
ar
X

iv
:2

00
6.

10
54

5v
3 

 [
m

at
h.

PR
] 

 8
 J

an
 2

02
2

On the Largest Common Subtree of Random

Leaf-Labeled Binary Trees

David J. Aldous∗

January 11, 2022

Abstract

The size of the largest common subtree (maximum agreement sub-
tree) of two independent uniform random binary trees on n leaves
is known to be between orders n1/8 and n1/2. By a construction
based on recursive splitting and analyzable by standard “stochastic
fragmentation” methods, we improve the lower bound to order nβ for

β =
√

3−1

2
= 0.366. Improving the upper bound remains a challenging

problem.

1 Introduction

Probabilistic combinatorics is the study of random discrete structures – such
as graphs, trees, permutations and many more sophisticated structures. This
paper concerns leaf-labeled binary trees, illustrated in Figure 1. Like other
models of random trees, this model has been studied for its interest to math-
ematicians, but this particular type of tree is also central to mathematical
phylogenetics [20, 21] and, even though real-world phylogenetic tree data
does not fit any simple model well (see e.g. [3, 8, 17, 22]), the mathematical
properties of the uniform random tree have also been studied within that
literature.

The foundational fact is that, because the general n + 1-leaf such tree
is constructed uniquely by attaching an edge (to a new leaf labeled n + 1)
at a new branchpoint within one of the 2n − 3 edges of an n-leaf tree, the
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number cn of n-leaf trees must satisfy cn+1 = (2n − 3)cn and so1

cn = (2n− 5)!! := (2n − 5)(2n − 7) · ·3 · 1. (1)

Formula (1) prompts comparisons with permutations. There has been exten-
sive mathematical study of many aspects of the uniform random permutation
on n elements, so maybe there are analogous aspects of the uniform random
leaf-labeled tree that are interesting to study. In fact the problem we study
is analogous to the well-studied longest increasing subsequence (LIS) prob-
lem [18] for random permutations.2 We discuss similarities and differences
in section 4, but alas the deep theory associated with that problem (see [11]
for a brief overview) does not seem helpful for our problem.

A leaf-labeled binary tree on n leaves has n − 2 branchpoints (degree
three internal vertices) and n distinct leaf labels; unless otherwise stated,
by default the label-set is [n] := {1, 2, . . . , n}. We will generally write tree
instead of leaf-labeled binary tree. Note that a tree on n leaves has 2n − 3
edges; and we call n the size of the tree. Figure 1 uses one way to draw a
tree, though other ways are useful in other contexts. Note there is no notion
of ordered: the two trees on the right of Figure 1 are the same.

Any subset A of leaves of a tree defines an induced subtree on leaf-set
A, defined by first taking the spanning subtree and then deleting degree-2
internal vertices and joining edges to obtain a binary tree. Given two trees
t and t′, if there is a set A of leaf-labels such that the induced subtree
on A within t is the same as the induced subtree on A within t′, call this
a common subtree. See Figure 1. Now define κ(t, t′) to be the size of a
maximum common subtree, in other words the size of a common subtree of
maximum size. This article studies the question

What can we say about κ(Tn,T
′
n), where Tn and T′

n are ran-
dom, independent and uniform over trees with leaf-set [n]?

This question (for the uniform model and some other models) has already
been considered in several papers3, most recently in [6, 13], and the relevant
known results4 are as follows.

• The order of magnitude of Eκ(Tn,T
′
n) is at most n1/2: this is just

the first moment method (calculating the expected number of large

1This formula refers to unrooted trees, but the analog for rooted trees follows immedi-
ately.

2And to a broader range of largest common substructure problems – see section 4.1.
3Under the name maximum agreement subtree.
4There are also extremal (worst-case) results: see [10] for recent work.
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Figure 1: The two different larger trees (left side) have a common subtree,
shown in two different representations on the right side.
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common subtrees). This upper bound continues to hold for some more
general probability models [16].

• The order of magnitude of Eκ(Tn,T
′
n) is at least n1/8: this is shown

in [6] by first showing one can find a common caterpillar graph with
order n1/4 vertices and then using known LIS results to find a common
subtree within the caterpillar graph.

• In the alternate model where the two trees have the same shape (given
the first uniform random tree, obtain the second by making a uniform
random permutation of leaf-labels), [13] shows that the order of mag-
nitude is exactly n1/2.

In this article we improve the lower bound in the uniform case, as follows.

Theorem 1 Eκ(Tn,T
′
n) = Ω(nβ) for all β < β0 :=

√
3−1
2 = 0.366....
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For the record we state

Open Problem 2 Prove that Eκ(Tn,T
′
n) = O(nβ) for some β < 1/2

which we strongly believe via heuristics below. Presumably Eκ(Tn,T
′
n) ≈

nβ for some β, but we see no heuristic to guess the value of β nor any
methodology to prove such a β exists.

