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FIRST-ORDER ALGORITHMS FOR A CLASS OF FRACTIONAL
OPTIMIZATION PROBLEMS ∗

NA ZHANG † AND QIA LI ‡

Abstract. We consider in this paper a class of single-ratio fractional minimization problems,
in which the numerator of the objective is the sum of a nonsmooth nonconvex function and a
smooth nonconvex function while the denominator is a nonsmooth convex function. In this work,
we first derive its first-order necessary optimality condition, by using the first-order operators of the
three functions involved. Then we develop first-order algorithms, namely, the proximity-gradient-
subgradient algorithm (PGSA), PGSA with monotone line search (PGSA ML) and PGSA with
nonmonotone line search (PGSA NL). It is shown that any accumulation point of the sequence
generated by them is a critical point of the problem under mild assumptions. Moreover, we establish
global convergence of the sequence generated by PGSA or PGSA ML and analyze its convergence
rate, by further assuming the local Lipschitz continuity of the nonsmooth function in the numerator,
the smoothness of the denominator and the Kurdyka- Lojasiewicz (KL) property of the objective.
The proposed algorithms are applied to the sparse generalized eigenvalue problem associated with
a pair of symmetric positive semidefinite matrices and the corresponding convergence results are
obtained according to their general convergence theorems. We perform some preliminary numerical
experiments to demonstrate the efficiency of the proposed algorithms.

Key words. fractional optimization, first-order algorithms, proximity algorithms, sparse gen-
eralized eigenvalue problem, KL property
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1. Introduction. A fractional optimization problem is the problem which min-
imizes or maximizes an objective involving one or several ratios of functions. Frac-
tional optimization problems arise from various applications in many fields, such as
economics [18, 32], wireless communication [37, 45, 46], artificial intelligence [4, 15]
and so on. Four categories of factional optimization problems, concerning minimizing
a single ratio of two functions over a closed convex set, have been extensively stud-
ied in the literature. They are named according to the functions in the numerator
and denominator: linear or quadratic fractional problems if both functions are linear
or quadratic; convex-concave fractional problems if the numerator is convex and the
denominator is concave; convex-convex fractional problems if both functions are con-
vex. We refer the readers to [35, 36, 39], for an overview on the single-ratio fractional
optimization.

In this paper, we consider a class of single-ratio fractional minimization problems
in the form of

(1.1) min

{
f(x) + h(x)

g(x)
: x ∈ Ω

}
,

where f : Rn → R := [−∞,+∞] is proper, lower semicontinuous, bounded below on
Rn and continuous on its domain, g : Rn → R is convex, h : Rn → R is Lipschitz
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differentiable with a Lipschitz constant L > 0, and the set Ω := {x ∈ Rn : g(x) 6= 0} is
nonempty. Moreover, we assume that f +h is non-negative on Rn and g is positive on
dom(f)∩Ω. Also, problem (1.1) is assumed to have at least one optimal solution. It is
obvious that both f and h are possibly nonconvex, while f and g can be nonsmooth.
Problem (1.1) does not belong to any of the four categories of fractional minimization
problems aforementioned. This class of optimization problems subsumes a wide range
of application models, e.g., the sparse generalized eigenvalue problem (SGEP)[6, 40]
and the ℓ1/ℓ2 sparse signal recovery problem [33].

Now we turn to the algorithmic aspect of problem (1.1). To the best of our knowl-
edge, this problem has seldom been studied in the literature and existing methods in
general fractional optimization are not suitable for solving it. Global optimization
methods, e.g., branch and bound algorithms [7, 19], play an important role in directly
solving fractional optimization problems. However, the variable x of problem (1.1) is
usually high dimensional in modern machine learning models. Thus, it is not practical
to apply global optimization methods due to their expensive computational cost. For
single fractional optimization problems, the variable transformation and parametric
approach have been proposed to overcome the algorithmic difficulties caused by the
ratio involved. In [9], Charnes and Cooper first suggested a variable transformation
by which a linear fractional problem is reduced to a linear program. In fact, with
the help of that variable transformation, any convex-concave fractional minimiza-
tion problem can be equivalently reduced to a convex minimization problem. Since
problem (1.1) is not a convex-concave fractional minimization problem, through the
variable transformation it remains nonconvex and in general difficult to solve. Hence,
the variable transformation approach is not suitable for dealing with problem (1.1).
Another widely used method for fractional optimization is the parametric approach,
which takes good advantage of the relationship between a fractional problem and its
associated parametric problem [13, 17]. Many efficient algorithms have been devel-
oped based on the parametric approach, see, for example, [13, 16, 28, 30, 31]. When
they are applied to problem (1.1), most of these algorithms require to solve in each
iteration a parametric subproblem in the form of

(1.2) min {f(x) + h(x) − cg(x) : x ∈ Ω},

where c ∈ R is determined by the previous iteration. However, it is possibly not effi-
cient enough since solving in each iteration a subproblem (1.2) would be numerically
expansive.

In this work, we propose new iterative numerical algorithms for solving problem
(1.1). In each iteration of the proposed algorithms, we mainly make use of the prox-
imity operator of f , the gradient of h and the subgradient of g at the current iterate.
When the above first-order operations are easy to compute, our algorithms perform
efficiently. Our contributions are summarized below.

• By Fréchet subdifferentials of f , g and the gradient of h, we derive a first-
order necessary optimality condition for problem (1.1) and thus introduce the
definition of its critical points.
• Based on the first-order optimality condition aforementioned, we develop

for problem (1.1) three first-order numerical algorithms, namely, proximity-
gradient-subgradient algorithm (PGSA), PGSA with monotone line search
(PGSA ML) and PGSA with nonmonotone line search (PGSA NL). Under
mild assumptions on problem (1.1), we prove that any accumulation point of
the sequence generated by any of the proposed algorithms is a critical point of
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problem (1.1). In addition, we show global convergence of the entire sequence
generated by PGSA or PGSA ML, by further assuming that f is locally Lip-
schitz in its domain, g is differentiable with a locally Lipschitz continuous
gradient and the objective in problem (1.1) satisfies the Kurdyka- Lojasiewicz
property. The convergence rate of PGSA and PGSA ML are also estimated
according to the Kurdyka- Lojasiewicz property.
• We identify SGEP associated with a pair of symmetric positive semidefinite

matrices as a special case of problem (1.1) and apply the proposed algorithms
to SGEP. We obtain the convergence results of the proposed algorithms for
SGEP, by validating all the conditions needed in their general convergence
theorems. In particular, we prove that the sequence generated by PGSA or
PGSA ML converges R-linearly by establishing that the KL exponent is 1

2 at
any critical point of SGEP.

The remaining part of this paper is organized as follows. In Section 2, we intro-
duce notation and some necessary preliminaries. Section 3 is devoted to a study of
first-order necessary optimality conditions for problem (1.1). In Section 4, we propose
the PGSA and give its convergence analysis. In Section 5, we develop PGSA with line
search (PGSA L), including PGSA ML and PGSA NL, and study their convergence
property. We specify in Section 6 the proposed algorithms and convergence results
obtained in Sections 4 and 5 to the sparse generalized eigenvalue problem. In Section
7, some numerical results for SGEP and ℓ1/ℓ2 sparse signal recovery problem are pre-
sented to demonstrate the efficiency of the proposed algorithms. Finally, we conclude
this paper in the last section.

2. Notation and preliminaries. We start by our preferred notation. We de-
note by N the set of nonnegative integers. For a positive integer n, we let Nn :=
{1, 2, · · · , n} and 0n be the n-dimensional zero vector. For x ∈ R, let [x]+ :=
max{0, x}. By Sn+ (resp., Sn++) we denote the set of all n × n symmetric positive
semidefinite (resp., definite) matrices. Given H ∈ Sn++, the weighted inner product
of x, y ∈ Rn is defined by 〈x, y〉H := 〈x,Hy〉 and the weighted ℓ2-norm of x ∈ Rn is
defined by ‖x‖H :=

√
〈x, x〉H . For an n×n matrix A, we denote by ‖A‖2 the matrix

2-norm of A. For Λ ⊆ Nn, let |Λ| be the number of elements in Λ. We denote by
xΛ ∈ R|Λ| the sub-vector of x whose indices are restricted to Λ. We also denote by
AΛ the |Λ| × |Λ| sub-matrix formed from picking the rows and columns of A indexed
by Λ. For a function ϕ : Rn → R and t ∈ R, let lev(ϕ, t) := {x ∈ Rn : ϕ(x) ≤ t}.

For x ∈ Rn, let supp(x) be the support of x, that is, supp(x) := {i ∈ Nn : xi 6= 0}.
Given δ > 0, we let B(x, δ) := {z ∈ Rn : ‖z − x‖2 < δ} and U(x, δ) := {z ∈ Rn :
|zi − xi| < δ, ∀i ∈ Nn}. For any closed set S ⊆ Rn, the distance from x ∈ Rn to S is
defined by dist(x, S) := inf{‖x− z‖2 : z ∈ S}. The indicator function on S is defined
by

ιS(x) :=

{
0, if x ∈ S,
+∞, otherwise.

In the remaining part of this section, we present some preliminaries on the Fréchet
subdifferential and limiting-subdifferential [27, 34] as well as the Kurdyka- Lojasiewicz
(KL) property [2]. These concepts play a central role in our theoretical and algorithmic
developments.

2.1. Fréchet subdifferential and limiting-subdifferential. Let ϕ : Rn → R

be a proper function. The domain of ϕ is defined by dom(ϕ) := {x ∈ Rn : ϕ(x) <
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+∞}. The Fréchet subdifferential of ϕ at x ∈ dom(ϕ), denoted by ∂̂ϕ(x), is defined
by

∂̂ϕ(x) :=

{
y ∈ R

n : lim inf
z→x
z 6=x

ϕ(z)− ϕ(x) − 〈y, z − x〉
‖z − x‖2

≥ 0

}
.

The set ∂̂ϕ(x) is convex and closed. If x /∈ dom(ϕ), we let ∂̂ϕ(x) = ∅. We say

ϕ is Fréchet subdifferentiable at x ∈ Rn when ∂̂ϕ(x) 6= ∅. Apart from the Fréchet
subdifferential, we also need the notion of limiting-subdifferentials. The limiting-
subdifferential or simply the subdifferential for short, of ϕ at x ∈ dom(ϕ) is defined
by

∂ϕ(x) := {y ∈ R
n : ∃xk → x, ϕ(xk)→ ϕ(x), yk ∈ ∂̂ϕ(xk)→ y}.

It is straightforward that ∂̂ϕ(x) ⊆ ∂ϕ(x) for all x ∈ Rn. Moreover, if ϕ is convex,

then ∂̂ϕ(x) and ∂ϕ(x) reduce to the classical subdifferential in convex analysis, i.e.,

∂̂ϕ(x) = ∂ϕ(x) = {y ∈ R
n : ϕ(z)− ϕ(x)− 〈y, z − x〉 ≥ 0, ∀z ∈ R

n}.

We next recall some simple and useful calculus results on ∂̂ and ∂. For any α > 0
and x ∈ Rn, ∂̂(αϕ)(x) = α∂̂ϕ(x) and ∂(αϕ)(x) = α∂ϕ(x). Let ϕ1, ϕ2 : Rn → R be

proper and lower semicontinuous and x ∈ dom(ϕ1 + ϕ2). Then, ∂̂ϕ1(x) + ∂̂ϕ2(x) ⊆
∂̂(ϕ1 + ϕ2)(x). If ϕ2 is differentiable at x, then ∂̂ϕ2(x) = {▽ϕ2(x)} and ∂̂(ϕ1 +

ϕ2)(x) = ∂̂ϕ1(x) + ▽ϕ2(x). Furthermore, if ϕ2 is continuously differentiable at x,
then ∂ϕ2(x) = {▽ϕ2(x)} and ∂(ϕ1 + ϕ2)(x) = ∂ϕ1(x) + ▽ϕ2(x).

