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RIGOROUS JUSTIFICATION OF THE FOKKER-PLANCK EQUATIONS

OF NEURAL NETWORKS BASED ON AN ITERATION PERSPECTIVE

JIAN-GUO LIU, ZIHENG WANG, YUAN ZHANG, AND ZHENNAN ZHOU

Abstract. In this work, the primary goal is to establish a rigorous connection between
the Fokker-Planck equation of neural networks with its microscopic model: the diffusion-
jump stochastic process that captures the mean field behavior of collections of neurons in the
integrate-and-fire model. The proof is based on a novel iteration scheme: with an auxiliary
random variable counting the firing events, both the density function of the stochastic process
and the solution of the PDE problem admit series representations, and thus the difficulty in
verifying the link between the density function and the PDE solution in each sub problem has
been greatly mitigated. The iteration approach provides a generic frame in integrating the
probability approach with PDE techniques, with which we prove that the density function
of the diffusion-jump stochastic process is indeed the classical solution of the Fokker-Planck
equation with a unique flux-shift structure.

1. Introduction

While various models emerge in neuroscience [23, 30, 36, 45], one of the most active dis-
ciplines at the present time, the level of mathematical rigor in understanding the rational
connections between these models is usually formal or empirical. When it comes to modeling
the dynamics of a large collection of interacting neurons, the integrate-and-fire model for the
potential through the neuron cell membrane, which dates back to [30], has received great
attention. In this model, the collective behavior of neuron networks can be predicted by the
stochastic process of a single neuron [3, 4, 14, 15, 25, 29, 31, 34, 35, 41, 42, 44] where the influ-
ence from the network is given by an average synaptic input by the mean-field approximation
[15, 29, 41, 44]. The time evolution of the probability density function (abbreviated by p.d.f.)
of the potential voltage is governed by a Fokker-Planck equation on the half space with an un-
usual structure: constantly shifting the boundary flux to an interior point. This equation has
been utilized by neuroscientists to explore the macroscopic behavior of neural networks, and
has also attracted many mathematicians to investigate the unique solutions structures in the
past decade [5, 6, 7, 8, 9, 11, 28, 37], which in turn have enriched the scientific interpretation
of the integrate-and-fire model.

In this paper, we focus on the single neuron approximation of the celebrated noisy Leaky
Integrate-and-Fire (LIF) model for neuron networks, where the state variable Xt denotes the
membrane potential of a typical neuron within the network. In the LIF model, when the
synaptic input of the network (denoted by I(t)) vanishes, the membrane potential relaxes to
their resting potential VL, and in the single neuron approximation, the synaptic input I(t),
which itself is another stochastic process, is replaced by a continuous-in-time counterpart Ic(t)
(see e.g. [3, 4, 31, 37, 41, 42]), which takes the drift-diffusion form

I dt ≈ Ic dt = µc dt+ σc dBt. (1)

Here, Bt is the standard Brownian motion, and in principle the two processes Ic(t) and I(t)
have the same mean and variance. Thus between the firing events, the evolution of the
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membrane potential is given by the following stochastic differential equation

dXt = (−Xt + VL + µc) dt+ σc dBt. (2)

The next key component of the model is the firing-and-reseting mechanism: whenever the
membrane voltage Xt reaches a threshold value called the threshold or firing voltage VF , it is
immediately relax to a reset value VR, where VR < VF . The readers may refer to [41] for a
thorough introduction of this subject. It is worth mentioning that, numerous mathematical
aspects of the LIF model and its variants have been studied (see e.g. [15, 18, 29, 38, 41, 44])
besides its enormous significance in neuroscience.

There has been a growing interest in studying the partial differential equation problem for
the dynamics of the probability density function that the stochastic process Xt is associated
with [12, 13, 15, 18, 29]. We denote the density of the distribution of neuron potential voltage
at time t ≥ 0 by f(x, t), x ∈ (−∞, VF ]. At least from a heuristic viewpoint, it is widely
accepted that the p.d.f. f(x, t) satisfies the following Fokker-Planck equation on the half line
with a singular source term

∂f

∂t
(x, t) +

∂

∂x
[hf(x, t)]− a

∂2f

∂x2
(x, t) = N(t)δ(x− VR), x ∈ (−∞, VF ), t > 0, (3)

where N(t) denotes the mean firing rate. By formal calculations via Ito’s calculus, we obtain
the drift velocity h = −x+ VL + µc and diffusion coefficient a = σ2

c/2.
The firing-and-reset mechanism in the stochastic process has led to multiple consequences in

the PDE model. First, since the neurons at the threshold voltage has instantaneous discharges
where the density is supposed to vanish and due to the noisy leaky terms, we consider the
following Dirichlet boundary conditions:

f(VF , t) = 0, f(−∞, t) = 0, ∀t ≥ 0. (4)

Second, due to the Dirichlet boundary condition at x = VF , there is a time-dependent
boundary flux escaping the domain, and a Dirac delta source term is added to the reset
location x = VR to compensate the loss. Noting that (3) is the evolution of a p.d.f, therefore
for all t ≥ 0

∫ VF

−∞
f(x, t) dx =

∫ VF

−∞
fin(x) dx = 1.

The conservation of mass and the boundary condition characterize the magnitude of mean
firing rate

N(t) := −a
∂f

∂x
(VF , t) ≥ 0. (5)

The PDE problem is completed by an appropriate initial condition f(x, 0) = fin(x).
Third, the firing events generate currents that propagate within the neuron networks, which

is incorporated into this PDE model by expressing the drift velocity h and the diffusion
coefficient a as functions of the mean-firing rate N(t). For example, it is assumed in quite a
few works (see e.g. [5, 6, 11, 28]) that

h(x,N) = −x+ bN, a(N) = a0 + a1N,

where b, a0 > 0 and a1 ≥ 0 are some modeling parameters. When b > 0, the neuron network
is excitatory on average, and when b < 0 the network is inhibitory. In particular, when b = 0
and a1 = 0, the PDE problem becomes linear, but the flux shift structure persists.
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We remark that this delta source term on the right hand side of (3) is equivalent to setting
the equation on (−∞, VR) ∪ (VR, VF ) instead and imposing the following conditions

f(V −
R , t) = f(V +

R , t), a
∂

∂x
f(V −

R , t)− a
∂

∂x
f(V +

R , t) = N(t), ∀t ≥ 0.

The equivalence can be checked by directly integration by parts and we choose to use this
form for the rest of the paper.

Due to the unique structure of the PDE problem, most conventional analysis methods do not
directly apply, and many recent works are devoted to investigate the solution properties of such
model and its various modifications, including the finite-time blow-up of weak solutions, the
multiplicity of the steady solutions, the relative entropy estimate, the existence of the classical
solutions, the structure-preserving numerical approximation, etc. (see e.g. [5, 6, 7, 9, 11, 28]
and the references therein). For the stochastic process (2), as the jumping time for Xt is
determined by its hitting time, the classical Itô calculus is not directly applicable.

The primary goal of this paper is to show the rigorous derivation of the Fokker-Planck
equation from the stochastic process. More specifically, we investigate whether and in which
sense the probability density function f(x, t) of the stochastic process Xt satisfies the PDE
model. In this paper, we choose the model parameters as follows

VL = VR = 0, µc = 0, σc =
√
2, and VF = 1. (6)

Let the distribution of X0 be denoted by ν, which is a probability measure compactly support
on (−∞, 1) and let fin(x) to denote the density function of ν. Then Xt ∈ (−∞, 1) is a
stochastic process whose trajectory is càdlàg in time, and it evolves as an Ornstein–Uhlenbeck
process

dXt = −Xt− dt+
√
2 dBt, (7)

until it hits 1. Whenever at time t, Xt hits 1, it immediately jumps to 0, i.e.

if Xt− = 1, Xt = 0. (8)

Then we restart the O-U-like evolution independent of the past. We remark that (7) and (8)
serve as a formal definition of the diffusion-jump process only for heuristic purposes and the
rigorous definition shall be presented in Section 2.2. In this paper, we aim to show for any
fixed T > 0 that the associated density function f(x, t) is indeed a classical solution to the
PDE problem



































∂f

∂t
− ∂

∂x
(xf)− ∂2f

∂x2
= 0, x ∈ (−∞, 0) ∪ (0, 1), t ∈ (0, T ],

f(0−, t) = f(0+, t),
∂

∂x
f(0−, t)− ∂

∂x
f(0+, t) = − ∂

∂x
f(1−, t), t ∈ (0, T ],

f(−∞, t) = 0, f(1, t) = 0, t ∈ [0, T ],

f(x, 0) = fin(x), x ∈ (−∞, 1).

(9)

The processes of such type (7) and (8) were first introduced by Feller [19, 20] (in terms
of transition semigroups). In particular, [20] presents the Fokker-Planck equation of such
processes (dubbed “elementary return process” there) in a weak form, of which the proof
is based on a Markov semigroup argument in [19]. See Theorem 9 of [20] for details. Such
processes have also been studied in later works such as [2, 24, 38, 39, 40, 43]. More specifically,
in [1, 2, 38, 39], the authors are concerned with the spectral properties of the generator of the
stochastic process or related models, and have shown the exponential convergences in time
towards the stationary distribution. In particular, [38] applied their results to a neuronal firing
model driven by a Wiener process and computed the distribution of the first passage time. In
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the works [40, 43], the authors made more relaxed or modified assumptions on the stochastic
process than those in [24], and proved the existence of pathwise solution of such process in a
generalized sense.

Following the spirit of the pioneering work of Feller [20], the focus of this paper is to rig-
orously establish the bridge between the density functions of such processes and the classical
solutions of the Fokker-Planck equations to be specified as in (9). From the technical per-
spective, there is no available mathematical tools to link the boundary condition at the firing
voltage and the jump condition at the reset voltage (or equivalently, the singular delta source
term) of the PDE model to stochastic model for a single neuron model. In [5, 11], some
heuristic arguments are provided to connect N(t) to the rate of change of the expectation of
the number of firing events, which is related to the synchronization behavior of the neuron
networks. Whereas, such an interpretation is not applicable for a single neuron model. In this
paper, we rigorously prove that for a single neuron the mean firing rate N(t) =

∑∞
n=1 fTn

(t)
where fTn

stands for the p.d.f. of the n-th jumping time of Xt.
The key strategy of our proofs in this paper is based on an iterated scheme: with the intro-

duction of an auxiliary random variable counting the number of firing events, the probability
density function of potential voltage f(x, t) allows a decomposition as a summation of sub-
density functions {fn(x, t)}∞n=0. Each sub-density naturally links to a less singular sub-PDE
problem, and all the sub-PDE problems are connected successively by iteration: the escaping
boundary flux of fn(x, t) serves as the singular source for fn+1(x, t). Among all the iterations,
the first step from f0 to f1 exhibits strongest singularity at the source of the flux, and thus
turns out to be the major technical difficulty in our proof. In order to tackle this obstacle,
elaborated estimates on the regularities of f0 have to be established. The first sub-PDE prob-
lem corresponds to the stochastic process killed at the first hitting time and there is a vast
literature [16, 26, 27, 32, 33] concerned with the stochastic processes with no reset for the
killed particles. In [17, 18], the authors consider the process with firing-and-reseting as in this
paper and have established the connections between the sub-density function and the PDE
solution. They have proved that f0(t, x) is continuous in (t, x) and continuously differentiable
in x on (0, T ] × (−∞, 1] and admits Sobolev derivatives of order 1 in t and of order 2 in x
on any compact subset of (0, T ]× (−∞, 1). However, these results are not strong enough to
guarantee the existence of the classical solution to the whole problem (9). In fact, by analysing
the Green’s function for the parabolic equation on the half space, we get estimates for classical
derivatives and high order regularity for t in Proposition 3.1 and 3.2, which is essential for the
iteration from f0 to f1. Besides, all the desired smoothness properties are maintained by the
iteration scheme, and thanks to the decomposition, rigorous justification of the jump condition
for each sub-PDE problem becomes tractable. Finally, with the exponential convergence of
decomposition, we can pass to the limit, and conclude the preserved properties on the original
problem. This iteration scheme is inspired by the renewal nature of the stochastic process,
which shares the spirit of Feller’s original work in [20], and provides a platform to combine
the techniques from both the probability theory and the differential equations.

It is worth noting that, as the first attempt to study the rigorous justification of the Fokker-
Planck equations of neural networks from the stochastic model, we have only obtained the
results for the linear cases. In particular, we could not incorporate the dependence on the
mean firing rate in the drift velocity and in the diffusion coefficient yet, but we shall investigate
those directions in the future.

The rest of the paper is outlined as follows. In Section 2, we summarize the main results of
this work as well as give precise definition of the stochastic process and lay out the iterated
scheme. In Section 3, we show that the density function of the stochastic process is indeed

4



the mild solution of the PDE problem with certain smoothing properties, and we give a few
remarks on the implications in the weak solution. For the rest of this work, we use C, C0, Ck

and CT to denote generic constants.

2. Preliminaries and Main Results

In this section, we present the main results of this paper in details, and also provide some
technical preparations for the proofs, including the construction of the stochastic process,
which serves as the precise definition, and the elaboration of the iterated strategy, accompanied
by some elementary estimates.

2.1. Main Results.

The stochastic processXt has been formally defined in (7) and (8), but note that the rigorous
construction of such a process can be found in (18) below of Section 2.2.

We first suppose that the processXt starts from 0, i.e. the distribution ofX0 is fin(x) = δ(x).
We state the first main result in the following

Theorem 1. The process Xt as in (18) that starts from 0 has a continuously evolved probability
density function denoted by f(x, t). f(x, t) is a solution of (9) in the time interval (0, T ] for
any given 0 < T < +∞ and with initial condition δ(x) in the following sense:

(i) N(t) := − ∂
∂x
f(1−, t) is a continuous function for t ∈ [0, T ],

(ii) f is continuous in the region {(x, t) : −∞ < x ≤ 1, t ∈ (0, T ]},
(iii) fxx and ft are continuous in the region {(x, t) : x ∈ (−∞, 0) ∪ (0, 1), t ∈ (0, T ]},
(iv) fx(0

−, t), fx(0
+, t) are well defined for t ∈ (0, T ]

(v) For t ∈ (0, T ], fx(x, t) → 0 when x → −∞,
(vi) Equations (9) are satisfied with f(x, 0) = δ(x) in the following sense: for any ϕ ∈

Cb(−∞, 1),

lim
t→0+

∫ 1

−∞
ϕ(x)f(x, t)dx = ϕ(0). (10)

The proof of Theorem 1 is shown in Section 3, which relies on an iteration approach. In
fact, we decompose both the probability density of the stochastic process and the solution to
equation (9) into series and show that there is a one-to-one correspondence between the two
series representations.