1.1 Background heuristics and related methodology

An n-leaf tree has a centroid, meaning a branchpoint from which each of the
three branches has size (number of leaves) at most n/2. Given a tree, we
can “split at the centroid”, making each branch into a separate tree. Write
z(1) ≥ z(2) ≥ z(3) for the sizes of the branches, in decreasing order. One
can now imagine (as suggested in [4]) a recursive construction of a common
subtree of two given trees (t, t′), as follows.

Consider as above the branch sizes (z(i), z
′
(i), i = 1, 2, 3) at the

centroid of each tree, take for each i the recursively-constructed
common subtree for the two i’th branches, and then join these
three common subtrees into one common subtree of the two orig-
inal trees.

The resulting tree will not be optimal, but analysis of its size will provide a
lower bound on Eκ(Tn,T

′
n), and intuitively one expects its size to be close

to optimal. Moreover its size scaling nβ can heuristically be calculated as
follows. In the random tree setting, the number of labels in common between
the i’th branch of the two trees is around nX(i)X

′
(i), where X(i) := n−1Z(i) is

the normalized branch size. So the common subtree within branch i should
have size about (nX(i)X

′
(i))

β, leading heuristically to the relation

1 = E

∑

i

(X(i)X
′
(i))

β (2)

in terms of the n → ∞ limits of normalized branch sizes at the centroids.
And one could solve (2) for β because the distributions of X(i) are known
[1].

Alas this heuristic is not quite correct. As explained in section 4.2, we
do not have a “true recursion” involving different sizes of exactly the same
structure, and this prevents us from obtaining a lower bound, though we
could derive an upper bound on the size of the common subtree obtained in
this way.
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Note that in the alternate “same shape” model we have X(i) = X ′
(i) and

so the heuristic (2) gives β = 1/2, consistent with the known result in that
model.

Related methodology. The specific methodology of this paper – analyz-
ing some property of random trees by recursion at a centroid – has appar-
ently not been used before, except in [1, 2] to study easier aspects of this
model. But it fits into the very broad area of divide and conquer methods
(see e.g. [15]). It is very classical to study rooted trees by the decomposition
into branches at the root: for instance the analysis of random branching pro-
cesses [5] or the study of randomized algorithms such as Quicksort that build
a random tree [19]. Our specific use, to recursively construct a sub-optimal
instance within an optimization problem, has been widely used for analysis
of Euclidean TSP-like problems on random points [23], via constructing an
instance on a large square by joining up instances on subsquares. Our use is
more subtle in that our “instances” only involve small subsets of the given
elements; this only works because of the very special “consistency under
sampling” property (section 2.1) of our model.

1.2 Outline proof of Theorem 1

We will prove Theorem 1 by studying a construction of a common sub-
tree. We use the same basic idea as in the heuristic above, but instead
of the true centroid we decompose at a “random centroid” defined via the
branchpoint of the subtree induced by three uniform random vertices, cho-
sen independently in each tree. This structure does allow a true recursion,
to be specified in detail in section 3.1. It is known that the limit normalized
branch sizes (Y1, Y2, Y3) now have the Dirichlet(1/2, 1/2, 1/2) distribution,
and the analog of (2) is

1 = E

∑

i

(YiY
′
i )

β (3)

where (Y ′
1 , Y

′
2 , Y

′
3) is independent of (Y1, Y2, Y3). A standard fact [14] is that

EY β
i = 1

1+2β , and equation (3) implies EY β
i =

√

1/3, so we can write the

solution of (3) as β0 = (
√
3− 1)/2.

2 Preliminaries

It seems helpful to highlight two preliminary results before we give the de-
tailed description and analysis of the construction.
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2.1 A key calculation

Proposition 3 below is the key (intricate but technically elementary) calcula-
tion that involves the recursive decomposition and its probabilistic analysis.
Recall that the number of n-leaf unrooted trees is

cn = (2n− 5)!! =
(2n − 5)!

2n−3(n− 3)!
. (4)

Using Stirling’s formula we obtain

cn ∼ 2n−3/2e−nnn−2 (5)

and it is useful to record the consequence

cn+2/n! ∼ π−1/22nn−1/2. (6)

A fundamental feature, easily checked, of our tree model is the consistency
property of uniform random trees:

given leaf-sets A ⊂ A′, if TA′ is a uniform random tree on leaf-
set A′, then the subtree TA induced by A is uniform on all trees
with leaf-set A.

If A is a random subset, independent ofTA′ , it remains true that (conditional
on A) the induced subtree TA is uniform on all trees with leaf-set A.

Proposition 3, illustrated in Figure 2, describes the general step of our
recursive construction.

