

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/128877

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/128877
mailto:wrap@warwick.ac.uk

Relaxed Locally Correctable Codes with
Nearly-Linear Block Length and Constant Query Complexity∗

Alessandro Chiesa† Tom Gur‡ Igor Shinkar§

Abstract
Locally correctable codes (LCCs) are codes C : Σk → Σn

which admit local algorithms that can correct any individual
symbol of a corrupted codeword via a minuscule number
of queries. One of the central problems in algorithmic
coding theory is to construct O(1)-query LCC with minimal
block length. Alas, state-of-the-art of such codes requires
exponential block length to admit O(1)-query algorithms for
local correction, despite much attention during the last two
decades.

This lack of progress prompted the study of relaxed
LCCs, which allow the correction algorithm to abort (but
not err) on small fraction of the locations. This relaxation
turned out to allow constant-query correction algorithms
for codes with polynomial block length. Specifically, prior
work showed that there exist O(1)-query relaxed LCCs
that achieve nearly-quartic block length n = k4+α, for an
arbitrarily small constant α > 0.

We construct an O(1)-query relaxed LCC with nearly-

linear block length n = k1+α, for an arbitrarily small

constant α > 0. This significantly narrows the gap between

the lower bound which states that there are no O(1)-query

relaxed LCCs with block length n = k1+o(1). In particular,

this resolves an open problem raised by Gur, Ramnarayan,

and Rothblum (ITCS 2018).

1 Introduction

Locally correctable codes (LCCs) are error-correcting
codes that exhibit local-to-global phenomena, allowing
for correction of individual symbols of a noisy codeword
via a small number of queries. More precisely, a code
C : Σk → Σn is an LCC with correcting radius τ if there
exists a probabilistic algorithm, called local corrector,
that is given an index i ∈ [n] and query access to
an input w ∈ Σn such that if w is τ -close to a valid
codeword C(x), and outputs C(x)i (the i-th bit of C(x))
with high probability.

The notion of local codes, such as LCCs and
the closely-related notion of locally decodable codes
(LDCs), are central to algorithmic coding theory. In-
deed, their study led to progress in several areas of the-
oretical computer science, including complexity theory,

∗Tom Gur is supported by the UKRI Future Leaders Fellow-
ship MR/S031545/1.
†UC Berkeley.
‡University of Warwick.
§Simon Fraser University.

program checking, data structures, and cryptography
(see surveys [31, 33, 26] and references therein), and
also led to practical applications in distributed storage
systems (notably, to Microsoft Azure [24]).

Unfortunately, the state of the art of LCC demands
a steep price for the redundancy required to obtain good
locality. Despite two decades of extensive study, the
best construction of O(1)-query LCCs is obtained via a
parameterization of the Reed–Muller code [28], where
the block length is exponential in the message length
of the code. This state of affairs is even worse than for
O(1)-query LDC, for which sub-exponential block length
was achieved using a highly non-trivial construction of
matching vector codes [32, 15].

This lack of progress prompted the study of relaxed
LCCs [21] (following the relaxation of LDCs that was in-
troduced in the seminal work of Ben-Sasson, Goldreich,
Harsha, Sudan, and Vadhan [5]). This natural relax-
ation arguably captures the essence of local correction,
yet allows for more efficient constructions: an exponen-
tial improvement in block length. In a recent line of
works [18, 16, 9, 17, 23, 8, 20, 30] relaxed LDCs and re-
laxed LCC have been studied and used to obtain appli-
cations to data structures [11], PCPs [27, 14], property
testing [10], and probabilistic proofs [18, 22, 23].

Loosely speaking, this relaxation of LCCs allows
the local corrector to abort (i.e., output “don’t know”)
on a small fraction of the indices while still avoiding
correction errors. More accurately, a relaxed LCC
C : Σk → Σn with correcting radius τ and success rate
ρ is a code that admits a randomized algorithm, called
the local corrector, which receives an oracle access to a
string w ∈ Σn and (a direct access to) an index i ∈ [n].
The corrector makes a small number of queries to w and
is required to satisfy the following conditions:

1. Completeness: If the input is a valid codeword (i.e.,
w = C(x)), the corrector must always output C(x)i.

2. Relaxed correction: If w is τ -close to a codeword
C(x), with high probability, the corrector must either
output C(x)i or a special abort symbol ⊥ (indicating
it detected a corruption and is unable to correct it).

3. Success rate: The corrector is only allowed to output
⊥ on a (1− ρ)-fraction of the coordinates.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

This seemingly modest relaxation turns out to allow
using powerful tools from the PCP literature. Using
such techniques, it was recently shown that there exist
O(1)-query relaxed LCCs with polynomial block length
[21]; more precisely, with nearly quartic block length
n = k4+α, for an arbitrarily small constant α > 0.
On the other hand, it was recently shown that there
cannot exist O(1)-query relaxed LCCs with block length
n = k1+o(1) [20],1 so we know that the block length must
be super-linear.

It is natural to ask whether it is possible to reduce
block length, ideally as close as possible to the lower
bound, while preserving O(1)-query relaxed local cor-
rection. In particular, in [21] the following open prob-
lem was raised:

Do there exist O(1)-query relaxed LCCs with
nearly-linear block length?

1.1 Main result Our main result provides a strong
positive answer to the above open problem, giving
a simple, explicit construction of O(1)-query relaxed
LCCs with block length n = k1+α, for an arbitrarily
small constant α > 0.

Theorem 1. (Informal, see Theorem 9) For ev-
ery q ∈ N and field F there exists a O(q)-query relaxed
LCC C : Fk → Fn with constant relative distance and
decoding radius that has block length

n = qO(
√
q) · k1+O(1/

√
q) .

Note that the dependency of the block length
in the query complexity allows a tradeoff ranging
from block length N = k1+α with query complex-
ity O(1/α2) for constant α > 0, and down to block

length n = k · 2Õ(
√

log(k)) with query complexity q =
log(k)/ log log(k).

1.2 Discussion Below we make several remarks that
highlight several aspects of our results.

On the alphabet of relaxed LCCs In the main
body of the paper we prove Theorem 1 only for large
alphabet (yet sublinear in the blocklength n). It is
quite straightforward (though a bit tedious) to adapt
our techniques to obtain a relaxed LCC with the same
tradeoff between the query complexity and the block
length for binary alphabet. The details on the binary
alphabet appear in the full version.

1The bound in [20] is stated for relaxed LDCs, but it extends
to relaxed LCCs via standard arguments (see, e.g., [7]).

Matching state-of-the-art of relaxed LDCs.
The notion of relaxed locally correctable codes (relaxed
LCCs) is closely related to that of relaxed locally
decodable codes (relaxed LDCs), wherein the goal is
to locally decode a symbol of the message rather than
locally correct a symbol of the codeword. Obtaining
the stronger notion of relaxed local correctability is, in
general, more challenging than obtaining relaxed local
decodability.

Our relaxed LCCs not only achieve constant query
complexity and nearly-linear length, but rather exactly
match the parameters of the relaxed LDC in [5] (achiev-
ing block length N = k1+α and query complexity
O(1/α2) for any constant α > 0), which remains the
state-of-the-art for over 15 years.

In addition, a recent work [18] achieved a construc-
tion of O(1)-query, nearly-linear length relaxed LDC,
which are also strongly locally testable. Our construc-
tion of a relaxed LCC can also be made strongly locally
testable, via standard techniques at the cost of increas-
ing the query complexity by a constant factor (see dis-
cussion in Section 3). Our work thus extends the result
in [18] to the setting of relaxed LCCs.

In sum, our work implies that the efficiency of
state-of-the-art constructions of relaxed LDCs can also
be achieved by the stronger notion of relaxed LCCs.
However, note that the lower bound, which states
that any q-query RLCC must have blocklength N ≥
k

1+ 1
22q·log(q)2−1 , allows room for improving both upper

and lower bounds. This discussion raises a natural open
problem which we leave for future work: is there a
separation between the query vs block length tradeoff
that can be achieved by relaxed LCC and by relaxed
LDC? (Note that)

Application to PCPs. A key component that
we introduce in our proof of Theorem 1 is the notion
of relaxed-correctable PCPs (cPCP). Loosely speaking,
these PCPs can be thought of as extending the decod-
able PCPs (dPCP) of Dinur and Harsha [14] to the set-
ting of local correctability, allowing for recovering any
symbol of the proof, rather than just the witness en-
coded in it. See Section 3.4 for a precise definition.

We observe that the relaxed LCCs in Theorem 1 can
be used to derive the first construction of a cPCP with
nearly-linear length and query complexityO(1) (see Sec-
tion 6). We find this result to be of independent interest,
and due to the importance of dPCPs in facilitating PCP
composition, it is possible that cPCPs will be useful in
making progress on related problems.

1.3 Organization The rest of the paper is organized
as follows. In Section 2 we present a high-level overview
of the proof of Theorem 1. In Section 3 we provide

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

the necessary preliminaries. In Section 4 we introduce
the notion of consistency tests using random walks and
prove a composition theorem for codes that admit such
tests. In Section 5 we prove a theorem which states
that tensor codes admit consistency tests using random
walks. In Section 6, we provide a new construction of
canonical PCPs of proximity that are relaxed locally
correctable. Finally, in Section 7 we combine these
building blocks and prove Theorem 1 by composing
tensored Reed–Solomon codes with relaxed-correctable
PCPs, via the composition theorem.

2 Techniques

Our starting point is the construction of the relaxed
LCC in [21], which below we refer to as “GRR”.
We begin by briefly recalling the high-level approach
underlying GRR and the bottlenecks that lead to a
nearly quartic block length (i.e., n = k4+α, for any small
constant α > 0).

We then outline our new construction, which at a
high level can be viewed as a derandomization of [21].
We introduce the notions of consistency check using
random walks (CTRW) and relaxed correctable PCPs,
which underlie our construction and deem to be of in-
dependent interest. We show that tensor codes ad-
mit CTRW, and we construct new relaxed-correctable
PCPs. Then, we prove a composition theorem us-
ing CTRW, and apply it to compose tensored Reed–
Solomon codes with our relaxed-correctable PCPs.