Next we let the process start from any fixed y < 1, this time we use f y(x, t) to denote the
p.d.f the process Xt in (18) start from y and now the distribution of X0 is fin(x) = δ(x− y).
With the same method, we get the following corollary immediately.

Corollary 2.1. For any fixed y ∈ (−∞, 1), the process Xt as in (18) that starts from y has a
continuously evolved probability density function denoted by f y(x, t). f y(x, t) is a solution of
(9) in the time interval (0, T ] for any given 0 < T < +∞ and with initial condition δ(x − y)
in the following sense:

(i) Ny(t) is a continuous function for t ∈ [0, T ],
(ii) f y is continuous in the region {(x, t) : −∞ < x ≤ 1, t ∈ (0, T ]},
(iii) ∂xxf

y and ∂tf
y are continuous in the region {(x, t) : x ∈ (−∞, 0) ∪ (0, 1), t ∈ (0, T ]},

(iv) ∂xf
y(0−, t), ∂xf

y(0+, t) are well defined for t ∈ (0, T ]
(v) For t ∈ (0, T ], ∂xf

y(x, t) → 0 when x → −∞,
(vi) Equations (9) are satisfied with f(x, 0) = δ(x − y) in the following sense: for any

ϕ ∈ Cb(−∞, 1),

lim
t→0+

∫ 1

−∞
ϕ(x)f y(x, t)dx = ϕ(y). (11)
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Moreover, for any fixed ε0 > 0, the continuity in (i), (ii), (iii) and the convergence in (v) and
(vi) are uniform for y ≤ 1− ε0.

The proof of Corollary 2.1 is exactly same as in Theorem 1, and is thus skipped.
The initial condition of the Fokker-Planck equation (9) corresponds to the initial distribution

of the stochastic process X0. We remark that, in the above cases the most arguments below
are based on the initial condition of the process X0 = y for any y < 1, and the corresponding
initial condition of the PDE problem becomes f(x, 0) = δ(x−y). Although the initial condition
is a singular function, we have shown that PDE has an instantaneous smoothing effect, while
the solution coincide with the density function of the stochastic process. Since the problem
is linear, the natural extension to general and proper initial conditions can be obtained by
integration against the initial distribution (see e.g. [17] for a careful discussion).

Theorem 2. Let ν be a c.d.f. whose p.d.f. fin(x) ∈ Cc(−∞, 1). We assume that fin(x) is
continuous and supported in (−∞, 1 − ε0) for some ε0 > 0. Then the process Xt as in (18)
that starts from p.d.f. fin(x) has a continuously evolved probability density function denoted
by f ν(x, t) with

f ν(x, t) =

∫ 1−ε0

−∞
f y(x, t)ν(dy), x ∈ (−∞, 1], t > 0, (12)

and f ν(x, t) is a classical solution of (9) in the time interval (0, T ] for any given 0 < T < +∞
with initial condition fin(x) in the following sense:

(i) Nν(t) := − ∂
∂x
f ν(1−, t)is a continuous function for t ∈ [0, T ],

(ii) f ν is continuous in the region {(x, t) : −∞ < x ≤ 1, t ∈ [0, T ]},
(iii) ∂xxf

ν and ∂xf
ν are continuous in the region {(x, t) : x ∈ (−∞, 0) ∪ (0, 1), t ∈ [0, T ]},

(iv) ∂xf
ν(0−, t), ∂xf

ν(0+, t) are well defined for t ∈ [0, T ],
(v) For t ∈ (0, T ], ∂xf

ν(x, t) → 0 when x → −∞.
(vi) Equations (9) are satisfied with the L2 convergence to the initial condition as t → 0+,

i.e.

lim
t→0+

∫ 1

−∞
|f ν(x, t)− fin(x)|2dx = 0. (13)

.

A proof can be found at the end of Section 3.1.

Remark 1. It is not clear yet how to get the uniform estimates near the boundary of the
domain and thus we suppose that the initial distribution compactly support on (−∞, 1) in this
paper. Actually, some recent works [27] concerning related models progressed towards more
general assumptions, from compactly supported to o(1 − x) decay near 1 and more recently
O
(

(1− x)β
)

with β ∈ (0, 1). Usually, the literature assumes O(1 − x) decay near 1 (e.g.
[10]) and in Theorem 1.1 of [16], this boundary decay is linked with short-term regularity
of the solutions. Thus the hypothesis of a compactly supported initial condition has deep
consequences upon the smoothness of the solution in short time.

2.2. Construction of the Process.

For the rest of this section, we shall present some preliminaries of the stochastic process.
Firstly, we should give the process Xt a precise definition in probability by following the
construction by Gihman and Skorohod [24]. We emphasize that, an addition process nt is
introduced to count the number of jumping events of a trajectory that has taken place before
time t.
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On a given probability space (Ω,F ,P), we consider a sequence of independent O-U processes
{

Y
(n)
t

}∞

n=1

with Y
(n)
0 = 0 for all n ≥ 1. Note that an O-U process Yt starting from initial value y0 is an

SDE with a.s. pathwisely continuous strong solution. That is

Yt = e−ty0 +
√
2

∫ t

0

e−(t−s)dBs (14)

with a normal p.d.f.:
N(e−ty0, 1− e−2t). (15)

For each n ∈ N, t ∈ [0,∞], define the natural filtration

F (n)
t = σ

(

Y (n)
s : s ∈ [0, t)

)

.

I.e., F (n)
t represents the information carried by the path of the nth copy of O-U process by

time t. For all n, F (n)
∞ are abbreviated to F (n), which are easy to see to be jointly independent.

Now define their filtration

Gn = σ(F (k), k ≤ n), Gn = σ(F (k), k ≥ n)

with the convention G∞ = G.
For each n, let

τn = inf
{

t ≥ 0 : Y
(n)
t = 1

}

= inf

{

t ≥ 0 : lim
h→t−

Y
(n)
h = 1

}

(16)

be the first time Y
(n)
t hits 1, with the convention τ0 = 0. Moreover, for all n ≥ 0 and k ≤ n,

define

Tn =

n
∑

i=0

τi, Tn,k =

n
∑

i=k+1

τi. (17)

By definition, τn is a stopping time with respect to the natural filtration {F (n)
t }t≥0. And we

have that {τn}∞n=1 is a sequence of i.i.d. r.v.’s with strictly positive expectation. Thus by the
law of large numbers, (

∑n

i=1 τi)/n → E[τ1] > 0 a.s., which implies that

P

( ∞
∑

i=k

τi = ∞, ∀k ≥ 1

)

= 1.

Particularly, we have Tn → ∞ a.s. as n → ∞. Then within the almost sure event A0 =
{∑∞

i=k τi = ∞, ∀k ≥ 1}, we define (Xt, nt) as follows: for any k ≥ 1

(Xt, nt) =
(

Y
(k)
t−Tk−1

, k − 1
)

(18)

on [Tk−1, Tk). And thus Tk is interpreted as the k-th jumping time associated with Xt.
By definition, we have constructed a piecewise continuous path on [0,∞) for each ω ∈ A0,

and thus a mapping from A0 to (D[0,∞)× N,D × N ) is clearly measurable with respect to
G, where D[0,∞) is the space of càdlàg paths. Here D is the smallest sigma field generated
by all coordinate mappings and N is the trivial sigma field on N. In the rest of this paper,
we will use the construction above as the formal definition of (Xt, nt), which is the stochastic
process of interest.

Similarly, we can define the process Xt starts from y < 1 or starts from a distribution ν. We
denote the probability measure of (Xt, nt) by Py(·) and the expectation by Ey[·]. The meaning
of Pν(·) and Eν [·] are analogous. Using Fτk/FTk

to denote the cumulative distribution function
7



of τk/Tk, it is immediate to see that for any k and t, P(τk = t) ≤ P(Y
(k)
t = 1) = 0. So Fτk

and FTk
are always continuous.

2.3. Properties of the Process and the Iteration Approach.

We derive some preliminary estimates for the process (Xt, nt), which manifest the solution
properties and also motivate us to propose the iterated scheme.

It has been shown in [24] the process Xt constructed above is always Markovian. Now we are
ready to show the following “Strong Markovian” type result that allows us to later calculate
the probability distribution of (Xt, nt) in an iterative fashion: for each integer k ≥ 0, define

Fk(x, t) = P0(Xt ≤ x, nt = k), (19)

then we have

Proposition 2.1. For any x < 1, k ≥ 1, and t > 0,

Fk(x, t) = E0

[

P
(

Y
(k+1)
t−Tk

≤ x, τk+1 > t− Tk

)

1Tk<t

]

. (20)

And thus

Fk(x, t) =

∫ t

0

F0(x, t− s)dFTk
(s). (21)

Proof. We only prove (20) and then (21) is obvious. First, note that Tk+1 = Tk + τk+1 and
that the event

{nt = k} = {Tk ≤ t, Tk+1 > t}.
By Fubini’s formula,

P0(nt = k) = E0 [P (τk+1 > t− Tk)1Tk<t] .

Thus it suffices to prove

P0(Xt > x, nt = k) = E0

[

P
(

Y
(k+1)
t−Tk

> x, τk+1 > t− Tk

)

1Tk<t

]

.

Let A = {Xt > x, nt = k} be our event of interest. For any n ≥ 1 and any 0 ≤ i ≤ 2n − 1, we
define interval

I(i)n (t) =
(

2−nit, 2−n(i+ 1)t
]

.

Moreover, for any s ∈ (0, t] and any n, one may define Id(n, s) be the unique i ≤ 2n − 1 such

that s ∈ I
(i)
n (t). Now we define event

A(i)
n =

{

inf
s∈t−I

(i)
n (t)

Y (k+1)
s > x, τk+1 > (1− 2−ni)t

}

∩ {Tk ∈ I(i)n (t)}

and An = ∪2n−1
i=0 A

(i)
n . By definition, A

(i)
n ⊂ A for every feasible n and i. Thus P(An) ≤ P(A).

On the other hand, for any ω ∈ Ā = {Xt > x, nt = k, Tk < t}, The continuity of path in

Y (k+1) guarantees that there has to be some N < ∞ such that for all n ≥ N , ω ∈ A
(Id(n,Tk(ω)))
n

and thus P0(An) → P0(Ā) = P0(A) as n → ∞. The last equality follows from the fact that
FTk

is continuous.
Meanwhile, note that Tk is independent to Y (k+1). We have

P0(An) =
2n−1
∑

i=0

P0
(

Tk ∈ I(i)n (t)
)

P

(

inf
s∈t−I

(i)
n (t)

Y (k+1)
s > x, τk+1 > (1− 2−ni)t

)

= E0

[

P

(

inf
s∈t−I

(Id(n,Tk))
n (t)

Y (k+1)
s > x, τk+1 > (1− 2−nId(n, Tk))t

)

1Tk<t

]

.

8



Now noting that for any 0 < h < t, one may similarly have from the continuity of Y (k+1)

P

(

inf
s∈t−I

(Id(n,Tk))
n (t)

Y (k+1)
s > x, τk+1 > (1− 2−nId(n, h))t

)

→ P
(

Y
(k+1)
t−h > x, τk+1 > t− h

)

,

we have (20) follows from monotone convergence.
�

For any t > 0, we first consider the case where no jumps have been made by time t. Note

that F0(x, t) = P (Xt ≤ x, T1 > t) = P(Y
(1)
t ≤ x, τ1 > t) for all x ∈ (−∞, 1). It is clear

that F0(·, t) induces a measure on ((−∞, 1),B), which is absolutely continuous with respect
to the Lebesgue measure on R. The assertion above can be seen from the fact that for any

measurable A, P(Y
(1)
t ∈ A, τ1 > t) ≤ P(Y

(1)
t ∈ A) and that Y

(1)
t is a continuous random

variable. Here we also use F0(·, t) to denote the corresponding measure on ((−∞, 1),B). And
let f0(x, t) be its density and pou(x, t) denotes the p.d.f of Y

(1)
t . Thus we have

f0(x, t) ≤ pou(x, t) =
1

√

2π(1− e−2t)
exp { −x2

2(1− e−2t)
}, (22)

which together with (15) derives

f0(x, t) ≤
1

√

2π(1− e−2t)
. (23)

Lemma 2.1. F0(x, t) is a bi-variate continuous function on (−∞, 1]× (0,∞). Moreover, for
any bounded continuous function ϕ(x),

lim
t→0+

E0[ϕ(Xt)1nt=0] = lim
t→0+

∫ 1

−∞
ϕ(x)f0(x, t)dx = ϕ(0). (24)

Proof. In order to prove this lemma, one may first show that for any (x, t) ∈ (−∞, 1)×(0,∞),
F0(·, ·) is continuous at (x, t) on both directions.

The continuity on the direction of x is obvious since that for all x′ > x,

0 ≤ F0(x
′, t)− F0(x, t) ≤ P

(

Y
(1)
t ∈ [x, x′]

)

=

∫ x′

x

pou(y, t)dy

and the last term goes to 0 as x′ → x+.
Thus one may concentrate on proving continuity on the direction of t. Let ∆ be the

symmetric difference between events. One may first note that for any events A = A1 ∩ A2,
and B = B1 ∩B2,

A∆B = (A1 ∩ A2 ∩ Bc
1) ∪ (A1 ∩ A2 ∩ Bc

2) ∪ (Ac
1 ∩ B1 ∩ B2) ∪ (Ac

2 ∩B1 ∩B2)

⊂ (A1 ∩Bc
1) ∪ (A2 ∩ Bc

2) ∪ (Ac
1 ∩ B1) ∪ (Ac

2 ∩ B2)

= (A1∆B1) ∪ (A2∆B2).