Proposition 3 Consider a uniform random tree on leaf-set A ∪ {b, b∗},
where A ⊆ [n] has |A| = m ≥ 1, and b, b∗ are labels not in [n]. Pick a
uniform random element of A and re-label it as b∗∗. Split the tree into 3
branches at the branchpoint of the induced subtree on {b, b∗, b∗∗}, and in
each branch create a new leaf at the former branchpoint and label these new
leaves as b1, b2, b3 according as the branch contains b, b∗, b∗∗. So we obtain
three random trees, say T(1),T(2),T(3), on leaf-sets of the form A1 ∪ {b, b1}
and A2∪{b∗, b2} and A3∪{b∗∗, b3}. So

∑

i |Ai| = m−1. Then, for cn defined
at (4) and for a non-negative triple (m1,m2,m3) with m1+m2+m3 = m−1,

(i) P(|A1| = m1, |A2| = m2, |A3| = m3) =

( m
m1 m2 m3 1

)

cm1+2 cm2+2 cm3+2

m cm+2
.

(ii) Conditional on A1, A2, A3, the random trees (T(i), 1 ≤ i ≤ 3) are inde-
pendent and uniform on their respective leaf-sets.

6



Figure 2: The natural bijection.

b b∗

b∗∗

A

b b∗

b∗∗

b1 b2

b3

A1 A2

A3

Note we may have |Ai| = 0, that is Ai = ∅.
Proof. Consider A ⊆ [n] and b∗∗ ∈ A and distinct labels {b, b∗, b1, b2, b3}
not in [n]. As illustrated in Figure 2, the construction corresponds to the
natural bijection between
(a) trees on leaf-set A ∪ {b, b∗} with one leaf of A re-labeled as b∗∗;
(b) partitions of A as (A1, A2, A3, {b∗∗}) and trees on leaf-sets A1 ∪ {b, b1}
and A2 ∪ {b∗, b2} and A3 ∪ {b∗∗, b3}.
The number of elements in (a) equals mcm+2, and the number of elements
in (b) with |Ai| = mi ∀i equals

( m
m1 m2 m3 1

)

cm1+2 cm2+2 cm3+2. This estab-
lishes part (i). For (ii), given disjoint (A1, A2, A3) with

∑

i |Ai| = m−1, and
given trees t(1), t(2), t(3) on leaf-sets of the form A1∪{b, b1} and A2∪{b∗, b2}
and A3 ∪ {b∗∗, b3}, the bijection shows

P(T(1) = t(1),T(2) = t(2),T(3) = t(3)) =
1

mcm
.

The fact that, for given (A1, A2, A3), this is constant as a function of (t(1), t(2), t(3)),
is equivalent to assertion (ii).

Writing Ai(m) to show the dependence on m, and using (6), we get the
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sharp asymptotics

P(|A1(m)| = m1, |A2(m)| = m2, |A3(m)| = m3)

∼ (2π)−1m−2
3
∏

i=1

(mi/m)−1/2 as m,mi → ∞.

This says that the normalized branch sizes converge in distribution to the
Dirichlet(1/2,1/2,1/2) distribution, that is

(m−1|A1(m)|,m−1|A2(m)|,m−1|A3(m)|) →d (Y1, Y2, Y3) (7)

where the limit has density (2π)−1y
−1/2
1 y

−1/2
2 y

−1/2
3 on the simplex {y1+y2+

y3 = 1}.

2.2 The associated martingale in the continuous limit

Asymptotic results for finite random structures often5 correspond to exact
results for some limit continuous process. And indeed the heuristics in sec-
tion 1.2 can be related to an exact result, Lemma 4 below, for the following
continuous fragmentation-type process.

A continuous model. Take two independent random vectors (Y1, Y2, Y3)
and (Y ′

1 , Y
′
2 , Y

′
3), each with the Dirichlet(1/2, 1/2, 1/2) distribution on the

2-simplex. Form another distribution on the 3-simplex by

L = (L1, L2, L3, L0) := (Y1Y
′
1 , Y2Y

′
2 , Y3Y

′
3 , 1− Y1Y

′
1 − Y2Y

′
2 − Y3Y

′
3). (8)

As in some freshman probability textbook examples, let’s describe the pro-
cess in terms of cookie dough and one chocolate chip. We have a mass u
of dough containing the chip. We divide the dough into 4 pieces according
to L, that is of masses (uL1, uL2, uL3, uL0). The chip follows in the natu-
ral way, with chance Li to get into the lump of mass uLi. We then throw
away the fourth piece, of mass uL0, so maybe discarding the chip. Continue
recursively splitting and discarding pieces of dough, using independent re-
alizations of L.

5Indeed the preceding Dirichlet(1/2, 1/2, 1/2) distribution arises as the exact distribu-
tion of branch masses within the Brownian continuum random tree, which is the scaling
limit of various discrete random tree models [12] including ours. See [2] for an alter-
nate derivation of formulas relating to (7). Alas this “scaling limit” convergence is not
informative enough for our “common subtree” problem.
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Within this process, starting with 1 unit of dough, we can define Z(0) = 1
and

Z(t) = mass of the piece containing the chip after t splits

where Z(t) = 0 if the chip has been discarded.