In the discussion below, we focus on obtaining the
first two conditions of a relaxed LCC: completeness,
which asserts that given a valid codeword the corrector
is always successful; and relaxed correction, asserting
that given a word within the correcting radius from
a codeword the corrector, with high probability, either
successfully corrects the symbol, or detects a corruption
and aborts. The third condition (i.e., “success rate”),
in the setting of O(1)-query relaxed LCCs, is implied by
the first two via a simple transformation [5, 21].

2.1 Challenges for reducing block length To
present the challenges in obtaining O(1)-query relaxed
LCCs with near-linear length, we first briefly recall the
previous state of the art; namely, the construction in
[21].

The relaxed LCC in GRR is obtained via the
paradigm of PCP composition [2] by composing (i) a
relaxed LCC C with large query complexity with (ii) a
special type of PCP (more accurately, special type of
PCP of proximity). The result of the composition is
a relaxed LCC C ′ that (roughly) inherits the query
complexity of the PCP, with a controlled overhead in
block length.

The codewords of the composed code C ′ are con-
structed by taking each codeword of the relaxed LCC
C and concatenating it with a PCP for each local view
that the relaxed local corrector for C could query, as-
serting that this local view is one that would lead the
corrector to successfully recover the value at the desired
coordinate.2

A straightforward argument shows that the forego-
ing approach allows to locally correct the bits of the
original relaxed LCC C without querying the entire lo-
cal view that would have been queried by the original
corrector. Instead, we invoke the PCP verifier with re-
spect to that local view and the corresponding PCP. The
relaxed corrector for the composed code C ′ takes the
queries made by the original corrector as input, and uses
the PCP verifier to test that this local view would have
lead the original corrector to output the right value.

However, more involved machinery is required to
correct the PCP part of C ′. This is the main reason why
constructing relaxed LCC is significantly harder than
constructing relaxed LDC, for which O(1)-query decod-
ing with nearly-linear block length was already shown in
[5]. Indeed, the quartic blowup in the GRR construc-
tion originates from the mechanism for correcting the
part of the composed code C ′ that consists of PCPs. In
more detail, to correct the PCPs in the code in GRR,
it was observed that both:

1. the Reed–Muller based PCP [4, 3], which has poly-
nomial length and polylogarithmic query complexity,
and

2. the Hadamard based PCP [1], which has exponential
length and constant query complexity,

can be made locally correctable if they are restricted to
linear languages, since in essence, these PCPs are based
on codes which are (non-relaxed) LCCs themselves.3

However, known PCP composition techniques do not
preserve this property, and so we still do not know of
polynomial-length PCP constructions that are locally
correctable using O(1) queries. (This is not surprising
as, of course, we do not know of any polynomial-length
LCC with O(1) queries.)

Thus, to obtain O(1)-query relaxed LCC with poly-
nomial block length, GRR starts with the Reed–Muller
code, and composes it with the self-correctable PCP

2For this idea to work, several important details must be

addressed: the codeword of C should be replicated many times
for C′ to have distance, the relaxed LCC must be robust, and

others. However, for the sake of simplicity, we ignore these issues

here.
3Several other properties were required for the GRR construc-

tion, such as strong soundness, canonicity, linearity, and robust-

ness. We discuss the ones that are also relevant to us in Sec-
tion 2.3.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

with polynomial length and polylogarithmic query com-
plexity, and then performs another composition with
the self-correctable PCP with exponential length and
constant query complexity. It is not hard to see that
each such composition entails a quadratic blowup (e.g.,
for composing with the Reed–Muller local corrector, we
have to provide a PCP for each of the possible O(n2)
lines), and thus these two compositions result in a quar-
tic blow up.

In order to avoid this blowup and obtain nearly-
linear length, we will introduce and construct a new
type of PCP, which allows us to reduce the number
of compositions to just a single one. In addition, we
show a new composition theorem which relies on the
notion of consistency checks using random walks to
perform a more efficient composition that does not incur
a quadratic overhead.

Our relaxed LCC is constructed via a composition
theorem that takes codes that admit “consistency tests
using random walks” and composes them with a spe-
cial type of “relaxed-correctable” PCPs to obtain the
relaxed LCC with the desired parameters. We begin by
discussing the former component.

2.2 Building block I: consistency checks using
random walks We introduce the notion of consistency
tests using random walks (CTRW). These are structured
local tests that assert the consistency of global object
with an individual point inside it. We will later
capitalize on the specific structural properties of CTRW
to obtain an efficient composition.

In our setting, we define CTRW as follows. An error
correcting code C ⊆ Σn admits a consistency test using
a random walk if there exists a test, which gets a word
w ∈ Σn that is close to C and a coordinate i ∈ [n], that
checks that the symbol wi is consistent with the rest
of the codeword closest to w, by performing a random
walk over intersecting local constraints as follows.

At each step of the random walk, we check that the
current constraint is satisfied, and that it is consistent
with the previous constraint on their intersection. That
is, the test chooses a sequence of local constraints on the
purported codeword such that the (j + 1)-th constraint
involves coordinates that intersect those involved in the
j-th constraint, and checks that w satisfies all local
constraints, in which case it declares that wi is globally
consistent. See Section 4 for the precise definition of
CTRW.

We require that on a valid codeword, the test will
pass with probability 1, and that given a codeword that
is “close” (typically, within distance that is proportional
to the distance of the code) to a valid codeword, with
high probability not only should the test reject, but

also that the local view of the test should be “far”
from an accepting view (i.e., satisfying the robustness
condition).

When constructing a CTRW, to minimize the query
complexity of the test, we want the constraints to be of
small locality, as well as for the random walk to con-
verge to the uniform distribution after a small number
of steps. Note that there is tension between these two
properties. In addition, observe that this notion im-
plies relaxed local correctability with appropriate pa-
rameters.

Building on techniques from [18], in Section 5 we
prove that the structural properties of tensor codes ad-
mit consistency tests using random walks. We provide
a refined analysis of the robustness of these tests, as
in our application we require the codes to have relative
distance close to 1.

Theorem 1. (informal, see Theorem 7) Let
C : Fk → Fn be an arbitrary linear code of relative
distance δC , and let C⊗m be the m-dimensional tensor
product of C. Then, C⊗m admits an CTRW that
given a word that is τ -close to a valid codeword, has
ρ-robust soundness ε = (δC − 2ρ)m − τ . Furthermore,
all predicates defined by the CTRW for C⊗m check that
a restriction of a given tensor word to a line belongs to
C.

2.3 Building block II: relaxed-correctable
PCPs The second component in our composition
theorem is a relaxed-correctable PCP, which is a special
type of PCP where proof oracles can be relaxed locally
corrected, similarly to relaxed LCCs. Informally, for a
language L, a relaxed-correctable PCP system consists
of PCP π(x) for each x ∈ L, and an algorithm that
on input that gets an input x, a purported proof π̃
of length |π(x)|, and a coordinate i ∈ [|π(x)|]. The
algorithm makes a small number of queries to the pur-
ported proof π̃ and satisfies the following guarantees.
If π̃i = π(x)i, then the algorithm returns π(x)i, and
if π̃ is close to some π(x), then with high probability,
the algorithm either outputs π(x)i or a special abort
symbol ⊥.

For technical reasons, the relaxed-correctable PCPs
that we need must additionally be canonical PCPs of
proximity [19]. Informally, this means that the PCP
satisfies two additional requirements:

• for every true statement there exists a unique canon-
ical proof that the verifier is required to accept, and;

• the verifier is required to reject any pair of statement
and proof with probability that is roughly propor-
tional to its distance from a true statement and its
corresponding canonical proof.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

These properties are important for local codes as they
create a one-to-one correspondence between valid state-
ments and valid proofs. We discuss how these properties
are used in our composition theorem in the next subsec-
tion. For now, we merely note that PCPs of proximity
(PCPPs) [5] where introduced to facilitate PCP com-
position, and immediately proved to be a powerful tool
for local codes, since on the one hand, in the setting
of local codes we cannot afford reading an entire PCP
oracle, whereas on the other hand the distance prop-
erty of codes is often compatible with the approximated
decision problems that PCPPs can deal with.

Relying on recent progress on canonical PCPPs
[13, 29], we provide new, simple constructions of relaxed-
correctable O(1)-query canonical PCPPs of polynomial
length.

Theorem 2. (informal, see Theorem 8) For any
language L in the class P, there exists a canonical
relaxed-correctable PCP of proximity with polynomial
length, soundness 1/2, and query complexity O(1). Fur-
thermore, the PCP oracle is relaxed-correctable with
O(1) queries.

In order to construct a relaxed-correctable PCPP
we compose the relaxed LCC in [21] (which has poly-
nomial block length and query complexity O(1)) with
state-of-the-art canonical PCPPs of polynomial block
length and query complexity O(1). We stress that
this composition is in the reversed direction compared
to our main composition theorem. Namely, we com-
pose a PCPP with a relaxed LCC to obtain a relaxed-
correctable PCPP.4

2.4 A composition theorem using CTRW We
outline our composition theorem, which takes a code
that admits CTRW (Component I, see Section 2.2) and
composes it with relaxed-correctable canonical PCPP
(Component II, see Section 2.3) to obtain a relaxed
LCC that (roughly) inherits the query complexity from
the PCPP, at the cost of increasing the block length
by a multiplicative sublinear factor. (See Theorem 6
for the exact parameters that our composition theorem
obtains.) Later on, in Section 2.5, we explain how to use
our composition theorem, together with the components
that we constructed, to obtain our main result.

Our composition theorem roughly follows the out-
line of the composition theorem in [21], however, it is op-
timised to make use of the structural properties of con-

4It might be interesting to note the total depth of the com-
position: our relaxed LCC indeed contains PCP that themselves
contain encodings of the (weaker) relaxed LCC in [21], which yet

again contains copies of simpler PCP that are based on (non-
relaxed) LCC.

sistency test via random walks, as well as on the prop-
erties of our new PCPP. It, thus, suffices to perform a
single composition to obtain a O(1)-query relaxed LCC
of nearly-linear length (rather than two compositions
for quartic length, as in [21]).

