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Abstract

In this paper, we study the option pricing problems for rough volatility models. As the

framework is non-Markovian, the value function for a European option is not deterministic;

rather, it is random and satisfies a backward stochastic partial differential equation (BSPDE).

The existence and uniqueness of weak solution is proved for general nonlinear BSPDEs with

unbounded random leading coefficients whose connections with certain forward-backward

stochastic differential equations are derived as well. These BSPDEs are then used to ap-

proximate American option prices. A deep leaning-based method is also investigated for the

numerical approximations to such BSPDEs and associated non-Markovian pricing problems.

Finally, the examples of rough Bergomi type are numerically computed for both European

and American options.
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1 Introduction

Let (Ω,F , (Ft)t∈[0,T ],P) be a complete filtered probability space with the filtration (Ft)t∈[0,T ]

being the augmented filtration generated by two independent Wiener processes W and B.

Throughout this paper, we denote by (FW
t )t∈[0,T ] the augmented filtration generated by the

Wiener process W . The predictable σ-algebras on Ω× [0, T ] corresponding to (FW
t )t∈[0,T ] and

(Ft)t∈[0,T ] are denoted by PW and P, respectively.

We consider a general stochastic volatility model given under a risk neutral probability

measure as  dSt = rStdt+ St
√
Vt

(
ρ dWt +

√
1− ρ2 dBt

)
;

S0 = s0,
(1.1)

where ρ ∈ [−1, 1] denotes the correlation coefficient and the constant r the interest rate. We

impose the following assumptions on the stochastic variance process V .
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Assumption 1.1. V has continuous trajectories, takes values in R≥0, and is adapted to the

filtration generated by the Brownian motion W . We further assume that V is integrable, i.e.,

E

[∫ T

0
Vsds

]
<∞, T > 0.

Note that we do not assume that V (or even (S, V )) is a Markov process or a semi-martingale,

and, in fact, our main examples will be neither. Indeed, the motivation of this work is to extend

the backward stochastic differential equation-based pricing theory to rough volatility models.

These models were put forth in [GJR18] in order to explain the roughness of time series of daily

realized variance estimates. The idea is that the spot price process is modeled by a stochastic

volatility model, with the stochastic variance process essentially behaving like an exponential

fractional Brownian motion with Hurst index 0 < H < 1/2 – in contrast to an earlier strand of

literature (see, e.g., [CCR12]) which tried to model long memory in the variance by fractional

Brownian motion with 1/2 < H. In the pricing domain, rough volatility was found in [BFG16]

to lead to extremely accurate fits of SPX implied volatility surfaces with very few parameters,

in particular explaining the power law behaviour of the ATM implied volatility skew for short

maturities; see also [ALV07, Fuk11]. Since then, there have been many new contributions to

the literature of rough volatility models, including developments of rough Heston models with

closed expressions for the characteristic functions (see [EER19]), microstructural foundations of

rough volatility models ([EEFR18]), calibration of rough volatility models by machine learning

techniques ([BHM+19]), a theory of affine rough Volterra processes ([JLP19]) and a regularity

structure (in the sense of Hairer) for rough volatility ([BFG+19]), to mention just a few.

In this work, we keep the following examples specifically in mind.

Example 1.1. In the rough Bergomi model (see [BFG16]), the stochastic variance is given as

Vt = ξtE
(
ηŴt

)
, (1.2)

where ξt denotes the forward variance curve (a quantity which can be computed from the implied

volatility surface), E denotes the Wick exponential, i.e., E(Z) := exp
(
Z − 1

2 varZ
)

for a zero-

mean normal random variable Z, and η ≥ 0. Finally, Ŵ denotes a fractional Brownian motion

(fBm) of Riemann-Liouville type with Hurst index 0 < H < 1
2 , i.e.,

Ŵt :=

∫ t

0
K(t− s)dWs, K(r) :=

√
2HrH−1/2, r > 0. (1.3)

If the correlation ρ is negative, then Gassiat [Gas18] showed that the discounted price e−rtSt
is, indeed, a martingale; otherwise, it may not be a martingale. But the conditions of Assump-

tion 1.1 are always satisfied.