(25)

For any t > 0, fixed x0 and any ∆t sufficiently close to 0 (without loss of generality, one may
assume ∆t > 0)

F0(x0, t) = P(Y
(1)
t ≤ x0, τ1 > t)

F0(x0, t+∆t) = P(Y
(1)
t+∆t ≤ x0, τ1 > t +∆t).
9



Now let A1 = {Y (1)
t ≤ x0}, A2 = {τ1 > t}, and B1 = {Y (1)

t+∆t ≤ x0}, B2 = {τ1 > t + ∆t}. By
(25) we have

|F0(x0, t)− F0(x0, t+∆t)|
≤P(A∆B) ≤ P(A1∆B1) +P(A2∆B2)

=P
(

Y
(1)
t ≤ x0, Y

(1)
t+∆t > x0

)

+P
(

Y
(1)
t > x0, Y

(1)
t+∆t ≤ x0

)

+P(τ1 ∈ (t, t+∆t])

≤P
(

∃s ∈ [t, t +∆t], s.t. Y (1)
s = x0

)

+ Fτ1(t+∆t)− Fτ1(t).

Recalling that Fτ1(·) is continuous,
lim
∆t→0

Fτ1(t+∆t)− Fτ1(t) = 0.

At the same time, for any positive integer n, define event

∆n =
{

∃s ∈
[

t, t+ n−1
]

, s.t. Y (1)
s = x0

}

.

Note that
P(∆n) → P(Y

(1)
t = x0) = 0 as n → ∞.

We can got the continuity of t.
Thus, one can show that F0(x, t) is binary continuous at (x, t) as follows: given (x, t) ∈

(−∞, 1)× (0,+∞) and any ǫ > 0, ∃0 < δ < t
2
such that for any |t′ − t| ≤ δ,

|F0(x, t
′)− F0(x, t)| <

ǫ

2
.

And for any s > t
2
and any |x′ − x| ≤ δ (Here without loss of generality, we ask x < x′)

|F0(x
′, s)− F0(x, s)| ≤ P(Y (1)

s ∈ [x, x′]) <
ǫ

2
.

(The last inequality is because when s < t
2
, the density of Y

(1)
s can be bounded by a big

enough constant C.)
Then for all (x′, t′) ∈ (−∞, 1)× (0,∞) such that |t′ − t| ≤ δ, |x′ − x| ≤ δ, we have

|F0(x
′, t′)− F0(x, t)| ≤ |F0(x

′, t′)− F0(x, t
′)|+ |F0(x, t

′)− F0(x, t)| < ǫ

Finally, we show that F0(x, t) is continuous at x = 1. It suffice to prove that for any tn → t
and εn → 0+, we have limn→∞ F0(1 − εn, tn) = F0(1, t) = P(τ1 > t), i.e. limn→∞P(Xtn ≤
1− εn, τ1 > tn) = P(τ1 > t), which is equivalent to

lim
n→∞

P(Xtn > 1− εn, τ1 > tn) = 0.

Set event An = {Xtn > 1− εn, τ1 > tn} and we have

P(∪∞
m≥nAm) ≤ P(∃s ∈ [max

m≥n
tm,max

m≥n
tm], s.t. Xs > 1− εn, τ1 > min

m≥n
tm).

Note that lim supn→∞P(An) ≤ P(lim supAn) ≤ P(Xt ≥ 1, τ1 ≥ t) = 0. Thus we get
limn→∞P(An) = 0 and get the result we want.

Finally to prove (24), recall that ϕ is a bounded and continuous function. Thus |ϕ(x)| ≤ M
for all x, and for each ε > 0, there is a 0 < δ < 1 such that for all x ∈ [−δ, δ], |ϕ(x)−ϕ(0)| < ε.
So we have

|E0[ϕ(Xt)1nt=0]− ϕ(0)| ≤ ε+ 2MP

(

max
s≤t

|Y (1)
s | ≥ δ

)

.

Now recalling (14)

|Y (1)
t | d

=

∣

∣

∣

∣

√
2

∫ t

0

e−(t−s)dBs

∣

∣

∣

∣

d

≤
∣

∣

∣

∣

√
2

∫ t

0

esdBs

∣

∣

∣

∣

, (26)

10



where the d means the probability distribution. Note that the right hand side of (26) forms a
martingale. One immediately have

lim
t→0+

P

(

max
s≤t

|Y (1)
s | ≥ δ

)

= 0

by Doob’s inequality. Thus we have shown (24) and then completed the proof.
�

Remark 2. With Lemma 2.1, one may immediately have that F (x0, t) is a bounded and
measurable function of t ∈ [0,∞).

Moreover, the following corollary follows directly from Proposition 2.1, Lemma 2.1, and a
standard measure theory argument:

Corollary 2.2. For any bounded measurable function f , any integer k ≥ 1 and any t > 0,

E
[

f(Y
(1)
t )1τ1>t

]

is measurable with respect to t, and

E0 [f(Xt)1nt=k] = E0
[

E
[

f(Y
(k+1)
t−Tk

)1τk+1>t−Tk

]

1Tk<t

]

. (27)

Note that

Fτ1(t) = 1− P (τ1 > t) = 1− F0(1, t) = 1−
∫ 1

−∞
f0(x, t)dx (28)

and

FTn
= Fτ1 ∗ Fτ2 ∗ · · · ∗ Fτn . (29)

Moreover, for each n, Fn(·, t) is absolutely continuous and let fn(x, t) denotes its density.
In the rest of this section, we use Proposition 2.1 and the similar renewal argument as in

[20] to calculate the distribution of Xt. First one has the following lemma

Lemma 2.2. For all n ≥ 1, t > 0, and x < 1,

Fn(x, t) =

∫ t

0

Fn−1(x, t− s)dFτ1(s). (30)

Moreover, Fn(x, t) is also bi-variate continuous on (−∞, 1]× (0,∞).

Proof. Suppose the lemma holds for n − 1 ≥ 0, which has been shown true for n = 1. By
Proposition 2.1, Lemma 2.1, and Fubini’s formula on the independent random variables Tn−1

and τn

Fn(x, t) = P(Xt ≤ x, nt = n) = E0

[

P
(

Y
(n+1)
t−Tn

≤ x, τn+1 > t− Tn

)

1Tn<t

]

= E0 [F0(x, t− Tn)1Tn<t] = E0

[

F0(x, t− Tn−1 − τn)1Tn−1+τn<t

]

=

∫ t

0

∫ t−s

0

F0(x, t− s− h)dFTn−1(h)dFτ1(s)

=

∫ t

0

Fn−1(x, t− s)dFτ1(s)

and thus we have got (30). With (30), for any t0 > 0 and x0 < 1, the continuity of Fn(x, t) at
(x0, t0) with respect to t can be shown as follows: For any ε > 0, by the continuity of Fτ1(t),
there is a δ1 ∈ (0, t0) such that

Fτ1(t0 + δ1)− Fτ1(t0 − δ1) < ε.
11



Now note that Fn−1(x0, t) is continuous on (0,∞) and thus uniformly continuous on [δ1/2, t0+
δ1]. Thus there is a δ2 > 0 such that for all t1, t2 ∈ [δ1/2, t0 + δ1], |t1 − t2| < δ2,

|Fn−1(x0, t1)− Fn−1(x0, t2)| < ε.

Thus for any t such that |t − t0| < min{δ1/2, δ2} (here we may without loss of generality
assume that t < t0), one has

|Fn(x0, t0)− Fn(x0, t)| ≤
∫ t0−δ1

0

|Fn−1(x0, t0 − s)− Fn−1(x0, t− s)|dFτ1(s)

+

∫ t

t0−δ1

Fn−1(x0, t− s)dFτ1(s) +

∫ t0

t0−δ1

Fn−1(x0, t0 − s)dFτ1(s)

≤ ε+ 2[Fτ1(t0 + δ)− Fτ1(t0 − δ)] ≤ 3ε.

Similarly, the continuity of Fn(x, t) at (x0, t0) with respect to x is guaranteed by that
Fn−1(x, t) is continuous and thus uniformly continuous on [x, x′]× [ε, t] for all ε > 0 and that
Fτ1(·) put no mass on point t0. And with the similar argument in the last lemma to show
Fn(·, ·) is bi-variate continuous, we complete the proof.

�

With the same argument as before, we have

Corollary 2.3. For any bounded measurable function f , any integer k ≥ 1 and any t > 0,

E0 [f(Xt)1nt=k] =

∫ 1

−∞
f(x)dFk(x, t)

is measurable with respect to t, and

E0 [f(Xt)1nt=k] =

∫ 1

−∞
f(x)dFk(x, t) =

∫ t

0

∫ 1

−∞
f(x)dFk−1(x, t− s)dFT1(s). (31)

Our next lemma gives the exponential decay of Fn(x, t) on a compact set of t, which is
useful in our later calculations especially when we need to deal with the convergence of some
series.

Lemma 2.3. There is a θ > 0 such that T ∈ (0,∞)

Fn(x, t) ≤ exp(−θn + T ) (32)

for all n ∈ N, t ≤ T and x ∈ (−∞, 1].

Proof. For any t ≤ T and x ∈ (−∞, 1],

Fn(x, t) = P(Xt ≤ x, nt = n) ≤ P(nt ≥ n) = P(Tn ≤ t) ≤ P(Tn ≤ T ).

Thus it suffices to show that

P(Tn ≤ T ) ≤ exp(−θn + T ).

Now recalling that Tn =
∑n

i=1 τi ∈ (0,∞), define

Yn = exp(−Tn) ∈ (0, 1)

where by the independence of {τi, i ≥ 1}
E[Yn] = (E[exp(−τ1)])

n .

Note that for a.s. ω, Y
(1)
t (ω) is a continuous trajectory, which implies τ1(ω) > 0 a.s.. Thus we

have P(τ1 > 0) = 1, which implies

E[exp(−τ1)] = exp(−θ) < 1
12



for some θ > 0. Then the desired result follows from the Markov inequality for Yn and the
fact that {Tn ≤ T} = {Yn ≥ exp(−T )}. �

Remark 3. The upper bound found in Lemma 2.3 is clearly not sharp, although it suffices the
purpose in the later context.

In light of the properties of joint process (Xt, nt) defined in (18) above, we have a new
perspective to investigate the distribution ofXt. Let F (x, t) denote the cumulative distribution
function of Xt. Based on the number of jumping times, it admits the following decomposition

F (x, t) =

∞
∑

n=0

Fn(x, t). (33)

There are two major types of results that we could obtain from the decomposition above.
On one hand, we immediately get the wellposedness and regularity properties of the distri-

bution of Xt at a given time, which are not easily achievable due to the complication of jumps.
We observe the right hand side of (33) converges by the bounded convergence theorem, and,
moreover, it is clear that by the previous lemmas F (x, t) is continuous on (−∞, 1] × (0,∞).
Besides, due to the exponential decay of Fn(x, t) with respect to n, we know that the mea-
sure induced by F (·, t) is absolutely continuous with respect to the Lebesgue measure, whose
density function we shall denote by f(x, t).

On the other hand, such a decomposition provides an auxiliary degree of freedom in the
representation of the density function, which facilitates analyzing the time evolution of the
density function. While the flux shift mechanism makes the evolution of F (x, t) nonlocal, the
decomposition unfold the distribution by adding one more dimension such that the evolution
has a simpler structure: the evolution of F0 is self-contained without any nonlocality, and
for n ≥ 1, the evolution of Fn is also local, although it has a tractable dependence on Fn−1.
Recall that, we have used fn(x, t) to denote the density function of Fn(x, t) respectively. In
fact, we are able to show that fn(x, t) is a solution to a sub-PDE problem, and eventually, the
exponential convergence in n can help conclude that

f(x, t) =
∞
∑

n=0

fn(x, t) (34)

is a solution of the PDE problem of interest satisfying the properties in Theorem 1.

3. Iteration Approach

In this section we aim to prove the theorems in Section 2.1. First, we prove the density of
the process Xt that starts from 0 is an instantaneous smooth mild solution of (9) with initial
condition fin(x) = δ(x). Then with similar treatment we can get Corollary 2.1 easily, which
together with the integral representation (12) derive Theorem 2. Finally, we show that the
mild solution is consistent with the definition of the weak solution of (9) defined in [5].

3.1. Solutions in Iteration.

Recalling the process (Xt, nt) defined in (18) above, we first focus on the case X0 = 0, i.e.
the initial condition PDE (9) is f(x, 0) = δ(x). In the previous section, we have decomposed
the distribution F (x, t) of the stochastic process Xt into a summation of series {Fn(x, t)}+∞

n=0

according to (19) and (33). We also decompose the original PDE problem (9) into a sequence
13



of sub-PDE problems: for n = 0



















∂f0
∂t

− ∂

∂x
(xf0)−

∂2f0
∂x2

= 0, x ∈ (−∞, 1), t ∈ (0, T ],

f0(−∞, t) = 0, f0(1, t) = 0, t ∈ [0, T ],

f0(x, 0) = δ(x) in D′(−∞, 1)

(35)

where D(−∞, 1) = C∞
c (−∞, 1) and for n ≥ 1 define Nn−1(t) = − ∂

∂x
fn−1(1, t), we solve



































∂fn
∂t

− ∂

∂x
(xfn)−

∂2fn
∂x2

= 0, x ∈ (−∞, 0) ∪ (0, 1), t ∈ (0, T ],

fn(0
−, t) = fn(0

+, t),
∂

∂x
fn(0

−, t)− ∂

∂x
fn(0

+, t) = Nn−1(t), t ∈ (0, T ],

fn(−∞, t) = 0, fn(1, t) = 0, t ∈ [0, T ],

fn(x, 0) = 0, x ∈ (−∞, 1).

(36)

In particular, we find the PDE problem for f0 (35) is self-contained with a singular initial
data, and thus only a mild solution can be expected, which, however, can be shown to be
instantaneously smooth. For n ≥ 1 the PDE problems for fn (36) are defined when x ∈
(−∞, 0)∪(0, 1), and the time-dependent interface boundary data Nn−1 at x = 1 is determined
by fn−1, the solution to the previous PDE problem in the sequence, but the classical solution
of such problems can be understood in the usual sense.

Here is a bit ambiguity in the notations, since we have used fn(x, t) to denote the sub
density function of the stochastic process and also the solution to the PDE problem. In fact,
we shall show those two functions coincide, of which the precise meaning shall be specified. In
the following, we show that sub density function f0 with delta initial data is an instantaneous
smooth mild solution of (35), and then following the iteration scheme, we prove that for each
n ≥ 1, the sub density function fn is the classical solution of (36). We conclude with the proof
of Theorem 1 by the end of this section.

