i,
−Γjv

i − vixj = 0, for (xxx, y) ∈ A+
j , j 6= i,

−Γjv
i + vixj = 0, for (xxx, y) ∈ A−j , j 6= i.

In particular, if AAA = [1, 1, · · · , 1]T ∈ RN×1, then (HJB − C) becomes (HJB − Cp); and if AAA = INININ , then it is
(HJB − Cd).

Similar to Section 4, define the action region Ai∈ RN × RM+ and the waiting region Wi of the ith player by

A+
i := E+

i ∩Qi, A−i := E−i ∩Qi ,Ai = A+
i ∪ A

−
i , and Wi := RN × RM+ \ Ai, (6.2)

where

E+
i :=

(xxx,yyy) ∈ RN × (R∗+)M : x̃i ≥ f−1N

 M∑
j=1

aijy
j

 , E−i :=

(xxx,yyy) ∈ RN × (R∗+)M : x̃i ≤ −f−1N

 M∑
j=1

aijy
j

 ,

(6.3)
with

E+
i,1 :=

(xxx, y) ∈ E+
i :

M∑
j=1

aijy
j ≥ x̃i + x0

 , E+
i,2 :=

(xxx, y) ∈ E+
i :

M∑
j=1

aijy
j < x̃i + x0

 , (6.4)

E−i,1 :=

(xxx, y) ∈ E−i :

M∑
j=1

aijy
j ≥ −x̃i − x0

 , E−i,2 :=

(xxx, y) ∈ E−i :

M∑
j=1

aijy
j < −x̃i − x0

 , (6.5)

and {Qi}Ni=1 are convex partitions such that Qi ∩ Qj = (E+
i ∪ E

−
i ) ∩ (E+

j ∪ E
−
j ) ∩ ∂WNE for i 6= j. We then

define

Π(xxx,yyy) =



(
(xxx−i, xi+ +

∑
k 6=i x

k

N−1 ), yyy1+

)
, if (xxx,yyy) ∈ Qi ∩ E+

i,1,(
(xxx−i, xi −

∑M
q=1 aiqy

q, yyy2+

)
, if (xxx,yyy) ∈ Qi ∩ E+

i,2,(
(xxx−i,

∑
k 6=i x

k

N−1 + xi−), yyy1−

)
, if (xxx,yyy) ∈ Qi ∩ E−i,1,(

(xxx−i, xi +
∑M
q=1 aiqy

q), yyy2−

)
, if (xxx,yyy) ∈ Qi ∩ E−i,2,

(6.6)

in which the threshold function fN (·) is defined in (4.14)-(4.16), xi+ is the unique positive root such that z −
fN (z) = x̃i − yi when x̃i ≥ f−1N (yi), xi− is the unique negative root such that z + f̃N (z) = x̃i + yi when

x̃i ≤ −f−1N (yi). Here yyy1+ ∈ RM+ with the j-th component being (yyy1+)j = yj − aijy
j∑M

q=1 aiqy
q

(∑M
q=1 aiqy

q − fN (xi+)
)

,

yyy2+ ∈ RM+ with the j-th component being (yyy2+)j = yj − aijyj , yyy1− ∈ RM+ with the k-th component being (yyy1−)j =

yj − aijy
j∑M

q=1 aiqy
q

(∑M
q=1 aiqy

q − f̃N (xi−)
)

, yyy2− ∈ RM+ with the j-th component being (yyy2−)j = yj −aijyj . Note that,

Π(·) translates (xxx,yyy) to the boundary of E+
i,1, i.e., ∂E+

i,1 := {(xxx,yyy) :
∑M
j=1 aijy

j = f−1N
(
x̃i
)
, 0 < x̃i ≤ x0} when

(xxx,yyy) ∈ Qi ∩E+
i,1, and to {(xxx,yyy) : aijy

j = 0,∀j = 1, 2, · · · ,M} when (xxx,yyy) ∈ Qi ∩E+
i,2, both along the direction(

0, · · · ,−1, · · · 0;− ai1y
1∑M

j=1 aijy
j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
∈ RN × RM+

with the i-th component being −1. Denote

WNE :=

(xxx,yyy) ∈ RN × RM+ : |x̃i| < f−1N

 M∑
j=1

aijy
j

 , 1 ≤ i ≤ N

∪{(xxx,yyy) ∈ RN × RM+ : yyy = 0}, (6.7)

and assume the partition {Qi}Ni=1 satisfies following assumption:
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H3-C. For any (xxx,yyy) ∈ ∪iAi, Π(xxx,yyy) ∈ WNE .