Example 1.2. In the rough Heston model introduced in [EER19], the stochastic variance sat-

isfies the stochastic Volterra equation

Vt = V0 +

∫ t

0
K(t− s)λ (θ − Vs) ds+

∫ t

0
K(t− s)ζ

√
VsdWs, (1.4)

where the Kernel satisfies

K(r) := rα−1/Γ(α), r > 0,
1

2
< α < 1. (1.5)

The rough Heston process also satisfies Assumption 1.1; see [JLP19].
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For each (t, s) ∈ [0, T ] × R+, denote the asset/security price process by St,sτ , for τ ∈ [t, T ],

which satisfies the stochastic differential equation (SDE) in (1.1) but with initial time t and

initial state s (price at time t). The fair price of a European option with payoff H, as the

smallest initial wealth required to finance an admissible (super-replicating) wealth process, is

given by

Pt(s) := E
[
e−r(T−t)H(St,sT )

∣∣Ft

]
; (1.6)

refer to [CH05] for the cases when the discounted price e−rtSt is just a local martingale. Taking

Xt = −rt+ logSt, we may reformulate the above pricing problem, i.e.,

ut(x) := E
[
e−r(T−t)H(eX

t,x
T +rT )

∣∣Ft

]
, (t, x) ∈ [0, T ]× R, (1.7)

subject to  dXt,x
s =

√
Vs

(
ρ dWs +

√
1− ρ2 dBs

)
− Vs

2
ds, 0 ≤ t ≤ s ≤ T ;

Xt,x
t = x.

(1.8)

Obviously, we have the relation ut(x) = Pt(e
x+rt) a.s..

The non-Markovianity of the pair (S, V ) (or (X,V )) makes it impossible to characterize

the value function ut(x) with a conventional (deterministic) partial differential equation (PDE).

Indeed, we prove that the function ut(x), for (t, x) ∈ [0, T ]×R, is a random field which together

with another random field ψt(x) satisfies the following backward stochastic partial differential

equation (BSPDE):−dut(x) =
[Vt

2
D2ut(x) + ρ

√
VtDψt(x)− Vt

2
Dut(x)− rut(x)

]
dt− ψt(x) dWs;

uT (x) = H(ex+rT ),
(1.9)

where the pair (u, ψ) is unknown and the volatility process (Vt)t≥0 is defined exogenously as in

Examples 1.1 and 1.2.

While the BSPDEs have been extensively studied (see [BD14, DQT11, HMY02, Pen92] for

instance), to the best of our knowledge, there is no available theory for the well-posednesss

of BSPDE (1.9) because the leading coefficient Vt
2 is neither uniformly bounded from above

nor uniformly (strictly) positive from below and the terminal value H(e·+rT ) may not belong

to any space Lp(Ω × R) for p ∈ (1,∞). Hence, a weak solution theory is established for the

well-posedness of general nonlinear BSPDEs and associated stochastic Feynman-Kac formula,

particularly applicable to (1.9). Such nonlinear BSPDEs are further used to approximate the

American option prices. Based on the stochastic Feynman-Kac formula with forward-backward

stochastic differential equations (FBSDEs), we develop a deep learning-based method for numer-

ical approximations for the solutions which are essentially defined on the (infinite dimensional)

probability space due to the randomness. Accordingly, the universal approximation theorem of

neural networks is generalized from finite dimensional input spaces to infinite dimensional cases

in the probabilistic setting. On the basis of this approximation result, we design the schemes

in the spirit of the Markovian counterpart by Huré, Pham, and Warin [HPW19] but equipped

with neural networks with changing and high input dimensions. Some numerical results are also

presented for examples of rough Bergomi type, along with an appended convergence analysis.
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Here, although the theory and application results are presented for the case of a single risky

asset under rough volatility, leading to associated BSPDEs on the one-dimensional space R, a

multi-dimensional extension may be obtained under certain assumptions in a similar manner;

nevertheless, we would not seek such a generality to avoid cumbersome arguments.

Finally, let us contrast the present work with the recent work [JO19]. Therein, with the

method developed in [VZ+19] the European option price in a local rough volatility model is

expressed as a function of t, St and an additional, infinite-dimensional term Θ, which is closely

related to the forward variance curve. An infinite-dimensional pricing PDE for the option price

with respect to these variables is then formulated and solved with a discretization method using

deep neural networks as basis functions. The focus of [JO19] is clearly on the mathematical

finance and numerical side, whereas well-posedness of the path-dependent PDE is more or less

assumed. (They do refer to [EKTZ14], which, however, only covers the case of path-dependent

PDEs with constant diffusion coefficients. Moreover, the arguments in [JO19] seem to require

classical – not viscosity – solutions of the path-dependent PDE.) In this sense, our present work

is complementary, as the well-posedness of the BSPDE is a serious concern of this paper. We

also extend the consideration from the European to the American case, and provide similar type

of numerical discretization also based on deep neural networks, but for approximation of the

associated FBSDEs.