We next present some results of the Fréchet subdifferential for the quotient of two
functions. To this end, we first recall the calmness condition.

Definition 2.1 (Calmness condition [34]). The function ϕ : Rn → R is said to
satisfy the calmness condition at x ∈ dom(ϕ), if there exists κ > 0 and a neighborhood
O of x, such that

|ϕ(u)− ϕ(x)| ≤ κ‖u− x‖2
for all u ∈ O.

The following proposition concerns the quotient rule of the Fréchet subdifferential.
Proposition 2.2 (Subdifferential calculus for quotient of two functions). Let

f1 : Rn → R be proper and f2 : Rn → R. Define ρ : Rn → R at x ∈ Rn as

(2.1) ρ(x) :=

{
f1(x)
f2(x)

, if x ∈ dom(f1) and f2(x) 6= 0,

+∞, else.

Let x ∈ dom(ρ) with a1 := f1(x) and a2 := f2(x) > 0. If f1 is continuous at x relative
to dom(f1) and f2 satisfies the calmness condition at x, then

∂̂ρ(x) =
∂̂(a2f1 − a1f2)(x)

a22
.

Furthermore, if f2 is differentiable at x, then

∂̂ρ(x) =
a2∂̂f1(x)− a1▽f2(x)

a22
.

The proof is given in the Appendix A.
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2.2. Kurdyka- Lojasiewicz (KL) property.
Definition 2.3 (KL property [2]). A proper function ϕ : Rn → R is said to

satisfy the KL property at x̂ ∈ dom(∂ϕ) if there exist η ∈ (0,+∞], a neighborhood O
of x̂ and a continuous concave function φ : [0, η)→ [0,+∞], such that:

(i) φ(0) = 0,
(ii) φ is continuously differentiable on (0, η) with φ′ > 0,

(iii) For any x ∈ O ∩ {x ∈ Rn : ϕ(x̂) < ϕ(x) < ϕ(x̂) + η}, there holds φ′(ϕ(x) −
ϕ(x̂)) dist(0, ∂ϕ(x)) ≥ 1.

A proper lower semicontinuous function ϕ : Rn → R is called a KL function if ϕ
satisfies the KL property at all points in dom(∂ϕ). For connections between the KL
property and the well-known error bound theory [23, 24, 29], we refer the interested
readers to [8, 20]. The notion of the KL property plays a crucial rule in analyzing the
global sequential convergence. A framework for proving global sequential convergence
using the KL property is provided in [3]. We review this result in the next proposition.

Proposition 2.4. Let ϕ : Rn → R be a proper lower semicontinuous function.
Consider a sequence satisfying the following three conditions:

(i) (Sufficient decrease condition.) There exists a > 0 such that

ϕ(xk+1) + a‖xk+1 − xk‖22 ≤ ϕ(xk)

holds for any k ∈ N;
(ii) (Relative error condition.) There exist b > 0 and ωk+1 ∈ ∂ϕ(xk+1) such that

‖ωk+1‖2 ≤ b‖xk+1 − xk‖2

holds for any k ∈ N;
(iii) (Continuity condition.) There exist a subsequence {xkj : j ∈ N} and x⋆ such

that

xkj → x⋆ and ϕ(xkj )→ ϕ(x⋆), as j →∞.

If ϕ satisfies the KL property at x⋆, then
∑∞

k=1 ‖xk − xk−1‖2 < +∞, lim
k→∞

xk = x⋆

and 0 ∈ ∂ϕ(x⋆).

3. First-order necessary optimality condition. In this section, we establish
a first-order necessary optimality condition for local minimizers of problem (1.1). For
convenience, we define F : Rn → R at x ∈ Rn as

(3.1) F (x) :=

{
f(x)+h(x)

g(x) , if x ∈ Ω ∩ dom(f),

+∞, else.

Then, problem (1.1) can be written as

min{F (x) : x ∈ R
n}.

From the generalized Fermat’s rule [34, Theorem 10.1], we know that if x⋆ is a

local minimizer of problem (1.1) then 0 ∈ ∂̂F (x⋆). Since g is not necessarily differ-

entiable, in general ∂̂F (x⋆) can not be represented by Fréchet subdifferentials of f
and g and the gradient of h. Therefore, we have to derive the first-order optimality
condition on a different manner.
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Our idea is to take advantage of the parametric programing. With the help of
the parametric problem, we obtain the first-order necessary optimality condition of
local minimizers of F . To this end, we first characterize local and global minimizers
of problem (1.1) by those of its corresponding parametric problem. The result is
presented in the next proposition and the proof is given in Appendix B.

Proposition 3.1. Let x⋆ ∈ dom(F ) and c⋆ = F (x⋆). Then, x⋆ is a local (resp.,
global) minimizer of problem (1.1) if and only if x⋆ is a local (resp., global) minimizer
of the following problem:

(3.2) min {f(x) + h(x)− c⋆g(x) : x ∈ Ω}.

We next present an important inequality, which plays a crucial role in deducing
the first-order optimality condition.

Lemma 3.2. Let x⋆ ∈ dom(F ) be a local minimizer of problem (3.2) with c⋆ =
F (x⋆). Then, there exists δ > 0 such that for any x ∈ B(x⋆, δ) ∩ dom(F ) and any
y⋆ ∈ ∂g(x⋆), there holds

f(x⋆) ≤ f(x) + 〈▽h(x⋆)− c⋆y⋆, x− x⋆〉+
L

2
‖x− x⋆‖22.

Proof. Since x⋆ is a local minimizer of problem (3.2), there exists δ > 0 such that
for any x ∈ B(x⋆, δ) ∩ dom(F ), there holds

(3.3) f(x⋆) + h(x⋆)− c⋆g(x⋆) ≤ f(x) + h(x)− c⋆g(x).

Due to the Lipschitz continuity of ▽h, convexity of g and c⋆ ≥ 0, it follows that, for
any x ∈ Rn and y⋆ ∈ ∂g(x⋆), h(x) ≤ h(x⋆) + 〈▽h(x⋆), x − x⋆〉 + L

2 ‖x − x⋆‖22 and
c⋆g(x⋆) + 〈c⋆y⋆, x − x⋆〉 ≤ c⋆g(x). By summing (3.3) and those two inequalities, we
get this lemma.

Now, we are ready to present the first-order necessary optimality condition for
problem (1.1).

Theorem 3.3. Let x⋆ ∈ dom(F ) be a local minimizer of problem (1.1) and

c⋆ = F (x⋆), then c⋆∂g(x⋆) ⊆ ∂̂f(x⋆) + ▽h(x⋆).
Proof. From Proposition 3.1, x⋆ is a local minimizer of problem (3.2). By Lemma

3.2, we have that x⋆ is a local minimizer of the following problem, for all y⋆ ∈ ∂g(x⋆),

min

{
f(x) + 〈▽h(x⋆)− c⋆y⋆, x− x⋆〉+

L

2
‖x− x⋆‖22 : x ∈ Ω

}
.

Because g is continuous on Rn, Ω is an open subset of Rn. Thus, x⋆ is an interior
point of Ω. Therefore, 0 ∈ ∂̂f(x⋆) + ▽h(x⋆) − c⋆y⋆ for all y⋆ ∈ ∂g(x⋆). This implies

that c⋆∂g(x⋆) ⊆ ∂̂f(x⋆) + ▽h(x⋆). We complete the proof.
Inspired by the above theorem, we define a critical point of F as follows.
Definition 3.4 (Critical point of F ). Let x⋆ ∈ dom(F ) and c⋆ = F (x⋆). We

say that x⋆ is a critical point of F if

0 ∈ ∂̂f(x⋆) + ▽h(x⋆)− c⋆∂g(x⋆).
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We remark that when g is differentiable, by Proposition 2.2 we have for x ∈
dom(F ),

∂̂F (x) =
g(x)(∂̂f(x) + ▽h(x)) − (f(x) + h(x))▽g(x)

g2(x)

=
1

g(x)
(∂̂f(x) + ▽h(x)− F (x)▽g(x)).

In this case, the statement that x⋆ is a critical point of F (Definition 3.4) coincides

with that 0 ∈ ∂̂F (x⋆).
By Theorem 3.3, if x⋆ is a local minimizer of F , then x⋆ is a critical point of

F . In the remaining part of this paper, we dedicate to developing iterative numerical
algorithms to find critical points of F .

4. The proximity-gradient-subgradient algorithm (PGSA) for solving
problem (1.1). This section is devoted to designing numerical algorithms for solving
problem (1.1). We first propose an iterative scheme for solving problem (1.1), ac-
cording to the first-order optimality condition. Then, we establish the convergence of
objective function values and the subsequential convergence under a mild assumption.
Finally, by making additional assumptions on f , g and assuming the level bounded-
ness and KL property of the objective, we prove the convergence of the whole sequence
generated by the proposed algorithm.

From Theorem 3.3, a local minimizer of problem (1.1) must be a critical point of
F . Thus, our task becomes developing an algorithm with accumulation point being a
critical point of F . To this end, we introduce the notion of proximity operators. For
a proper and lower semicontinuous function ϕ : Rn → R, the proximity operator of ϕ
at x ∈ R

n, denoted by proxϕ(x), is defined by

proxϕ(x) := arg min {ϕ(y) +
1

2
‖y − x‖22 : y ∈ R

n}.

The operator proxϕ is single-valued when ϕ is convex and may be set-valued as ϕ is
nonconvex. With the help of the proximity operator, we derive a sufficient condition
for a critical point of F in the following proposition.

Proposition 4.1. If x⋆ ∈ dom(F ) satisfies

(4.1) x⋆ ∈ proxαf (x⋆ − α▽h(x⋆) + αc⋆y
⋆)

for some α > 0, y⋆ ∈ ∂g(x⋆) and c⋆ = F (x⋆), then x⋆ is a critical point of F .
Proof. By the proximity operator and the generalized Fermat’s rule, (4.1) leads

to

0 ∈ α∂̂f(x⋆) + α▽h(x⋆)− αc⋆y⋆,

which implies that x⋆ is a critical point of F .
Inspired by Proposition 4.1, we propose the following first-order algorithm, which

is stated in Algorithm 1. Since Algorithm 1 involves in the proximity operator of f ,
the gradient of h and the subgradient of g, we refer to it as the proximity-gradient-
subgradient algorithm (PGSA).