Let C be a code that admits a CTRW with con-
straint set C = {Cj}j∈[n], where each Cj is a collection
of constraints that depend on the j’th coordinate. Let
π the encoding function of a relaxed-correctable canoni-
cal PCPP. We compose C with π by constructing a new
code C ′, where for each message x the corresponding
codeword consists of two parts:

1. a core that consists of (repetitions of) the original
encoding C(x), where the number of repetitions
asserts that the core dominates the size of the
composed codeword, and thus provides distance;

2. a PCP bundle that for each coordinate j ∈ [n] and
constraint P ∈ Cj includes a PCPP π(j,P) which
asserts that C(x) satisfies the constraint P.

Correcting a point in the core of an alleged code-
word C(x) is fairly straightforward. We perform a ran-
dom walk over intersecting constraints in a randomly
chosen copy of the original codeword C(x) in the com-
posed codeword C ′(x), and check each constraint by
invoking the corresponding PCPP verifier, rather than
querying the entire local view that the constraint refers
to. The robustness of the CTRW ensures that this pre-
serves the soundness condition. Correcting the PCP
bundle is more involved, however, as we discuss next.

The naive approach for correcting a point p in
the PCP bundle of a purported codeword C ′(x) is
by relying on the relaxed-correctablity of the PCPP
that we use and invoking the relaxed corrector on the
relevant PCPP oracle to recover p. Unfortunately, this
does not suffice, as we discuss next.

Let π′ be the purported PCPP oracle that contains
the point p. The fact that π′ is relaxed locally cor-
rectable tells us that if π′ is close to a valid PCPP
π(j,P), we can correct (or detect corruption and abort)
any of the points it contains, including p. However, we
encounter two problems: (i) if the purported PCPP ora-
cle π′ is far from a valid encoding (which it might, since
the size of each PCPP oracle is negligible with respect
to the total size of the codeword), there is no guarantee
regarding the success of the relaxed corrector. (ii) Even
if π′ is a perfectly valid PCPP encoding, it might still
not be an encoding that is consistent with the rest of the
word. Indeed, note that since the size of π′ is negligi-
ble, one can replace it with a completely different PCPP
oracle while remaining within the correcting radius.

This is where the power of canonical PCPP, wherein
only the canonical proof for a correct statement is

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

accepted, kicks in. To deal with the first problem,
note that if π′ is far from a valid encoding, then it
is also far from the prescribed canonical proof. Thus,
the canonical PCPP verifier will reject, and the relaxed
corrector can return ⊥.

Dealing with the second problem requires a bit more
work. Suppose that π′ is some perfectly valid PCPP
encoding (or close to one) that is not consistent with the
rest of the codeword. Recall that π′ is a proof stating
that some local constraint on the core of the composed
code C ′ is satisfied. Denote this local view of the core
by w. If w is not corrupted (or only slightly corrupted),
then it is far from being consistent with π′, and so again,
we detected a corruption, and we can safely output ⊥.
However, how can we detect a corruption if w was also
heavily corrupted such that it matches (the corrupted)
π′? The crux is that w is a subset of the core of C ′,
which we already showed how to correct using CTRW.
Since w is heavily corrupted, we can choose a random
point in w, invoke the relaxed-corrector on it, which will
find that the random point in inconsistent with the rest
of the word.

2.5 Composing tensored Reed–Solomon codes
with relaxed-correctable PCPs We are now ready
to describe the construction behind Theorem 1. We
start with the Reed–Solomon code parameterized such
that its distance is roughly 1 − 1/m, for a constant
m ∈ N to be determined later. We consider the m-
th tensor power of the Reed–Solomon code, which we
denote by RS⊗m, and denote its blocklength by n. The
reason we think of RS⊗m as a tensor code, rather than
as the standard Reed–Muller code, is because we wanted
a “derandomized” consistency test using random walks,
which only makes use of the O(mn) axis-parallel lines
out of all possible O(n2) lines. Details follow.

By Theorem 1, we know that RS⊗m admits a
CTRW. For concreteness, we spell out this CTRW.
The constraints correspond to the consistency of each
coordinate p of RS⊗m with each axis-parallel line ` that
is incident with p. To check the consistency of a point p
with the global codeword, we perform a random walk of
roughly m steps (without repeating directions). That is,
we first check the constraint that corresponds to p and a
random line `1 that is incident with it. Then we choose
a random point p1 on `1 and check the constraint that
corresponds to p1 and a random line `2 that is incident
with it, and so on. Theorem 1 guarantees that if p is
inconsistent with the global codeword, then this test
succeeds with high probability.

We stress that we use the tensor of the Reed–
Solomon code, rather than an arbitrary asymptotically
good code, in order to increase the robustness, which

would, in turn, reduce the query complexity in the
composition theorem. To get some intuition for that,
note that if we use a code with distance, say 1/4,
then each line incident with p has distance 1/4 from
the correct codeword. Hence, it is possible that the
line `1 can be changed in at most 1/4 fraction of
the coordinates and to become consistent with p1 and
consistent with the global codeword. Similarly, if the
chosen point p1 is inconsistent with the global codeword,
then any line `2 can be changed in at most 1/4 fraction
of the coordinates to become consistent with p1 and
consistent with the global codeword. Thus implies that
the CTRW will catch an inconsistency with probability
only 1/4m. On the other hand, when tensoring the
Reed–Solomon code, which has distance roughly 1 −
1/m, this probability becomes (1 − 1/m)m, which is a
constant independent of m.

Finally, we invoke our composition theorem with
respect to RS⊗m (and its corresponding CTRW that
is implied by Theorem 1), whose block length we de-
note by n, together the O(1)-query canonical relaxed-
correctable PCPP from Theorem 2 with proofs of poly-
nomial length. By applying the composition theorem
we obtain a relaxed corrector with query complexity
O(m2). As for the length, the composition adds a PCPP
oracle of size nO(1/m) for each one of the m · n axis-
parallel lines. Hence the total block length of the con-
struction is roughly m · n · nO(1/m) = O(mn1+(1/m)),
which gives us the desired block length by setting a suf-
ficiently large constant m.

3 Preliminaries

We begin with standard notation. The relative distance
between two strings x, y ∈ Σn is defined as

dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n .

If dist(x, y) ≤ ε, we say that x is ε-close to y; otherwise
we say that x is ε-far from y. For a non-empty set
S ⊆ Σn define the distance of x from S as dist(x, S) :=
miny∈S dist(x, y). If dist(x, S) ≤ ε, we say that x is
ε-close to S; otherwise we say that x is ε-far from S.

We will also need a more general notion of a
distance, allowing different coordinates to have different
weight. In particular, we will need the distance that
gives constant weight to one of the coordinates, and
spreads the rest of the weight uniformly between all
coordinates.

Definition 1. Fix n ∈ N and an alphabet Σ. For a
coordinate k ∈ [n] define the distance distk between two
strings x, y ∈ Σn as

distk(x, y) =
1[xk 6=yk]

2
+
{i ∈ [n] : xi 6= yi}

2n
.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

That is, if xk 6= yk, the distk(x, y) is at least 1/2.
Analogously to the distance with respect to the

uniform measure, we define distk between a string x ∈
Σn and a set S ⊆ Σn as

distk(x, S) = min
y∈S

distk(x, y) .

Let P : Σn → {0, 1} be a predicate. Typically, the
predicate will depend on a small number of coordinates
(a local view), in which case we denote by Dom(P) the
set of coordinates on which P depends, and identify
P with P : ΣDom(P) → {0, 1}. Finally, we denote
by sat(P) = {y ∈ ΣDom(P) : P(y) = 1} the set of
assignments satisfying P. Then, for x ∈ ΣDom(P) we
have

dist(x, sat(P)) = min
y:P(y)=1

{i ∈ Dom(P) : xi 6= yi}
|Dom(P)|

,

and analogously

distk(x, sat(P)) = min
y∈ΣDom(P):P(y)=1

1[xk 6=yk]

2

+
{i ∈ Dom(P) : xi 6= yi}

2|Dom(P)|
.

We will also need the following concentration of
measure inequality.

Theorem 3. (McDiarmid’s inequality) Let
X1, X2, . . . , Xn be independent random variables
such that, for all i we have ai ≤ Xi ≤ bi,
ci := bi − ai ≤ C. Let Sn :=

∑n
i=1Xi be their

sum, En := E[Sn] =
∑n
i=1 E[Xi] be its expected value,

and Vn := Var[Sn] =
∑n
i=1 Var[Xi] be its variance.

Then,

Pr [|Sn − En| > t] < 2 exp

(
− t2/2

Vn + C · t/3

)
.

3.1 Basic coding theory Let k < n be positive
integers, and let Γ,Σ be two alphabets. A code C : Γk →
Σn is an injective mapping from messages of length k,
over the alphabet Γ, to codewords of length n, over the
alphabet Σ. Typically it is the case that Γ = Σ, in which
case we simply say that the code C is over the alphabet
Σ. The message length of the code is k, its block length
is n (which we view as a function of k), and its rate is
k/n. The relative distance of the code is the minimum,
over all distinct messages x, y ∈ Γk, of dist(C(x), C(y)).
We sometimes abuse notation and use C to denote the
set of all of its codewords, {C(x)}x∈Γk ⊆ Σn.

Linear codes Let F be a finite field. A code
C : Fk → Fn is linear if it is a F-linear map from Fk
to Fn. In this case the set of codewords C is a subspace

of Fn. A basic result about linear codes [25] is that
there exist (explicit) constructions of linear codes that
are binary (F = F2) and good (have constant rate and
constant relative distance).