Lemma 4 Set β0 = (
√
3− 1)/2. Then

the process ((Z(t))β0−111(Z(t)>0), t ≥ 0) is a martingale. (9)

Proof. By considering the first split,

E[(Z(1))β−111(Z(1)>0)] = E[

3
∑

i=1

Li(Li)
β−1]

and setting the right side equal to 1 repeats the equation (3) for β whose
solution was this value β0. This is the martingale property at t = 1, and
the general case follows by scaling.

Within our model, the process Z(t) arises as an approximation to the
sizes of subtrees containing a given leaf at successive stages of the recursive
construction. We formalize the relation in section 3.4 in order to find the
expected size of the common subtree produced by our scheme.

Similar martingale arguments are standard in stochastic fragmentation
models (see e.g. [7]), though generally appear in settings where mass is
conserved.

3 Proof of Theorem 1

We emphasize two points about the construction. It is a top-down construc-
tion via specifying branchpoints, and we do not specify vertices until near
the end. And our implementation is based on random choices, which seems
quite inefficient – heuristically, the “true centroid” scheme must work better,
that is produce a larger common subtree, because the matching of branches
by size maximizes the number of vertices landing in the same branch. But
random choices allow us to analyze the performance. So what we describe
first (section 3.1) is a randomized algorithm, which can be applied to two
arbitrary trees t and t′ on leaf-set [n] and which will always output a (ran-
dom) common subtree. Then in section 3.2 we prove a lower bound on the
expectation of the size of the output tree, when the algorithm is applied to
two independent uniform random trees of size n.

9



3.1 The construction

The construction is illustrated in Figures 3 – 5, and is easiest to understand
via the pictures. We are given two arbitrary trees t and t′ on leaf-set [n].
For consistency with later stages, we first pick two distinct leaves uniformly
at random in t, and replace their labels by labels t1, t2. Such novel labels
are distinct from the original labels, which are now a subset B of [n] with
|B| = n − 2. Repeat independently within t′, using the same novel labels
but typically6 deleting different original labels and so retaining a different
subset B′ of original labels. Finally set A = B∩B′ and consider the induced
subtrees on leaf-set A∪{ti, t2}, so we get a subtree t0 within t and a subtree
t′0 within t′. This produces what we will call the Stage 0 configuration, which
consists of two (random) trees on the same (random) leaf-set A ∪ {t1, t2},
where typically |A| = n− 4.

Stage 1. In t0, choose a third original leaf uniformly at random, and
re-label it t3. The three leaves t1, t2, t3 determine a branchpoint (of the
induced subtree). As illustrated in Figure 2, cut t0 into 3 branches at the
branchpoint, and within each branch (labeled i = 1, 2, 3 according to ti)
create a new leaf labeled bi at the cut-point. So branch i contains novel
leaves bi and ti and some subset Bi ⊂ [n] of original leaves. Our notational
convention is that b indicates branchpoint and t indicates terminal. These
are slightly different in that a branchpoint may correspond to a branchpoint
in the ultimate common subtree whereas a terminal cannot correspond to a
leaf in the common subtree.

Repeat independently within t′0. That is, within t′0 we obtain novel
leaves which are also labeled ti and bi, but now in t′ the branches contain
different subsets B′

i of original leaves. For each i define Ai = Bi ∩ B′
i and

assume each Ai is non-empty. For each i and each of t and t′ consider
the subtree within branch i induced by the labels Ai ∪ {bi, ti}; call these
trees t(i) and t′(i). This is the Stage 1 configuration. Note that t(i) and t′(i)
are (typically different) trees on the same leaf-set. And each leaf-set has a
specific structure:

A ∪ {to, too} where A ⊂ [n] and to, tooare two novel labels.

This of course is the structure of the Stage 0 configuration. Figure 3 (top)
is a summary of this construction within t: Figure 4 later illustrates two
different trees on the same leaf-set.

6When n is large.
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Figure 3: The construction: initial steps. Each “A” represents the set of
leaves of the two corresponding trees “t” within the original trees. The
first stage creates subtrees t(i). The second stage shows t(1) split into
t(11), t(12), t(13). The third stage shows t(13) and t(12) split further.

b1
t1

b2

t2

b3

t3

A1

t(1)

A2
t(2)

A3

t(3)

STAGE 1

b1
t1

b12 b11

b13

t11

b2

b3

A11

t(11)

A12

t(12)

A13t(13)STAGE 2

t11

b13

b11b12

b1

b2

b3

b113

b111b112

t111

b132

b133b131

t131

A111

t(111)

A113

t(113)

A112

t(112)

A131t(131)

A133

t(133)

A132t(132)

STAGE 3
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Figure 4: The construction: final split. The top row shows a matched edge
in the style of Figure 3. This is expanded in the second row to show the
corresponding full side branches, and the third row contracts to show the
induced subtrees on common vertices. The fourth row shows one leaf picked
from each side branch.