In PGSA the step size αk is required to be in (0, 1/L) to ensure xk ∈ dom(F ) for
all k ∈ N. As a result the objective function value ck is well-defined. The detailed
proof will be given in Lemma 4.2. Before starting the convergence analysis, we remark
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Algorithm 1 proximity-gradient-subgradient algorithm (PGSA) for solving (1.1)

Step 0. Input x0 ∈ dom(F ), 0 < α ≤ αk ≤ ᾱ < 1/L, for k ∈ N. Set k ← 0.
Step 1. Compute

yk+1 ∈ ∂g(xk),

ck =
f(xk) + h(xk)

g(xk)
,

xk+1 ∈ proxαkf
(xk − αk▽h(xk) + αkcky

k+1).
Step 2. Set k ← k + 1 and go to Step 1.

that PGSA differs from the classical parametric approach for problem (1.1) combined
with applying proximal subgradient (gradient) methods (e.g., see [14, 41]) to the
parametric subproblems involved. The parametric approach, which may date back to
Dinkelbach’s algorithm [13], generates the new iterate of k-th iteration by solving a
parametric subproblem

(4.2) xk+1 = arg min{f(x) + h(x)− ckg(x) : x ∈ Ω},

where ck is updated via ck := f(xk)+h(xk)
g(xk)

. In each iteration, one can apply proximal

subgradient methods to subproblem (4.2), which results in a type of algorithms com-
bining the parametric approach and proximal subgradient methods for problem (1.1).
However, these algorithms may be not efficient enough since solving subproblem (4.2)
by proximal subgradient methods in each iteration can yield high computational cost.
On the other hand, the iterative procedure of PGSA can be equivalently reformulated
as

xk+1 = arg min{f(x) + h(xk)− ckg(xk)(4.3)

+ 〈▽h(xk)− ckyk+1, x− xk〉+
‖x− xk‖22

2αk
: x ∈ R

n},

where yk+1 ∈ ∂g(xk) and ck = f(xk)+h(xk)
g(xk) . Comparing (4.2) and (4.3), we see that

instead of directly solving the parametric subproblem (4.2), PGSA uses a quadratic
approximation for h(x) − ckg(x) and then solves the resulting problem (4.3) in each
iteration. It is worth noting that solving subproblem (4.3) is actually computing
the proximity operator of αkf , which is usually much easier and more efficient than
solving subproblem (4.2).

4.1. Convergence of objective function value. In this subsection, we prove
that the sequence of the objective function values {F (xk) : k ∈ N} is decreasing and
convergent. We first establish a lemma, which plays a crucial role in the convergence
analysis.

Lemma 4.2. The sequence {xk : k ∈ N} generated by PGSA falls into dom(F )
and satisfies

(4.4) f(xk+1) + h(xk+1) +
1/αk − L

2
‖xk+1 − xk‖22 ≤ ckg(xk+1).

Proof. We prove inequality (4.4) and xk ∈ dom(F ) by induction. First, the initial
point x0 is in dom(F ). Suppose xk ∈ dom(F ) for some k ∈ N. From PGSA and the
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definition of proximity operators, we get

f(xk+1) +
1

2αk
‖xk+1 − (xk − αk▽h(xk) + αkcky

k+1)‖22

≤ f(xk) +
1

2αk
‖αk▽h(xk)− αkcky

k+1‖22,

which implies that

(4.5) f(xk+1) +
1

2αk
‖xk+1 − xk‖22 + 〈xk+1 − xk,▽h(xk)− ckyk+1〉 ≤ f(xk).

Since ▽h is Lipschitz continuous with constant L, there holds

(4.6) h(xk+1) ≤ h(xk) + 〈▽h(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22.

Due to the convexity of g and ck ≥ 0, it follows that

(4.7) ckg(xk) + 〈ckyk+1, xk+1 − xk〉 ≤ ckg(xk+1).

By summing (4.5), (4.6) and (4.7), we obtain (4.4) from ckg(xk) = f(xk) + h(xk).
Assume that xk+1 /∈ dom(F ). We know xk+1 /∈ Ω and g(xk+1) = 0 due to

xk+1 ∈ dom(f) and dom(F ) = Ω∩dom(f). By the fact f + h ≥ 0 and 0 < αk < 1/L,
we deduce that xk+1 = xk from (4.4). This contradicts to xk ∈ dom(F ) and thus
implies xk+1 ∈ dom(F ). Therefore, we conclude xk ∈ dom(F ) for all k ∈ N.

With the help of Lemma 4.2, we get the main result of this subsection.
Theorem 4.3. Let {xk : k ∈ N} be generated by PGSA. Then, the following

statements hold:

(i) F (xk+1) +
1/αk − L
2g(xk+1)

‖xk+1 − xk‖22 ≤ F (xk) for k ∈ N;

(ii) lim
k→∞

ck = lim
k→∞

F (xk) = c with c ≥ 0;

(iii) lim
k→∞

1/αk − L
g(xk+1)

‖xk+1 − xk‖22 = 0.

Proof. From Lemma 4.2, g(xk) 6= 0 for all k ∈ N. Thus, (4.4) in Lemma 4.2
implies Item (i) due to g(xk+1) > 0. Item (ii) follows immediately by F ≥ 0 and
0 < αk < 1/L. Item (iii) is a direct consequence of Item (i) and Item (ii). We
complete the proof.

4.2. Subsequential convergence. In this subsection, we consider the subse-
quential convergence of PGSA. We begin with a mild assumption.

Assumption 1. Functions f + h and g do not attain 0 simultaneously.
With the help of Assumption 1, we can prove that F is lower semicontinuous in the

next proposition, which together with Theorem 4.3 (i) indicates that any accumulation
point x⋆ of {xk : k ∈ N} generated by PGSA is in dom(F ), i.e., g(x⋆) 6= 0 and
x⋆ ∈ dom(f).

Proposition 4.4. Suppose Assumption 1 holds. Then, F is a lower semicontin-
uous function.

Proof. If x ∈ Ω, it holds that 0 < g(x) = lim
y→x

g(y). Since f is lower semicontinuous

and h is continuous, we immediately have F (x) ≤ lim inf
y→x

F (y). If x /∈ Ω, we obtain

that F (x) = +∞ and 0 = g(x) = lim
y→x

g(y). Due to Assumption 1, 0 < f(x) + h(x) ≤
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lim inf
y→x

f(y) + h(y). Thus, lim inf
y→x

F (y) = +∞ from the fact that g ≥ 0. Therefore, we

have F (x) = lim inf
y→x

F (y). This completes the proof.

To emphasize the importance of Assumption 1, we give an example below to
illustrate that without Assumption 1, F may not be lower semicontinuous and it is
possible that g vanishes at an accumulation point of {xk : k ∈ N}. Consider the
following one-dimensional fractional optimization problem:

min

{
1
2 sin2 x

|x| : x 6= 0

}
,

where both 1
2 sin2 x and |x| attain zero at x = 0, i.e., Assumption 1 is violated. Clearly,

the corresponding F is not lower semicontinuous at x = 0 due to F (0) = +∞ and
lim
x→0

F (x) = 0. Given an initial point x0 ∈ (0, π/4) and a step size αk ≡ α ∈ (0, 1).

PGSA generates {xk : k ∈ N} by

xk+1 = xk − α

2
sin(2xk) +

1
2 sin2 xk

|xk| αyk+1,

where yk+1 ∈ ∂| · |(xk). Assume that xk ∈ (0, π/4). By applying the Lagrangian
median theorem for sin2 x on [0, xk], we have

xk+1 = xk − α

2
sin(2xk) +

α sin2 xk

2xk
= xk − α

2
sin(2xk) +

α

2
sin(2ξk),

for some ξk ∈ (0, xk). Therefore, invoking x0 ∈ (0, π/4) and by induction on k, one
can show that this {xk : k ∈ N} is strictly decreasing and bounded below by zero,
and thus is convergent. Finally, we can deduce that the limit point of {xk : k ∈ N} is
zero, which is infeasible in this fractional problem.

We are now ready to present the main result of this subsection.
Theorem 4.5. Suppose Assumption 1 holds. Let {xk : k ∈ N} be generated by

PGSA. Then any accumulation point of {xk : k ∈ N} is a critical point of F .
Proof. Let {xkj : j ∈ N} be a subsequence such that lim

j→∞
xkj = x⋆. By Theorem

4.3 (i) and Proposition 4.4, we deduce that F (x⋆) ≤ lim
j→∞

F (xkj ) ≤ F (x0), which

indicates that x⋆ ∈ dom(F ), i.e., g(x⋆) 6= 0 and x⋆ ∈ dom(f). From Theorem 4.3 (i)
and αk ≤ ᾱ, we have

F (xkj ) +
1/ᾱ− L
2g(xkj )

‖xkj − xkj−1‖22 ≤ F (xkj−1).

Using Item (ii) of Theorem 4.3, ᾱ < 1/L and the continuity of g at x⋆, we conclude
lim
j→∞

‖xkj − xkj−1‖ = 0 and lim
j→∞

xkj−1 = x⋆. Since g is a real-valued convex function

and {xkj−1 : j ∈ N} is bounded, we know that {ykj : j ∈ N} is also bounded.
Without loss of generality we may assume lim

j→∞
ykj and lim

j→∞
αkj−1 exist. In addition,

lim
j→∞

ykj = y⋆ belongs to ∂g(x⋆) due to the closeness of ∂g. From the iteration of

PGSA, we have

(4.8) xkj ∈ proxαkj−1f (xkj−1 − αkj−1▽h(xkj−1) + αkj−1ckj−1y
kj ).

As ▽h and f is continuous at x⋆, we obtain (4.1) by passing to the limit in the above
relation with α = lim

j→∞
αkj−1. By Proposition 4.1, x⋆ is a critical point of F .
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4.3. Global sequential convergence. We investigate in this subsection the
global convergence of the entire sequence {xk : k ∈ N} generated by PGSA. We shall
show {xk : k ∈ N} converges to a critical point of F under suitable assumptions. To
this end, we need to introduce three assumptions as follows:

Assumption 2. Function F is level bounded.

Assumption 3. Function f is locally Lipschitz continuous on dom(f).

Assumption 4. Function g is continuously differentiable on Ω with a locally
Lipschitz continuous gradient.

Our analysis in this subsection mainly makes use of Proposition 2.4 which is based
on KL property. If F is assumed to satisfy the KL property, from Proposition 2.4
and Theorem 4.5 we can establish the global convergence of PGSA by showing the
boundedness of the sequence generated and Items (i)-(ii) in Proposition 2.4. The
boundness of {xk : k ∈ N} is a direct consequence of Theorem 4.3 (i) and Assumption
2. Other results needed will be proved in the following two lemmas.

Lemma 4.6. Suppose that Assumptions 1 and 2 hold. Let {xk : k ∈ N} be
generated by PGSA. Then the following statements hold:

(i) {xk : k ∈ N} is bounded;
(ii) F (xk+1) + a

2‖xk+1−xk‖22 ≤ F (xk) for k ∈ N, where a := (1/ᾱ−L)/M > 0 with
M := sup{g(x) : x ∈ lev(F, c0)}.

Proof. By Theorem 4.3 (i), we have for all k ∈ N, xk ∈ lev(F, c0). Then the
boundedness of {xk : k ∈ N} follows immediately from Assumption 2. In view of
Proposition 4.4, Assumption 1 ensures the lower semicontinuity of F . Hence, the set
lev(F, c0) is closed and bounded. Since g is continuous, we know M is finite. This
together with Theorem 4.3 (i) and αk < ᾱ yields Item (ii).

Lemma 4.7. Let {xk : k ∈ N} be generated by PGSA. Suppose Assumptions 1-4
hold. Then there exist b > 0 and ωk+1 ∈ ∂F (xk+1) such that

‖ωk+1‖2 ≤ b‖xk+1 − xk‖2

for all k ∈ N.

Proof. By Lemma 4.2 and Theorem 4.5, we know xk ∈ Ω for any k ∈ N and any
accumulation point x⋆ of {xk : k ∈ N} satisfies g(x⋆) > 0. Thus, there exists t > 0
such that g(xk) ≥ t, since {xk : k ∈ N} is bounded and g is continuous on Ω. Let
S ⊆ Rn be a bounded closed subset satisfying {xk : k ∈ N} ⊆ S ⊆ dom(F ). Then
it is easy to check that ▽g and F are globally Lipschitz continuous on S. We denote
the Lipschitz constant of ▽g and F by L̂ and L̃ respectively.