Concatenation Code concatenation is an opera-
tion on codes typically used to reduce the alphabet size.
Fix alphabets Σ,Ξ,Γ. Fix an outer code C : Γk → Ξn

with relative distance δC and rate rC , and an inner code
D : Ξ→ Σr with relative distance δD and rate rD. The
concatenation of C with D is the code Ccomp : Γk →
Σr·n such that each x ∈ Γk is first encoded with C, and
then each symbol of the resulting codeword is encoded
with D. The relative distance of Ccomp is δC · δD and
the rate is rC · rD.

Focusing on linear codes, we have the following fact.
Let F be a field, and G an extension of F; so that G ∼= Fm
for some m ∈ N. Let C : Fk → Gn and D : G → Fr be
codes that are F-linear (we identify G with Fm). Then
the code Ccomp : Fk → Fr·n obtained by concatenating
C and D is F-linear.

Tensor product Let C : Γk → Σn be a code with
rate r and relative distance δ, and let m ∈ N. The
tensor product code C⊗m : Γk

m → Σn
m

is the code
with message length km, block length nm, rate rm,
and relative distance δm that comprises all functions
c : Γk

m → Σn
m

whose restriction to any axis-parallel
line is in C. Namely, for every j ∈ {1, . . . ,m} and
a1, . . . , aj−1, aj+1, . . . , am ∈ Σk, the function c′ : Γk →
Σn defined by c′(i) := c(a1, . . . , aj−1, i, aj+1, . . . , am)
belongs to C.

3.2 Relaxed locally correctable codes Following
the discussion in the introduction, we provide a formal
definition of relaxed LCCs, and state some basic facts
and known results.

Definition 2. (Relaxed LCC) Let C ⊆ Σn be an
error correcting code with relative distance δ, and let
q ∈ N, τcor ∈ (0, δ/2), ρ ∈ (0, 1), and ε ∈ (0, 1] be
parameters. Let D be a randomized algorithm that gets
an oracle access to an input w ∈ Σn and an explicit
access to an index i ∈ [n]. We say that D is a q-
local relaxed correction algorithm for C with correction
radius τcor and soundness ε if for all inputs the algorithm
D reads explicitly the coordinate i ∈ [n], reads at most
q (random) coordinates in w, and satisfies the following
conditions.

1. For every w ∈ C, and every coordinate i ∈ [n] it
holds that Pr[Dw(i) = wi] = 1.

2. For every w ∈ Σn that is τcor-close to some codeword
c ∈ C and every coordinate i ∈ [n] it holds that
Pr[Dw(i) ∈ {ci,⊥}] ≥ ε, where ⊥ 6∈ Σ is a special
abort symbol.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

3. For every w ∈ Σn that is τcor-close to some codeword
c ∈ C there exists a subset Iw ⊆ [n] of size |Iw| ≥ ρn
such that for every coordinate i ∈ Iw it holds that
Pr[Dw(i) = ci] ≥ ε.

The code C is said to be a (τcor, ε)-relaxed locally
correctable code (RLCC) with query complexity q if it
admits a q-query relaxed local correction algorithm with
correction radius τcor and soundness ε.

The following remark explains why in our setting
we can omit the third condition of Definition 2.

Remark 1. (On success rate) For relaxed LCC
with query complexity O(1) it is known that, via stan-
dard transformations [5], the third condition of relaxed
LCCs follows directly from the first two conditions in
Definition 2. Since all of our constructions have query
complexity O(1), we can restrict our attention to only
the first two conditions.

It would be also useful to note the following trivial
observation.

Observation 1. Note that if C is a (τcor, ε)-RLCC,
then every subset of C is also an RLCC with the same
parameters.

Finally, we will need the following theorem of Gur,
Ramnarayan, and Rothblum [21].

Theorem 4. ([21]) There exists an explicit construc-
tion of a systematic binary linear (τcor, ε)-RLCCs with
constant relative distance, block length n = poly(k),
query complexity q = O(1), with correction radius τcor =
Ω(1), and soundness ε = Ω(1)

3.3 Canonical PCPs of proximity A canonical
PCP of proximity strengthens the notion of a PCP of
proximity (PCPP), which in turn strengthens the notion
of a PCP. We recall these latter notions before formally
defining canonical PCPs of proximity. For an intuitive
discussion of these notions, see Section 2.3.

PCPs A PCP for a language L is a polynomial-
time randomized oracle algorithm V that receives direct
access to an input x and oracle access to a proof π.
The algorithm V is allowed to make a small number of
queries to π such that the following holds: for every x ∈
L there exists a proof π such that Pr[V π(x) = 1] = 1,
and for every x 6∈ L and every proof π it holds that
Pr[V π(x) = 1] ≤ 1/2.

PCP of proximity A PCP of proximity for a
language L, with respect to proximity parameter ρ,
is a polynomial-time randomized oracle algorithm V
that receives oracle access to both an input x and a

proof π. The algorithm V is allowed to make a small
number of queries to x and to π such that the following
holds: for every x ∈ L there exists a proof π such
that Pr[V π(x) = 1] = 1, and for every x that is ρ-
far from the language L and every proof π it holds that
Pr[V π(x) = 1] ≤ εPCPP for some soundness parameter
εPCPP < 1.

Canonical PCPs of proximity A canonical
PCPP is a PCPP in which every instance in the lan-
guage has a unique (thus canonical) accepting proof.

Definition 3. (canonical PCPP) A canonical
PCPP for a language L ⊆ Σ∗ with soundness εPCPP

with respect to proximity parameter ρ, is a polynomial-
time randomized oracle algorithm V satisfying the
following conditions with respect to some polynomial
` : N→ N.

• Canonical completeness: For every x ∈ L there exists
a unique (canonical) proof π∗(x) ∈ Σ`(|x|) for which
Pr[V x,π

∗(x) = 1] = 1.

• Canonical soundness: For every x′ ∈ Σn and proof
π′ ∈ Σ`(|x|) such that
(3.1)

δ(x′, π′) , min
x∈Σn

{
max

(
dist(x′, x)

n
;

dist(π′, π∗(x))

`(n)

)}
> ρ ,

it holds that Pr[V x
′,π′ = 1] ≤ εPCPP.

Above, for any x /∈ L we define π∗(x) = ⊥ and say
that any proof π′ is 1-far from ⊥.

The polynomial ` denotes the length of the canonical
proof in the PCPP, and its query complexity is the max-
imum number of queries that V makes to the instance
and its (supposed) proof. We say that a canonical PCPP
verifier makes nearly-uniform queries if it queries each
bit in the input x with probability Θ(1/|x|) and queries
each bit in the proof π(x) with probability Θ(1/|π|).

In this paper we use the following theorem due to
Dinur, Goldreich, and Gur [13]. (Alternatively, we could
have used the construction by Paradise [29].)

Theorem 5. ([13]) Let ρ > 0 be a proximity parame-
ter. For every language in L ∈ P there exists a poly-
nomial ` : N → N and a canonical PCPP verifier for L
satisfying the following properties.

1. For all x ∈ L of length |x| = n the length of the
canonical proof π(x) is |π(x)| = `(n).

2. The query complexity of the PCPP verifier is q =
O(1/ρ).

3. The PCPP verifier for L has perfect completeness
and soundness ε = 1/2 for proximity parameter ρ
(with respect to the uniform distance measure).

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

3.4 Relaxed-correctable PCPs We introduce a
new notion of PCPs, to which we refer to as relaxed-
correctable PCPs (cPCP). A cPCP is a PCP system
that is both locally checkable and relaxed locally cor-
rectable; that is, in addition to allowing local verifica-
tion of the validity of the given proof like a standard
PCP, a cPCP also allows for relaxed local correction of
the PCP oracle itself.

The notion of cPCP is closely related to the de-
codable PCPs (dPCP) introduced by Dinur and Harsha
[14], which play an important role in PCP composition.
In fact, cPCPs can be thought of as extending the def-
inition of dPCPs to the setting of local correctability,
as they allow recovery of any symbol in the PCP ora-
cle, rather than just the encoded witness. We remind
that similarly to our case, dPCPs admit relaxed decod-
ing proceedures, i.e., the decoder is allowed to abort
(output, say, ⊥) in case it detects corruption.

In this work we focus on canonical PCPs of prox-
imity, and so we define relaxed-correctable canonical
PCPPs; in short ccPCPPs.

Definition 4. [relaxed locally correctable cPCP of
proximity] A language L ⊆ Σ∗ is said to admit a
ccPCPP with query complexity q and soundness εPCPP

with respect to the proximity parameter ρ for the canon-
ical proof π(·), and correcting soundness εRLCC for cor-
recting radius τcor if it satisfies the following conditions.

1. There exists a is a q-query canonical PCPP for
L that satisfies the conditions in Definition 3 with
soundness εPCPP with respect to the proximity pa-
rameter ρ for the canonical proof π(·).

2. The code ΠL = {w◦π(w) : w ∈ L} is a (τcor, εRLCC)-
RLCC with query complexity q.

4 Consistency tests using random walks

We define the notion of consistency tests using random
walks. Intuitively, given an error correcting code C ⊆
Σn, a consistency test using a random walk gets a
word w ∈ Σn that is close to some codeword c∗ ∈ C,
and a coordinate i ∈ [n]. The test checks that the
symbol wi is equal to c∗i , i.e., wi is consistent with the
codeword closest to w. To this end, the test chooses a
sequence of local constraints on the purported codeword
such that the (j + 1)-th constraint involves coordinates
that intersect those involved in the j-th constraint, and
checks that w satisfies all local constraints, in which case
it declares wi is globally consistent.

We note that this notion implies relaxed local cor-
rectability with appropriate parameters (see Remark 2).

Definition 5. [Consistency test using random walks]
Let C ⊆ Σn be an error correcting code. A (q, t)-
consistency test using random walks (CTRW) for C
is a randomized algorithm that gets as input a string
w ∈ Σn and a coordinate j ∈ [n]. For each coordinate
j ∈ [n] CTRW defines a collection constraints Cj} such
that each predicate P : Σn → {0, 1} in Cj depends on at
most q coordinates. The test works as follows.