Condition H3-C implies that if (xxx,yyy) ∈ Ai, then the dynamics will be in region WNE after player i’s control.

From the analysis in Sections 4 and 5, and the “guess” that the control policy of player i only depends on

(xxx,
∑M
j=1 aijy

j) when in W−i, we get for |x̃i| < f−1N (
∑M
j=1 aijy

j),

vi(xxx,yyy) = pN (x̃i) +AN

 M∑
j=1

aijy
j

 cosh

(
x̃i
√

2(N − 1)α

N

)
, (6.8)

is a solution to (HJB-C), where pN (·) is defined by (4.11), and AN (·) defined by (4.15).

The next step is to construct the controlled process (XXX,YYY ) corresponding to the HJB solution (6.8).

Note that WNE is an unbounded domain in R2N with 2N boundaries. For i = 1, 2, · · · , N , define the 2N faces
of WNE

Fi = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E+
i }, Fi+N = {(xxx,yyy) ∈ ∂WNE | (xxx,yyy) ∈ ∂E−i }.

The normal direction on each face is given by

nnni = ci

 1

N − 1
, · · · ,−1, · · · , 1

N − 1
; (f−1N )′

 M∑
j=1

aijy
j

 ai1, · · · , (f−1N )′

 M∑
j=1

aijy
j

 aiM

 ,

nnnN+i = cN+i

− 1

N − 1
, · · · , 1, · · · ,− 1

N − 1
; (f−1N )′

 M∑
j=1

aijy
j

 ai1, · · · , (f−1N )′

 M∑
j=1

aijy
j

 aiM

 ,

with the ith component being ±1, and ci and cN+i the normalizing constants such that ‖nnni‖ = ‖nnnN+i‖ = 1.

Denote the reflection direction on each face as

rrri = c′i

(
0, · · · ,−1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

rrrN+i = c′N+i

(
0, · · · , 1, · · · 0;− ai1y

1∑M
j=1 aijy

j
, · · · ,− aiMy

M∑M
j=1 aijy

j

)
,

with the ith component to be ±1. c′i and c′N+i are normalizing constants such that ‖rrri‖ = ‖rrrN+i‖ = 1. The NE
strategy is defined as follows.

Case 1: (XXX0−,YYY 0−) = (xxx,yyy) ∈ WNE . One can check that WNE defined in (6.7) and {rrri}2Ni=1 defined above
satisfies assumptions A1-A5. Therefore, there exists a weak solution to the Skorokhod problem with data(
WNE , {rrri}2Ni=1, bbb,σσσ,xxx ∈ WNE

)
. See Appendix A for the satisfiability of A1-A5.

Case 2: (XXX0−,YYY 0−) = (xxx,yyy) /∈ WNE . There exists i ∈ {1, · · · , N} such that (XXX0−,YYY 0−) ∈ Ai. (1) If

(xxx,yyy) ∈ Ai+ ∩ E+
i,1, then player i will move immediately from Xi

0− = xi to Xi
0 = xi+ +

∑
k 6=i x

k

N−1 at time 0, where

xi+ is the unique positive root such that z − fN (z) = x̃i − (
∑M
q=1 aiqy

q). This will reduce the resources from

YYY 0− = yyy to YYY 0 = yyy+ with the j-th component of yyy+ is (yyy+)j = yj − aijy
j∑M

q=1 aiqy
q

(∑M
q=1 aiqy

q − fN (xi+)
)
≥ 0.