The rest of this paper is organized as follows. Section 2 is devoted to the well-posedness of a

class of nonlinear BSPDEs and associated stochastic Feynman-Kac formula. The weak solution

theory is then applied to approximations of American option prices under rough volatility in

Section 3. Then in Section 4, we discuss the numerical approximations with a deep learning-

based method: in the first subsection we addressed the approximations of neural networks to

random functions involving infinite-dimensional input spaces in the probabilistic setting, then

a deep learning-based method is introduced for non-Markovian BSDEs and associated BSPDEs

in the second subsection, and in the third subsection we present some numerical examples for

the rough Bergomi model. Finally, in the appendix, a convergence analysis is presented for the

deep learning-based method.

2 Well-posedness of nonlinear BSPDEs and stochastic Feynman-

Kac formula

This section is devoted to a weak solution theory for the following nonlinear BSPDE:

−dut(x) =
[Vt

2
D2ut(x) + ρ

√
VtDψt(x)− Vt

2
Dut(x)

+ Ft(e
x, ut(x),

√
(1− ρ2)VtDut(x), ψt(x) + ρ

√
VtDut(x))

]
dt

− ψt(x) dWs, (t, x) ∈ [0, T )× R;

uT (x) = G(ex), x ∈ R.

(2.1)

Noteworthily, BSPDE (1.9) turns out to be a particular case when Ft(x, y, z, z̃) ≡ −ry and

G(ex) = H(ex+rT ).

We shall study the well-posedness of BSPDE (2.1) for given continuous nonnegative pro-

cess (Vt)t≥0 and address the representation relationship between BSPDE (2.1) and associated

FBSDE. Following are the assumptions on the coefficients G and F .
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Assumption 2.1. (1) The function G : (Ω× R, FW
T ⊗ B(R))→ (R,B(R) satisfies

G(x) ≤ L(1 + |x|), x ∈ R,

for some constant L > 0.

(2) The function F : (Ω× [0, T ]× R4, PW ⊗ B(R4))→ (R,B(R)) satisfies that there exists a

positive constants L0 ∈ (0,∞) such that for all x, y1, y2, z1, z2, z̃1, z̃2 ∈ R, and t ∈ [0, T ],

|Ft(x, y1, z1, z̃1)− Ft(x, y1, z2, z̃2)| ≤ L0

(
|y1 − y2|+ |z1 − z2|+ |z̃1 − z̃2|

)
, a.s.,

|Ft(x, 0, 0, 0)| ≤ L0(1 + |x|), a.s.,

|Ft(x, y1, z1, z̃1)− Ft(x, y1, 0, 0)| ≤ L0, a.s..

For the well-posedness of BSPDE (2.1) under Assumption 2.1, the difficulty lies in the

combination of the non-uniform-boundedness of (Vt)t∈[0,T ] and the inintegrability of G(ex) and

Ft(e
x, y, z, z̃) w.r.t. x on the whole space R. Indeed, from the condition on (V )t≥0 in Assumption

2.1, we may conclude that eX
0,x
s is a positive local martingale and thus a supermartingale,

satisfying E[eX
0,x
t ] ≤ ex for instance; however, it is not appropriate to expect E

[∣∣eX0,x
t

∣∣p] <∞
for some p > 1 without further restrictive assumptions (see [Gas18, Theorem 2]).

The dependence of F on (Z, Z̃) is not necessary for the concerned examples in this paper.

We assume the Lipschitz continuity and boundedness in (Z, Z̃) for the reader’s interests. In fact,

for the well-posedness of the involved BSDEs and BSPDEs in the L1 spaces, it is not appropriate

to assume the linear growth in (Z, Z̃) as indicated in the theory of L1 solutions for BSDEs (see

[BDH+03, Section 6]); it might be workable for certain fractional growths in (Z, Z̃), while we

would not seek such a generality to avoid cumbersome arguments in this work.