Algorithm 1 Consistency test using random walks

Require: w ∈ Σn, j ∈ [n]
1: k1 = j
2: for r = 1 to t do
3: Sample a predicate Pr ∈ Ckr according to a

distribution Dr that may depend on the previous
steps

4: Let Domr = Dom(Pr) be the set of coordinates
on which Pr depends

5: Sample kr+1 ∼ Domr uniformly at random
6: end for

7: Read w in the coordinates ∪r∈[t]Domr

8: if Pr(w|Domr
) = 1 ∀r ∈ [t] then

9: return ACCEPT
10: else
11: return REJECT
12: end if

We say that CTRW has perfect completeness and
(τ, ρ, ε)-robust soundness if it satisfies the following
guarantees.
Perfect completeness: If w ∈ C, then

Pr[CTRWw(j) = ACCEPT] = 1 for all j ∈ [n].
(τ, ρ, ε)-robust soundness: If w is τ -close to some

c∗ ∈ C, but wj 6= c∗j , then

Pr[∃r ∈ [t] such that distkr (w|Domr
, sat(Pr)) ≥ ρ] ≥ ε .

Here distkr is defined as distkr (w|Domr
, c|Domr

) =
1
2 · 1[wkr 6=ckr] + {`∈Domr:w` 6=c`}

2|Domr| ,

and distkr (w|Domr
, sat(Pr)) =

minc:Pr(c)=1{distkr (w|Domr
, c|Domr

}. See Definition 1
and the following discussion in Section 3.

Remark 2. Note that if a code C admits a (q, t)-CTRW
with perfect completeness and (τ, ρ, ε)-robust soundness
for any ρ > 0, then it is an (τ, ε)-RLCC with query
complexity qt. Indeed, given a word w ∈ Σn and a
coordinate j ∈ [n] the local correction algorithm for C
runs the (q, t)-CTRW on input (w, j). The algorithm
outputs wj if CTRW accepts, and outputs ⊥ otherwise.
We omit the straightforward details.

4.1 Composition theorem using CTRW Below we
prove that if a code admits a (q, t)-CTRW then it can

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

be composed with an appropriate PCPP to obtain an
RLCC with query complexity O(t).

Theorem 6. (Composition theorem) Consider the
following components.

• Outer code: A code Cbase : Σk → Σn with the
following properties.

1. Cbase admits a (n′, t)-CTRW with perfect complete-
ness and (τ, ρ, εRW)-robust soundness.

2. For each j ∈ [n] and each P ∈ Cj it holds that
sat(P) has distance δP ≥ 4ρ.

3. |Cj | = s for all j ∈ [n].

• Inner PCPP: A qPCPP-query canonical PCPP system
for each P ∈ Cj for all j ∈ [n] with the following
properties.

1. For all x ∈ sat(P) of length n′ the length of the
canonical proof is `(n′).

2. The PCPP verifier for sat(P) has soundness εPCPP

for proximity parameter ρ ≤ δP/4 with respect to
the distance measure distj.

3. The code ΠP = {w ◦ π(w) : w ∈ sat(P)} is a
(τ, εin)-RLCC with query complexity qPCPP.

Then, there exists a code Ccomp : Σk → ΣN for N =
2n · s · `(n′). The code Ccomp is a (τcor, εRLCC)-RLCC
with query complexity (t+1) ·qPCPP, where the decoding
radius of Ccomp is τcor = τ/4 and the soundness is

εRLCC = min(εRW ·(1−εPCPP)·δP
2 , εin4).

Constructing the composed code Ccomp:
Given the components in the statement of Theorem 6
the composed code Ccomp : Σk → ΣN is obtained by
combining Cbase with the PCPP as follows. Each
c∗ ∈ Cbase corresponds to a unique codeword c ∈ Ccomp.
The codeword c consists of two parts c = cbase ◦ Π de-
fined as follows.

1. cbase consists of s · `(n′) repetitions of c∗. The
repetition of c∗ is somewhat artificial, and is done
so that this part will constitute a constant fraction
of the length of the codeword c. The exact reason
for this will be clear in the proof of correctness.

2. Π is the concatenation of proofs of proximity π(j,P)

(as per the inner PCPP in the hypothesis of the
theorem) for each j ∈ [n] and each constraint P ∈ Cj
asserting that c|Dom(P) ∈ sat(P) (or rather c|Dom(P)

is close to sat(P) with respect to the distribution
distj). That is, each π(j,P) is a proof asserting that
(i) the restriction of some w ∈ Σn to Dom(P) satisfies
P, and that (ii) the value wj is indeed the correct
value.

Remark 3. Note that if every two assignments in
sat(P) are δP -far from each other, then requiring
that w has the “correct” value in the j-th coor-
dinate is non-trivial in the following sense: for
any w such that w|Dom(P) ∈ sat(P) and w′ ob-
tained from w by changing only the j-th coordinates
it holds that distj(w|Dom(P), w

′
|Dom(P)) ≥ 0.5 and

distj(w
′
|Dom(P), sat(P)) ≥ Ω(δP). Hence, no proof

will convince the PCPP verifier that w′ is close to
sat(P) with high probability.

Parameters of Ccomp: For the block length of
Ccomp : Σk → ΣN note that each codeword c′ ∈ Ccomp
consists of s · `(n′) ·n symbols (of the s · `(n′) copies) of
the base codeword c ∈ Σn, concatenated with n·s proofs
of proximity, each of length `(n′). Therefore, total block
length of Ccomp is 2n · s · `(n′).

4.2 Local correction algorithms for composed
codes Before presenting the correction algorithm for
Ccomp we first consider a (slightly simpler) code that
contains only one copy of Cbase and all proofs as in
Item 2 of the definition of Ccomp. For this code we
describe a local correction algorithm for correcting the
symbols in the part corresponding to the base code.

Algorithm 2 Local correction for the base part without
repetitions

Require: w∗ ∈ Σn,Π = (πj,P)j∈[n],P∈Cj ∈
(Σ`(n

′))ns, j∗ ∈ [n]

1: Run the CTRW for Cbase on input (w∗, j∗)
2: Let P1, . . . ,Pt be the constraints sampled by the

CTRW, and let k1, . . . , kt be the coordinates defined
by Pr’s

3: for r = 1 to t do
4: Run the PCPP verifier on π(kr,Pr) to check that
w∗|Domr

is close to sat(Pr) with respect to distkr
5: end for

6: if all iterations of Step 4 accept then
7: return w∗j∗
8: else
9: return ⊥

10: end if

Claim 1. Let w∗ ∈ Σn,Π = (πj,P)j∈[n],P∈Cj ∈ Σns`(n
′)

and j ∈ [n] be input to Algorithm 2. Suppose that
the base part of w∗ is τcor-close to some base codeword
c∗ ∈ Cbase, but w∗j∗ 6= c∗j∗ . Then Algorithm 2 will output
⊥ with probability at least εRW · (1− εPCPP).

Proof. If we choose the constraints as per Step 2 of
Algorithm 2, then with probability at least εRW there

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

will be some r ∈ [t] such that distkr (w|Domr
, sat(Pr)) ≥

ρ. If that happens, then the PCPP verifier applied to
the predicate Pr in Step 4 will accept with probability
at most εPCPP, and thus the algorithm will output ⊥
with probability at least εRW · (1− εPCPP).

We are now ready to present the local correction
algorithm for Ccomp. The algorithm has two cases
depending on whether (1) the coordinate corresponds
to (one of the copies of) a symbol in the base code, or
(2) it belongs to the PCPP part πj,P for some j ∈ [n]
and P ∈ Cj .

1. Suppose first that the coordinate i ∈ [N] that
corresponds to a coordinate of the base code. In this
case the local correction algorithm works as follows.

Algorithm 3 Local correction for the base part of
Ccomp

Require: w ∈ ΣN , i ∈ [N]
1: Let j ∈ [n] be the coordinate of Cbase that corre-

sponds to the coordinate i ∈ [N]
2: Sample r ∈ [s · `(n′)] uniformly at random
3: Let w∗ ∈ Σn be the substring of w whose coordi-

nates correspond to the r-th copy of the base code-
word

4: Let Π = (π(j,P))j∈[n],P∈Cj be the part of w corre-
sponding to the concatenation of all proofs of prox-
imity

5: return Algorithm 2 on the input (w∗,Π, j)

2. Suppose now that i ∈ [N] is a coordinate that be-
longs to a proof of proximity π(j,P) for some coordi-
nate j corresponding to a symbol from the base code,
and a constraint P ∈ Cj of the form P : ΣDom(P) →
{0, 1}. In this case the local correction algorithm
works as follows.

Algorithm 4 Local correction for the PCPP part of
Ccomp

Require: w ∈ ΣN , i ∈ [N]
1: Let j∗ ∈ [n] and P : ΣDom(P) → {0, 1} be the

coordinate and the constraint corresponding to the
proof containing the i-th coordinate

2: Sample r ∈ [s · `(n′)] uniformly at random
3: Let w∗ ∈ Σn be the substring of w whose coordi-

nates correspond to the r-th copy of the base code-
word

4: Run the PCPP verifier for P on π(j∗,P) to check

that distj∗(w
∗
|Dom(P), sat(P)) ≤ ρ

5: if Step 4 rejects then
6: return ⊥
7: end if

8: Let Π = (π(j,P))j∈[n],P∈Cj be the part of w corre-

sponding to the concatenation of all proofs of prox-

imity
9: Run Algorithm 2 on the input (w∗,Π, j′) for a

uniformly random coordinate j′ of w∗|Dom(P)

10: if Step 9 returns ⊥ then
11: return ⊥
12: end if

13: Run the local corrector of the inner PCPP on

(w∗|Dom(P) ◦ π(j∗,P)) to correct the j∗-th coordinate
14: return the value obtained in Step 13

Query complexity: It is clear that the query
complexity is upper bounded by that of Algorithm 4.
The total number of queries in upper bounded by
(i) qPCPP queries in Step 4, (ii) at most t ·qPCPP queries
in Step 9, and (iii) at most qRLCC queries in Step 13.