bα13
bα11bα12bα1bα2

bα3 Aα12 = {j, k, . . . , z}

bα1 bα12

u r j ℓ (v)
tα121

z q

k o w

n s x y p n

bα1 bα12

r z m x p ℓ k

o v q y

(s)
tα121

n u w j

(empty) (empty)

u j tα121 q q j tα121 u

x p x p

j

x

tα12 t′α12
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Stage 2. In each tree t(i) from Stage 1 (branch i = 1 is illustrated in Figure
3, middle), choose a uniform random leaf which is original (not bi or ti), and
re-label this as ti1 (thereby becoming a novel leaf). The three leaves bi, ti, ti1
determine a branchpoint. Repeat the “general step” illustrated in Figure 2.
That is, cut the tree into 3 branches at that branchpoint, and within each
branch create a new leaf at the cut-point, labeled bi1, bi2, bi3 ordered as the
branches containing bi, ti, ti1 respectively. Write Bij for the set of original
leaf labels in the branch containing bij . Repeat independently within t′. For
each ij define Aij = Bij ∩B′

ij and assume each Aij is non-empty. For each
ij and each of t and t′ write t(ij) and t′(ij) for the subtree induced by leaf-set

Aij ∪ {bij , tij}. This is the Stage 2 configuration.

Stage 3. Continue recursively. Figure 3 (bottom) shows the part of the
Stage 3 configuration arising from splitting the two trees t(11) and t(13)
arising from Stage 2.

Remark. The point of the construction is that after any stage one can
pick one leaf from each non-empty subtree at that stage, and the set of such
leaves induces a common subtree within the original two trees t and t′. So
we need some “stopping rule” – for a given subtree at a given stage, do
we continue to split or do we stop and pick a leaf? Heuristically it seems
optimal to wait until the two subtrees within a branch are identical, though
if we wait too long then we are liable to get empty subtrees. For our purpose
it suffices to use a simple cutoff rule based on size.

Stage 4. We prespecify a “cut-off size” K. When the number of original
leaves in a subtree is less than K, do not split. Instead pick arbitrarily one
leaf from the subtree, if non-empty.7

Figure 4 shows what happens in detail. Row 1 indicates, in the style
of Figure 3, a leaf-set Aα12 ∪ {bα1, bα12} for a tree with more than K = 10
original leaves. (Here α denotes an index string.) The two trees on this
leaf-set, tα12 and t′α12, are shown in their entirety in row 2.

We split the trees by picking a random original leaf from each tree; in
our example these happen to be v from the left tree and s from the right
tree. Both chosen leaves are re-labeled according to our labeling convention
as tα121. We split each tree at the branchpoint indicated by a circle. In our
example the branches containing tα121 have 6 and 8 original leaves, and the
intersection of their leaf-sets is {u, j, q, tα121}. The induced subtrees on that

7Think of K as increasing slowly with n.
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Figure 5: The construction: final stage. Reconnecting the small subtrees
into the final common subtree.

ε

δ

β
γ α j

x

δ

β

γ

ε

j

xα

intersection are shown in row 3, along with the induced subtree on {x, p}
arising from the branches at bα12. Note that (in our example) one branch
is in fact empty. In general 0, 1, 2 or 3 branches may be empty, implying
that either 3, 2, 1 or 0 branches remain. Because (in our example) all three
branches have less than K = 10 leaves (in the intersection) we stop splitting
and pick one leaf from each non-empty branch. In Figure 4 we picked j and
x. The small induced subtree of the picked leaves is shown in row 4. By
construction this is the same subtree within each original tree.

Note that when a tree is split, it might have less than K original leaves
in some branches and more than K in other branches, in which case we
continue to split the “more than K” branches.

Stage 5. When Stage 4 terminates we have a collection of small subtrees
of the following type – see Figure 5, left, for a part of such a structure.
Each subtree consists of a distinguished edge, between two branchpoints •
or between a branchpoint and a terminal ◦, and the edge has 0, 1, 2 or 3
original leaves attached to it.

We then take the induced subtree on all these original leaves of that col-
lection (Figure 5, right) to obtain the output common subtree of the original
trees t and t′.

3.2 Analysis of the random construction

The previous section described a construction, that is a randomized algo-
rithm which takes two size-n trees (t1, t2) as input and outputs a common
subtree. When we apply our construction to two independent uniform ran-
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dom trees (Tn,T
′
n) on leaf-set [n], then at the end of each stage, there

is a random collection (as illustrated in Figure 3) of leaf-sets of the form
A ∪ {b, t} or A ∪ {b, b′}, where A ⊂ [n] are original leaves and b, t are novel
branchpoints or terminals. This collection of leaf-sets is the same within
the realizations of Tn and T′

n, though the trees built over these leaf-sets are
typically different. A consequence of the consistency property is that, at the
end of Stage 0,

(*) Conditional on the collection, the individual trees on these
leaf-sets are all independent and uniform

and then Proposition 3 implies that (*) holds inductively throughout the
construction. Conceptually, (*) shows our construction is a “true recur-
sion”, in that we are always considering uniform random trees with two
distinguished leaves.