Corresponding to BSPDE (2.1), there follows the BSDE:{
−dY t,x

s = Fs(e
Xt,x
s , Y t,x

s , Zt,xs , Z̃t,xs ) ds− Z̃t,xs dWs − Zt,xs dBs, 0 ≤ t ≤ s ≤ T ;

Y t,x
T = G(Xt,x

T ),
(2.2)

where the triple (Y t,x
s , Zt,xs , Z̃t,xs ) is defined as the solution to BSDE (2.2) in the sense of

[BDH+03, Definition 2.1]. Under Assumptions 1.1 and 2.1, BSDE (2.2) has a unique solution

(Y t,x
s , Zt,xs , Z̃t,xs ) for each (t, x) ∈ [0, T )× R (see [BDH+03, Theorem 6.3]).

2.1 Definition of the weak solution for BSPDE (2.1)

Denote by C∞c the space of infinitely differentiable functions with compact supports in R and

let D be the space of real-valued Schwartz distributions on C∞c . The Lebesgue measure in R
will be denoted by dx. L2(R) (L2 for short) is the usual Lebesgue integrable space with scalar

product and norm defined

〈φ, ψ〉 =

∫
R
φ(x)ψ(x)dx, ‖φ‖ = 〈φ, φ〉1/2, ∀φ, ψ ∈ L2.

For convenience, we shall also use 〈·, ·〉 to denote the duality between the Schwartz distribution

space D and C∞c .

By DF (respectively, DFW ) we denote the set of all D-valued functions defined on Ω× [0, T ]

such that, for any u ∈ DF (respectively, u ∈ DFW ) and φ ∈ C∞c , the function 〈u, φ〉 is P
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(respectively, PW )-measurable. When there is no confusion about the involved filtration, we

shall just write D.

For p = 1, 2 we denote by Dp the totality of u ∈ D such that for any R1 ∈ (0,∞) and

φ ∈ C∞c , we have ∫ T

0
sup
|x|≤R1

|〈ut(·), φ(· − x)〉|p dt <∞ a.s..

Lemma 2.1. Given u ∈ Dp for p = 1, 2, it holds that:

(i) Du ∈ Dp;

(ii) For each continuous function % on R, we have %u ∈ Dp if u ∈ L2(Ω× [0, T ]× R).

(iii) For any continuous processes (xt)t∈[0,T ] and (yt)t∈[0,T ] with maxt∈[0,T ] |xt|+ |yt| <∞ a.s.,

the random field ũt(x) := ytut(x+ xt) is also lying in Dp.

Proof. The assertion (i) may also be found in [Kry10, page 297]. In fact, for each φ ∈ C∞c , we

have Dφ ∈ C∞c , and the integration-by-parts formula indicates that

〈Dut(·), φ(· − x)〉 = −〈ut(·), (Dφ)(· − x)〉.

Hence, Du ∈ Dp if u ∈ Dp.

For assertion (ii), notice that for each γ ∈ (0,∞),

sup
|x|≤γ

|〈%(·)ut(·), φ(· − x)〉|p ≤ ‖ut‖p‖φ‖p max
|x|≤γ+R

|%(x)|p,

where we choose a sufficiently big R > 0 so that the support of φ is contained in [−R,R]. Then

it follows obviously that %u ∈ Dp.

Lastly, as maxt∈[0,T ] |xt|+ |yt| <∞ a.s. and for each γ ∈ (0,∞),

sup
|x|≤γ

|〈ytut(·+ xt), φ(· − x)〉|p = sup
|x|≤γ

|〈ut(·), ytφ(· − xt − x)〉|p

≤ sup
|x|≤γ+maxt∈[0,T ] |xt|

|〈ut(·), φ(· − x)〉|p max
t∈[0,T ]

|yt|p,

there holds assertion (iii).

For u, f, g ∈ D, we say that the equality

dut(x) = ft(x) dt+ gt(x) dWt, t ∈ [0, T ],

holds in the sense of distribution if f ∈ D1, g ∈ D2 and for each φ ∈ C∞c , it holds a.s.,

〈ut(·), φ〉 = 〈u0(·), φ〉+

∫ t

0
〈fs(·), φ〉 ds+

∫ t

0
〈gs(·), φ〉 dWs, ∀ t ∈ [0, T ].