4.3 Analysis of the algorithm It is obvious that
given a codeword w ∈ Ccomp and an index i ∈ [N] the
local correction always returns the correct answer wi.

Suppose now that the input is some w ∈ ΣN that is
τcor-close to some codeword c ∈ Ccomp. We show below
that Pr[ALGw(i) ∈ {c∗i ,⊥}] ≥ εRLCC .

Let c∗ be the base codeword of c, that is, c is
obtained from repetitions of c∗ concatenated with the
corresponding canonical proofs. Denote by wbase ∈
Σns`(n

′) the restriction of w to the coordinates con-
taining the s · `(n′) repetitions of the base codeword.
Since w is τcor-close to Ccomp, it follows that wbase is
2τcor-close to s · `(n′) repetitions of some base code-
word c∗ ∈ Cbase. Denote by Wclose the event that
dist(w∗, c∗) ≤ 4τcor = τ , where w∗ is a substring of w
corresponding to a random copy of the basecode. Then

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Pr[Wclose] ≥ 1/2.
Consider the two cases depending on the coordinate

i.

1. Suppose first that i ∈ [N] is a coordinate in some
copy of the base code, and let w∗ be a random copy
of the base codeword. By the discussion above with
probability at least 1/2 the event Wclose holds, i.e.,
the w∗ is τ -close to c∗ ∈ Cbase. Therefore,

Pr[ALGw3 (i) ∈ {ci,⊥}]
≥ 1/2 · Pr[ALGw2 (i) ∈ {c∗j∗ ,⊥}|Wclose] .

Analysing the term Pr[ALGw2 (j) ∈ {c∗j∗ ,⊥}|Wclose],
we have

Pr[ALGw2 (j∗) ∈ {c∗j∗ ,⊥}|Wclose]

= Pr[ALGw2 (j∗) ∈ {c∗j∗ ,⊥}|w∗j∗
= c∗j∗ ∧Wclose] · Pr[w∗j∗ = c∗j∗ |Wclose]

+ Pr[ALGw2 (j∗) ∈ {c∗j∗ ,⊥}|w∗j∗
6= c∗j∗ ∧Wclose] · Pr[w∗j∗ 6= c∗j∗ |Wclose] .

For the first term note that Algorithm 2 always
returns either w∗j∗ or ⊥. Therefore if w∗j∗ = c∗j∗ , then
Pr[ALGw2 (j∗) ∈ {c∗j∗ ,⊥}|w∗j∗ = c∗j∗ ∧Wclose] = 1.

Suppose now that w∗j∗ 6= c∗j∗ , then if we choose
the constraints as per Step 2 of Algorithm 2, then
with probability at least εRW there will be some
r ∈ [t] such that distkr (w|Domr

, sat(Pr)) ≥ ρ. If
that happens, then the PCPP verifier applied to the
predicate Pr in Step 4 will accept with probability
at most εPCPP. Therefore, the second term is lower
bounded by

Pr[ALGw2 (j∗) = ⊥|w∗j∗ 6= c∗j∗ ∧Wclose] ≥ εRW (1− εPCPP) .

Combining the two terms we conclude that

Pr[ALGw3 (i) ∈ {ci,⊥}] ≥
εRW · (1− εPCPP)

2
≥ εRLCC .

2. Next, let i ∈ [N] be a coordinate that belongs to
a proof of proximity π(j∗,P) for some coordinate j∗

corresponding to a symbol from the base code, and a
predicate P ∈ Cj∗ . We prove that if Pr[ALGw4 (i) =
⊥] < εRLCC , then Pr[ALGw4 (i) = ci] ≥ εin/4. This
clearly suffices as by the choice of εRLCC we have
εin/4 ≥ εRLCC .

Again, by the discussion above, with probability at
least 1/2 Wclose holds, i.e., the w∗ is 4τcor = τ -close
to c∗ ∈ Cbase. We will assume that in Step 3 we
choose such w∗.

If Algorithm 4 returns ⊥ with probability less than
εRLCC in Step 6, then the PCPP verifier for π(j∗,P)

in Step 4 accepts with probability at least 1 −
εRLCC > εPCPP. Therefore, there is some cP ∈
sat(P) (not necessarily equal to c∗|Dom(P)) such that

distj∗(w
∗
|Dom(P), cP) ≤ ρ, and π(j∗,P) is ρ-close to

π(cP). Therefore, since ρ < 1/2, it follows that
(i) w∗j∗ = cj∗ , (ii) dist(w∗|Dom(P), cP) ≤ 2ρ with

respect to the uniform distance, (iii) and π(j∗,P) is
ρ-close to π(cP).

Suppose that Algorithm 2 in Step 11 returns ⊥
with probability less than εRLCC . Consider Step 9
in Algorithm 4, where we run Algorithm 2 on the
input w∗ for a random coordinate j′ in Dom(P).
For each j′ ∈ Dom(P) let pj′ be the probability
that step 9 accepts on j′. Then E[pj′] > 1 −
εRLCC , and hence for more than (1−δP/2)|Dom(P)|
coordinates j′ ∈ Dom(P) we have pj′ ≥ 1 −
2εRLCC/δP ≥ 1 − εRW · (1 − εPCPP). Therefore, by
the analysis of Algorithm 3 it follows that for more
than (1−δP/2)|Dom(P)| coordinates j′ ∈ Dom(P) it
holds that w∗j′ = c∗j′ , i.e., dist(w∗|Dom(P), c

∗
|Dom(P)) <

δP/2. Combining with the conclusion from the
previous step that dist(w∗|Dom(P), cP) ≤ 2ρ it follows

that dist(c∗|Dom(P), c|Dom(P)) < 2ρ + δP/2 ≤ δP .

Therefore, since sat(P) has distance δP we conclude
that c∗|Dom(P) = c|Dom(P).

So far we showed that if Algorithm 4 returns ⊥ with
probability less than εRLCC and w∗ is τ -close to c∗

(which happens with probability at least 1/2), then
w∗|Dom(P) is 2ρ-close to c∗|Dom(P), and π(j∗,P) is ρ-close

to π(c∗|Dom(P)). Hence, the local correction algorithm

for the inner PCPP applied on (w∗|Dom(P) ◦π(j∗,P)) in
Step 13 will return c∗i or ⊥ with probability at least
εin. Therefore,

Pr[ALGw4 (i) ∈ {c∗i ,⊥}]
≥ Pr[Step 14 returns c∗i or ⊥|Wclose] · Pr[Wclose]

≥ εin/2 .

However, by the assumption Algorithm 4 returns ⊥
with probability at most εRLCC ≤ εin/4, and thus
Pr[ALGw4 (i) = ci] ≥ εin/2 − εRLCC ≥ εin/4. This
completes the proof of correctness.

5 CTRW for tensor codes

In this section we prove a general theorem saying that
the tensor product of any code with a good distance
code admits a CTRW with appropriate parameters. In-
deed, this theorem will be used as one of the components
required for composition as per Theorem 6 described in
the previous section.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 7. Let C ⊆ Fn be an arbitrary linear code of
relative distance δC , and let C⊗m be the m-dimensional
tensor product of C. Then, C⊗m admits an (n,m)-
CTRW with (τ, ρ, ε)-robust soundness, where the sound-
ness parameter is ε = (δC − 2ρ)m − τ .

Furthermore, all predicates defined by the CTRW for
C⊗m check that the restriction of the given tensor word
to a line belongs to C.

Proof. We describe the consistency test for C⊗m. Fix a
word w ∈ F[n]m and an index z̄ = (z1, . . . , zm) ∈ [n]m.
The consistency test works as follows.

Algorithm 5 Consistency test for the m-dimensional
tensor product of C⊗m

Require: w ∈ F[n]m , z̄ = (z1, . . . , zm) ∈ [n]m

1: Let z(1) = z̄.
2: Sample r̄ = (r1, . . . , rm) ∈ [n]m uniformly at

random.
3: for j = 1 to m do
4: Let z(j+1) = (r1, . . . , rj , zj+1, . . . , zm) ∈ [n]m.
5: Let `j = (r1, . . . , rj−1, ∗, zj+1, . . . , zm) be the

line that passes through z(j) and z(j+1).
6: Let Pj be the predicate that accepts if and only

if w(`j) is a codeword in C.
7: end for
8: return ACCEPT if and only if Pj is satisfied for all
j ∈ [m].

By construction, if w ∈ C⊗m, then the consistency
test always accepts. For the soundness analysis, let
w ∈ F[n]m be a word that is τ -close to some codeword
c∗ ∈ C, and let z̄ = (z1, . . . , zm) ∈ [n]m be such that
wz̄ 6= c∗z̄. Note that we may assume without loss of
generality that w is τ -close to the all-zero codeword,
i.e., c∗ = 0. Indeed, suppose that wī is τ -close to some
codeword c∗ ∈ C that is not all-zeros, and consider the
word w′ = w − c∗. It is easy to verify that w′ is τ -close
to 0, and the behaviors of the consistency test on w and
w′ are the same.

Next we show that if w is τ -close to the zero
codeword but wz̄ 6= 0, then

Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ]

≥ (δC − 2ρ)m − τ .

We introduce notation that will be used throughout
the proof. For each point x ∈ [n]m and j ∈ [m] denote
by Lx,j the line in direction j that passes through x, i.e.,
Lx,j = {(x1, . . . , xj−1, t, xj+1, . . . , xm) : t ∈ [n]}. For
each j ∈ [m] denote by Fj the event that wz(j) 6= 0 and
w has more than (δC−2ρ)n non-zeros on the line Lz(j),j
; denote by Ej the event that wz(j) 6= 0 and w has at

most (δC−2ρ)n non-zeros on the line Lz(j),j . Informally,
the events Fj “contribute” to the distance of w from the
zero codeword, and the events Ej “contribute” to the
probability that distz(j)(w|`j+1

, C) ≥ ρ.
For each j ∈ [m] denote

εj = Pr
[
(∧j−1
i=1Fi)

∧
Ej

]
.