Other players’ dynamics remain unchanged, i.e., Xk
0 = Xk

0− = xk for k 6= i and 1 ≤ k ≤ N . By Assumption

H3-C, we have (XXX0,YYY 0) =

(
(xxx−i, xi+ +

∑
k 6=i x

k

N−1 ), yyy+

)
= Π(XXX0−,YYY 0−) ∈ WNE . (2) If (xxx,yyy) ∈ A+

i ∩ E
+
i,2,

then player i will move immediately from Xi
0− = xi to Xi

0 = xi −
∑M
q=1 aiqy

q and resource j is changed from

Y j0− = yj to Y j0 = yj − aijyj at time 0. Other players’ dynamics remain unchanged, i.e., Xk
0 = Xk

0− = xk for

k 6= i and 1 ≤ k ≤ N . Under Assumption H3-C, we have (XXX0,YYY 0) = Π(XXX0−,YYY 0−) ∈ WNE . (3) Similarly, if

(xxx,yyy) ∈ A−i ∩E
−
i,1, then player i will move immediately from Xi

0− = xi to Xi
0 = xi−+

∑
k 6=i x

k

N−1 at time 0, where xi−

is the unique negative root such that z + f̃N (z) = x̃i + (
∑M
q=1 aiqy

q). This changes the resources from YYY 0− = yyy

to YYY 0 = yyy− where j-th component of yyy− is (yyy−)j = yj − aijy
j∑M

q=1 aiqy
q

(∑M
q=1 aiqy

q − f̃N (xi−)
)
≥ 0. Other players’

dynamics remain unchanged at time 0, i.e., Xk
0 = Xk

0− = xk for k 6= i and 1 ≤ k ≤ N . By Assumption H3-C,
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we have (XXX0,YYY 0) =

(
(xxx−i,

∑
k 6=i x

k

N−1 + xi−), yyy−

)
= Π(XXX0−,YYY 0−) ∈ WNE . (4) If (xxx,yyy) ∈ A+

i ∩ E
+
i,2, then player

i will move immediately from Xi
0− = xi to Xi

0 = xi +
∑M
q=1 aiqy

q and resource j is reduced from Y j0− = yj to

Y j0 = yj − aijyj at time 0. Other players’ dynamics remain unchanged at time 0, i.e., Xk
0 = Xk

0− = xk for k 6= i

and 1 ≤ k ≤ N . By Assumption H3-C, we have (XXX0,YYY 0) = Π(XXX0−,YYY 0−) ∈ WNE .

The NE for the N -player game (2.8) with constraint CCC is stated as follows.

Theorem 6.1 (NE for the N -player game CCC). Assume H1′-H2′ and H3-C. Define ui ∈ RN × R+ → R as

ui(xxx, y) =



pN (x̃i) +AN (y) cosh

(
x̃i
√

2(N−1)α
N

)
if |x̃i| ≤ f−1N (y), and y = 0,

ui
(
xxx−i, xi+ +

∑
k 6=i x

k

N−1 , fN (xi+)

)
if x̃i > f−1N (y) and y ≥ x̃i + x0,

ui
(
xxx−i, xi − y, 0

)
if x̃i > f−1N (y) and y < x̃i + x0,

ui
(
xxx−i,

∑
k 6=i x

k

N−1 + xi−, f̃N (xi−)

)
if x̃i < −f−1N (y) and y ≥ −x̃i − x0,

ui
(
xxx−i, xi + y, 0

)
if x̃i < −f−1N (y) and y < −x̃i − x0,

(6.9)

and define vi : RN × RM+ → R as

vi(xxx,yyy) =



ui
(
xxx,
∑M
j=1 aijy

j
)

if (xxx,yyy) ∈ W−i,

vi
(
xxx−j , xj+ +

∑
k 6=j x

k

N−1 , yyy1+

)
if (xxx,yyy) ∈ A+

j ∩ E
+
j,1 for j 6= i,

vi
(
xxx−j , xj − (

∑M
q=1 ajqy

q), yyy2+

)
if (xxx,yyy) ∈ A+

j ∩ E
+
j,2 for j 6= i,

vi
(
xxx−j ,

∑
k 6=j x

k

N−1 + xj−, yyy
1
−

)
if (xxx,yyy) ∈ A−j ∩ E

−
j,1 for j 6= i,

vi
(

(xxx−j , xj + (
∑M
q=1 ajqy

q), yyy2−

)
if (xxx,yyy) ∈ A−j ∩ E

−
j,2 for j 6= i,

(6.10)

where

• Ai and Wi are given in (6.2), E±i,1 and E±i,2 are given in (6.4)-(6.5) with fN (·) defined by (4.14)-(4.16),

and f̃N (x) = fN (−x) for x < 0.