From the iteration of PGSA and the differentiability of g, we obtain that

xk − xk+1 − αk▽h(xk) + αkck▽g(xk) ∈ αk∂̂f(xk+1),

which implies that

(4.9)
1

αkg(xk+1)
(xk − xk+1)− ▽h(xk)

g(xk+1)
+

ck
g(xk+1)

▽g(xk) ∈ ∂̂f(xk+1)

g(xk+1)
.

From Assumptions 3-4 and Proposition 2.2, we have on dom(∂̂F )

∂̂F =
g(∂̂f + ▽h)− (f + h)▽g

g2
.
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The above relation and (4.9) suggest that ωk+1 ∈ ∂̂F (xk+1) with

ωk+1 :=
1

αkg(xk+1)
(xk − xk+1)− ▽h(xk)

g(xk+1)
+

▽h(xk+1)

g(xk+1)

+
ck

g(xk+1)
▽g(xk)− ck+1

g(xk+1)
▽g(xk+1).

By a direct computation, it follows that

(4.10) ‖ωk+1‖2 ≤
(

1

αkt
+
L

t
+
ckL̂

t
+
‖▽g(xk+1)‖2L̃

t

)
‖xk+1 − xk‖2.

From Theorem 4.3, we see that ck ≤ c0 for k ∈ N. Since {xk : k ∈ N} is bounded and
▽g is continuous on Ω, there exists β > 0 such that ‖▽g(xk+1)‖2 ≤ β for all k ∈ N.
Due to αk ≥ α > 0, we obtain finally from (4.10) that ‖ωk+1‖2 ≤ b‖xk+1 − xk‖2
for all k ∈ N, where b := (1/α + L + c0L̂ + βL̃)/a. We complete the proof due to

∂̂F (xk+1) ⊆ ∂F (xk+1).
Now we are ready to present the main result of this subsection.
Theorem 4.8. Suppose that Assumptions 1-4 hold and F satisfies the KL prop-

erty at any point in dom(F ). Let {xk : k ∈ N} be generated by PGSA. Then∑∞
k=1 ‖xk − xk−1‖2 < +∞ and {xk : k ∈ N} converges to a critical point of F .
Proof. From Theorem 4.5, it suffices to prove that

∑∞
k=1 ‖xk − xk−1‖2 < +∞

and {xk : k ∈ N} is convergent. According to Proposition 2.4, we obtain this theorem
from Lemmas 4.6-4.7 and Proposition 4.4 immediately.

4.4. Convergence rate. Finally, we consider the convergence rate of PGSA.
To this end, we further assume F is a KL function with the corresponding φ (see
Definition 2.3) taking the form φ(s) = ds1−θ for some d > 0 and θ ∈ [0, 1). Then
under the assumption of Theorem 4.8, we can estimate the convergence rate of PGSA,
following a similar line of arguments to other convergence rate analysis based on the
KL property; see, for example, [1, 42, 44].

Theorem 4.9. Suppose that Assumptions 1-4 hold. Let {xk : k ∈ N} be generated
by PGSA and suppose that {xk : k ∈ N} converges to x⋆. Assume further that F
satisfies the KL property at x⋆ with φ(s) = ds1−θ for some d > 0 and θ ∈ [0, 1), then
the following statements hold:

(i) If θ = 0, {xk : k ∈ N} converges to x⋆ finitely;
(ii) If θ ∈ (0, 1/2], ‖xk −x⋆‖2 ≤ c1τk, ∀k ≥ K1 for some K1 > 0, c1 > 0, τ ∈ (0, 1);

(iii) If θ ∈ (1/2, 1), ‖xk − x⋆‖2 ≤ c2k
−(1−θ)/(2θ−1), ∀k ≥ K2, for some k ≥ K2,

c2 > 0.
Here we omit the proof for Theorem 4.9, since it can be performed very similarly

to those for other optimization algorithms (see, for example, the proof of [1, Theorem
2]). We remark that as is pointed out in [2], all proper semialgebraic functions satisfy
the KL property with φ(s) = ds1−θ for some d > 0 and θ ∈ [0, 1). Consequently, both
Theorems 4.8 and 4.9 are applicable when F is a semialgebraic function. Indeed, the
objective functions are semialgebraic in a wide range of sparse optimization problems,
including the sparse generalized eigenvalue problem (6.3) which will be studied in
detail in Section 6.

To close this section, we point out that when f is convex, the following inequality
instead of (4.5) will be obtained in Lemma 4.2:

f(xk+1) + h(xk+1) +

(
1

αk
− L

2

)
‖xk+1 − xk‖22 ≤ ckg(xk+1).
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As a consequence, one can easily verify that all the convergence results established in
subsections 4.2-4.4 still hold for PGSA with 0 < α ≤ αk ≤ ᾱ < 2/L in the case where
f is convex.

5. PGSA with line search. In this section, we incorporate a line search scheme
for adaptively choosing αk into PGSA. In PGSA, the step size αk should be less than
1/L for all k ∈ N to ensure the convergence. However, this step size may be too small
in the case of large L and thus leads to slow convergence of PGSA. To speed up the
convergence, we take advantage of the line search technique in [22, 41, 43] to enlarge
the step size and meanwhile guarantee the convergence of the algorithm. The PGSA
with line search is summarized in Algorithm 2 (PGSA L).

Algorithm 2 PGSA with line search (PGSA L) for problem (1.1)

Step 0. Input x0 ∈ dom(F ), a > 0, 0 < α < ᾱ, 0 < η < 1, and an integer N ≥ 0.
Set k ← 0.

Step 1. yk+1 ∈ ∂g(xk),

ck = f(xk)+h(xk)
g(xk) ,

Choose αk,0 ∈ [α, ᾱ].
Step 2. For m = 0, 1, . . . , do

αk = αk,0η
m,

x̃k+1 ∈ proxαkf (xk − αk▽h(xk) + αkcky
k+1),

If x̃k+1 satisfies x̃k+1 ∈ dom(F ) and

(5.1) F (x̃k+1) ≤ max
[k−N ]+≤j≤k

cj −
a

2
‖x̃k+1 − xk‖22,

set xk+1 = x̃k+1 and go to Step 3.
Step 3. k ← k + 1 and go to Step 1.

From inequality (5.1), {F (xk) : k ∈ N} is monotone when N = 0, while it
is generally nonmonotone when N > 0. For convenience of presentation, we call
the algorithm PGSA with monotone line search (PGSA ML) if N = 0 and PGSA
with nonmonotone line search (PGSA NL) if N > 0. Let ∆x := xk − xk−1, ∆h :=
▽h(xk) − ▽h(xk−1). Motivated from [5, 22, 43], we adopt a very popular choice of
αk,0 in the following formula

(5.2) αk,0 =

{
max

{
α,min{ᾱ, ‖∆x‖2

2

|〈∆x,∆h〉|}
}
, if 〈∆x,∆h〉 6= 0,

ᾱ, else.

This initial step size can be viewed as an adaptive approximation of 1/L via some
local curvature information of h.

Next, we study the convergence property of PGSA L. To this end, we define
τ : N → N at k ∈ N as τ(k) := max{i : i ∈ arg max{F (xj) : [k − N ]+ ≤ j ≤ k}}.
The following lemma tells that PGSA L is well defined and the sequence generated
by PGSA L is bounded under Assumption 2.

Lemma 5.1. Suppose that Assumption 2 holds and let M := sup{g(x) : x ∈
lev(F, c0)}. Then, the following statements hold:

(i) Step 2 of PGSA L terminates at some αk ≥ α̃ in most T iterations, where

α̃ := η/(aM + L), T := ⌈− log(ᾱ(aM+L))
log η + 1⌉;
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(ii) xk ∈ lev(F, c0) for all k ∈ N and thus {xk : k ∈ N} is bounded;
(iii) {F (xτ(k)) : k ∈ N} is nonincreasing.

Proof. Assumption 2 ensures the boundedness of lev(F, c0). Thus, we know M is
finite thanks to the continuity of g. In view of the updating rule for αk in Step 2 and
αk,0 ≤ ᾱ, after T iterations, we have αk ≤ 1/(aM + L) = α̃/η for any k ∈ N.

We proceed by induction on k. It is obvious that x0 ∈ lev(F, c0). Now, assume
that for j = 0, 1, ..., k, xj has already been generated and xj ∈ lev(F, c0). In order
to prove Item (i), it suffices to show that if αk ≤ α̃/η, then x̃k+1 ∈ dom(F ) and the
following inequality holds

(5.3) F (x̃k+1) ≤ ck −
a

2
‖x̃k+1 − xk‖22.

By Theorem 4.3 and αk ≤ 1/(aM + L) < 1/L, we have x̃k+1 ∈ dom(F ) and

(5.4) F (x̃k+1) ≤ ck −
1/αk − L
2g(x̃k+1)

‖x̃k+1 − xk‖22 ≤ ck −
aM

2g(x̃k+1)
‖x̃k+1 − xk‖22,

which indicates that F (x̃k+1) ≤ ck ≤ c0 and thus x̃k+1 ∈ lev(F, c0). Invoking
g(x̃k+1) ≤M , we obtain inequality (5.3) from (5.4).

We next prove xk+1 ∈ lev(F, c0) and F (xτ(j+1)) ≤ F (xτ(j)) for j ≤ k. By (5.1),
we have F (xj+1) ≤ F (xτ(j)) for j ≤ k. Thus, for j ≤ k,

F (xτ(j+1)) = max
[j+1−N ]+≤i≤j+1

F (xi)

= max

{
F (xj+1), max

[j+1−N ]+≤i≤j
F (xi)

}

≤ max{F (xj+1), F (xτ(j))}
= F (xτ(j)).

This yields that F (xk+1) ≤ F (xτ(k)) ≤ F (xτ(0)) = c0. We complete the proof imme-
diately.

With the help of Lemma 5.1, we establish the subsequential convergence results
of PGSA L in the next theorem.

Theorem 5.2. Suppose that Assumptions 1 and 2 hold. Let {xk : k ∈ N} be
generated by PGSA L. Then any accumulation point of {xk : k ∈ N} is a critical
point of F .

Proof. Let x⋆ be an accumulation point of {xk : k ∈ N}. According to the proof of
Theorem 4.5, it suffices to show {F (xk) : k ∈ N} converges and lim

k→∞
‖xk+1−xk‖2 = 0.

By Lemma 5.1, {F (xτ(k)) : k ∈ N} is decreasing and F ≥ 0. Hence, we have that
lim
k→∞

F (xτ(k)) = ξ for some ξ ≥ 0. Since f is continuous on dom(f) and lev(F, c0) is

closed and bounded, we deduce that F is uniformly continuous on lev(F, c0). Noting
that {xk : k ∈ N} ⊆ lev(F, c0) and proceeding as in the proof of [43, Lemma 4] starting
from [43, Equation (34)], one can prove that lim

k→∞
F (xk) = ξ and lim

k→∞
‖xk+1−xk‖2 =

0. We complete the proof.
Under Assumptions 1-4 and assuming F satisfies the KL property, we can prove

the global convergence of the entire sequence generated by PGSA ML.
Theorem 5.3. Suppose that Assumptions 1-4 hold and F satisfies the KL prop-

erty at any point in dom(F ). Let {xk : k ∈ N} be generated by PGSA ML. Then∑∞
k=1 ‖xk − xk−1‖2 < +∞ and {xk : k ∈ N} converges to a critical point of F .