Before we start to prove our main theorem, we first discuss the Green function of the
Fokker-Planck equation (35). According to Theorem 1.10 in Chapter V I of [22] by Garroni
and Menaldi, we know that the generator of the O-U process (14), i.e.,

Ly := (−y)∂y ·+∂2
yy·,

admits a Green’s function G : (−∞, 1]× [0, T ]× (−∞, 1]× [0, T ] ∋ (y, s, x, t) 7→ G(y, s, x, t).
For a given (x, t) ∈ (−∞, 1]× [0, T ], the function (−∞, 1]× [0, t) ∋ (y, s) 7→ G(y, s, x, t) is a
solution of the PDE











∂sG(y, s, x, t) + LyG(y, s, x, t) = 0, y ∈ (−∞, 1), s ∈ [0, t),

G(1, s, x, t) = 0, s ∈ [0, t],

G(y, t, x, t) = δ(y − x) in D′(−∞, 1)

(37)

Following Theorem 5 in Chap.9 of [21], for a given (y, s) ∈ (−∞, 1) × [0, T ), the function
(−∞, 1] × (s, T ] ∋ (x, t) 7→ G(y, s, x, t) is also known to be Green’s function of the adjoint
operator

L∗
x = ∂x[x·] + ∂2

xx·,
14



i.e. the function (−∞, 1]× (s, T ] ∋ (x, t) 7→ G(y, s, x, t) is a classical solution of the PDE










∂tG(y, s, x, t) = L∗
xG(y, s, x, t), x ∈ (−∞, 1), t ∈ (s, T ],

G(y, s, 1, t) = 0, t ∈ [s, T ],

G(y, s, x, s) = δ(x− y) in D′(−∞, 1),

(38)

which is consistent with (35). Now we give an important lemma that connects the density
function of the stochastic process before the first jumping time with the Green function of PDE
problem (35), which is the starting point of our iteration strategy. And for Green function G,
although we can not find a closed formula for it, there exists the following estimation.

Lemma 3.1. There exists a unique Green function G : (−∞, 1]× [0, T ]× (−∞, 1]× [0, T ] ∋
(y, s, x, t) 7→ G(y, s, x, t) for equation (35). Let f0(x, t) denotes the density of the distribution
F0(x, t) defined in (19), then f0(x, t) = G(0, 0, x, t), i.e., it is a mild solution of (35) on
(−∞, 1]× [0, T ]. Besides, we have the estimation:

∣

∣∂ℓG(y, s, x, t)
∣

∣ ≤ C(t− s)−
1+ℓ
2 exp

(

−C0
(x− y)2

t− s

)

, 0 ≤ s < t ≤ T. (39)

where ℓ = 0, 1, 2, ∂ℓ = ∂ℓ
tx = ∂m

t ∂n
x , ℓ = 2m+ n, for m,n ∈ N0.

Proof. Set
p(x, t) := G(0, 0, x, t), x ∈ (−∞, 1], t ∈ (0, T ].

now we prove that p(x, t) coincides with f0(x, t), which immediately derives that f0(x, t) is
a mild solution of equation (35). Given a smooth function φ : (−∞, 1] × [0, T ] → R with a
compact support, noting that Green’s function satisfies (38), we have that the PDE











∂su(y, s)− y∂yu(y, s) + ∂yyu(y, s) + φ(y, s) = 0, (y, s) ∈ (−∞, 1)× (0, T ]

u(1, s) = 0, s ∈ [0, T ],

u(y, T ) = 0 y ∈ (−∞, 1)

(40)

admits a (unique) classical solution

u(y, s) =

∫ T

s

∫ 1

−∞
G(y, s, x, t)φ(x, t)dxdt, s ∈ [0, T ), y ≤ 1. (41)

Moreover, u is bounded and continuous on (−∞, 1]× [0, T ] and is once continuously differen-
tiable in time and twice differentiable in space on (−∞, 1)× [0, T ]. Let (Xt, nt) be the process
defined in (18) and τ := inf{t ≥ 0 : Xt∧T ≥ 1}. By Itô′s formula, we have

du(Xt∧τ , t ∧ τ) = −φ(Xt∧τ , t ∧ τ)dt +
√
2ux(Xt∧τ , t ∧ τ)dBt

Integrating above formula from 0 to T and take the expectation, with the boundary condition
in (40), we then have the representation formula:

u(0, 0) = E

[
∫ T∧τ

0

φ(Xt, t)dt

]

(42)

And with the two presentations for u(0, 0) above, i.e. (41) and (42), we obtain

E

[
∫ T∧τ

0

φ(Xt, t)dt

]

=

∫ T

0

∫ 1

−∞
p(x, t)φ(x, t)dxdt.

We further rewrite (42) as follows.

E

[
∫ T∧τ

0

φ(Xt, t)dt

]

=

∫ T

0

E
[

φ(Xt, t)1{t≤τ}
]

dt =

∫ T

0

∫ 1

−∞
φ(x, t)P(Xt ∈ dx, τ > t)dt,

15



Clearly, for t ∈ [0, T ], {τ > t} = {T1 > t} = {nt = 0} and thus
∫ T

0

∫ 1

−∞
φ(x, t)f0(x, t)dxdt =

∫ T

0

∫ 1

−∞
φ(x, t)p(x, t)dxdt (43)

By (22) and (39), p(x, t) and f0(x, t) decay at −∞ and thus (43) is also valid for any smooth
function φ that is only bounded, which derives that the density function f0(x, t) coincides
with p(x, t). With (24), we conclude that f0(x, 0) = δ(x) and thus f0(x, t) is a mild solution
of (35). The complete proof of estimation (39) can be found in Theorem 1.10 in Chapter V I
of [22] by Garroni and Menaldi and the proof is complete.

�

Remark 4. The proof of Lemma 3.1 is essentially implied from the results in [17, 18, 22], in
particular, Lemma 2.1 of [17] and Theorem 1.10 in Chapter V I of [22].

Next, we prove some regularities of the sub-density f0(x, t) that are useful in our later
calculations.

Proposition 3.1. Let Xt be the process defined in (18) and T1 be the stopping time defined in
(17). Let F0(x, t) be defined in (19) and its density is denoted as f0(x, t). Let fT1(t) denotes
the p.d.f. of T1. For any fixed T > 0, we have

(i)
lim

x→−∞
∂xf0(x, t) = 0, t ∈ (0, T ]. (44)

(ii) For any x0 ∈ (0, 1), f0(x, t) ∈ C2,1 ((−∞,−x0] ∪ [x0, 1]× [0, T ]). Moreover for all
|x| ≥ |x0|, limt→0+ f0(x, t) = 0.

(iii) For any 0 < ε0 < T < ∞, f0(x, t) ∈ C2,1 ((−∞, 1]× [ε0, T ]). With the following
uniform gradient estimations

sup
(−∞,1]×[ε0,T ]

|f0| < ∞, sup
(−∞,1]×[ε0,T ]

∣

∣

∣

∣

∂f0
∂t

∣

∣

∣

∣

< ∞, sup
(−∞,1]×[ε0,T ]

∣

∣

∣

∣

∂f0
∂x

∣

∣

∣

∣

< ∞,

sup
(−∞,1]×[ε0,T ]

∣

∣

∣

∣

∂(xf0)

∂x

∣

∣

∣

∣

< ∞, sup
(−∞,1]×[ε0,T ]

∣

∣

∣

∣

∂2f0
∂x2

∣

∣

∣

∣

< ∞.

(45)

(iv) We have the coupling relation between fT1(t) and f0(x, t): ∀t ∈ (0, T ], it satisfies

fT1(t) = −
∫ 1

−∞

∂f0(x, t)

∂t
dx = − ∂

∂x
f0(1, t) (46)

and fT1(t) ∈ C[0, T ] with fT1(0) = 0.

Proof. (i) is the direct corollary of estimate (39). And from (39), we know that the Green
function of (35) is continuous differentiable and decays exponentially fast as t tends to 0+

when x stay away from 0. Thus we immediately obtain the properties in (ii). Also by the
estimation (39) for the Green function, we can easily get the bound for f0 in (iii) when t stay
away from 0. Finally, to prove (iv), recall that f0(x, t)dx = P(Xt ∈ dx, T1 > t), thus the c.d.f
of T1 is given by

P(T1 ≤ t) = 1−P(T1 > t) = 1−
∫ 1

−∞
f0(x, t)dx.

By (39), we can differentiate the above formula w.r.t t and exchange the derivative and the
integral. Using (i) and the boundary condition of f0, we have for any t ∈ (0, T ],

fT1(t) =
d

dt
P(T1 ≤ t) = −

∫ 1

−∞

∂f0(x, t)

∂t
dx = −

∫ 1

−∞

∂

∂x
(xf0) +

∂2f0
∂x2

dx = − ∂

∂x
f0(1, t).
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And with Lemma 3.1:

|fT1(t)| = |∂xf0(1, t)| ≤
C

t
exp(−C0

t
),

we conclude fT1(t) ∈ C(0, T ] and limt→0+ fT1(t) = 0 and thus fT1(t) ∈ C[0, T ].
�

In order to make the iteration strategy successful, we need to further show that fT1(t) is
continuously differentiable, which is not a direct consequence of estimating Green’s function.
Thus next we shall prove that fT1(t) ∈ C1[0, T ] and the following estimation is useful in the
further calculations.

Corollary 3.1. For any T > 0 and ∀0 < ε0 < min{ 1
T
, T}, fT1(t) ∈ C1(0, T ] and for any

t ≥ ε0, we have

∣

∣f ′
T1
(t)
∣

∣ ≤ Cε−3
0 . (47)

Proof. By Proposition 3.1, we know that f0(x, t) ∈ C2,1 ((−∞, 1]× [ε0, T ]) and fT1(t) =
− ∂

∂x
f0(1, t) ∈ C[0, T ]. Then for any x ∈ (−∞, 1], t ∈ [ε0, T ], set g0(x, t) = ∂

∂t
f0(x, t) and

it satisfies






















∂g0
∂t

− ∂

∂x
(xg0)−

∂2g0
∂x2

= 0, x ∈ (−∞, 1), t ∈ (ε0, T ],

g0(−∞, t) = 0, g0(1, t) = 0, t ∈ [ε0, T ],

g0(x, ε0) =
∂

∂t
f0(x, ε0) x ∈ (−∞, 1).

(48)

Defining ϕ(x) := ∂
∂t
f0(x, ε0), we immediately get that ϕ(x) ∈ C2(−∞, 1]∩L∞(−∞, 1] and by

(39)

|ϕ(x)| ≤ Cε
− 3

2
0 .

For any t ≥ 0, x ∈ (−∞, 1], define h(x, t) := g0(x, t + ε0) and then h(x, 0) = ϕ(x). Recalling
the Green function G(s, y, x, t) in PDE (38), we have

h(x, t) =

∫ 1

−∞
G(y, 0, t, x)ϕ(y)dy, t ≥ 0.

Then

g0(x, t) =

∫ 1

−∞
G(y, 0, t− ε0, x)ϕ(y)dy, t ≥ ε0. (49)

By (39) and Lemma 3.1, we have

f ′
T1
(t) = − ∂

∂t

∂

∂x
f0(1, t) = − ∂

∂x
g0(1, t) = −

∫ 1

−∞

∂

∂x
G(y, 0, t− ε0, 1)ϕ(y)dy, t > ε0 (50)
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and thus fT1(t) ∈ C1(ε0, T ].
When t ≥ 2ε0,

|f ′
T1
(t)| ≤

∫ 1

−∞

∣

∣

∣

∣

∂

∂x
G(y, 0, t− ε0, 1)

∣

∣

∣

∣

Cε
− 3

2
0 dy

≤ Cε
− 3

2
0

∫ 1

−∞

C

t− ε0
exp

(

−C0
(1− y)2

t− ε0

)

dy

= Cε
− 5

2
0

∫ +∞

0

exp

(

−C0
ξ2

t− ε0

)

dξ

≤ Cε
− 5

2
0

√
T − ε0√
C0

√
π

2

≤ Cε−3
0 .

(51)

where the second inequality is by the change of variable ξ = 1− y and the third inequality is
from the fact ε0 ≤ 1

T
. And because ε0 can be arbitrarily small, we complete the proof.

�

Now we focus on the behavior of f ′
T1
(t) when t is small. This proof is partially inspired by

the reformulation and the representation proposed in [11].

Proposition 3.2. The p.d.f. fT1(t) of the first hitting time T1 is C1[0, T ] for any fixed T > 0.

Proof. By Proposition 3.1 and Corollary 3.1, we know fT1(t) ∈ C1(0, T ]∩C[0, T ] and thus we
only need to prove that limt→0+ f ′

T1
(t) exists. We prove it in the following steps. Step 1: We

rewrite the problem (35) as a moving boundary problem and rewrite fT1(t) as M(s). With
the heat kernel Γ, we derive an integral representation of M(s). Step 2: We analyse the decay
rate of M(s) and M ′(s) at 0 by utilizing the decay property of heat kernel Γ. Step 3: Using
the estimations of M(s), M ′(s) and heat kernel Γ, we derive limt→0+ f ′

T1
(t) = 0.

Step 1: Inspired from [11], we introduce a change of variable to transform (35) to a moving
boundary problem. Let

y = etx, s = (e2t − 1)/2, u(y, s) = e−tf(x, t). (52)

Note that PDE (35) is for the O-U process killed at a stopping time and thus has the Dirichlet
boundary condition. By the standard change of variable (52), we can transform (35) into a
heat equation with the moving boundary b(s) =

√
2s+ 1. Actually, we have the new equation











us = uyy, y ∈ (−∞, b(s)), s > 0

u(−∞, s) = 0, u(b(s), s) = 0, s ≥ 0,

u(y, 0) = δ(y) in D′(−∞, b(s)).