• x̃i is defined by (4.2), and AN (·) defined by (4.15).

• xi+ in (6.9) is the unique positive root of z−fN (z) = x̃i−y if x̃i ≥ f−1N (y), and xi− is the unique negative

root of z + f̃N (z) = x̃i + y if x̃i < −f−1N (y).

• xj+ in (6.10) is the unique positive root of z − fN (z) = x̃j −
∑M
k=1 ajky

k if x̃j ≥ f−1N (
∑M
q=1 ajqy

q), and

xj− is the unique negative root of z + f̃N (z) = x̃j +
∑M
k=1 ajky

k if x̃j < −f−1N (
∑M
q=1 ajqy

q).

• The k-th component of yyy1+ in (6.10) is (yyy1+)k = yk − ajky
k∑M

q=1 ajqy
q

(∑M
q=1 ajqy

q − fN (xj+)
)
, and the k-th

component of yyy1− is (yyy1−)k = yk − ajky
k∑M

q=1 ajqy
q

(∑M
q=1 ajqy

q − f̃N (xj−)
)
.

• The k-th component of yyy2+ in (6.10) is (yyy2+)k = yk − ajkyk, and the k-th component of yyy2− is (yyy2−)k =

yk − ajkyk.

Then vi is the value associated with a NEP ξξξ∗ = (ξ1∗, · · · , ξN∗). That is, vi(xxx,yyy) = J iC(xxx,yyy;ξξξ∗). Moreover, the

controlled process (XXX∗,YYY ∗) under ξξξ∗ is a solution to a Skorokhod problem as described in Case 1 if (xxx,yyy) ∈ WNE,
and described as Case 2 if (xxx,yyy) /∈ WNE.

The proof of Theorem 6.1 is similar to that of Theorem 4.3 and hence omitted. To demonstrate the similarity,
we provide the proof for the convexity of the value function vi in W−i here.

Proof. We take player one as an example to show v1(xxx,yyy) = ṽ(x̃1,
∑M
j=1 a1jy

j) is convex in W−1. Other players’

value functions follow similarly. Recall x̃i = xi −
∑N

k 6=i xk

N−1 . Similarly we define ỹi =
∑M
k=1 aijy

j . When (xxx,yyy) ∈
W−1, we have |x̃1| ≤ ỹ1 or ỹ1 = 0. Hence ṽ (x̃1, ỹ1) is positive semi-definite. By the chain rule, for 2 ≤ k 6= j ≤ N
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and 1 ≤ q 6= p ≤M ,

v1x1x1
(xxx,yyy) = ṽxx(x̃1, ỹ1), vx1xk

(xxx,yyy) = − 1
N−1 ṽxx(x̃1, ỹ1), vx1yq (xxx,yyy) = a1q ṽxy(x̃1, ỹ1),

vypyq (xxx,yyy) = a1pq1q ṽyy(x̃1, ỹ1), v1xkxj
(xxx,yyy) = 1

(N−1)2 ṽxx(x̃1, ỹ1), vxkyq (xxx,yyy) = − 1
N−1a1q ṽxy(x̃1, ỹ1)

Denote H(xxx,yyy) := ∇2v1(xxx,yyy) ∈ R(N+M)×(N+M) as the Hessian matrix of v1 at some point (xxx,yyy) ∈ W−1. Then
for any ddd = (b1, · · · , bN , c1, · · · , cM ) ∈ RN+M ,

dddTH(xxx, y)ddd = b21ṽxx −
2

N − 1

N∑
k=2

b1bkṽxx +
1

(N − 1)2

N∑
k=2

b2k +
2

(N − 1)2

∑
2≤j 6=k≤N

bjbkṽxx

+2

M∑
q=1

b1 cqa1q ṽxy −
2

N − 1

N∑
k=2

M∑
q=1

bkcqa1q ṽxy + (

M∑
q=1

a1qcq)
2ṽyy

=

(
b1 −

1

N − 1

N∑
k=2

bk

)2

ṽxx + 2

(
b1 −

1

N − 1

N∑
k=2

bk

)(
M∑
q=1

a1qcq

)
ṽxy +

(
M∑
q=1

a1qcq

)2

ṽyy

= eeeT H̃(x̃1, y)eee ≥ 0,

in which eee =
(
b1 − 1

N−1
∑N
k=2 bk,

∑M
q=1 a1qcq

)
and H̃(x̃1, y) = ∇2ṽ(x̃1, y). The last inequality holds since ṽ(x̃1, y)

is convex when |x̃1| ≤ y which is a result in the proof of Theorem 4.3 (Step 1 of (iv)). Therefore v1 is convex in
W−1. �

7. Comparing Games Cp, Cd and C

In this section, we compare the games CpCpCp, CdCdCd and CCC. We will first compare their game values and discuss
their economic implications. We will then discuss their difference in terms of the NEP. Finally, we discuss their
perspective NEs in the framework of controlled rank-dependent SDEs.

To make the games comparable, let us assume y =
∑N
j=1 y

j . Let us also consider a special sharing game CsCsCs
which can be connected with both CdCdCd and CpCpCp:

CsCsCs: M = N and aii = 1 for i = 1, 2, · · · , N .

7.1. Pooling, Dividing, and Sharing. Denote the game value and waiting region for each player i as viCp
and

WCp

i respectively for game CpCpCp. Similar notations are defined for CdCdCd and CsCsCs.

Proposition 7.1 (Game values comparison). Assume H1′-H2′. For each (xxx,yyy) ∈ RN×RN+ , denote y =
∑N
i=1 y

i.

If (xxx, y) ∈ WCp

i , and (xxx,yyy) ∈ WCd
i ∩W

Cs
i , then,

viCp
(xxx, y) ≤ viCs

(xxx, y) ≤ viCd
(xxx,yyy), i = 1, 2, · · · , N.

Proof. The comparison is by direct computation. Indeed, recall that in case CpCpCp, when (xxx, y) ∈ WCp

i , viCp
(xxx, y) =

pN (x̃i) + AN (y) cosh

(
x̃i
√

2(N−1)α
N

)
, for i = 1, 2, · · · , N , where x̃i is defined in (4.2) and AN is defined in

(4.15). Similarly, in case CdCdCd, when (xxx,yyy) ∈ WCd
i , viCd

(xxx,yyy) = pN (x̃i) + AN (yi) cosh

(
x̃i
√

2(N−1)α
N

)
, for each

i = 1, 2, · · · , N . And in caseCsCsCs, when (xxx,yyy) ∈ WCs
i , viCs

(xxx,yyy) = pN (x̃i)+AN

(∑N
j=1 aijy

j
)

cosh

(
x̃i
√

2(N−1)α
N

)
,

for each i = 1, 2, · · · , N . By elementary calculations, A′N (y) < 0. Therefore, when y =
∑N
j=1 y

j , (xxx, y) ∈ WCp

i ,

and (xxx,yyy) ∈ WCd
i ∩W

Cs
i ,

viCp
(xxx, y) ≤ viCs

(xxx, y) ≤ viCd
(xxx,yyy).

The first inequality holds because y =
∑N
i=1 y

i ≥
∑N
i=1 aijy

j and the equality holds if and only if aij = 1 for
each j = 1, 2, · · · , N . The second inequality holds because aii = 1 and the equality holds if and only if aij = 0
for each j 6= i. �
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(a) CpCpCp (b) CdCdCd (c) CCC

Figure 3. Comparison of projected evolving boundaries for CpCpCp, CdCdCd, CCC when N = 3.

This result has a clear economic interpretation. In a stochastic game where players have the options to share
resources, versus the possibility to divide resources in advance, sharing will have lower cost than dividing. Pooling
yields the lowest cost for each player.

Define the projected common waiting region

WNE(yyy) :=

(xxx,yyy) ∈ RN × (R∗+)M : |x̃i| < f−1N

 M∑
j=1

aijy
j

 for 1 ≤ i ≤ N

∪{yyy = 0}.

for any fixed resource level yyy. ThenWNE(yyy) is a polyhedron with 2N boundary faces. Figure 3a shows a pooling
game CpCpCp. After one player exercises controls, all the faces of the boundary move. Figure 3b corresponds to a
dividing game CdCdCd. After player i exercises controls, her faces of Fi and Fi+N move. Here i = 1, N = 3. For
a sharing game CCC, shown in Figure 3c, after one player exercises her controls, the faces of the players who are
connected with her will move, while the faces for other players remain unchanged. Here i = 2 and player 2 and
3 are connected.