15

Proof. From Theorem 5.2, it suffices to prove that
∑∞

k=1 ‖xk − xk−1‖2 < +∞
and {xk : k ∈ N} is convergent. According to Proposition 2.4, we need to verify
Items (i)-(iii) of the proposition, the boundedness of {xk : k ∈ N} and that F is lower
semicontinuous.

First, the boundedness of {xk : k ∈ N} and lower semicontinuity of F follow from
Lemma 5.1 and Proposition 4.4, respectively. Items (i) and (iii) of Proposition 2.4
are direct consequence of Lemma 5.1 and Theorem 5.2. Proposition 2.4 (ii) can be
obtained by a proof similar to that of Lemma 4.7. Therefore, we complete the proof.

The convergence rate analysis of PGSA ML is almost the same as that of PGSA
in Theorem 4.9. Here, we omit the details and present the corresponding results in
the next theorem.

Theorem 5.4. Suppose that Assumptions 1-4 hold. Let {xk : k ∈ N} be generated
by PGSA ML and suppose that {xk : k ∈ N} converges to x⋆. Assume further that F
satisfies the KL property at x⋆ with φ(s) = ds1−θ for some d > 0 and θ ∈ [0, 1), then
Items (i)-(iii) of Theorem 4.9 hold.

6. Applications to sparse generalized eigenvalue problem. In this section,
we identify SGEP associated with a pair of symmetric positive semidefinite matrices as
a special case of problem (1.1) and apply our proposed algorithms. Then we establish
the global sequential (resp., subsequential) convergence of the sequence generated by
PGSA and PGSA ML (resp., PGSA NL) for SGEP. In addition, we prove that the
sequence generated by PGSA or PGSA ML converges R-linearly by establishing that
the KL exponent is 1

2 at any critical point of SGEP.
Assume that both A, B are n × n symmetric positive semidefinite matrices and

any r × r principal sub-matrix of B is positive definite for some integer r ∈ [1, n].
If there exist λ⋆ ∈ R and x⋆ ∈ Rn, such that Ax⋆ = λ⋆Bx⋆, then x⋆ is called the
generalized eigenvector with respect to the generalized eigenvalue λ⋆ of the matrix
pair (A,B). Obviously, the leading generalized eigenvector with respect to the largest
generalized eigenvalue can be obtained by solving the following optimization problem

(6.1) max

{
xTAx

xTBx
: ‖x‖2 = 1, xTBx 6= 0, x ∈ R

n

}
.

In the context of sparse modeling, it is natural to incorporate the sparsity constraint
into problem (6.1). This leads to the SGEP:

(6.2) max

{
xTAx

xTBx
: ‖x‖2 = 1, ‖x‖0 ≤ r, xTBx 6= 0, x ∈ R

n

}
,

where the ℓ0 function ‖·‖0 counts the number of nonzero components in a vector. The
SGEP covers several statical learning models, such as the sparse principle component
analysis [12, 47], sparse fisher discriminant analysis [11, 26], sparse sliced inverse
regression [10, 21] and so on. One can easily check that the optimal solution set of
SGEP is completely the same as that of the following minimization problem

(6.3) min

{
xTBx

xTAx
: ‖x‖2 = 1, ‖x‖0 ≤ r, xTAx 6= 0, x ∈ R

n

}
.

Thus, problem (6.3) is another formulation of SGEP. We also notice that problem
(6.3) is not a classical quadratic fractional problem due to its nonconvex constraints.
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In fact, problem (6.3) is a special case of the general optimization problem (1.1) with f
being the indicator function on the set {x ∈ Rn : ‖x‖0 ≤ r, ‖x‖2 = 1}, g(x) = xTAx,
h(x) = xTBx for x ∈ Rn. Therefore, the proposed PGSA and PGSA L can be directly
applied to problem (6.3). For convenience of presentation, we denote the constraint
set {x ∈ R

n : ‖x‖0 ≤ r, ‖x‖2 = 1} in problem (6.3) by C and define G : Rn → R at
x ∈ Rn as

G(x) :=





xTBx

xTAx
, if x ∈ C and xTAx 6= 0,

+∞, else.

6.1. Critical points of problem (6.3). In this subsection, we have a closer look
at the critical points of problem (6.3). We begin with the following lemma concerning
the Fréchet subdifferential of the indicator function ιC .

Lemma 6.1. Let x ∈ C and Λ be the support of x, then the following statements
hold:

(i) ∂̂ιC(x) =

{
{v ∈ Rn : v = tx, t ∈ R}, if ‖x‖0 < r,

{v ∈ Rn : vΛ = txΛ, t ∈ R}, else.

(ii) For any v ∈ ∂ιC(x), there exists t ∈ R, such that vΛ = txΛ.

(iii) If r = n, i.e., C = {x ∈ Rn : ‖x‖2 = 1}, then ∂̂ιC(x) = ∂ιC(x) = {v ∈ Rn : v =
tx, t ∈ R}.

The proof of Lemma 6.1 is given in Appendix C. With the help of Lemma 6.1,
we characterize the relationship between the critical points of G and the generalized
eigenvectors of matrix pair (A,B) or the related sub-matrix pair of (A,B).

Proposition 6.2. Let x⋆ ∈ dom(G) and Λ be the support of x⋆. Then x⋆ is a
critical point of G if and only if one of the following statements hold:

(i) |Λ| < r and x⋆ is a unit generalized eigenvector with respect to the generalized
eigenvalue 1/G(x⋆) of the matrix pair (A,B), i.e., Bx⋆ = G(x⋆)Ax⋆;

(ii) |Λ| = r and x⋆Λ is a unit generalized eigenvector with respect to the generalized
eigenvalue 1/G(x⋆) of the matrix pair (AΛ, BΛ), i.e., BΛx

⋆
Λ = G(x⋆)AΛx

⋆
Λ.

Proof. According to Definition 3.4, x⋆ is a critical point of G if and only if

(6.4) 0 ∈ ∂̂ιC(x⋆) + 2Bx⋆ − 2G(x⋆)Ax⋆.

We first prove Item (i). Assume that |Λ| < r. By Lemma 6.1, the inclusion (6.4) is
equivalent to the following relation

(6.5) d1x
⋆ + 2Bx⋆ − 2G(x⋆)Ax⋆ = 0

for some d1 ∈ R. Multiplying (x⋆)T on both sides of the above equality, we get that
d1 = 0. This proves Item (i).

Next, we prove Item (ii). Suppose that |Λ| = r. Invoking Lemma 6.1 in this case,
inclusion (6.4) implies that there exist d2 ∈ R and v ∈ Rn such that vΛ = d2x

⋆
Λ and

(6.6) v + 2Bx⋆ − 2G(x⋆)Ax⋆ = 0.

This yields that

d2x
⋆
Λ + 2BΛx

⋆
Λ − 2G(x⋆)AΛx

⋆
Λ = 0.

Multiplying (x⋆Λ)T on both sides of the above equality, we immediately obtain d2 = 0
and

(6.7) BΛx
⋆
Λ = G(x⋆)AΛx

⋆
Λ.
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Conversely, if x⋆ satisfies (6.7), set v ∈ Rn to be the vector that vΛ = 0 and

vΛC = 2(G(x⋆)Ax⋆−Bx⋆)ΛC . Then, v ∈ ∂̂ιC(x⋆) and (6.6) holds, that imply inclusion
(6.4). We then complete the proof.

6.2. Implementation and convergence of PGSA and PGSA L for prob-
lem (6.3). In this subsection, we discuss the implementation of PGSA and PGSA L
for problem (6.3) and then establish their convergence results.

We note that the proposed algorithms for problem (6.3) mainly involve the com-
putation of proximity operator associated with ιC and the gradients of xTAx and
xTBx. Thus, the computational cost in these algorithms relies heavily on proxιC ,
which is exactly the projection operator onto C, denoted here by projC . We next
show that projC has a closed form and thus can be efficiently computed. To this end,
we first recall the projection operator onto the set {x ∈ Rn : ‖x‖0 ≤ r}, denoted by
Tr(x). It is well-known that for x ∈ Rn, (Tr(x))i = xi for the r largest components
in absolute value of x and (Tr(x))i = 0 else. Since the r largest components may not
be uniquely defined, Tr is a set-valued operator. With the help of Tr and Proposi-
tion 4.3 in [25], we can immediately obtain the closed form of projC in the following
proposition.

Proposition 6.3. Given x ∈ Rn, then

projC(x) =

{
{ y
‖y‖2

: y ∈ Tr(x)}, if x 6= 0,

C, else.

Next, we investigate the convergence property of PGSA and PGSA L for problem
(6.3) based on the general convergence results presented in Section 4.3 and Section
5. To this end, we shall verify Assumptions 1-4 hold for problem (6.3) and G is a
KL function. First, since BΛ is symmetric positive definite for any subset Λ ⊆ Nn

with |Λ| ≤ r, then ιC(x) + xTBx does not attain 0 for all x ∈ Rn. Second, the level
boundedness of G follows from the boundedness of C. In addition, it is obvious that
ιC is locally Lipschitz continuous on C and xTAx is continuously differentiable with
a Lipschitz continuous gradient. Finally, we show that in the following proposition G
is a semialgebraic function and thus satisfies the KL property. We refer readers to [3,
Section 2.2] for the definition of the semialgebraic function and its relation to the KL
property.

Proposition 6.4. G is a semialgebraic function.
Proof. According to the definition of the semialgebraic function, it suffices to

show that Graph(G) is a semialgebraic set. By the definition of G and the positive
semidefinite of A, we have

Graph(G)

=

{
(x, s) ∈ R

n × R : ‖x‖2 = 1, ‖x‖0 ≤ r,
xTBx

xTAx
= s, xTAx 6= 0

}

= {(x, s) ∈ R
n × R : ‖x‖22 = 1, ‖x‖0 ≤ r, xTBx− sxTAx = 0, xTAx > 0}

=
⋃

Λ⊆Nn

|Λ|=n−r

{(x, s) ∈ R
n × R : ‖x‖22 = 1, xΛ = 0, xTBx− sxTAx = 0,−xTAx < 0},

which implies that Graph(G) is a semialgebraic subset of Rn+1. This completes the
proof.
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Therefore, in view of Theorems 4.8, 5.2 and 5.3, we immediately obtain the fol-
lowing two theorems regarding the convergence of PGSA and PGSA L for problem
(6.3).

Theorem 6.5. Let {xk : k ∈ N} be generated by PGSA and PGSA ML (PGSA L
with N = 0) for problem (6.3). Then {xk : k ∈ N} converges globally to a critical
point of G.

Theorem 6.6. Let {xk : k ∈ N} be generated by PGSA NL (PGSA L with
N > 0) for problem (6.3). Then {xk : k ∈ N} is bounded and any of its accumulation
points is a critical point of G.

6.3. Convergence rate of PGSA and PGSA ML for problem (6.3). In
this subsection, we consider the convergence rate of {xk : k ∈ N} generated by PGSA
and PGSA ML for problem (6.3). By Theorem 6.5, the sequence {xk : k ∈ N}
converges to x⋆, which is a critical point of G. According to Theorems 4.9 and 5.4, we
can further estimate the convergence rate of {xk : k ∈ N} by showing that G satisfies
the KL property at x⋆ with φ(s) = ds1−θ for some d > 0 and θ ∈ [0, 1).