That is, εj is the probability that in Algorithm 5 j is the
minimal index such that wz(1) , . . . wz(j) are non-zeros,
and the line `j contains at most (δC − 2ρ)n non-zero
points. Note that the events corresponding to εj ’s are
disjoint, and if they happen, then w|`j is ρ-far from C
with respect to distz(j) . Therefore,

Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ] ≥
m∑
j=2

εj .

Below we show that the distance of w from the zero
codeword is at least (δC − 2ρ)m−

∑m
j=2(δC − 2ρ)m−jεj .

Note that z(m+1) is distributed uniformly in [n]m,
and thus

dist(w, 0) = Pr[wz(m+1) 6= 0] ≥ Pr[(∧mj=2Fj) ∧ wz(m+1) 6= 0] .

By definition if Fm holds, then Pr[wz(m+1) 6= 0|Fm] ≥
(δC − 2ρ). Furthermore, also conditioning on ∧mj=2Fj it
holds that Pr[wz(m+1) 6= 0| ∧mj=2 Fj] ≥ (δC − 2ρ). Hence

dist(w, 0) ≥ Pr[(∧mj=2Fj) ∧ wz(m+1) 6= 0]

= Pr[∧mj=2Fj]× Pr[wz(m+1) 6= 0| ∧mj=2 Fj]

≥ Pr[∧mj=2Fj]× (δC − 2ρ) .

Therefore,

(5.2) dist(w, 0) ≥ Pr[∧mj=2Fj]× (δC − 2ρ) .

Next, we lower bound Pr[∧mj=2Fj] by “peeling off” one
Fj at a time. Specifically, we show that

(5.3) Pr[∧mj=2Fj] ≥ Pr[∧m−1
j=2 Fj]× (δC − 2ρ)− εm .

Indeed, observe that

Pr[(∧m−1
j=2 Fj) ∧ wz(m) 6= 0] = Pr[∧mj=2Fj] + Pr[(∧m−1

j=2 Fj) ∧ Em]

= Pr[∧mj=2Fj] + εm .

On the other hand

Pr[(∧m−1
j=2 Fj) ∧ wz(m) 6= 0]

= Pr[(∧m−1
j=2 Fj)]× Pr[wz(m) 6= 0| ∧m−1

j=2 Fj]

≥ Pr[(∧m−1
j=2 Fj)]× (δC − 2ρ) .

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

By repeating the same argument, peeling off one Fj
at a time, we get

Pr[(∧mj=2Fj)]

≥ Pr[(∧m−1
j=2 Fj)]× (δC − 2ρ)− εm

≥ (Pr[(∧m−2
j=2 Fj)]× (δC − 2ρ)− εm−1)× (δC − 2ρ)− εm

= Pr[(∧m−2
j=2 Fj)]× (δC − 2ρ)2 − (δC − 2ρ)εm−1 − εm

≥ . . .

≥ Pr[F2]× (δC − 2ρ)m−2 −
m∑
j=3

(δC − 2ρ)m−jεj

≥ (δC − 2ρ− ε2)× (δC − 2ρ)m−2 −
m−1∑
j=2

(δC − 2ρ)m−jεj

= (δC − 2ρ)m−1 −
m∑
j=2

(δC − 2ρ)m−jεj .

Plugging this into Eq. (5.2) we get

dist(w, 0) ≥ (δC − 2ρ)m −
m∑
j=2

(δC − 2ρ)m+1−jεj

≥ (δC − 2ρ)m − (δC − 2ρ)

m∑
j=2

εj .

Therefore, using the fact that
Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ] ≥

∑m−1
j=1 εj

we conclude that

Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ]

≥ (δC − 2ρ)m − dist(w, 0)

≥ (δC − 2ρ)m − τ ,

as required.

The following corollary, which we will use as a com-
ponent in our composition theorem, follows immediately
from Theorem 7.

Corollary 5.1. For integer parameters d,m ≥ 2 let
n = 2md. Let RS = RS(n, d) be the Reed–Solomon code
of message length d and block length n over some field F
of size at least n, so that its distance is δC = 1− 1/2m.
Then RS⊗m satisfies the following properties.

1. The code RS⊗m has message length dm and block
length nm = (2m)m · dm.

2. The relative distance of RS⊗m is (1− 1
2m)m ≥ 0.5.

3. RS⊗m admits an (n,m)-CTRW with (τ = 0.1, ρ =
1/4m, εRW = 0.15)-robust soundness.

4. For each coordinate z̄ = (z1, . . . , zm) ∈ [n]m of RS⊗m

the set of all constraints Cz̄ defined by the CTRW
consists of m predicates, one for each axis-parallel
line passing through z̄, checking that the restriction
of the tensor word to the line belongs to RS(n, d). In
particular, the corresponding language is solvable in
polynomial time and has distance 1− 1/2m > 1/2.

Proof. [Proof of Corollary 5.1] It suffices to invoke
Theorem 7 as follows. For n = 2md the code C =
RS(n, d) has relative distance is δC = 1 − 1/2m,
and the tensor code RS(n, d)⊗m has relative distance
(1 − 1/2m)m ≥ 0.5. Therefore, by Theorem 7 the
tensor code RS(n, d)⊗m admits an (n,m)-CTRW with
(τ = 0.1, ρ = 1/4m, ε)-robust soundness, for ε = (δC −
2ρ)m − τ = (1 − 1/m)m − 0.1 ≥ 0.15. The last item of
Corollary 5.1 is immediate by definition of constraints
in Algorithm 5.

6 Relaxed-correctable canonical PCPPs

In this section we describe a new and simple construc-
tion of canonical PCPs of proximity that are relaxed
locally correctable. Specifically, we show that for ev-
ery language L ∈ P and all j ∈ N there exists a
canonical PCP of proximity verifier such that for any
x ∈ L the length of π(x), the canonical proof for x is
|π(x)| = poly(|x|), and the language of the canonical
proofs {x ◦ π(x) : x ∈ L} admits a local correction al-
gorithm with correction radius τcor = Ω(1), soundness
ε = 1/2 for proximity parameter ρ > 0 with respect to
distance measure distj , and query complexity O(1/ρ).

Theorem 8. Let L ⊆ Σ∗ be a language in P, let j ∈ N,
and let ρ > 0 be a proximity parameter. There exists a
canonical PCPP verfier with the following properties.

1. For all n ≥ j the PCPP verifier on inputs of length n
has soundness εPCPP = 0.5 for proximity parameter
ρ with respect to the distance measure distj.

2. The query complexity of the PCPP verifier is
qPCPP = O(1/ρ).

3. For every x ∈ L of length |x| = n and every
coordinate j ∈ [n] the length of the canonical proof is
`(n) = |x|O(1).

4. The code ΠL = {w ◦ π(w) : w ∈ L} is a (τ, εin)-
RLCC with query complexity qRLCC = O(1) for
correcting radius τ = Ω(1) (with respect to dist(·))
and soundness εin = 1/2.

The following notation will be used in the proof of
Theorem 8.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Definition 6. For x ∈ Σn and j ∈ [n] denote by define
x(j) the concatenation of x with n repetitions of xj.
That is, x(j) = x ◦ xnj .

For a language L ⊆ Σ∗ and j ∈ N define L(j) =
∪∞n=j{x(j) : x ∈ L ∩ Fn}.

It is clear from the definition that if L ∈ P, then
L(j) ∈ P. The following observation is immediate from
the definition.

Observation 2. Fix a language L ⊆ F∗. Then, for all
w ∈ Fn and all j ∈ [n] it holds that

distj(w,L) = dist(w(j), L(j)) .

Proof. [Proof of Theorem 8] Let L be a language in P,
and let j ∈ N. In order to construct the required cPCPP
verifier we use the following two prior constructions.

• Theorem 5: a (non-correctable) strongly canonical
PCP of proximity for L with polynomial length
and query complexity O(1/ρ) and soundness 1/2 for
proximity parameter ρ/4.

• Theorem 4: a systematic (qRLCC , τcor)-RLCC CRLCC

of message length k and block length n = poly(k)
with query complexity qRLCC = O(1), correcting
radius τcor = Ω(1), and soundness ε = 1/2.

We combine these ingredients via a simple composition
to obtain the desired PCPP for L.

Let V (j) be the PCPP verifier for L(j) as per
Theorem 5. Define a PCPP verifier Vj for L that checks
that a given string is close to L with respect to the
distance distj as follows. Given an oracle access to
x ∈ Fn the verifier Vj runs V (j) on x(j) by reading one
symbol of x for each query that V (j) makes to x(j).
By Theorem 5 the verifier Vj makes O(1/ρ) queries,
and has soundness 1/2 for proximity parameter ρ/4
(with respect to the uniform distance). Therefore, by
Observation 2 it follows the verifier Vj defines for each
x ∈ L a proof πx,j of length |πx,j | = `(2n) = poly(|x|).
The verifier Vj makes O(1/ρ) queries to x, and has
soundness 1/2 for proximity parameter ρ/4 with respect
to the distance measure distj .

Next, given Vj we define a canonical PCPP verifier
V RLCC
j such that the language of canonical proofs ad-

mits a local correcting algorithm with desired param-
eters. Given an input x ∈ Σn and a canonical proof
πj(x) for Vj claiming that x is (distj-close to some
word) in L we define a canonical proof πRLCC

j (x) for

V RLCC
j by encoding π using a relaxed locally correctable

code CRLCC as in Theorem 4 as follows. The canoni-
cal proof of x ∈ L for V RLCC

j , denoted by πRLCC
j (x), is

given by concatenating t identical copies of πj(x) with

CRLCC(x ◦ πj(x)), where the number of t is such that
2|CRLCC(x ◦πj(x))|/ρ < t · |πj(x)|, and we treat CRLCC

as a mapping from Σn+`(2n) to Σpoly(`(n)). The PCPP
verifier V RLCC

j on input x ∈ Σn and j ∈ [n] invokes the
verifier Vj on a random copy of the systematic part of
πRLCC
j (x) obtained by sampling each of the symbols of
πj(x) by sampling each symbol uniformly among the t
corresponding symbols independently.