(53)

Let Γ be the Green’s function for the heat equation on the real line:

Γ(y, s, ξ, τ) =
1

√

4π(s− τ)
exp{− (y − ξ)2

4(s− τ)
}, s > τ. (54)

In the region −∞ < ξ < b(τ), 0 < τ < h, recall the Green’s identity

∂

∂ξ
(Γuξ − uΓξ)−

∂

∂τ
(Γu) = 0. (55)

To derive an expression of u, we consider the integration of (55) over such a region and let

I =

∫ s

0

∫ b(τ)

−∞
(Γuξ)ξdξdτ, II =

∫ s

0

∫ b(τ)

−∞
(uΓξ)ξdξdτ, III =

∫ s

0

∫ b(τ)

−∞
(Γu)τdξdτ.
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We have

I =

∫ s

0

Γuξ|ξ=b(τ)dτ.

Using the boundary condition of u(y, s) in (53), we have

II = 0

and

III =

∫ b(s)

−∞
Γu|τ=s−dξ −

∫ b(0)

−∞
Γu|τ=0dξ = u(y, s)−

∫ b(0)

−∞
Γu|τ=0dξ.

Plugging in (55),

u(y, s) =

∫ b(0)

−∞
Γ(y, s, ξ, 0)δ(ξ)dξ+

∫ s

0

Γ(y, s, b(τ), τ)uξ(b(τ), τ)dτ

= Γ(y, s, 0, 0)−
∫ s

0

Γ(y, s, b(τ), τ)M(τ)dτ.

(56)

where M(τ) = −uξ(b(τ), τ). Note that the Green function Γ is infinitely continuously differ-
entiable, thus the regularity of u depends on M . Using Lemma 1 on Page 217 of [21], we know
that for any continuous function ρ the following limit holds:

lim
y→b(s)−

∂

∂y

∫ s

0

ρ(τ)Γ(y, s, b(τ), τ)dτ =
1

2
ρ(s) +

∫ s

0

ρ(τ)Γy(b(s), s, b(τ), τ)dτ.

So differentiating (56) at y = b(s)−, we can get the following integral equation

−M(s) = Γy(b(s), s, 0, 0)−
1

2
M(s)−

∫ s

0

Γy(b(s), s, b(τ), τ)M(τ)dτ.

That is

M(s) = −2Γy(b(s), s, 0, 0) + 2

∫ s

0

Γy(b(s), s, b(τ), τ)M(τ)dτ

=: 2J1(s) + 2J2(s).

(57)

Recalling the change of variable in (52) and taking derivatives directly, we know that

fT1(t) = e2tM(s) and f ′
T1
(t) = 2e2tM(s) + e4tM ′(s). (58)

Step 2: We shall analyse the decay rate of M(s) at 0. By heat kernel (54) Γ(y, s, 0, 0) =
1√
4πs

exp(−y2

4s
) and b(s) =

√
2s+ 1, we have that for any n ≥ 0, lims→0+

J1(s)
sn

= 0 and thus

there exists a constant C such that for s ∈ [0, T ], n ≥ 0

|J1(s)| ≤ Csn. (59)

Note that

Γy(b(s), s, b(τ), τ) =
1

√

4π(s− τ)
exp{−(b(s)− b(τ))2

4(s− τ)
}{b(s)− b(τ)

−2(s− τ)
}, (60)

thus we have

|Γy(b(s), s, b(τ), τ)| ≤
C

(s− τ)
1
2

.

By (iv) of Proposition 3.1 and (58), there exists another big enough constant K s.t. |M(s)| ≤
K, ∀s ∈ [0, T ] . Thus

|J2(s)| ≤ C

∫ s

0

K

(s− τ)
1
2

= C
√
s.
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Combining with (59), we also have |M(s)| ≤ |J1(s)|+ |J2(s)| ≤ C
√
s, and thus

|J2(s)| ≤ C

∫ s

0

√
τ

(s− τ)
1
2

= Cs.

Using (59) again, we have |M(s)| ≤ Cs and thus

|J2(s)| ≤ C

∫ s

0

τ

(s− τ)
1
2

= Cs
3
2 .

Using (59) for the third time, we can get |M(s)| ≤ Cs
3
2 , which together with M(0) = 0 leads

to the right derivative of M at 0 exists and

M ′(0+) = lim
s→0+

M(s)

s
= 0.

Repeating the above calculations step by step, we can get for any n ≥ 0, there exists a constant
that depends on n, such that

|M(s)| ≤ Csn. (61)

By (47) and (58), we know that for any sufficiently small ε0 > 0 , there is a constant C < +∞
such that

|M ′(s)| ≤ Cε−3
0 , ∀s ∈ [ε0, 1]. (62)

Step 3: In order to prove fT1(t) ∈ C1[0, T ], which is equivalent to prove that lims→0+ M ′(s)
exists by (58), now we prove that lims→0+ M ′(s) = 0. Using (57) and the fact lims→0+ J ′

1(s) =
0, we only need to to prove that

lim
s→0+

J ′
2(s) = 0. (63)

Using the estimations (61), (62) and heat kernel Γ, we compute the difference between A :=
∫ s

0
Γy(b(s), s, b(τ), τ)M(τ)dτ and B :=

∫ s+∆s

0
Γy(b(s +∆s), s+∆s, b(τ), τ)M(τ)dτ .

A can have the following decomposition

A :=

(

∫ s
2

0

+

∫ s

s
2

)

Γy(b(s), s, b(τ), τ)M(τ)dτ.

and for B,

B :=

(

∫ s
2

0

+

∫ s
2
+∆s

s
2

+

∫ s+∆s

s
2
+∆s

)

Γy(b(s +∆s), s+∆s, b(τ), τ)M(τ)dτ.

Define
J2(s+∆s)− J2(s)

∆s
=: I1 + I2 + I3

where

I1 :=

∫ s
2

0

[

Γy(b(s+∆s), s+∆s, b(τ), τ)− Γy(b(s), s, b(τ), τ)

∆s

]

M(τ)dτ,

I2 :=
1

∆s

∫ s
2
+∆s

s
2

Γy(b(s +∆s), s+∆s, b(τ), τ)M(τ)dτ

and

I3 :=
1

∆s

[

∫ s+∆s

s
2
+∆s

Γy(b(s+∆s), s+∆s, b(τ), τ)M(τ)dτ −
∫ s

s
2

Γy(b(s), s, b(τ), τ)M(τ)dτ

]

.
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Thus to get (63), now it suffices to show that

lim
∆s→0

|I1| ≤
∫ s

2

0

|∂sΓy(b(s), s, b(τ), τ)M(τ)| dτ = o(1), (64)

lim
∆s→0

|I2| = o(1) (65)

and
lim
∆s→0

|I3| = o(1). (66)

The above = o(1) means that the left side goes to 0 as s → 0+.
Note that for τ ≤ 3

4
s, then Γy and ∂sΓy terms in (64) and (65) can be bounded by a

polynomial order with respect to s−1, which together with (61) immediately derives (64) and
(65). Thus we only need to focus on proving (66). With a simple change of variable, we have

∫ s+∆s

s
2
+∆s

Γy(b(s +∆s), s+∆s, b(τ), τ)M(τ)dτ

=

∫ s

s
2

Γy(b(s+∆s), s+∆s, b(τ +∆s), τ +∆s)M(τ +∆s)dτ

=

∫ s

s
2

Γy(b(s+∆s), s+∆s, b(τ +∆s), τ +∆s)M(τ)dτ

+

∫ s

s
2

Γy(b(s+∆s), s+∆s, b(τ +∆s), τ +∆s) [M(τ +∆s)−M(τ)] dτ.

We define
I3 := I3,1 + I3,2

where

I3,1 =
1

∆s

∫ s

s
2

[Γy(b(s +∆s), s+∆s, b(τ +∆s), τ +∆s)− Γy(b(s), s, b(τ), τ)]M(τ)dτ

and

I3,2 =

∫ s

s
2

Γy(b(s+∆s), s+∆s, b(τ +∆s), τ +∆s)
M(τ +∆s)−M(τ)

∆s
dτ.

Thus to show (66), it suffices to prove

lim
∆s→0

|I3,1| = o(1) (67)

and
lim
∆s→0

|I3,2| = o(1). (68)

For (67), by (60) we have

Γy(b(s+∆s), s+∆s, b(τ +∆s), τ +∆s)− Γy(b(s), s, b(τ), τ)

=
1

√

4π(s− τ)
exp{−1

2

b(s +∆s)− b(τ +∆s)

b(s +∆s) + b(τ +∆s)
}{ −1

b(s+∆s) + b(τ +∆s)
}

− 1
√

4π(s− τ)
exp{−1

2

b(s)− b(τ)

b(s) + b(τ)
}{ −1

b(s) + b(τ)
},

and thus there exists a constant C < +∞ independent of the choices of s, τ and ∆s such that

|Γy(b(s+∆s), s+∆s, b(τ +∆s), τ +∆s)− Γy(b(s), s, b(τ), τ)| ≤ C ·∆s · 1√
s− τ

,
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which together with (61) derive lim∆s→0 |I3,1| = o(1).
Finally, for (68), note that M(τ) ∈ C1[ s

2
, s] and that |Γy(b(s +∆s), s + ∆s, b(τ +∆s), τ +

∆s)| ≤ C√
s−τ

. By the dominated convergence theorem, we have the limit in (68) exists and

equals to

I3,3 :=

∫ s

s
2

Γy(b(s), s, b(τ), τ)M
′(τ)dτ. (69)

To prove |I3,3| = o(1), one may further decompose it as

I3,3 =

∫ s−s7

s
2

Γy(b(s), s, b(τ), τ)M
′(τ)dτ +

∫ s

s−s7
Γy(b(s), s, b(τ), τ)M

′(τ)dτ

= : I4 + I5.

For I4, note that Γy(b(s), s, b(τ), τ) and M(τ) are both smooth on [ s
2
, s− s7], we may use the

integration by part and have

|I4| ≤
∣

∣Γy(b(s), s, b(s− s7), s− s7) ·M(s− s7)
∣

∣ +
∣

∣

∣
Γy(b(s), s, b(

s

2
),
s

2
) ·M(

s

2
)
∣

∣

∣

+

∣

∣

∣

∣

∣

∫ s−s7

s
2

∂τΓy(b(s), s, b(τ), τ)M
′(τ)dτ

∣

∣

∣

∣

∣

.

where all the terms are small since |M(τ)| is much less than any polynomial of τ and thus
I4 = o(1). For I5, recall that |Γy(b(s), s, b(τ), τ)| ≤ C√

s−τ
and |M ′(τ)| ≤ Cs−3 on [s− s7, s], we

have

|I5| ≤ s−3

∫ s

s−s7

C√
s− τ

dτ ≤ C
√
s = o(1).

which derives lim∆s→0 |I3,2| = o(1) and thus lim∆s→0 |I3| = o(1). Combining (64), (65) and
(66), we got lims→0+ J ′

2(s) = 0 and then lims→0+ M ′(s) = 0, which together with (58) derive
limt→0+ f ′

T1
(t) = 0 and fT1(t) ∈ C1[0, T ].

�

Next, we can do the first iteration.

Proposition 3.3. Let f1(x, t) be the density function of the measure induced by F1(·, t) defined
in (19), it satisfies the following initial condition and the recursive relation

f1(x, 0) = 0, ∀x ∈ (−∞, 1),

f1(x, t) =

∫ t

0

f0(x, t− s)fT1(s)ds, ∀x ∈ (−∞, 0) ∪ (0, 1), t > 0.
(70)

For any fixed T > 0, we have

(i) f1(x, t) is the classical solution of the following PDE on (−∞, 1]× [0, T ]:






























∂f1
∂t

− ∂

∂x
(xf1)−

∂2

∂x2
f1 = 0, x ∈ (−∞, 0) ∪ (0, 1), t ∈ (0, T ], (71)

f1(0
−, t) = f1(0

+, t),
∂

∂x
f1(0

−, t)− ∂

∂x
f1(0

+, t) = fT1(t), t ∈ (0, T ], (72)

f1(−∞, t) = 0, f1(1, t) = 0, t ∈ [0, T ], (73)

f1(x, 0) = 0, x ∈ (−∞, 1) (74)

with
lim

x→−∞
∂xf1(x, t) = 0, t ∈ [0, T ]. (75)
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(ii) There is a big enough constant CT depending only on T such that

|f1(x, t)| ≤ CT , ∀x ∈ (−∞, 0) ∪ (0, 1), t ∈ [0, T ], (76)
∣

∣

∣

∣

∂

∂x
f1(x, t)

∣

∣

∣

∣

≤ CT , ∀x ∈ (−∞, 0) ∪ (0, 1), t ∈ [0, T ]. (77)

And at the domain boundary:
∣

∣

∣

∣

∂

∂x
f1(0

−, t)

∣

∣

∣

∣

≤ CT ,

∣

∣

∣

∣

∂

∂x
f1(0

+, t)

∣

∣

∣

∣

≤ CT ,

∣

∣

∣

∣

∂

∂x
f1(1

−, t)

∣

∣

∣

∣

≤ CT , t ∈ [0, T ]. (78)

(iii) For t > 0, recalling that the density of the second jumping time

fT2(t) =

∫ t

0

fT1(t− s)fT1(s)ds, (79)

we have

− ∂f1
∂x

(1, t) = fT2(t). (80)

Proof. By (30) and the Fubini formula, we immediately get (70). As we have already known
f0(x, t) satisfies PDE (35), thus from iteration relationship (70) and the regularities for f0(x, t)
in Proposition 3.1, we can check that f1(x, t) satisfies PDE (36) with n = 1 and the estimations
for f1(x, t) are valid.

To prove (i), by the regularities of f0 in Proposition 3.1, we have ∀x ∈ (−∞, 0) ∪ (0, 1),

∂

∂x
f1(x, t) =

∫ t

0

∂

∂x
f0(x, t− s)fT1(s)ds and

∂2

∂x2
f1(x, t) =

∫ t

0

∂2

∂x2
f0(x, t− s)fT1(s)ds,

which together with the decay property (44) for f0 derive (75).
Moreover,

∂

∂t
f1(x, t) =

∂

∂t

∫ t

0

f0(x, t− s)fT1(s)ds

= lim
∆t→0

∫ t

0

f0(x, t+∆t− s)− f0(x, t− s)

∆t
fT1(s)ds

+ lim
∆t→0

∫ t+∆t

t
f0(x, t+∆t− s)fT1(s)ds

∆t

=

∫ t

0

∂

∂t
f0(x, t− s)fT1(s)ds.