7.2. NEs for the games and controlled rank-dependent SDEs. In the previous sections, the controlled
dynamics is constructed directly via the reflected Brownian motion. This class of SDEs can also be cast in the
framework of rank-dependent SDEs. Indeed, the controlled dynamics of NE in the action regions of the N -player
can be written as a controlled rank-dependent SDEs:

dXi
t =

N∑
j=1

1F i(XXXt,YYY t)=F (j)(XXXt,YYY t)

(
δjdt+ σjdB

j
t + dξj,+t − dξj,−t

)
, dY jt = −

N∑
i=1

aijY
j
s−∑M

k=1 aikY
k
s−
dξ̌is,

with (ξi,+, ξi,−) the controls, F i : RN ×RM+ → R a rank function depending on both XXX and YYY , F (1) ≤ · · · ≤ F (N)

the order statistics of (F i)1≤i≤N , and δi ∈ R, σi ≥ 0. In game CpCpCp, the controlled dynamics in the action regions

satisfies the SDEs with F iCp
(xxx,yyy) = |xi −

∑
j 6=i x

j

N−1 |, δi = 0 and σi = 0 for each i = 1, · · ·N , and

ξi,± = 0 for each i = 1, · · · , N − 1 and ξN,± 6= 0.

In game CdCdCd, F
i
Cd

(xxx,yyy) =

∣∣∣∣∣xi − ∑
j 6=i x

j

N−1 − f−1N (yi)

∣∣∣∣∣. For the general game CCC, the controlled process in the action

regions is governed by the rank-dependent dynamics with F iC(xxx,yyy) = |xi −
∑

j 6=i x
j

N−1 − f−1N (
∑M
j=1 aijy

j)| with fN
a threshold function defined in (4.14)-(4.16) and δi, σi and ξi,± satisfying the same condition as before.

Note that the special case without controls, i.e., F i(xxx,yyy) = xi and ξi,± = 0, corresponds to the rank-dependent
SDEs. In particular, the rank-dependent SDEs with δ1 = 1, δ2 = · · · δN = 0 is known as the Atlas model. To the
best of our knowledge, rank-dependent SDEs with additional controls or a general rank function F i has not been
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studied before. There are various aspects including uniqueness and sample path properties that await further
investigation and we leave them to interested readers.
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game. Comptes Rendus Mathématique, 352(9):699–706, 2014.
[22] D. Hernandez-Hernandez, R. Simon, and M. Zervos. A zero-sum game between a singular stochastic controller and a

discretionary stopper. Annals of Applied Probability, 25(1):46–80, 2015.
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Appendix A

Take n = N , m = M and I = 2N , and I = {1, 2, · · · , 2N} in Definition 3.2. We then check the satisfiability for
Assumptions A1-A5 for game CCC. CpCpCp and CdCdCd are two special cases.

A1 Assumption A1 is trivially satisfied by definition. We write

G = ∩2Nj=1Gj ,

where Gi =
{

(xxx,yyy) ∈ RN+M
∣∣ x̃i ≤ f−1N

(∑M
j=1 aijy

j)
}

and GN+i =
{

(xxx,yyy) ∈ RN+M
∣∣ x̃i ≥ −f−1N (∑M

j=1 aijy
j
)}

for i = 1, 2, · · · , N . The boundary of Gi is smooth since f−1N is smooth.

A2 Assumption A2 is satisfied since f−1N is smooth and decreasing. It satisfies the uniform exterior cone
condition. At any boundary point (xxx0, yyy0) ∈ ∂Gj , we can put a truncated closed right circular cone V(xxx0,yyy0)

satisfying V(xxx0,yyy0) ∩ Ḡ = {(xxx0, yyy0)}.
A3 Assumption A3 can be shown by contradiction. The proof is inspired from that of [25, Lemma (A.2)] which
is for bounded region with tightness argument. We modify the proof via a shifting argument.