To this end, we first prove that the objective function of the generalized eigenvalue
problem (without sparsity constraint) satisfies the KL property with the correspond-

ing φ(s) = ds
1
2 for some d > 0 in the following proposition.

Proposition 6.7. Given D ∈ Sm+ and E ∈ Sm++, let ϕ : Rm → R be defined at
x ∈ Rm as

(6.8) ϕ(x) :=

{
xTEx
xTDx , if ‖x‖2 = 1 and xTDx 6= 0,

+∞, else.

Then ϕ satisfies the KL property at any x̂ ∈ dom(ϕ) with the corresponding φ(s) = ds
1
2

for some d > 0, i.e., there exist d > 0, η ∈ (0,+∞] and a neighborhood U of x̂, such
that for any x ∈ U ∩ {x ∈ Rm : ϕ(x̂) < ϕ(x) < ϕ(x̂) + η},

dist(0, ∂ϕ(x)) ≥ 2

d

√
ϕ(x) − ϕ(x̂).

Proof. Denote by λi the i-th largest eigenvalue of E−1D for i ∈ Nm. If λi ≡ λ1
for i ∈ Nm, then it is trivial that ϕ(x) ≡ 1/λ1 for x ∈ dom(ϕ) and we immediately
prove this proposition. Below we assume that λi 6≡ λ1. By Lemma 6.1 (iii) and the
sum rule of subdifferential, we have for any x ∈ dom(ϕ) that

(6.9) ∂ϕ(x) =

{
tx+

2Ex− 2ϕ(x)Dx

xTDx
: t ∈ R

}
.

In view of Definition 3.4 with its remark and invoking again Lemma 6.1 (iii), we see
that x ∈ dom(ϕ) is a critical point of ϕ if and only if 0 ∈ ∂ϕ(x). Then it suffices to
prove that ϕ has the KL property with an exponent 1

2 at any of its critical points,
since a proper lower semicontinuous function always satisfies the KL property with
an arbitrary exponent in [0, 1) at any point where the limiting subdifferential does
not contain 0, see, for example, [20, Lemma 2.1].

Let x̂ ∈ Rn be a critical point of ϕ. From Proposition 6.2, we have E−1Dx̂ = λj x̂

and λj = 1/ϕ(x̂) > 0 for some j ∈ Nm. Using the fact that 〈x, 2Ex−2ϕ(x)Dx
xTDx 〉 = 0, we

deduce from (6.9) that

dist(0, ∂ϕ(x)) =

∥∥∥∥
2Ex− 2ϕ(x)Dx

xTDx

∥∥∥∥
2

.
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Let U be a neighborhood of x̂ such that for all x ∈ U , there hold 1
2 x̂

TDx̂ ≤ xTDx ≤
2x̂TDx̂, 1

2 x̂
TEx̂ ≤ xTEx ≤ 2x̂TEx̂ and xT x̂ 6= 0. Then, for any x ∈ U ∩ dom(ϕ), it

holds that

(6.10) dist(0, ∂ϕ(x)) ≥
√
µ

x̂TDx̂
‖Ex− ϕ(x)Dx‖E−1 ,

where µ > 0 is the smallest eigenvalue of E. By a direct computation we have that

‖Ex− ϕ(x)Dx‖2E−1 = (Ex− ϕ(x)Dx)TE−1(Ex− ϕ(x)Dx)

=
(xTEx)3

(xTDx)2

(
xTDE−1Dx

xTEx
−
(
xTDx

xTEx

)2
)

≥ (x̂TEx̂)3

32(x̂TDx̂)2

(
xTDE−1Dx

xTEx
−
(
xTDx

xTEx

)2
)
.(6.11)

On the other hand, for x ∈ U with ϕ(x) > ϕ(x̂), we get that

ϕ(x) − ϕ(x̂) =
xTEx

xTDx
− 1

λj
=

xTEx

λjxTDx

(
λj −

xTDx

xTEx

)

≤ 4x̂TEx̂

λj x̂TDx̂

(
λj −

xTDx

xTEx

)
.(6.12)

In view of (6.10), (6.11) and (6.12), we can obtain the desired result by showing
that there exist d1, η > 0 such that

(6.13)
xTDE−1Dx

xTEx
−
(
xTDx

xTEx

)2

≥ d1
(
λj −

xTDx

xTEx

)

whenever x ∈ U and ϕ(x̂) < ϕ(x) < ϕ(x̂) + η. To this end, we first introduce an
equivalent formulation of (6.13). Since E ∈ Sm++, we know that E = HHT for some
m ×m invertible matrix H . The fact D ∈ S

m
+ indicates that H−1DH−T ∈ S

m
+ and

thus there exists an orthonormal matrix Q such that H−1DH−T = QΣQT , where Σ =
diag{λ1, λ2, · · · , λm}. Then, a direct computation yields that xTEx = ‖QTHTx‖22,
xTDx = (QTHTx)T ΣQTHTx and xTDE−1Dx = (QTHTx)T Σ2QTHTx. Using the
above relations, we deduce that (6.13) is equivalent to

(6.14) zTΣ2z − (zTΣz)2 ≥ d1zT (λjI − Σ)z,

where z = QTHTx/‖QTHTx‖2.

Now it remains to show (6.14). Let d1 := 1
2 min{|λi − λj | : λi 6= λj} and η :=

d1/λ
2
j . For x ∈ {x ∈ Rm : ϕ(x̂) < ϕ(x) < ϕ(x̂) + η}, we see that

0 < zT (λjI − Σ)z =
1

ϕ(x̂)
− 1

ϕ(x)
<

η

ϕ2(x̂)
= d1.
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Using this fact and invoking ‖z‖2 = 1, we further have

zTΣ2z − (zTΣz)2 = zT (λjI − Σ)2z − (zT (λjI − Σ)z)2

≥ zT (λjI − Σ)2z − d1zT (λjI − Σ)z

= zT (λjI − Σ)((λj − d1)I − Σ)z

=

m∑

i=1

(λj − λi)(λj − λi − d1)z2i

≥ d1
m∑

i=1

(λj − λi)z2i

= d1z
T (λjI − Σ)z.

We complete the proof.
Now, we are ready to prove that G satisfies the KL property with the correspond-

ing φ(s) = ds
1
2 for some d > 0.

Proposition 6.8. The function G satisfies the KL property at any x̃ ∈ dom(G)

with the corresponding φ(s) = ds
1
2 for some d > 0.

Proof. Let Λ̃ := supp(x̃) and it is clear that |Λ̃| ≤ r. Given Λ ⊆ Nn, let ϕΛ

be the function ϕ which is defined in (6.8) with respect to D = AΛ, E = BΛ. By
Proposition 6.7, for any Λ ⊆ Nn, there exist dΛ > 0, ηΛ > 0 and δΛ > 0 such that for
all z ∈ U(x̃Λ, δΛ) ∩ {z ∈ R|Λ| : ϕΛ(x̃Λ) < ϕΛ(z) < ϕΛ(x̃Λ) + ηΛ}

dist(0, ∂ϕΛ(z)) ≥ 2

dΛ

√
ϕΛ(z)− ϕΛ(x̃Λ).

Let d := max{dΛ : Λ̃ ⊆ Λ ⊆ Nn, |Λ| ≤ r}, η := min{ηΛ : Λ̃ ⊆ Λ ⊆ Nn, |Λ| ≤ r}
and δ := min{δ1, δ2} with δ1 := min{dΛ : Λ̃ ⊆ Λ ⊆ Nn, |Λ| ≤ r} and δ2 := 1

2 min{|x̃i| :
i ∈ Λ̃}. Take any x ∈ U(x̃, δ) ∩ {x ∈ Rn : G(x̃) < G(x) < G(x̃) + η} and set
Λ := supp(x). Then we immediately see that Λ̃ ⊆ Λ with |Λ| ≤ r, G(x) = ϕΛ(xΛ)
and G(x̃) = ϕΛ(x̃Λ). In addition, one can check that xΛ ∈ U(x̃Λ, δΛ) ∩ {z ∈ R|Λ| :
ϕΛ(x̃Λ) < ϕΛ(z) < ϕΛ(x̃Λ) + ηΛ}. Also, by Lemma 6.1, we have

dist(0, ∂G(x)) ≥ dist

(
0,

{
txΛ +

2BΛxΛ − 2G(x)AΛxΛ
xTΛAΛxΛ

: t ∈ R

})

= dist(0, ∂ϕΛ(xΛ)).(6.15)

Using the aforementioned facts, we finally have

dist(0, ∂G(x)) ≥ dist(0, ∂ϕΛ(xΛ)) ≥ 2

dΛ

√
ϕΛ(xΛ)− ϕΛ(x̃Λ) ≥ 2

d

√
G(x) −G(x̃).

This completes the proof.
With the help of Theorems 4.9, 5.4, 6.5 and Proposition 6.8, we immediately

establish the main theorem of this subsection regarding the convergence rate of PGSA
and PGSA ML.

Theorem 6.9. The sequence {xk : k ∈ R} generated by PGSA or PGSA ML
converges R-linearly to a critical point of G.

If the initial point is close enough to a global minimizer of G, we further have the
following convergence result, concerning PGSA and PGSA ML for problem (6.3).

Corollary 6.10. Let x̃ ∈ Rn be a global minimizer of G. Then there exists
δ > 0, such that the sequence {xk : k ∈ N} generated by PGSA or PGSA ML for
problem (6.3) with ‖x0 − x̃‖2 < δ converges R-linearly to a global minimizer of G.
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Proof. By Theorem 6.5 and Theorem 2.12 in [3], there exists δ > 0, such that
{xk : k ∈ N}, which starts from x0 satisfying ‖x0 − x̃‖2 < δ, converges to a global
minimizer x̄ of G. We then obtain the desired result immediately from Theorem 6.9.

To close this section, we point out the relation between PGSA for problem (6.3)
and an existing algorithm for SGEP. Very recently, the authors in [40] propose a
truncated Rayleigh flow method (TRFM) for solving SGEP and show that TRFM
converges R-linearly to a global minimizer of G when the initial point x0 is close
enough to that global minimizer. By appropriate reformulations, we observe that the
iteration procedure of TRFM essentially coincides with that of PGSA for problem
(6.3) with a constant step size in (0, 1/L). However, there are great differences between
the convergence results and the proof of PGSA and TRFM. First, we not only establish
the convergence of PGSA with the initial point close to a global minimizer in Corollary
6.10, but also prove that PGSA converges R-linearly to a critical point for arbitrary
starting points. On the other hand, there is no convergence guarantee in [40] for
TRFM starting from an arbitrary point. Second, our convergence analysis for PGSA
is primarily based on the KL property of the objective in problem (6.3), while the
convergence of TRFM is established using some mathematical tools in probability
and statistics.

7. Numerical experiments. In this section, we conduct some numerical exper-
iments to test the efficiency of our proposed algorithms, namely, PGSA, PGSA ML
and PGSA NL. We consider three concrete examples of problem (1.1): the sparse
Fisher’s discriminant analysis (SFDA), the sparse sliced inverse regression (SSIR) and
the ℓ1/ℓ2 sparse signal recovery. The first two problems are special cases of SGEP,
while the third problem is another application of problem (1.1). All the experiments
are conducted in Matlab R2019b on a desktop with an Intel(R) Core(TM) i5-9500
CPU (3.00GHz) and 16GB of RAM.