For a given leaf ℓ consider

pn,K = P (ℓ in output common subtree)

and note
E (size of output common subtree) = npn,K (10)

so it will suffice to lower bound pn,K. We will consider the process (Xn(t), t =
0, 1, 2 . . .) which records the size of the leaf-set A containing ℓ after t stages,
with Xn(t) = 0 if ℓ is not in any Stage-t subtree. That is, after Stage 1 we
have (in each original tree) uniform random trees on the same three leaf-sets
A1 ∪ {b1, t1}, A2 ∪ {b2, t2}, A3 ∪ {b3, t3}, and we define

Xn(1) = |Ai| if ℓ ∈ Ai

= 0 if ℓ 6∈ ∪3
i=1Ai.

A key point is that this process is in fact a specific Markov chain X(t) whose
transition probabilities (given in the next section) do not depend8 on n. By
definition, a realization of (Xn(t), t ≥ 0) is decreasing and must eventually
either make a transition x → 0 from some x ≥ K, or make a transition
from some x ≥ K to some x′ ∈ {K − 1,K − 2, . . . , 1}, in other words “enter
{K − 1,K − 2, . . . , 1}”. Define

qn,K := P( X(t) enters {K − 1,K − 2, . . . , 1} | X(0) = n). (11)

8In fact the first step is slightly different (we typically start at n− 4) but this does not
affect the asymptotics.
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The “finally pick arbitrarily one leaf from each non-empty branch” rule
implies

qn,K/(K − 1) ≤ pn,K ≤ qn,K. (12)

So it will suffice to lower bound qn,K .

Outline of approximation method. For X(0) = n, the scaled process
n−1X(t) is approximately the process Z(t) from section 2.2, and so for
β = β0 := (

√
3 − 1)/2 the process (Qn(t) := (n−1X(t))β−111(X(t)>0)) is

approximately a martingale. If it were exactly a martingale, then applying
the optional sampling theorem to

SK := min{t : X(t) ≤ K − 1} (13)

we would have

1 = E[(n−1X(SK))β−111(X(SK)≥1)] ≤ n1−βqn,K

and so qn,K ≥ nβ−1, giving the desired lower bound via (12) and (10).
The argument is formalized in the next two sections.

3.3 The transition probabilities.

First recall that the hypergeometric distribution

P(Ma,a′,m = j) =

(a
j

)(m−a
a′−j

)

(m
a′

) , max(0, a + a′ −m) ≤ j ≤ min(a, a′) (14)

describes the size of the intersection of a uniform random a-subset of [m]
with an independent uniform random a′-subset of [m], and

EMa,a′,m =
aa′

m
, var Ma,a′,m =

aa′(m− a)(m− a′)

m2(m− 1)
.

We will consider the asymptotic regime

m → ∞ with {a, a′} ⊂ [εm, (1 − ε)m] for some ε > 0. (15)

In this regime the normalized quantity m−1Ma,a′,m has expectation Ω(1)
and variance Ω(1/m). It easily follows that we have convergence of β’th
moments for 0 < β < 1:

E[Mβ
a,a′,m] = (1 + o(1))(EMa,a′,m)β in regime (15). (16)

From the consistency property (*), the event X(t) = m means that at Stage
t we have the following property, displayed for clarity.
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There is some leaf-set, say9 A∪{b, t}, with |A| = m, and (within
Tn) ℓ is a uniform random leaf in A, in a uniform random induced
subtree t∗ on A ∪ {b, t}, and (independently within T′

n) ℓ is a
uniform random leaf in A, in a uniform random induced subtree
t∗∗ on A ∪ {b, t}.

There are 3 possibilities for the next stage. With probability 1− (1−m−1)2,
one or both of the randomly chosen terminal leaves will be ℓ, and then
X(t + 1) = 0. Otherwise, with the distribution described in Proposition 3,
t∗ is split into three branches on some leaf-sets A1, A2, A3 of sizes ai = |Ai|
and independently t∗ is split into three branches on some leaf-sets A′

1, A
′
2, A

′
3

of sizes a′i = |A′
i|. Conditionally on these sizes, and using the property

displayed above, for each i the size M(i) := Mai,a′i,m
of the intersection

Ai ∩ A′
i has the hypergeometric distribution (14), and then (because ℓ is a

uniform random leaf) conditionally on M(i)

P(X(t+ 1) = M(i)) = M(i)/m. (17)

With the remaining probability, that is with probability 1 − (1 −m−1)2 −
∑3

i=1 M(i)/m, leaf ℓ goes into different branches within the two trees and
X(t+ 1) = 0.