Suppose that Assumption A3 does not hold. Since there are only finite many subsets I0 ⊆ I = {1, 2, · · · , 2N}
such that I0 6= ∅, there is an ε > 0, a nonempty set I0 ⊆ I, a sequence {εn} ⊂ (0,∞) with εn → 0 as n→∞, a
sequence {(xxxn, yyyn)} ⊂ RN+M such that for each n, (xxxn, yyyn) ∈ ∩j∈I0Uεn(∂Gj∩∂G) and dist((xxxn, yyyn),∩j∈I0(∂Gj∩
∂G)) ≥ ε. Note that dist((xxx,yyy),∩j∈I0(∂Gj ∩ ∂G)) = dist((xxx − a1, yyy),∩j∈I0(∂Gj ∩ ∂G)) for any a ∈ R and
(xxx,yyy) ∈ RN+M . Here 1 ∈ RN is a vector with all ones. Intuitively, this is because for any fixed yyy, the projection
of G onto xxx-space is a polyhedron unbounded along the directions of ±1 ∈ RN. This is consistent with the model
where we only look at the relative distance between positions. Mathematically speaking, recall that

∂Gi =

(xxx,yyy) ∈ RN+M

∣∣∣∣∣x̃i = f−1N

 M∑
j=1

aijy
j

 ,

∂GN+i =

(xxx,yyy) ∈ RN+M

∣∣∣∣∣x̃i = −f−1N

 M∑
j=1

aijy
j

 .
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For a given point ppp = (xxx,yyy), denote dk := dist((xxx, y), ∂Gk) for k = 1, 2, · · · , N . Then there exists a point
qqq = (www,zzz) such that

w̃i = f−1N

 M∑
j=1

aijz
j

 , i.e., qqq ∈ ∂Gk

qqq − ppp = dknnnk(qqq), or qqq − ppp = −dknnnk(qqq).

where nnnk(qqq) is the normal direction of surface ∂Gk at point qqq:

nnnk(qqq) = ck

 1

N − 1
, · · · ,−1, · · · , 1

N − 1
; (f−1N )′

 M∑
j=1

aijz
j

 ai1, · · · , (f−1N )′

 M∑
j=1

aijz
j

 aiM

 .

Denote p̃pp = (xxx− a111, yyy) and q̃qq = (www − a111, zzz). Then it is easy to check that

q̃qq ∈ ∂Gk, (7.1)

nnnk(qqq) = nnnk(q̃qq), (7.2)

q̃qq − p̃pp = qqq − ppp = dknnnk(qqq) = dknnnk(q̃qq). (7.3)

(7.1) holds since (wi − a)−
∑N

j=1,j 6=i(w
j−a)

N−1 = xi −
∑N

j=1,j 6=i w
j

N−1 , (7.2) holds since the last M elements, representing

the resource levels, are the same for qqq and q̃qq, and (7.3) holds by definition and (7.2).

By (7.3) we conclude that dist((xxx− a111, y), ∂Gk) = dk. Similar results hold for k = N + 1, · · · , 2N . Therefore we
have

dist((xxx,yyy),∩j∈I0∂Gj ∩ ∂G) = dist((xxx− a111, yyy),∩j∈I0∂Gj ∩ ∂G).

Therefore, for each (xxxn, yyyn), there exists an ∈ R such that ‖xxxn − an1‖ ≤ 1. Denote x̃xxn = xxxn − an1. Hence
(x̃xxn, yyyn) is a bounded sequence in RN+M and dist((x̃xxn, yyyn),∩j∈I0(∂Gj ∩ ∂G)) ≥ ε. WLOG, we may assume that
(x̃xxn, yyyn) → (xxx,yyy) as n → ∞ for some (xxx,yyy) ∈ RN+M . It follows that (xxx,yyy) ∈ ∩j∈I0(∂Gj ∩ ∂G), since for each
j ∈ I0,

dist((xxx,yyy), ∂Gj ∩ ∂G) ≤ ‖(x̃xxn, yyyn)− (xxx,yyy)‖+ dist((x̃xxn, yyyn), ∂Gj ∩ ∂G) ≤ ‖(x̃xxn, yyyn)− (xxx,yyy)‖+ εn → 0,

as n→∞. This contradicts with the fact that (x̃xxn, yyyn)→ (xxx,yyy) and dist((x̃xxn, yyyn),∩j∈I0(∂Gj ∩ ∂G)) ≥ ε.
A4 On each face j = 1, 2, · · · , 2N , rrrj is a function of yyy, which is bounded. Moreover, rrrj is smooth and Dyyyrrrj
is bounded. Therefore, rrrj(·) is uniformly Lipschitz continuous function. Note that when the adjacent matrix
A = {akj}1≤k,j≤N is an identity matrix or matrix with all ones, rrri is constant on ∂Gi for all i ∈ l.
A5 Denote g := f−1N . First we show that g is a non-negative decreasing function on [0, ytotal] where ytotal :=∑M
j=1 y

j is the total resource. We have proved in Lemma 4.2 that f ′N (z) < 0 for z ≥ 0. So there exists