7.1. Sparse Fisher’s discriminant analysis and sliced inverse regression.
In this subsection, we focus on two special instances of SGEP: SFDA and SSIR. We
compare the performance of the proposed algorithms with a commonly used algo-
rithm for SGEP, Iteratively Reweighted Quadratic Minorization (IRQM) [38], which
approximates the ℓ0-norm by some continuous surrogate functions and solves the
approximation problem via a quadratic majorization-minimization approach. Three
versions of IRQM, namely, IRQM-log, IRQM-Lp, IRQM-exp are developed in [38] by
using the respectively surrogate functions.

We describe the implementation details of the aforementioned algorithms below.
It is clear that the Lipschitz constant L = ‖B‖2 in SGEP1 (by letting g(x) = 1

2x
TAx

and h(x) = 1
2x

TBx). For PGSA, we set αk ≡ 0.99/L for k ∈ N. For PGSA ML and
PGSA NL, we set a = 10−3, α = 0.99/L, ᾱ = 108, and η = 0.5. Also, N is set to be
4 in PGSA NL. In addition, we choose α0,0 = 0.99/L and αk,0 via formula (5.2) for
k ∈ N. The Matlab source code of IRQM is available online2. Since it corporates a
term ρ‖ · ‖0 for some ρ > 0 to promote the sparsity rather than directly controlling
the sparsity, we use a bisection method to find a proper ρ with which IRQM produces
a solution with desirable sparsity after hard-thresholding. For other parameters of
IRQM, we simply adopt the suggested setting in [38, Section V.A].

The proposed algorithms are initialized at an x0 ∈ Rn with x0i = 1/
√
r for i ∈ Nr

1Specifically, we use eigs(B,1,’largestabs’,’IsSymmetricDefinite’,1) to compute ‖B‖2.
2https://github.com/junxiaosong/junxiaosong.github.io/tree/master/code
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and x0i = 0 otherwise, while they are all terminated when the number of iterations
hits 2n or ‖xk − xk−1‖2 ≤ 10−6. Following [38], the initial point x0 in IRQM is
chosen randomly with each entry following a standard Gaussian distribution and
then normalized such that (x0)TBx0 = 1, while it is terminated once the number of
iterations exceeds 1000 or the successive changes of the objective are less than 10−5.
We remark that IRQM requires the matrix B ∈ Sn++ in problem (6.3). However, as it
will be seen later, the corresponding B of SFDA or SSIR is positive semidefinite but
B /∈ Sn++. For fair comparison, in the experiments we add 0.5I to B so that it turns
into positive definite and IRQM can be applied.

First, we consider SFDA. Given p data samples {z1, z2, . . . , zp} consisting of two
distinct classes with n features, let Ik ⊆ N be the index set of samples in the k-th class
and denote |Ik| by pk (k = 1 or 2). The within-class and between-class covariance
matrices are defined as:

Σ̂ω :=
1

p

2∑

k=1

∑

i∈Ik

(zi − ûk)(zi − ûk)T and Σ̂b :=
1

p

2∑

k=1

pkû
k(ûk)T ,

where ûk :=
∑

j∈Ik
zj/pk for k = 1, 2. For an integer r ∈ [1, n], the SFDA seeks a

sparse projection vector by solving problem (6.3) with A = Σ̂b and B = Σ̂ω.
In the experiments, we use a simulation setting similar to that of [40]. The samples

of the k-th class are randomly generated following a Gaussian distribution with mean
uk and covariance Σ for k = 1 and 2. We set u1 = 0n, u2j = 0.5 for j ∈ {2, 4, . . . , 40}
and u2j = 0 otherwise. Meanwhile, let Σ be a block diagonal matrix with five blocks,
each of which is in the dimension (n/5) × (n/5). The (j, j′)-th entry of each block
takes value 0.8|j−j′|. We fix p = 1000, p1 = p2 = 500 and use different values for
n ∈ {1000, 1500, 2000}, while the sparsity rate r/n is varied from {0.05, 0.1, 0.2} for a
fixed n. For each (n, r), we generate 100 instances of two-class dataset randomly as
described above.
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(a) n = 1000, r = 100
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(c) n = 2000, r = 200

Fig. 1. Plots of ‖xk − x⋆‖2 (in log scale) for SFDA with different (n, r)

Table 1 reports the computational results averaged over 100 random instances.
The two columns for a given (n, r) give the averaged objective value and CPU time
(in seconds) of each algorithm. The averaged time tL of computing L = ‖B‖2 is not
included in the CPU time column but is reported independently for each dimension n.
We observe that the proposed algorithms substantially outperform the three IRQM
algorithms in terms of CPU time, while the objective values found by the competing
algorithms are comparable. In addition, the line-search algorithms PGSA ML and
PGSA NL perform slightly better than PGSA. Next, we study the convergence rate
of the proposed algorithms. In view of Theorem 6.9, one can expect to see R-linear
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Table 1
Computational results for SFDA

SFDA results
n = 1000 n = 1500 n = 2000

tL = 0.01 tL = 0.04 tL = 0.08

r/n Alg. Obj Time Obj Time Obj Time

0.05

PGSA 0.47 0.011 0.42 0.024 0.41 0.044
PGSA ML 0.43 0.007 0.41 0.016 0.39 0.030
PGSA NL 0.43 0.006 0.41 0.013 0.39 0.024
IRQM-log 0.44 0.494 0.42 1.079 0.41 2.153
IRQM-Lp 0.45 0.480 0.42 1.058 0.41 2.064
IRQM-exp 0.44 0.494 0.42 1.074 0.41 2.155

0.1

PGSA 0.41 0.020 0.39 0.050 0.37 0.110
PGSA ML 0.40 0.016 0.37 0.038 0.34 0.082
PGSA NL 0.40 0.014 0.37 0.031 0.34 0.064
IRQM-log 0.41 0.437 0.39 0.963 0.37 1.781
IRQM-Lp 0.41 0.422 0.39 0.920 0.37 1.707
IRQM-exp 0.41 0.440 0.39 0.964 0.37 1.790

0.2

PGSA 0.38 0.045 0.35 0.136 0.32 0.314
PGSA ML 0.37 0.037 0.34 0.103 0.30 0.194
PGSA NL 0.37 0.028 0.34 0.076 0.30 0.145
IRQM-log 0.38 0.399 0.35 0.902 0.33 1.689
IRQM-Lp 0.39 0.383 0.35 0.859 0.33 1.607
IRQM-exp 0.38 0.404 0.35 0.906 0.33 1.697

convergence of the sequence generated by PGSA and PGSA ML. We plot ‖xk −
x⋆‖2 (in logarithmic scale) against the number of iterations in Figure 1, where x⋆ is
the approximated solution produced by the corresponding algorithm. It is obvious
that the sequence generated by PGSA ML or PGSA NL converges much faster than
that by PGSA. As can be seen from Figure 1, the sequence generated by PGSA or
PGSA ML appears to converge R-linearly, which confirms with Theorem 6.9. Finally,
we remark that although we have no theoretical results concerning the convergence
rate or even convergence of the whole sequence generated by PGSA NL, that sequence
also seems to converge R-linearly and its convergence rate is slightly faster than that
of PGSA ML.

Now we consider SSIR for the model Y = ψ(vT1 X, ..., v
T
kX, ǫ), where X is n-

dimensional covariates, Y is a univariate response, ǫ is the stochastic error independent
of X , and ψ is an unknown link function. Under regularity conditions, the first
leading eigenvector of the subspace spanned by v1, · · · , vk can be identified by solving
problem (6.3) with A = Σ̂E(X|Y ), B = Σ̂X , where Σ̂X and Σ̂E(X|Y ) denote the sample
covariance matrix of X and the conditional expectation E(X |Y ) respectively. The
interested readers can see [40] and reference therein for more details.

Below we compare the proposed algorithms with IRQM for solving SSIR on 6
real datasets downloaded from scikit-feature selection repository3, whose character-
istics are summarized in Table 2. Also, we set r = ⌈0.01n⌉ for each dataset. The

3https://jundongl.github.io/scikit-feature/datasets.html
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computation results are presented in Table 3. The objective values and CPU time (in
seconds) of the competing algorithms are listed in the two columns for each dataset.
Note that the time tL of computing L = ‖B‖2 is not included in the time column but
is reported independently for each dataset.

One can observe that PGSA ML and PGSA NL significantly outperform the three
IRQM algorithms in terms of CPU time. Note that although PGSA substantially out-
performs IRQM, it still costs much more CPU time than PGSA ML and PGSA NL.
Since L is large for the real datasets used in this experiment, it is not surprising that
PGSA with a small step size αk < 1/L has slower convergence than its line-search
counterparts.

Table 2
Characteristics of 6 datasets from scikit-feature selection repository

Dataset BASEHOCK gisette Prostate GE

Number of samples p 1993 7000 102
Number of features n 4862 5000 5966

Dataset leukemia ALLAML arcene

Number of samples p 72 72 200
Number of features n 7070 7129 10000

Table 3
Computational results for SSIR

BASEHOCK gisette Prostate GE

tL = 0.16 tL = 0.22 tL = 0.23

Alg. Obj Time Obj Time Obj Time

PGSA 2.68 0.41 1.44 0.55 1.16 4.18
PGSA ML 2.25 0.03 1.36 0.05 1.10 0.07
PGSA NL 2.26 0.06 1.36 0.02 1.10 0.05
IRQM-log 2.67 6.27 1.58 6.54 1.17 10.03
IRQM-Lp 2.77 5.56 1.59 6.32 1.18 9.81
IRQM-exp 2.65 6.29 1.58 6.54 1.17 10.11

leukemia ALLAML arcene

tL = 0.31 tL = 0.33 tL = 0.65

Alg. Obj Time Obj Time Obj Time

PGSA 1.05 7.41 1.06 5.63 1.29 24.01
PGSA ML 1.04 0.08 1.04 0.08 1.18 0.24
PGSA NL 1.03 0.13 1.04 0.07 1.18 0.21
IRQM-log 1.07 14.19 1.07 16.27 1.58 46.83
IRQM-Lp 1.07 13.71 1.08 16.40 1.76 41.17
IRQM-exp 1.07 14.20 1.07 16.74 1.58 46.54

To conclude, our experiments for SGEP on both synthetic and real datasets
demonstrate the efficiency of the proposed algorithms for solving SGEP.
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7.2. ℓ1/ℓ2 sparse signal recovery. In this subsection, we consider the ℓ1/ℓ2
based sparse signal recovery problem, which uses the ℓ1/ℓ2 regularization to find a
sparse solution of the linear system Ax = b, where A ∈ Rm×n and b ∈ Rm are given.
In [33], this problem is formulated into

(7.1) min

{‖x‖1
‖x‖2

: Ax = b, x ≤ x ≤ x, x ∈ R
n

}
,

where x, x are the lower and upper bounds for the underlying signal. It is not hard
to see that problem (7.1) is a special case of problem (1.1) with h = 0, g = ‖ · ‖2
and f = ‖ · ‖1 + ιS1

, with S1 = {x ∈ Rn : Ax = b, x ≤ x ≤ x}. Due to h = 0,
PGSA ML and PGSA NL coincide with PGSA for problem (7.1). In order to apply
the line-search scheme, we introduce the following penalty problem of (7.1):

(7.2) min

{
λ‖x‖1 + 1

2‖Ax− b‖22
‖x‖2

: x ≤ x ≤ x, x ∈ R
n

}
,

where λ > 0 denotes the penalty parameter. Clearly, problem (7.2) is also a special
instance of problem (1.1) with g = ‖ · ‖2, h = 1

2‖A · −b‖22 and f = λ‖ · ‖1 + ιS2
, where

S2 = {x ∈ Rn : x ≤ x ≤ x}.
In the experiments, we adopt a simulation setting similar to that of [33]. The

matrix A is generated by oversampled discrete cosine transformation (DCT), i.e.,
A = [a1, a2, · · · , an] ∈ Rm×n with

aj =
1√
m

cos

(
2πwj

F

)
, j = 1, 2, · · · , n.