This implicitly specifies the transition probabilities for the chain X(t).

3.4 Exploiting the continuous approximation

We need to lower bound the hitting probability qn,K at (11). For large values
of X(t) we can exploit the continuous approximation from section 2.2.

Proposition 5 For 0 < β < 1, as m → ∞

E[(X(t+ 1))β−111(X(t+1)≥1)|X(t) = m] ≥ (1− o(1))E[

3
∑

i=1

Lβ
i ] m

β−1 (18)

for Li = YiY
′
i as at (8).

Proof. Conditional on (M(i), 1 ≤ i ≤ 3), from (17) the expectation equals
∑

i
M(i)

m (M(i))
β−1. If we also condition on the sizes (ai, a

′
i) then we find

E[(X(t+ 1))β−111(X(t+1)≥1)| |Ai| = ai, |A′
i| = a′i, 1 ≤ i ≤ 3]

9Or A ∪ {b, b′}.
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= m−1
E[
∑

i

(M(i))
β| |Ai| = ai, |A′

i| = a′i, 1 ≤ i ≤ 3]. (19)

By the “convergence of moment” result (16) for the hypergeometric distri-
bution of M(i), for fixed small ε > 0 we have, for sufficiently large m, that
the quantity (19) is at least

(1 − ε)m−1
∑

i

(E[M(i) | |Ai| = ai, |A′
i| = a′i, 1 ≤ i ≤ 3])β

on the range

εm ≤ min(ai, a
′
i; 1 ≤ i ≤ 3) ≤ max(ai, a

′
i; 1 ≤ i ≤ 3) ≤ (1− ε)m.

Because E[M(i) | |Ai|, |A′
i|] = |Ai| |A′

i|/m we can take unconditional expec-
tation to get, for sufficiently large m,

E[(X(t+1))β−111(X(t+1)≥1)|X(t) = m] ≥ (1−ε)m−1
∑

i

E[(|Ai(m)| |A′
i(m)|/m)β11Gm ]

where Gm is the event

{εm ≤ min(|Ai(m)|, |A′
i(m))|, 1 ≤ i ≤ 3) ≤ max(|Ai(m), |A′

i(m)|, 1 ≤ i ≤ 3) ≤ (1−ε)m}

and where we write Ai(m) to remember dependence on m. Letting m →
∞ and using the convergence in distribution (7) of |Ai(m)| |A′

i(m)|/m2 to
Li = YiY

′
i ,

lim inf
m

E[(X(t+ 1))β−111(X(t+1)≥1)|X(t) = m] ≥ (1− ε)mβ−1
∑

i

E[Lβ
i 11G]

for

G = {ε ≤ min(Yi, Y
′
i , 1 ≤ i ≤ 3) ≤ max(Yi, Y

′
i , 1 ≤ i ≤ 3) ≤ (1− ε)}.

Finally let ε → 0 and the assertion of Proposition 5 follows.

3.5 Completing the proof of Theorem 1

Now fix β < β0, so that E[
∑3

i=1 L
β
i ] > 1. By Proposition 5, there exists

K(β) such that

E[(X(t+ 1))β−111(X(t+1)≥1)|X(t) = m] ≥ mβ−1, m ≥ K(β).
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This says that the process

((X(t))β−111(X(t)≥1), t ≤ SK(β))

stopped at time

SK(β) := min{t : X(t) ≤ K(β)− 1}

is a submartingale. So from the optional sampling theorem

nβ−1 ≤ E[(X(SK(β)))
β−111(X(SK(β))≥1)] ≤ qn,K(β).

Combining this with (12) and (10),

E (size of output common subtree) ≥ nβ/K(β), for n > K(β). (20)

Theorem 1 concerns the maximum size κ(Tn,T
′
n) of common subtree, so

Eκ(Tn,T
′
n) ≥ nβ/K(β), for n > K(β).

This holds for each β < β0, establishing Theorem 1.

4 Analogies with the LIS problem

Figure 6 (bottom left) shows a permutation with an (underlined) increasing
subsequence 24578, whose length 5 is the length of the longest increasing
subsequence (LIS) of that permutation. Define the random variable Ln

to be the length of the (typically non-unique) LIS of a uniform random
permutation of [n]. The monograph [18] records some of the extensive known
results about Ln, of which four aspects are noteworthy as background for
this article.

Figure 6: Illustration of LIS (left) and LCS (right)

1 2 3 4 5 6 7 8 9 5 7 2 6 9 1 4 8 3
2 9 6 4 5 3 1 7 8 7 3 1 6 9 2 5 4 8

• Showing that the order of magnitude of ELn is n1/2 is very easy: the
upper bound by the first moment method (calculating the expected
number of long increasing subsequences), and the lower bound by pick-
ing (if possible) for each j ≤ n1/2 an element i for which both i and
π(i) are in the interval [jn1/2, (j + 1)n1/2].
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• A reformulation of the LIS question in terms of increasing paths through
Poisson points in the plane allows a subadditivity proof of existence
of a limit n−1/2

ELn → c.