It is clear that V RLCC
j inherits the completeness

property of Vj . For the soundness suppose that either
x is ρ-far from L or x is ρ-close to some w ∈ L but the
proof is ρ-far from πRLCC

j (x). We consider each of the
two cases below.

• x is ρ-far from L: In this case no proof will convince
the verifier to accept with probability more than 1/2.

• x is ρ-close to some w ∈ L, but the proof is ρ-far from
the canonical proof πRLCC

j (w). In this case, by the
choice of t satisfying 2|CRLCC(x◦πj(x))|/ρ < t·|πj(x)|
it follows that the t copies of πj(x) are at least ρ/2-
far from t repetitions of πj(w). Therefore, by concen-
tration inequalities for sums of bounded independent
(but not identically distributed) random variables,
such as Theorem 3, if we choose a random copy of
πj(w) by sampling each symbol independently, then
with probability at least p0 = Ω(1) a random copy is
ρ/4-far from πj(w). Therefore, the PCPP verifier will
reject with probability at least p0 · 1/2. By repeat-
ing the verifier O(1) times we obtain a verifier with
soundness εPCPP = 1/2, as required.

It is left to prove that {w ◦ πRLCC
j (w) : w ∈ L}

admits a local correction algorithm (where recall that j
is fixed in Theorem 8). Indeed, for any w ∈ L of length
|w| = n the length of w ◦ πj(w) is n + `(2n). By the
assumption, for each n ∈ N we have {πRLCC

j (w) : w ∈
L ∩ Σn} ⊆ {CRLCC(y) : y ∈ {0, 1}n+`(2n)}. Therefore,
since {CRLCC(y) : y ∈ {0, 1}n+`(2n)} is an RLCC it
follows from Observation 1 that the local correction
algorithm for CRLCC is also a local correction algorithm
for {w ◦ πRLCC

j (w) : w ∈ L} with the same soundness
guarantees.

Remark 4. (O(1)-query cPCP with nearly-linear length)
The proof of Theorem 8 shows how to compose a PCP
with a relaxed LCC to obtain a cPCP (note that this
composition is in the reverse direction of our main
composition theorem for deriving relaxed LCC from
PCPs). The length of the composed cPCP is the length
of the original PCP, with a blowup that is determined
by the block length of the relaxed LCC, and its query
complexity is proportional to the maximum between the
query complexity of the original PCP and the relaxed
LCC. Thus, by applying the argument in Theorem 8 to

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

a nearly-linear length, O(1)-query PCP (say, the con-
struction in [6, 12]) together with our main result (the
O(1)-query relaxed LCC with nearly-linear block length
in Theorem 1), we obtain the first construction of cPCP
with nearly-linear length and query complexity O(1).
Other constructions in the literature, which (implicitly)
achieve relaxed-correctability in our setting, either have
super-constant query complexity, or exponential length.

7 Proof of main theorem

Below restate our main result (Theorem 1) formally, and
prove this theorem using the various components that
we constructed.

Theorem 9. Let k, q ∈ N be parameters, and let F be
a finite field of size |F| ≥ k. Then, there exists a O(q)-
query relaxed LCC C : Fk → Fn with relative distance
δ(C) ≥ 1/4, decoding radius τcor = Ω(1), and block
length

n = qO(
√
q) · k1+O(1/

√
q) .

In particular, there exists a RLCC of message

length k and block length n ≤ k · 2
Õ
(√

log(k)
)

with
constant relative distance that admits a local correction
algorithm with query complexity q = log(k)/ log log(k)
and correction radius τcor = Ω(1).

Proof. We prove the theorem by invoking the composi-
tion theorem (Theorem 6) with respect to the compo-
nents we constructed. Specifically, by Corollary 5.1 the
code RS⊗m has message length dm and block length
(2md)m. The tensor code RS⊗m admits an (n,m)-
CTRW with appropriate parameters. Therefore, by ap-
plying Theorem 6 to the components given in Corol-
lary 5.1 and Theorem 8 with ρ = 1/4m we obtain a code
Ccomp ⊆ FN of message length k = dm and block length
N = 2(2md)m · m · (2dm)O(1) = mO(m) · k1+O(1/m).
The code Ccomp is a (τ, εRLCC)-RLCC with query com-
plexity m · qPCPP = O(m2), where the decoding radius
of Ccomp is τcor = τ/4 = Ω(1) and the soundness is

εRLCC = min(εRW ·(1−εPCPP)·δC
2 , εin2) = Ω(1).

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of ap-
proximation problems. Journal of the ACM (JACM),
45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs:
A new characterization of NP. J. ACM, 45(1):70–122,
1998.

[3] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In
Proceedings of the 23rd ACM Symposium on Theory
of Computing, STOC ’91, pages 21–32, 1991.

[4] L. Babai, L. Fortnow, and C. Lund. Non-deterministic
exponential time has two-prover interactive protocols.
Computational Complexity, 1:3–40, 1991. Preliminary
version appeared in FOCS ’90.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan,
and S. P. Vadhan. Robust PCPs of proximity, shorter
PCPs, and applications to coding. SIAM Journal on
Computing, 36(4):889–974, 2006.

[6] E. Ben-Sasson and M. Sudan. Short pcps with polylog
query complexity. SIAM J. Comput., 38(2):551–607,
2008.

[7] A. Bhattacharyya, S. Gopi, and A. Tal. Lower bounds
for 2-query lccs over large alphabet. In Approximation,
Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2017,
August 16-18, 2017, Berkeley, CA, USA, pages 30:1–
30:20, 2017.

[8] J. Blocki, V. Gandikota, E. Grigorescu, and S. Zhou.
Relaxed locally correctable codes in computationally
bounded channels. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP
2018), 2018.

[9] J. Briët, Z. Dvir, and S. Gopi. Outlaw distributions
and locally decodable codes. In 8th Innovations in
Theoretical Computer Science Conference, ITCS 2017,
January 9-11, 2017, Berkeley, CA, USA, pages 20:1–
20:19, 2017.

[10] C. L. Canonne and T. Gur. An adaptivity hierarchy
theorem for property testing. Computational Complex-
ity, 27(4):671–716, 2018.

[11] V. Chen, E. Grigorescu, and R. de Wolf. Effi-
cient and error-correcting data structures for mem-
bership and polynomial evaluation. arXiv preprint
arXiv:0909.3696, 2009.

[12] I. Dinur. The PCP theorem by gap amplification. J.
ACM, 54(3):12, 2007.

[13] I. Dinur, O. Goldreich, and T. Gur. Every set in P
is strongly testable under a suitable encoding. In 10th
Innovations in Theoretical Computer Science Confer-
ence, ITCS, 2019.

[14] I. Dinur and P. Harsha. Composition of low-error 2-
query pcps using decodable pcps. SIAM J. Comput.,
42(6):2452–2486, 2013.

[15] K. Efremenko. 3-query locally decodable codes of
subexponential length. SIAM J. Comput., 41(6):1694–
1703, 2012.

[16] O. Goldreich and T. Gur. Universal locally verifiable
codes and 3-round interactive proofs of proximity for
CSP. Electronic Colloquium on Computational Com-
plexity (ECCC), 23:192, 2016.

[17] O. Goldreich and T. Gur. Universal locally testable
codes. Chicago J. Theor. Comput. Sci., 2018.

[18] O. Goldreich, T. Gur, and I. Komargodski. Strong
locally testable codes with relaxed local decoders. In

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Proceedings of the 30th Conference on Computational
Complexity, CCC 2015, pages 1–41, 2015.

[19] O. Goldreich and M. Sudan. Locally testable codes and
pcps of almost-linear length. J. ACM, 53(4):558–655,
2006.

[20] T. Gur and O. Lachish. A lower bound for relaxed
locally decodable codes. 31st ACM-SIAM Symposium
on Discrete Algorithms (to appear), 2020.

[21] T. Gur, G. Ramnarayan, and R. D. Rothblum. Re-
laxed locally correctable codes. In 9th Innovations in
Theoretical Computer Science Conference, ITCS ’18,
pages 27:1–27:11, 2018.

[22] T. Gur and R. D. Rothblum. A hierarchy theorem
for interactive proofs of proximity. In Proceedings of
the 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, 2017.

[23] T. Gur and R. D. Rothblum. Non-interactive proofs of
proximity. Computational Complexity, 27(1):99–207,
2018.

[24] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding
in windows azure storage. In Presented as part of the
2012 USENIX Annual Technical Conference, pages 15–
26, 2012.

[25] J. Justesen. Class of constructive asymptotically good
algebraic codes. IEEE Transactions on Information
Theory, 1972.

[26] S. Kopparty and S. Saraf. Local testing and decoding
of high-rate error-correcting codes. Electronic Collo-
quium on Computational Complexity (ECCC), 24:126,
2017.

[27] D. Moshkovitz and R. Raz. Two-query PCP with
subconstant error. J. ACM, 57(5):29:1–29:29, 2010.

[28] D. E. Muller. Application of boolean algebra to switch-
ing circuit design and to error detection. Transactions
of the IRE professional group on electronic computers,
1954.

[29] O. Paradise. Smooth and strong pcps. ECCC, 19-023,
2019.

[30] N. Ron-Zewi and R. Rothblum. Local proofs approach-
ing the witness length. Electronic Colloquium on Com-
putational Complexity (ECCC), 26:127, 2019.

[31] L. Trevisan. Some applications of coding theory in
computational complexity. Electronic Colloquium on
Computational Complexity (ECCC), 2004.

[32] S. Yekhanin. Towards 3-query locally decodable codes
of subexponential length. J. ACM, 55(1):1:1–1:16,
2008.

[33] S. Yekhanin. Locally decodable codes. Foundations
and Trends in Theoretical Computer Science, 6(3):139–
255, 2012.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