Here w ∈ Rm is a random vector following the uniform distribution in [0, 1]m and
F > 0 is a parameter measuring how coherent the matrix is. For the ground truth
signal x̃ ∈ Rn, we randomly choose a support set of size K and generate x̃ supported
on this set with i.i.d standard Gaussian entries N (0, 1). Then x̃ is normalized to
have unit norm and correspondingly we set x = −1n and x = 1n, where 1n denotes
the n-dimensional vector with all entries being 1. Throughout this experiment, we
consider the above matrix A of size (m,n) = (64, 1024), F ∈ {1, 5} and the ground
truth x̃ has sparsity K = 12.

We consider in the experiments PGSA for problem (7.1) and its line-search coun-
terparts for problem (7.2) with λ = 8 × 10−5 as well as the alternating direction
method of multipliers for solving problem (7.1) (L1/L2-ADMM), which is recently
proposed in [33]. The implementation details of these algorithms are discussed below.
For computing the proximity operator of α‖ · ‖1 + ιS1

with α > 0 in PGSA, we re-
formulate the related problem into a quadratic programming with linear constraints
and then solve it with a commercial software called Gurobi4. Note that PGSA ML
and PGSA NL both involve the proximity operator of f = αλ‖ · ‖1 + ιS2

with α > 0,
which has a closed form solution. Let z ∈ Rn, one can check that for j = 1, 2, · · · , n,

(proxαλ‖·‖1+ιS2
(z))j =





xj , ẑj < xj ,

ẑj, x ≤ ẑj ≤ xj ,
xj , ẑj > xj ,

4https://www.gurobi.com/
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where ẑj = max{0, |zj|−αλ} sign(zj). For PGSA ML and PGSA NL, the parameters
are set the same as those in Section 7.1 except that L = ‖A‖22 and α = α0,0 = 1.99/L,
since f is convex in problem (7.2). The Matlab source code for L1/L2-ADMM is
available online5. Following the notations in [33], we set the parameters ρ1 = ρ2 =
2000 for L1/L2-ADMM.

To obtain an initial point for the competing algorithms, we solve the ℓ1-based
sparse recovery problem (which replace ‖·‖1/‖·‖2 by ‖·‖1 in problem (7.1)) by Gurobi.
All the algorithms are terminated once the iteration number exceeds 10n = 10240 or
‖xk − xk−1‖2/‖xk‖2 ≤ 10−8.

The accuracy of the algorithms is evaluated in terms of success rate, defined as
the number of successful trials over the total number of trials. A success is declared
when the relative error of the output x⋆ to the ground truth x̃ is less than 10−3, that
is, ‖x⋆ − x̃‖2/‖x̃‖2 < 10−3. For each F , we run all the competing algorithms for 100
trials. Table 4 summarizes the computational results by listing the value of ‖·‖1/‖·‖2,
the averaged CPU time (in seconds) and the success rate for all the algorithms. The
CPU time for computing the initial point is not included in the time column, since
all the algorithms use the same initial guess. We can see the success rate and the
value of ‖ · ‖1/‖ · ‖2 obtained by PGSA ML and PGSA NL are comparable to those
of PGSA and L1/L2-ADMM, which are developed for problem (7.1). In terms of
CPU time, PGSA ML and PGSA NL substantially outperform L1/L2-ADMM, while
PGSA performs slightly better than L1/L2-ADMM. These results demonstrate the
efficiency of the proposed algorithms for ℓ1/ℓ2 sparse signal recovery.

Table 4
Computational results for ℓ1/ℓ2 sparse signal recovery

F = 1 F = 5

Alg. Obj Time Success Obj Time Success

L1/L2-ADMM 2.845 0.212 97% 2.852 0.278 86%
PGSA 2.843 0.121 97% 2.850 0.148 86%
PGSA ML 2.845 0.052 97% 2.854 0.064 86%
PGSA NL 2.844 0.048 97% 2.854 0.055 86%

8. Conclusion. In this paper, we study a class of single-ratio fractional opti-
mization problems that appears frequently in applications. The numerator of the
objective is the sum of a nonsmooth nonconvex function and a nonconvex smooth
function, while the denominator is a nonsmooth convex function. We derive a first-
order necessary optimality condition for this problem and develop for it first-order
algorithms, namely, PGSA, PGSA ML and PGSA NL. We show the subsequential
convergence of the sequence generated by the proposed algorithms under mild assump-
tions. Moreover, we establish global convergence of the whole sequence generated by
PGSA or PGSA ML and estimate the convergence rate by additional assumptions
on the objective. The proposed algorithms are further applied to solving the sparse
generalized eigenvalue problems and their convergence results for the problem are
gained according to the general convergence theorems for them. Finally, we conduct
some preliminary numerical experiments to illustrate the efficiency of the proposed
algorithms.

5https://sites.google.com/site/louyifei/Software
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Appendix A. Proof of Proposition 2.2.
Proof. First we consider the case where x is an isolated point of dom(ρ). Since

a2 = f2(x) > 0 and f2 satisfies the calmness condition at x, we deduce that x is

an also an isolated point of dom(f1). Hence, in this case it is trivial that ∂̂ρ(x) =

∂̂(a2f1 − a1f2) = Rn. Next we consider the case where x is not an isolated point of
dom(ρ). For any u ∈ dom(ρ) and v ∈ Rn, a direct computation yields

f1(u)
f2(u)

− a1

a2
− 〈v, u − x〉

‖u− x‖2
=
a2f1(u)− a1f2(u)− 〈a22v, u − x〉

a22‖u− x‖2
+R(x, u),

where R(x, u) = (a2− f2(u))(a2f1(u)− a1f2(u))/(a22f2(u)‖u− x‖2). Since f2 satisfies
the calmness condition and f1 is continuous at x, we get that lim

u→x
u∈dom(f1)

R(x, u) = 0.

Noting this fact and by the definition of Fréchet subdifferential, we have

∂̂ρ(x) =




v ∈ R

n : lim inf
u→x
u6=x

u∈dom(ρ)

f1(u)
f2(u)

− a1

a2
− 〈v, u − x〉

‖u− x‖2
≥ 0





=




v ∈ R

n : lim inf
u→x
u6=x

u∈dom(f1)

a2f1(u)− a1f2(u)− 〈a22v, u− x〉
a22‖u− x‖2

≥ 0





=
∂̂(a2f1 − a1f2)(x)

a22
.

We complete the proof.

Appendix B. Proof of Proposition 3.1.
Proof. We only need to prove the proposition holds for local minimizers, since

the conclusion for global minimizers can be proven similarly.
Suppose x⋆ is a local minimizer of problem (1.1). Then, there exists δ > 0 such

that for any x ∈ B(x⋆, δ) ∩ dom(F ), there holds

(B.1) 0 ≤ f(x) + h(x)

g(x)
− f(x⋆) + h(x⋆)

g(x⋆)
.

This indicates that

(B.2) 0 ≤ f(x) + h(x)− f(x⋆) + h(x⋆)

g(x⋆)
g(x) = f(x) + h(x)− c⋆g(x)

for all x ∈ B(x⋆, δ) ∩ dom(F ), since g(x) > 0. Due to the fact that the objective
function value of problem (3.2) at x⋆ is 0, we have that x⋆ is a local minimizer of
problem (3.2).

Conversely, if x⋆ is a local minimizer of problem (3.2), then (B.2) holds for x ∈
B(x⋆, δ)∩dom(F ) with some δ > 0. By simple calculation, we obtain that (B.1) holds
for x ∈ B(x⋆, δ)∩dom(F ). This implies that x⋆ is a local minimizer of problem (1.1).
We then complete the proof.

Appendix C. Proof of Lemma 6.1.
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Proof. By the definition of Fréchet subdifferential, we have that

∂̂ιC(x) =




v ∈ R

n : lim inf
y→x
y 6=x
y∈C

〈v, x− y〉
‖x− y‖2

≥ 0




.

Let Λ := supp(x). We first prove Item (i). In the case that |Λ| = r, there exists a
neighborhood U of x, such that supp(y) = Λ for all y ∈ U ∩C. Thus, we obtain that

∂̂ιC(x) =




v ∈ R

n : lim inf
yΛ→xΛ

yΛ 6=xΛ

‖yΛ‖2=1

〈vΛ, xΛ − yΛ〉
‖xΛ − yΛ‖2

≥ 0





= {v ∈ R
n : vΛ = txΛ, t ∈ R}.

Next we consider the case when |Λ| < r. For any t ∈ R, we have

lim
y→x
y∈C

∣∣∣∣
〈tx, x− y〉
‖x− y‖2

∣∣∣∣ = lim
y→x
y∈C

t‖x‖22 − txT y√
‖x‖22 + ‖y‖22 − 2xT y

= lim
y→x
y∈C

t(1− xT y)√
2(1− xT y)

= 0.

Hence, we see that {v ∈ Rn : v = tx, t ∈ R} ⊆ ∂̂ιC(x). We further note that for any

v ∈ ∂̂ιC(x),

0 ≤ lim inf
y→x
y 6=x
y∈C

〈v, x− y〉
‖x− y‖2

≤ lim inf
yΛ→xΛ

yΛ 6=xΛ

‖yΛ‖2=1

〈vΛ, xΛ − yΛ〉
‖xΛ − yΛ‖2

,

which indicates that vΛ = txΛ for some t ∈ R. Finally, we show that for all v ∈ ∂̂ιC(x),

vj = 0 if j /∈ Λ. Otherwise, there exists ṽ ∈ ∂̂ιC(x) and j0 /∈ Λ such that ṽj0 6= 0.

Choose {yk : k ∈ N} such that ykΛ =
√

1− 1/k2xΛ, ykj0 = vj/(k|vj |), and ykj = 0 for

j /∈ Λ ∪ {j0}. Then we have that {yk : k ∈ N} ⊆ C and lim
k→∞

yk = x. One can verify

that lim
k→∞

〈ṽ, x− y〉/‖x− y‖2 = −|vj0 | < 0, which contradicts ṽ ∈ ∂̂ιC(x). This proves

Item (i).
We turn to Item (ii). Take any v ∈ ∂ιC(x). By the definition of limiting-

subdifferential, there exist xk ∈ C and vk ∈ ∂̂ιC(xk) for k ∈ N, such that lim
k→∞

xk = x

and lim
k→∞

vk = v. Hence, we deduce that Λ ⊆ supp(xk) when k ≥ K for some

K ∈ N. Invoking Item (i), there exists {tk ∈ R : k ≥ K} such that vkΛ = tkx
k
Λ for

k ≥ K. Let i0 ∈ Λ. Then we have lim
k→∞

tk = lim
k→∞

vk
i0

xk
i0

=
vi0
xi0

. Therefore, we obtain

vΛ = lim
k→∞

tkx
k
Λ =

vi0
xi0

xΛ. This complete the proof.

Finally we prove that Item (iii). When r = n, one can easily deduce that ∂̂ιC(x) =
{v ∈ Rn : v = tx, t ∈ R} for x ∈ C from Item (i). Take any v ∈ ∂ιC(x). Following a
similar argument to proving Item (ii), we can show that v = tx for some t ∈ R. This

together with ∂̂ιC(x) ⊆ ∂ιC(x) yields Item (iii).
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