Thus we have checked (71) and also got the continuity of ∂2

∂x2 f1(x, t) and ∂
∂t
f1(x, t). At the

same time, (73) and (74) are obvious because of the boundary conditions of f0 and the formula
(70). So for the rest of the proof we concentrate on verifying (72), which is composed of

f1(0
−, t) = f1(0

+, t), t ∈ (0, T ] (81)

and
∂

∂x
f1(0

−, t)− ∂

∂x
f1
(

0+, t
)

= fT1(t), t ∈ (0, T ]. (82)

To show (81), note that
∫ 1

0
1√

1−e−2sds < ∞ and thus for any ε > 0, ∃0 < δ < t s.t.
∫ δ

0
1√

1−e−2sds < ε
c
, where the constant c is the same as in (23). With (70), we have for any

x 6= 0,

f1 (x, t) =

∫ t

0

f0 (x, t− s) fT1(s)ds =

∫ t−δ

0

f0(x, t−s)fT1(s)ds+

∫ t

t−δ

f0(x, t−s)fT1(s)ds. (83)
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For the 2nd term above, using (23):
∫ t

t−δ

f0(x, t− s)fT1(s)ds ≤
∥

∥fT1

∥

∥

L∞[0,t]

∫ δ

0

c√
1− e−2s

ds ≤
∥

∥fT1

∥

∥

L∞[0,t]
· ε.

While for the first term, one may use (45) and see that

lim
x1→0+,x2→0+

∫ t−δ

0

|f0(x1, t− s)− f0(−x2, t− s)| fT1(s)ds = 0.

Since ε is arbitrary, we get (81).
Now to prove (82): noting that

∂

∂x
f1 (x1, t) =

∫ t

0

∂

∂x
f0(x1, t− s)fT1(s)ds, x1 ∈ (0, 1)

and for any t− s 6= 0,

∂

∂x
f0(x1, t− s) = −

∫ 1

x1

∂2

∂x2
f0(x, t− s)dx+

∂

∂x
f0(1, t− s)

= −
∫ 1

x1

[

∂f0
∂t

(x, t− s)− ∂

∂x
(xf0)(x, t− s)

]

dx+
∂

∂x
f0(1, t− s)

=

∫ 1

x1

[

∂

∂x
(xf0)(x, t− s)− ∂f0

∂t
(y, t− s)

]

dx+
∂

∂x
f0(1, t− s)

= f0(1, t− s)− x1f0(x1, t− s)−
∫ 1

x1

∂f0
∂t

(x, t− s)dx+
∂

∂x
f0(1, t− s)

= −x1f0(x1, t− s)−
∫ 1

x1

∂f0
∂t

(x, t− s)dx− fT1(t− s).

Thus:
∂

∂x
f1(x1, t) =

∫ t

0

∂

∂x
f0(x1, t− s)fT1(s)ds

=

∫ t

0

[

−x1f0(x1, t− s)−
∫ 1

x1

∂f0
∂t

(x, t− s)dx− fT1(t− s)

]

fT1(s)ds.

(84)

Similarly for any x2 > 0, we have

∂

∂x
f0(−x2, t− s)

=

∫ −x2

−∞

∂2

∂x2
f0(x, t− s)dx+ 0

=

∫ −x2

−∞

[

∂f0
∂t

(x, t− s)− ∂

∂z
(xf0(x, t− s))

]

dx

=x2f0(−x2, t− s) +

∫ −x2

−∞

∂f0
∂t

(x, t− s)dx.

And thus

∂

∂x
f1(−x2, t) =

∫ t

0

[

x2f0(−x2, t− s) +

∫ −x2

−∞

∂f0
∂t

(x, t− s)dx

]

fT1(s)ds. (85)
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Combining (84) and (85), we have for all x1 ∈ (0, 1) and x2 > 0,

∂

∂x
f1(−x2, t)−

∂

∂x
f1(x1, t)

=x2

∫ t

0

f0(−x2, t− s)fT1(s)ds+ x1

∫ t

0

f0(x1, t− s)fT1(s)ds

+

∫ t

0

[
∫

R\[−x2,x1]

∂f0
∂t

(x, t− s)dx+ fT1(t− s)

]

fT1(s)ds

= : I6 + I7 + I8.

(86)

For I6, we have by (23):

I6 ≤ ‖fT1‖L∞[0,t] · x2 ·
∫ t

0

c√
1− e−2s

ds → 0 as x2 → 0+.

And I7 → 0 by the same argument, it now suffices to show

I8 → fT1(t) as x1, x2 → 0+. (87)

In the rest of our calculations, integrand of I8 will be called H(s). As a result of Proposition
3.2, for any ε > 0, we let the chosen δ small enough such that

δ ‖fT1‖2L∞[0,t] < ε (88)
∫ t2

t1

∣

∣f ′
T1
(s)
∣

∣ ds < ε, ∀t1 < t2 < t, t2 − t1 < δ (89)

P (T1 < δ) < ε. (90)

Then for the fixed δ > 0 defined above,

I8 =

∫ t−δ

0

H(s)ds+

∫ t

t−δ

H(s)ds =: I8,1 + I8,2. (91)

For I8,1, we have by (45) and (46),

|I8,1| =
∣

∣

∣

∣

∫ t−δ

0

[
∫

R\[−x2,x1]

∂f0
∂t

(y, t− s)dy + fT1(t− s)

]

fT1(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t−δ

0

∫ x1

−x2

∂f0
∂t

(y, t− s)fT1(s)dyds

∣

∣

∣

∣

≤‖fT1‖L∞[0,t]

∫ t−δ

0

∫ x1

−x2

∥

∥

∥

∥

∂f0
∂t

∥

∥

∥

∥

L∞(−∞,1]×[δ,T ]

dyds

≤t · ‖fT1‖L∞[0,T ] ·
∥

∥

∥

∥

∂f0
∂t

∥

∥

∥

∥

L∞(−∞,1]×[δ,T ]

· (x1 + x2)

which → 0 as x1, x2 → 0. As for I8,2,

I8,2 =

∫ t

t−δ

[
∫

R\[−x2,x1]

∂f0
∂t

(y, t− s)dy + fT1(t− s)

]

fT1(s)ds.

One may first see by (88), we have
∫ t

t−δ
fT1 (t− s) fT1(s)ds ≤ ε. Moreover, for any x1, x2 > 0,

note that function ∂f0
∂t
(y, t−s)fT1(s) is bounded and continuous on the region (R\ [−x2, x1])×
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[t− δ, t]. One may apply Fubini’s formula and have:

I8,2 =

∫

R\[−x2,x1]

∫ t

t−δ

∂f0
∂t

(y, t− s)fT1(s)dsdy. (92)

At the same time, by (39) we have for any fixed t > 0, y /∈ [−x2, x1],

f0(y, t− s)fT1(s) ∈ C1[t− δ, t)

and

lim
s→t−

f0(y, t− s)fT1(s) = 0.

Thus, one may apply integration by parts and have
∫ t

t−δ

∂f0
∂t

(y, t− s)fT1(s)ds

=(−f0(y, t− s)fT1(s))
∣

∣

∣

t

t−δ
+

∫ t

t−δ

f0(y, t− s)f ′
T1
(s)ds

=f0(y, δ)fT1(t− δ) +

∫ t

t−δ

f0(y, t− s)f ′
T1
(s)ds.

(93)

Plugging (93) back to (92) and applying the Fubini theorem once again, we have

I8,2 =

[
∫

R\[−x2,x1]

f0(y, δ)dy

]

fT1(t− δ) +

∫ t

t−δ

∫

R\[−x2,x1]

f0(y, t− s)dyf ′
T1
(s)ds

=: I9 + I10.

(94)

First for I10, noting that f0 is a p.d.f., for any s ∈ (t− δ, t) we have
∫

R\[−x2,x1]

f0(y, t− s)dy ≤ 1,

which together with (89) derive

|I10| ≤
∫ t

t−δ

∣

∣f ′
T1
(s)
∣

∣ ds < ε. (95)

Then for I9, by (90) we have

lim
x1→0+,x2→0+

∫

R\[−x2,x1]

f0(y, δ)dy =

∫ 1

−∞
f0(y, δ)dy = P (T1 > δ) ∈ [1− ε, 1]

and
∣

∣fT1(t− δ)− fT1(t)
∣

∣ < ε.

Thus we have for all sufficiently small x1 > 0, x2 > 0,

|I9 − fT1(t)| = |I9 − fT1(t− δ)|+ |fT1(t− δ)− fT1(t)| < (‖fT1‖L∞[0,t] + 1)ε. (96)

Now combing from (91) to (96), we have concluded that I8 → fT1(t) as x1, x2 → 0+, which
together with I6 → 0 and I7 → 0 derive (82).

As for (ii), we first derive (76) and (77) that are essential in getting (80) and also set the
basis for subsequent iterations. First we verify (76) and without loss of generality, one may
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assume T > 1. So when t ∈ (0, T ] and x ∈ (−∞, 0) ∪ (0, 1),

f1(x, t) =

∫ t

0

f0(x, t− s)fT1(s)ds

6

∫ t−1

0

f0(x, t− s)fT1(s)ds+ ‖fT1‖L∞[0,T ]

∫ 1

0

1√
1− e−2s

ds

6 ‖f0(x, t)‖L∞(−∞,1]×[1,∞) + C ′
T = CT .

And for (77), without loss of generality, one may assume that x > 0 and by (84) we have:

∂f1
∂x

(x, t) =

∫ t

0

[

−xf0(x, t− s)−
∫ 1

x

∂f0
∂t

(y, t− s)dy − fT1(t− s)

]

fT1(s)ds =: I11 + I12 + I13.

Using the estimate (22) for f0(x, t), one have
{

|I11| ≤ C · FT1(t) ≤ CT

|I13| ≤ ‖fT1‖L∞[0,T ]FT1(t) ≤ CT .

For the remaining I12, formula twice and integration by parts together with the fact that
f0(·, t) is a p.d.f. to have:

|I12| =
∣

∣

∣

∣

∫ 1

x

∫ t

0

∂f0
∂t

(y, t− s)fT1(s)dsdy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

x

∫ t

0

f0(y, t− s)f ′
T1
(s)dsdy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

∫ 1

x

f0(y, t− s)dyf ′
T1
(s)ds

∣

∣

∣

∣

≤
∫ t

0

∣

∣f ′
T1
(s)
∣

∣ ds

≤CT .

Because of the proof of (72) in (i), property (ii) of Proposition 3.1 and representation (70),
we know that ∂

∂x
f1(0

−, t), ∂
∂x
f1(0

+, t) and ∂
∂x
f1(1

−, t) are well-defined, and thus by taking the
one side limit in (77), we immediately get (77) and thus we complete the proof of (ii).

Finally for (iii), using integral representation (29), we immediately get (79). Recalling that
f1(1, t) = 0, ∀t > 0, it suffices to prove

lim
x1→0+

f1(1− x1, t)

x1

= fT2(t), ∀t > 0. (97)

Now note that for all 0 < x1 <
1
2
,

f1(1− x1, t) =

∫ t

0

f0(1− x1, t− s)fT1(s)ds

While at the same time by mean value theorem on f0, for all s ∈ [0, t], ∃ ξt−s(x1) ∈ [1−x1, 1] ⊂
[1
2
, 1] s.t.

f0(1− x1, t− s)

x1
= −f0(1, t− s)− f0(1− x1, t− s)

x1

= − ∂

∂x
f0 (ξt−s(x1), t− s) .
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Note for all 0 < x1 <
1
2
, by (ii) of Proposition 3.1 for f0:

∂

∂x
f0(ξt−s(x1), t− s) 6

∥

∥

∥

∥

∂f0
∂x

∥

∥

∥

∥

L∞

[ 12 ,1]×[0,T ]

and we have

lim
x1→0+

∂

∂x
f0 (ξt−s(x1), t− s) =

∂

∂x
f0(1, t− s).

By the dominated convergence theorem,

lim
x1→0+

f1(1− x1, t)

x1
= −

∫ t

0

∂

∂x
f0(1, t− s)fT1(s)ds=

∫ t

0

fT1(t− s)fT1(s)ds= fT2(t).

and thus

−∂f1
∂x

(1, t) = fT2(t).

The proof of Proposition 3.3 is complete.
�

Similarly by (30), for all n ≥ 1, we have

fn(x, 0) = 0, ∀x ∈ (∞, 1),

fn(x, t) =

∫ t

0

fn−1(x, t− s)fT1(s)ds, ∀x ∈ (−∞, 0) ∪ (0, 1), t > 0
(98)

and

fTn+1(t) =

∫ t

0

fTn
(t− s)fT1(s)ds.

Hence, the iterative construction is feasible, and we can show

Proposition 3.4. For each n ≥ 1, let fn(x, t) be the density function of the measure induced
by Fn(·, t) defined in (19). For any fixed T > 0, we have

(i) fn is the classic solution of the following PDE:






























∂fn
∂t

− ∂

∂x
(xfn)−

∂2

∂x2
fn = 0, x ∈ (−∞, 0) ∪ (0, 1), t ∈ [0, T ], (99)

fn(0
−, t) = fn

(

0+, t
)

,
∂

∂x
fn
(

0−, t
)

− ∂

∂x
fn
(

0+, t
)

= fTn
(t), t ∈ (0, T ]. (100)

fn(−∞, t) = 0, fn(1, t) = 0, t ∈ [0, T ] (101)

fn(x, 0) = 0, x ∈ (−∞, 1) (102)

with

lim
x→−∞

∂xfn(x, t) = 0, t ∈ [0, T ]. (103)

(ii) There is a CT that depends only on T such that

|fn(x, t)| ≤ CT , ∀x ∈ (−∞, 0) ∪ (0, 1), t ∈ [0, T ], (104)
∣

∣

∣

∣

∂

∂x
fn(x, t)

∣

∣

∣

∣

≤ CT , ∀x ∈ (−∞, 0) ∪ (0, 1), t ∈ [0, T ], (105)

and at the domain boundary
∣

∣

∣

∣

∂

∂x
fn(0

−, t)

∣

∣

∣

∣

≤ CT ,

∣

∣

∣

∣

∂

∂x
fn(0

+, t)

∣

∣

∣

∣

≤ CT ,

∣

∣

∣

∣

∂

∂x
fn(1

−, t)

∣

∣

∣

∣

≤ CT . (106)
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(iii) For t > 0, fn is differentiable at x = 1 and

− ∂fn
∂x

(1, t) = fTn+1(t). (107)

Proof. The proof of Proposition 3.4 follows from induction. By Proposition 3.3, we have
presented the inductive basis at n = 1. Now assuming the inductive hypothesis holds up to
n > 1, To prove (i), by

fn+1(x, t) =

∫ t

0

fn(x, t− s)fT1(s)ds,

one may immediately see (99),(101),(102) and (103) hold. For (100), note that fn(0
−, t) =

fn(0
+, t), ∀t > 0, and that |fn(x, t)| ≤ CT , ∀x ∈ (−∞, 0) ∪ (0, 1), t ≤ T . By the dominated

convergence theorem, we have

lim
x1→0+,x2→0+

|fn+1(x1, t)− fn+1(−x2, t)|

≤ lim
x1→0+,x2→0+

∫ t

0

|fn(x1, t− s)− fn(−x2, t− s)|fT1(s)ds

=0.