0 < k̃(ytotal) < K̃(ytotal) < ∞ such that −∞ < −K̃(ytotal) < f ′N (z) < −k̃(ytotal) < 0 when z ∈ [x, x]. Here
x = g(ytotal) > 0 and x = g(0). Note that g′(·) = 1

f ′(f−1(·)) , therefore − 1
k̃(ytotal)

≤ g′(w) ≤ − 1
K̃(ytotal)

when

w ∈ [0, ytotal]. Now let k(ytotal) := 1
K̃(ytotal)

and K(ytotal) := 1
k̃(ytotal)

.

It is straightforward that all the latter M components in nnnj and rrrj are non-positive (1 ≤ j ≤ 2N). By simple

calculation, we have 1√
N

N−1+K
2(ytotal)N

≤ cj ≤ 1√
N

N−1+k
2(ytotal)

and
√

N
N+1 ≤ c′j ≤ 1√

2
for all 1 ≤ j ≤ N . Similar

to the definition of rrr+j and rrr−j , denote nnn+j as the first N components in nnnj and nnn−j as the latter M components

in nnnj . Since face i and N + i are parallel to each other (i = 1, 2, · · · , N), there are at most N faces intersecting
with each other. It suffices to consider (xxx,yyy) such that |I((xxx,yyy))| = N . For these points, consider ci = 1

N and

di = 1
N (i = 1, 2, · · · , N). Therefore, for i∗ ∈ {i,N + i} with i = 1, 2, · · · , N ,〈∑N
i=1nnni∗
N

,rrri∗

〉
≥ 1

N
〈nnn−i∗, rrr

−
i∗〉 =

1

N
c′i∗ci∗〈nnn−i∗, rrr

−
i∗〉 = −c′i∗ci∗g′

 M∑
j=1

aijy
j

 ≥ 1√
N+1
N−1 + (N + 1)K(ytotal)

k(ytotal).
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Similarly, for i∗ ∈ {i,N + i} with i = 1, 2, · · · , N ,〈∑N
i=1 rrri∗
N

,nnni∗

〉
≥ 1

N
〈nnn−i∗, rrr

−
i∗〉 =

1

N
〈nnn−i∗, rrr

−
i∗〉 = −c′i∗ci∗g′

 M∑
j=1

aijy
j

 ≥ 1√
N+1
N−1 + (N + 1)K(ytotal)

k(ytotal).

Appendix B

Verification of H3-Cp when N = 2. WhenN = 2, we have E+
1 = E−2 , E+

2 = E−1 andWNE = {(x1, x2, y) | |x1−
x2| ≤ f−1N (y)} ∪ {y = 0}. We set Q1 = {(x1, x2, y) ∈ R2 × R+ |x1 − x2 ≥ 0} and Q2 = {(x1, x2, y) ∈
R2 × R+ |x2 − x1 > 0}. In this case, A1 = E+

1 and A2 = E+
2 . When (xxx, y) ∈ A1, there are two possibilities:

either (xxx, y) ∈ A1 ∩ E+
1,1 or (xxx, y) ∈ A1 ∩ E+

1,2. If (xxx, y) ∈ A1 ∩ E+
1,1, then qqq = (x2 + x1+, x

2, f(x1+)) with x1+ the

unique positive root such that z − fN (z) = x1 − x2 − y. Then it is easy to check that qqq ∈ ∂WNE . To see this,
(x2 +x1+)−x2 = x1+ = f−1N (fN (x1+)). If (xxx, y) ∈ A1 ∩E+

1,2, then qqq = (x1− y, x2, 0). Then qqq ∈ ∂WNE since y = 0.

Similar analysis holds for (xxx, y) ∈ A2 by symmetry.
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