• More detailed study of Ln leads to a very rich theory [18] involving
techniques from analysis and algebra as well as combinatorics and
probability.

• We can re-interpret Ln as the length of the longest common subse-
quence (LCS) for two independent uniform random permutations, il-
lustrated in Figure 6 (right). This subsequence (76948 in the illus-
tration) is found by applying the inverse permutation taking the top
permutation back to 123456789.

As implied by this article, for our common subtrees problem we have not
succeeded in completing the first point above (the correct order of magni-
tude), and we do not know if there is any “rich theory” yet undiscovered
(the third point). And (in contrast to the second point above) we do not
see any reformulation that would allow us to use a “soft” method such as
subadditivity to prove existence of a limit exponent β. Lastly, the heuris-
tic notion that recursing about centroids is an “almost optimal” algorithm,
and the fact that branch sizes at the centroid remain random in the limit,
suggests

Conjecture 6 There is a non-degenerate n → ∞ limit distribution for
κ(Tn,T′

n)
Eκ(Tn,T′

n)
.

This is very different from the LIS case, where the maximum length is con-
centrated around its mean.

4.1 Largest common substructures in probabilistic combina-

torics

The final noteworthy point in the previous section suggests a range of largest
common substructure questions that can be asked about a range of random
combinatorial structures. Consider the following general setting.

There is a set of n labeled elements [n] := 1, 2, ..., n. There is
an instance S of a“combinatorial structure” built over these ele-
ments. The type of structure is such that for any subset A ⊆ [n]
there is an induced substructure of the same type on A. Given
two distinct instances S1, S2 of the same type of structure on [n],
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we can ask for each A ⊆ [n] whether the two induced substruc-
tures on A are identical; and so we can define

c(S1, S2) = max{ |A| : induced substructures on A are identical}.

Finally, given a probability distribution µ on the set of all struc-
tures of a particular type, we can consider the random variable
c(S1,S2) where S1,S2 are independent random structures with
distribution µ.

The “common subtrees” setting of this paper (for leaf-labeled binary trees),
and the LIS problem for random permutations, both fit this framework.
And so does another well-known result. On a general graph, a subset A of
vertices defines an induced subgraph, so for two graphs G1, G2 on [n] one can
ask for maximum size of A for which the induced subgraphs are identical.
Define the “coincidence” graph G1 ∗G2 to have edges

e ∈ G1 ∗G2 if and only if (e ∈ G1 and e ∈ G2) or (e 6∈ G1 and e 6∈ G2).

Now if G1,G2 are independent Erdős–Rényi G(n, p) random graphs, this
question is just asking for the maximal clique size of G1 ∗ G2. But G1 ∗ G2 is
itself the Erdős–Rényi G(n, q = p2 + (1− p)2) random graph, for which the
maximal clique size is a well-understood quantity ([9] section 11.1).

However there is also a fourth setting: partial orders on the set [n]. As
remarked in [4], for the random partial order obtained from random points in
the square with the usual 2-dimensional partial order, it is not hard to show
that the largest common substructure (partial order) has order n1/3. But
neither this, nor other models of random partial orders, have been studied
more carefully.

4.2 Why not recurse at the true centroid?

The construction in section 1.1 – recursing at the true centroid – looks
more efficient than our scheme of recursing at a random centroid. Alas it
is not so simple to analyze. We would split the original “Stage 0” tree at
its “level 0” centroid into three branches, which then become “Stage 1”
trees with a “root” corresponding to the level 0 centroid. In constructing a
common subtree of Stage 1 trees, we need the common subtree to include the
root. When we split a Stage 1 tree at its level 1 centroid into its branches,
which become Stage 2 trees, one of the three trees contains the marked
root corresponding to the level 0 centroid, but we also need to mark the
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leaf corresponding to the level 1 centroid. Then within some Stage 2 trees
we need a common subtree constrained to include two marked roots, while
others need only one marked root. The number of constraints increases in
further stages, and seems difficult to analyze rigorously to obtain a better
lower bound than our Theorem 1.

However by ignoring those additional constraints we can get an upper
bound of order n0.485 for the “recurse at true centroid” scheme”, as outlined
briefly below. It is shown in [2] that the density function for the limit
normalized branch sizes at the true centroid is

φ(x1, x2, x3) =
1

12π

∏

i

x
−3/2
i on {(x1, x2, x3) : xi > 0,

∑

i

xi = 1,max xi < 1/2}.

(21)
One can now solve equation (2) numerically to get β = 0.485...... This could
be one approach to proving Open Problem 2, if one could somehow quantify
the intuition that this “recurse at true centroid” scheme is sufficiently close
to optimal.
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