So we have

fn+1(0
−, t) = fn+1(0

+, t).

Similarly,

lim
x1→0+,x2→0+

∂fn+1

∂x
(x1, t)−

∂fn+1

∂x
(−x2, t)

= lim
x1→0+,x2→0+

∫ t

0

∂fn
∂x

(x1, t− s)− ∂fn
∂x

(−x2, t− s)fT1(s)ds.

By the inductive hypothesis and the dominated convergence theorem, we have

∂

∂x
fn+1

(

0−, t
)

− ∂

∂x
fn+1

(

0+, t
)

= fTn+1(t).

As for (ii), to check the additional regularity conditions, note that inductive hypothesis,

0 ≤ fn+1(x, t) =

∫ t

0

fn(x, t− s)fT1(s)ds ≤ CT .

And for any y ∈ (−∞, 0) ∪ (0, 1) and t ≤ T ,
∣

∣

∣

∣

∂fn+1

∂x
(y, t)

∣

∣

∣

∣

≤
∫ t

0

∣

∣

∣

∣

∂fn
∂x

(y, t− s)

∣

∣

∣

∣

fT1(s)ds ≤ CT .

Using similar arguments as in Proposition 3.3, we have ∂
∂x
fn+1 (0

−, t), ∂
∂x
fn+1 (0

+, t) and
∂
∂x
fn+1 (1

−, t) are individually bounded by CT . Finally for (iii), noting that
∣

∣

∂fn
∂x

(y, t)
∣

∣ ≤ CT

for all t ≤ T , 0 < y < 1, the proof of

−∂fn
∂x

(1, t) = fTn+1(t), ∀t > 0.

follows from the same treatment as in Proposition 3.3.
�

Now we can finish the proof of Theorem 1.
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Proof of Theorem 1: Based on the previous analysis in Proposition 3.1-3.4, we have shown
that for n ≥ 0, fn is the density function of the measure induced by Fn(·, t) defined in
(19) as well as the solution to the sub PDE problems (35) and (36). Next, we consider the
density function of the stochastic process Xt as in (18) that admits the series representation
f(x, t) =

∑+∞
n=0 fn(x, t).

In order to prove that f(x, t) satisfies the properties in Theorem 1, we first show that
the relevant derivatives of f(x, t) also have the series representations and the series converge
uniformly so that we can pass the regularity from fn(x, t) to f(x, t). Besides, noting that fn
is the solution to the sub PDE problems (35) and (36), and thus we can show in the following
f =

∑+∞
n=0 fn satisfies the (9), which is the summation of sub PDE problems PDE (35) and

(36).
For any fixed T > 0, we first show the uniform convergence of the relevant derivatives of

∑+∞
n=0 fn(x, t) on ((−∞, 0) ∪ (0, 1])× [0, T ]. By (98), ∀x0 ∈ (−∞, 0) ∪ (0, 1], we have for any

0 ≤ t ≤ T and n ≥ 1
∣

∣

∣

∣

∂

∂x
fn(x0, t)

∣

∣

∣

∣

≤
∫ T

0

fT1(s)ds · max
t∈[0,T ]

∣

∣

∣

∣

∂

∂x
fn−1(x0, t)

∣

∣

∣

∣

≤ ρT max
t∈[0,T ]

∣

∣

∣

∣

∂

∂x
fn−1(x0, t)

∣

∣

∣

∣

, (108)

where

ρT =

∫ T

0

fT1(s)ds = P0(T1 ≤ T ) ∈ (0, 1) (109)

is a constant that depends only on T . The proof of (109) is quite standard in probability and
thus we put the whole proof of it in Appendix. With (108), we have

+∞
∑

n=0

max
t∈[0,T ]

∣

∣

∣

∣

∂

∂x
fn(x0, t)

∣

∣

∣

∣

≤
+∞
∑

n=0

ρnT max
t∈[0,T ]

∣

∣

∣

∣

∂

∂x
f0(x0, t)

∣

∣

∣

∣

=
1

1− ρT
max
t∈[0,T ]

∣

∣

∣

∣

∂

∂x
f0(x0, t)

∣

∣

∣

∣

, (110)

which implies to show the uniform convergence of such series, it suffices to check the regularities
of f0(x, t). In fact, with (ii) of Proposition 3.1, we know that for any ε0 ∈ (0, 1), f0(x, t) ∈
C2,1 (((−∞,−ε0] ∪ [ε0, 1])× [0, T ]) and thus the last term in (110) has a uniform bound on
any compact subset of (−∞, 0) ∪ (0, 1], i.e., for any compact subset I of (−∞, 0) ∪ (0, 1],

+∞
∑

n=0

max
t∈[0,T ]

max
x∈I

∣

∣

∣

∣

∂

∂x
fn(x0, t)

∣

∣

∣

∣

≤ 1

1− ρT
max
t∈[0,T ]

max
x∈I

∣

∣

∣

∣

∂

∂x
f0(x0, t)

∣

∣

∣

∣

< +∞.

With the same treatment, we know that

+∞
∑

n=0

fn(x, t),

+∞
∑

n=0

∂

∂t
fn(x, t),

+∞
∑

n=0

∂

∂x
(xfn(x, t)) and

+∞
∑

n=0

∂2

∂x2
fn(x, t) (111)

are inner closed uniformly convergent on ((−∞, 0)∪ (0, 1])× [0, T ], and thus we can exchange
the derivative and the summation in (111). And by (110), we have

max
t∈[0,T ]

|∂xf(x0, t)| ≤
+∞
∑

n=0

max
t∈[0,T ]

∣

∣

∣

∣

∂

∂x
fn(x0, t)

∣

∣

∣

∣

≤ 1

1− ρT
max
t∈[0,T ]

∣

∣

∣

∣

∂

∂x
f0(x0, t)

∣

∣

∣

∣

With the same treatment, we can get the same bounds for the series in (111), from which we
can analyse the regularities of f(x, t) by estimating f0(x, t).

To check (i), we show that N(t) = − ∂
∂x
f(1−, t) is well-defined and N(t) has a series rep-

resentation in terms of the densities of jumping times. In fact, by uniform convergence, it is
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clear that
∑+∞

n=0
∂
∂x
fn(1

−, t) uniformly converges on [0, T ]. In particular,

∂f

∂x
(1−, t) =

∞
∑

n=0

∂fn
∂x

(1−, t).

Then by (46) and (107), we also have

N(t) = −∂f

∂x
(1−, t) =

∞
∑

n=0

fTn
(t). (112)

Note that fTn
(t) ∈ C[0, T ], and thus N(t) ∈ C[0, T ]. Hence, (i) is completely proved.

With the uniform convergence of the series representations and the regularities of f0(x, t)
in Proposition 3.1, we can easily show (ii), (iii), (iv), (v) of Theorem 1. By (44) and (103),
we have

lim
x→−∞

∂xf(x, t) =
+∞
∑

n=0

lim
x→−∞

∂xfn(x, t) = 0, t ∈ (0, T ],

and thus (v) is valid. Similarly, the uniform convergence together with the continuity of fn,
∂xxfn and ∂tfn on ((−∞, 0) ∪ (0, 1)) × (0, T ] implies (ii) and (iii). To check (iv), we aim to
show that fx(0

−, t) and fx(0
+, t) is well-defined for t ∈ (0, T ]. With the similar analysis, we

can prove that for fixed 0 < t ≤ T ,
∑∞

n=0
∂fn
∂x

(x, t) uniformly converge on [−1, 0) and (0, 1],
which together with Lemma 3.1 and the existence of one-side limits given in (45) and (106)
derives (iv) of Theorem 1.

Finally, to prove (vi), that is, the density f satisfies the PDE problem (9), we need to show
that the equation is satisfied as well as all the conditions are met. With uniform convergence,
we can sum the equation (74) from n = 0 to +∞, and thus for any (x, t) ∈ ((−∞, 0)∪(0, 1))×
(0, T ],

∂f

∂t
− ∂

∂x
(xf)− ∂2f

∂x2

=
∂

∂t
(
+∞
∑

n=0

fn(x, t))−
∂

∂x

(

+∞
∑

n=0

xfn(x, t)

)

− ∂2

∂x2
(
+∞
∑

n=0

fn(x, t))

=

+∞
∑

n=0

(

∂fn
∂t

− ∂

∂x
(xfn)−

∂2

∂x2
fn

)

=0.

(113)

With the regularities of f proved above, all the initial and boundary conditions in (9) are
trivially satisfied except that we need to prove the jump condition on fx at x = 0. Given any
fixed t > 0, for any ǫ > 0, due to the uniform convergence, there is a constant N < ∞ such
that

∣

∣

∣

∣

∣

∞
∑

n=N+1

∂fn
∂x

(x, t)

∣

∣

∣

∣

∣

< ǫ, ∀x ∈ (−∞, 0] ∪ [0, 1], (114)

where at 0, 1 the derivatives are understood in the one-sided sense. Moreover, for the now
fixed N, by (100), there exists δ > 0, such that for all y < 0 < x, |x|, |y| ≤ δ,

∣

∣

∣

∣

∂f0
∂x

(x, t)− ∂f0
∂x

(y, t)

∣

∣

∣

∣

≤ ǫ (115)
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and
N
∑

n=1

∣

∣

∣

∣

∂fn
∂x

(x, t)− ∂fn
∂x

(y, t) + fTn
(t)

∣

∣

∣

∣

< ǫ. (116)

Combining (114)-(116), we have
∣

∣

∣

∣

∣

∂f

∂x
(x, t)− ∂f

∂x
(y, t) +

∞
∑

n=1

fTn
(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=0

(

∂fn
∂x

(x, t)− ∂fn
∂x

(y, t)

)

+

∞
∑

n=1

fTn
(t)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂f0
∂x

(x, t)− ∂f0
∂x

(y, t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

N
∑

n=1

(

∂fn
∂x

(x, t)− ∂fn
∂x

(y, t) + fTn
(t)

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

n=N+1

∂fn
∂x

(x, t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

n=N+1

∂fn
∂x

(y, t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

n=N+1

fTn
(t)

∣

∣

∣

∣

∣

≤ 5ǫ,

and thus we conclude that for t > 0

∂

∂x
f(0−, t)− ∂

∂x
f(0+, t) = − ∂

∂x
f(1−, t).

Similarly, we can get for t > 0

f(0−, t) = f(0+, t).

Now that we have thoroughly checked (vi) and hence, the proof of Theorem 1 is completed.
�

With the same steps as in proving Theorem 1, we can show Corollary 2.1. Next, we only
focus on proving Theorem 2. Due to the results for the process Xt as in (18) that starting
from y < 1 are largely parallel to the one starts from 0 we have studied in details, only a
sketch of proof will be given for those parts.

Noting that now ν is a c.d.f. whose p.d.f. fin(x) ∈ Cc(−∞, 1) and that fin(x) is continuous
and compacted supported in (−∞, 1 − ε0] for some ε0 > 0. Without loss of generality, we
assume fin(x) is supported in [−C0, 1− ε0] for some C0 > 0. Thus for the fixed T > 0 we have

(1) By conditional distribution, we have for any x ∈ (−∞, 1], t ∈ (0, T ],

f ν(x, t) =

∫ 1−ε0

−∞
f y(x, t)fin(y)dy.

(2) For all t ∈ (0, T ], x 6= 0 or 1, f y(x, t) is continuous with respect to y.
(3) All the regularities and convergences in Corollary 2.1 are uniform with respect to

y ∈ (−∞, 1 − ε0]. Actually, for all ε1 > 0, t0 > 0, and any x ∈ (−∞,−ε1] ∪ [−ε1, 1),
t ∈ [t0, T ], y ∈ (−∞, 1− ε0], we have

|f y(x, t)| ≤ C
(0)
ε0,ε1,t0,T

, |∂xf y(x, t)| ≤ C
(1)
ε0,ε1,t0,T

,

|∂tf y(x, t)| ≤ C
(2)
ε0,ε1,t0,T

, |∂xxf y(x, t)| ≤ C
(3)
ε0,ε1,t0,T

.

Moreover, for all t ∈ [t0, T ], y ∈ (−∞, 1− ε0] and x ∈ [−1, 0) ∪ (0, 1)

|∂xf y(x, t)| ≤ Cε0,t0,T .
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(4) Then we can take the derivative into the integral in (12), i.e. for ℓ = 0, 1, 2, ∂ℓ = ∂ℓ
tx =

∂m
t ∂n

x , ℓ = 2m+ n,

∂ℓf ν(x, t) =

∫ 1−ε0

−∞
∂ℓf y(x, t)ν(dy), x ∈ (−∞, 1], t > 0,

and thus

Nν(t) := −∂xf
ν(1−, t) = −

∫ 1

−∞
∂xf

y(1−, t)ν(dy) =

∫ 1

−∞
Ny(t)ν(dy).

And by the regularities and convergences for f y(x, t) in Corollary 2.1, we get the
properties (i), (ii), (iii), (iv) and (v) for f ν(x, t).

(5) Finally we check the L2 convergence (13). We first turn the problem into proving
L1 convergence by showing the uniform boundedness of f ν(x, t) when t is sufficiently
small. In fact, similar to the decomposition in (34), we have

f y(x, t) =
+∞
∑

n=0

f y
n(x, t) (117)

where f y
n(x, t)dx = P(Xy

t ∈ dx, nt = n) as in (19). With (22), we have

f y
0 (x, t) ≤ f y

ou(x, t) =
1

√

2π(1− e−2t)
exp {−(x− e−ty)2

2(1− e−2t)
}. (118)

By the same method in Lemma 2.2, we get the iteration relationship for any n ≥ 1

f y
n(x, t) =

∫ t

0

fT y
1
(t− s)fn−1(x, s)ds. (119)

Using (23), we know that for any t > 0, f0(x, t) ≤ fou(x, t) ≤ C√
t
and with the similar

estimation in Proposition 3.2, we have for any k ∈ N, all sufficiently small t and s ≤ t,

fT y
1
(t− s) ≤ Ckt

k,

where the constant Ck is independent of all y ≤ 1− ε0. Thus

f y
1 (x, t) ≤ Ckt

k

∫ t

0

1√
s
ds ≤ Ckt

k+ 1
2 . (120)

Repeat calculations in (120) and with the iteration (119), one has for all sufficiently
small t,

f y
n(x, t) ≤ (Ct)n,

and thus for all sufficiently small t,

+∞
∑

n=1

f y
n(x, t) ≤

Ct

1− Ct
≤ C. (121)

Combining (117), (118) and (121), we have

f ν(x, t) ≤
∫ 1−ε0

−∞
[f y

ou(x, t) + C] fin(y)dy

≤C + ‖fin(y)‖L∞(−∞,1−ε0]

∫ 1−ε0

−∞
f y
ou(x, t)dy.

33



Noting that by (118)
∫ 1−ε0

−∞ f y
ou(x, t)dy is uniformly bounded for any x and sufficiently

small t, and so does f ν . Noting that both fin(x) and f ν(x, t) are uniformly bounded
for all sufficiently small t, thus to prove (13), it suffices to prove

lim
t→0+

∫ +∞

−∞
|f ν(x, t)− fin(x)|dx = 0. (122)

To get (122), for a suitable constant M0 whose value will be specified in the following,
we have

∫ +∞

−∞
|f ν(x, t)− fin(x)|dx =

(
∫ −M0

−∞
+

∫ 1

−M0

)

|f ν(x, t)− fin(x)|dx =: P1 + P2. (123)

First to bound P1, we have

Lemma 3.2. Now consider the process Xt as in (18) that starts from y. For any ε > 0,
there exists t0 > 0 and M0 < ∞ such that for any t ∈ [0, t0] and any y ∈ supp(fin) =
[−C0, 1− ε0],

Py(Xt ≤ −M0) ≤ ε. (124)

Proof. Note that according to the construction of the process Xt as in (18) that starts
from y, we have

{Xt > −M0} ⊃ {Y (1)
t > −M0} ∩ {T1 > t}

which immediately implies

Py(Xt ≤ −M0) ≤ Py(Y
(1)
t ≤ −M0) +Py(T1 > t) := Q1 +Q2. (125)

For Q2 when t ≤ t0,

Py(T1 ≤ t) =

∫ t

0

fT y
1
(s)ds ≤ Ck

∫ t

0

skds.

So let k = 1 and t0 =
√

ε
C1
, we have for all t ≤ t0,

Py(T1 ≤ t) ≤ C1

∫ t

0

sds ≤ 1

2
ε. (126)

And for Q1, noting that Y
(1)
t is Gaussian, we can choose M0 large enough to control

Q1 and then complete the proof.
�

Remark 5. Without loss of generality, we choose the constant M0 in Lemma 3.2 larger
than C0.

Lemma 3.2 immediately implies that

F ν(−M0, t) = Pν(Xt ≤ −M0) =

∫ 1−ε0

−C0

Py(Xt ≤ −M0)fin(y)dy ≤ ε. (127)

And for any ε > 0, ∃t0 > 0 and M0 < ∞ such that for all t < t0,

P1 =

∫ −M0

−∞
f ν(x, t)dx = Pν(Xt ≤ −M0) < ε. (128)

To estimate P2 in (123), we show in the following
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Lemma 3.3. For any ε > 0, there is a t1 > 0 such that for any t ∈ (0, t1] and x ∈ R,

f ν(x, t) ≤ fin(x) + ε.

Proof. Noing that when x > 1, f ν(x, t) = fin(x) = 0, thus we only need to focus on
x ∈ (−∞, 1]. By (117), (118) and (121), we already have

f ν(x, t) ≤
∫ +∞

−∞
f y
ou(x, t)fin(y)dy +

Ct

1− Ct
(129)

and Ct
1−Ct

→ 0 as t → 0+. Thus we only need to bound
∫ +∞
−∞ f y

ou(x, t)fin(y)dy. To do

this we will separate the case when x ∈ [−C0 − 1, 1] and x ∈ (−∞,−C0 − 1).
(i) When x belongs to the compact set [−C0 − 1, 1], by (118) we have

f y
ou(x, t) = et

1
√

2π(1− e−2t)e2t
exp{− (y − xet)2

2(1− e−2t)e2t
} (130)

which equals to the multiply of et and the p.d.f. of the normal distribution
N(xet, (1 − e−2t)e2t). Noting that fin(y) is uniformly continuous, thus for any
ε > 0, there ∃δ > 0, s.t. for all |x1 − x2| ≤ δ, we have |fin(x1)− fin(x2)| ≤ ε. And
there ∃t2 > 0 s.t. for all t < t2 and x ∈ [−C0 − 1, 1], |x− etx| < δ

2
. Moreover, for

the fixed δ above, there ∃t3 > 0 such that for all t ∈ (0, t3)

P(|N(0, 1)| ≥ δ

2
√

(1− e−2t)e2t
) ≤ ε

‖fin‖L∞

, (131)

where N(0, 1) stands for the standard normal distribution. Thus for t1 = t2 ∧ t3,
∫ +∞

−∞
f y
ou(x, t)fin(y)dy =

(

∫ xet+ δ
2

xet− δ
2

+

∫

R\[xet− δ
2
,xet+ δ

2
]

)

f y
ou(x, t)fin(y)dy =: K1 +K2 (132)

For K1, we have by (130)

K1 ≤ max
y∈[x−δ,x+δ]

fin(y) · et ≤ ‖fin‖L∞(et − 1) + max
y∈[x−δ,x+δ]

fin(y) ≤ fin(x) + ε. (133)

And for K2, we have by (131)

K2 ≤ ‖fin‖L∞

∫

R\[xet− δ
2
,xet+ δ

2
]

f y
ou(x, t)dy ≤ et

ε

‖fin‖L∞

= et · ε. (134)

Combing (133) and (134), the proof of case (i) is complete.
(ii) Note that fin(x) = 0 on x ∈ (−∞,−C0 − 1) and f ν(x, t) = 0 on x ≥ 1. We only

need to prove that ∀ε > 0, ∃t1 > 0 s.t. ∀t ∈ (0, t1] and any x < −C0 − 1,
∫ +∞

−∞
f y
ou(x, t)fin(y)dy < ε. (135)

By (118) and noting that for any x < −C0−1 and y ∈ [−C0, 1], we have |x−e−ty| ≥
1 and thus

∫ +∞

−∞
f y
ou(x, t)fin(y)dy ≤(C0 + 1)‖fin‖L∞

1
√

2π(1− e−2t)
exp

(

− 1

2(1− e−2t)

)

≤(C0 + 1)‖fin‖L∞

u√
2π

exp

(

−u2

2

)

,

where u := (1− e−2t)−
1
2 . Thus we know

∫ +∞
−∞ f y

ou(x, t)fin(y)dy → 0 as t → 0+ and
the proof of Lemma 3.3 is complete.
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With Lemma 3.3, now we conclude the proof of the (13). Now for the fixed M0 in
Lemma 3.2, there exists t2 ≥ 0 s.t. for all t ∈ (0, t2] and x ∈ R

f ν(x, t) ≤ fin(x) +
ε

M0 + 1

Noting that |a− b| ≤ b− a + 2max{a− b, 0}, we have

P2 ≤
∫ 1

−M0

[

fin(x)− f ν(x, t) +
2ε

M0 + 1

]

dx

=

∫ 1

−M0

fin(x)dx−
∫ 1

−M0

f ν(x, t)dx+ 2ε

≤3ε.

(136)

Combining (128) and (136), we get (13). Then the proof of Theorem 2 is complete.

3.2. Weak Solution.

In this section, we show that the density of Xt, which we denote by f(x, t) and N(t) =
∑+∞

n=1 F
′
Tn
(t) are the weak solution of the PDE problem (9). We adopt the definition of the

weak solution of (9) as in [5] and the main theorem in this section is as follows:

Theorem 3. Let f ν(x, t) be the p.d.f of the process Xt as in (18) that starts from p.d.f.
fin(x) ∈ Cc(−∞, 1) and Nν(t) :=

∑+∞
n=1 F

′
Tn
(t). The pair (f,N) is a weak solution of (9) in

the following sense: for any test function φ(x, t) ∈ C∞ ((−∞, 1]× [0, T ]) such that ∂2φ

∂x2 , x
∂φ

∂x
∈

L∞ ((−∞, 1]× [0, T ]) , we have

∫ T

0

∫ 1

−∞

(

∂

∂t
φ− x

∂

∂x
φ+

∂2

∂x2
φ

)

f ν(x, t)dxdt

=

∫ T

0

(φ(1, t)− φ(0, t))Nν(t)dt−
∫ 1

−∞
φ(x, 0)fin(x)dx+

∫ 1

−∞
φ(x, T )f ν(x, T )dx

(137)

The convergence of the series
∑+∞

n=1 F
′
Tn
(t) relies on the proof of Theorem 2 with which we

have already known that f ν(x, t) is a solution to the PDE problem (9). To prove (f ν , Nν)
is also a weak solution of (9), one simply multiplies the equation by the test function φ and
carries out the integration by parts in space and in time respectively. Since the calculations
is rather straightforward, we choose to omit the details in this work but we remark that the
weak-strong uniqueness is still an open problem for such a Fokker-Planck equation with a
flux-shift structure and we will continue research along this line in the future.

Acknowledgement

J.-G. Liu is partially supported by NSF grant DMS-2106988. Y. Zhang is supported by
NSFC Tianyuan Fund for Mathematics 12026606 and the National Key R&D Program of
China, Project Number 2020YFA0712902. Z. Zhou is supported by the National Key R&D
Program of China, Project Number 2020YFA0712000 and NSFC grant No. 11801016, No.
12031013. Z. Zhou is also partially supported by Beijing Academy of Artificial Intelligence
(BAAI).

36



Appendix

Now we shall go back to show (109). In the following, we let Xt as in (14) denote an O-U
process starting from 0 and define the stopping time T1 be the first time that Xt hits 1, i.e.,
T1 = inf{t ≥ 0, Xt = 1}. Now it suffices to prove that for all fixed T ∈ (0,+∞),

P(T1 > T ) > 0. (138)

In order to show (138), we show the probability of an event included in {T1 > T} is positive.
Actually, we construct a sequence of stopping time and use the strong Markov property to
decompose the process Xt such that each time |Xt| > 1, it escape from −1. By showing the
product of the probability of an event sequence is positive, we complete the proof. Now we
show a useful lemma.

Lemma 3.4. For the O-U process Xt defined above, define a stopping time τ1 = inf{t ≥
0, |Xt| = 1}, then







P(τ1 < +∞) = 1, (139)

P(τ1 >
1

16
, Xτ1 = −1) = P(τ1 >

1

16
, Xτ1 = 1) > 0. (140)

Proof. (139) follows from the fact that τ1 < inf{n ∈ N, |Xn| > 1}, the Markov property and
the Gaussian transition distribution of Xt. As for (140), by symmetry, we only need to prove

P(τ1 >
1

16
) > 0. (141)

By (14), Xt =
√
2
∫ t

0
e−(t−s)dBs and thus

{τ1 ≤
1

16
} = {max

t≤ 1
16

|Xt| ≥ 1} ⊂ {max
t≤ 1

16

∣

∣

∣

∣

√
2

∫ t

0

e−(t−s)dBs

∣

∣

∣

∣

≥ 1}.

Now note that
∫ t

0
esdBs is a martingale and then

P(τ1 ≤
1

16
) ≤ P(max

t≤ 1
16

∣

∣

∣

∣

√
2

∫ t

0

e−(t−s)dBs

∣

∣

∣

∣

≥ 1)

≤2E

(

max
t≤ 1

16

∣

∣

∣

∣

∫ t

0

esdBs

∣

∣

∣

∣

)2

≤ 8E

(

∫ 1
16

0

esdBs

)2

,

(142)

where the last two inequalities follows from the Markov inequality and Doob’s inequality
respectively. Noting that

E

(

∫ 1
16

0

esdBs

)2

=

∫ 1
16

0

e2sds =
1

2
(e

1
8 − 1) <

1

8

and thus (141) is valid.
�

With the above lemma, now we prove (138) that is equivalent with (109).

Proof of (109): We let Yt be an O-U process starting at −1 and derive stopping time τ ′1 =
inf{t ≥ 0, Yt = 0}. Then by the recurrence of O-U process,

P(τ ′1 < +∞) = 1. (143)
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Next we define an increasing sequence of stopping times as follows:

S ′
0 = 0

S1 = inf{t ≥ 0, |Xt| = 1},
S ′
1 = inf{t ≥ S1, Xt = 0},

S2 = inf{t ≥ S ′
1, |Xt| = 1},

S ′
2 = inf{t ≥ S2, Xt = 0},
...

Combining (139), (143) and the Strong Markov Property of the O-U process Sn, S
′
n < +∞ for

all n. At the same time,
S1 − S ′

0, S ′
1 − S1, S2 − S ′

1, · · ·
are independent to each other while

Sn − S ′
n−1

d
= τ1,

S ′
n − Sn

d
= τ ′1.

Thus for the fixed T ∈ (0,+∞) above, let N0 = ⌊T ⌋+ 1 and then

{T1 > T} ⊃ ∩16N0
i=1 {Si − S ′

i−1 >
1

16
, XSi

= −1, S ′
i − Si < +∞}

Using the strong Markov property, we have

P(T1 > T ) ≥P

(

∩16N0
i=1 {Si − S ′

i−1 >
1

16
, XSi

= −1, S ′
i − Si < +∞}

)

=

16N0
∏

n=1

P(τ1 >
1

16
, Xτ1 = −1) > 0,

which completes the proof of (109).
�
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