Definition 2.1. A pair (u, ψ) ∈ D1
FW ×D2

FW is said to be a weak solution of BSPDE (2.1), if

(i) uT (x) = G(ex) a.s.;
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(ii) for almost all (ω, t) ∈ Ω×[0, T ], the functions ut(x),
√

(1− ρ2)VtDψt(x), and ρ
√
VtDut(x)+

ψt(x) are locally integrable in x ∈ R;1

(iii) the equality

−dut(x) =
[Vt

2
D2ut(x) + ρ

√
VtDψt(x)− Vt

2
Dut(x)

+ Ft(e
x, ut(x),

√
(1− ρ2)VtDut(x), ψt(x) + ρ

√
VtDut(x))

]
dt− ψt(x) dWs,

holds in the sense of distribution.

By Assumption 2.1, the linear growth of (G,F ) w.r.t. ex produces the local integrability in

x ∈ R. Therefore, in Definition 2.1 the local integrability is set for the weak solution, which does

not just give a point-wise meaning of the compositions involved in function F but also make

the weak solution be potentially workable under Assumption 2.1 particularly encompassing the

concerned examples in this paper. Obviously, it differs from the Lp (p ∈ (1,∞])-integrability

requirements for the weak or viscosity solutions in the existing BSPDE literature (see [DQT11,

HMY02, Qiu18, Zho92] for instance).

2.2 Well-posedness of BSPDE (2.1) and the stochastic Feynman-Kac formula

First comes a result about the measurability of Y t,x
t which basically states that the randomness

from Wiener process B is averaged out as the randomness of all the coefficients is only (explicitly)

subject to the sub-filtration {FW
t }t≥0.

Theorem 2.2. Under assumptions 1.1 and 2.1, for each (t, x) ∈ [0, T ]×R, let (Y t,x
s , Zt,xs , Z̃t,xs )

be the solution to BSDE (2.2). Then the value function:

Φt(x) := Y t,x
t is just FW

t -measurable.

Proof. We shall adopt some techniques by Buckdahn and Li in [BL08]. For the underlying

probability space, w.l.o.g., we may take Ω = C([0, T ];R2) = ΩW ×ΩB, with ΩW = C([0, T ];R),

ΩB = C([0, T ];R), and for each ω ∈ Ω, one has ω = (ωW , ωB) with ωW ∈ ΩW and ωB ∈ ΩB. And

the two independent Wiener processes W and B may be defined on ΩW and ΩB, respectively.

Set

H =

{
h;h(0) = 0,

dh

dt
∈ L2(0, T ;R)

}
,

which is the Cameron-Martin space associated with the Wiener process B. For any h ∈ H, we

define the translation operator τh : Ω → Ω, τh((ωW , ωB)) = (ωW , ωB + h) for ω = (ωW , ωB) ∈
Ω. It is obvious that τh is a bijection and that it defines the probability transformation:(
P ◦ τ−1

h

)
(dω) = exp{1

2

∫ T
0 |

dh
dt |

2 dt−
∫ T

0
dh
dt dBt}P(dω).

Fix some (t, x) ∈ [0, T ]× Rd and set Ht = {h ∈ H
∣∣h(·) = h(· ∧ t)}. Recall

Xt,x
T = x−

∫ T

t

Vs
2
ds+

∫ T

t
ρ
√
Vs dWs +

∫ T

t

√
(1− ρ2)Vs dBs.

1Here, by the local integrability of a function g in x ∈ R we mean that for each bounded measurable set D ⊂ R,

it holds that the truncated function g · 1D lies in L1(R).
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By Girsanov theorem, it follows that Xt,x
T (τh) = Xt,x

T for all h ∈ Ht, and thus, we have

Φt(x)(τh) = Φt(x) P-a.s. for any h ∈ Ht. In particular, for any continuous and bounded

function G,

E

[
G(Φt(x)) exp

{∫ T

0
|dh
ds
|2 ds− 1

2

∫ T

0

dh

ds
dBs

}]
= E

[
G(Φt(x))(τh) exp

{∫ T

0
|dh
ds
|2 ds− 1

2

∫ T

0

dh

ds
dBs

}]
= E [G(Φt(x))]

= E [G(Φt(x))]E

[
exp

{∫ T

0
|dh
ds
|2 ds− 1

2

∫ T

0

dh

ds
dBs

}]
,

which together with the arbitrariness of (G, h) implies that Φt(x) is just FW
t -measurable.

Following is the Itô-Wentzell-Krylov formula.

Lemma 2.3 (Theorem 1 of [Kry10]). Let xt be an R-valued predictable process of the following

form

xt =

∫ t

0
bs ds+

∫ t

0
βs dWs +

∫ t

0
σs dBs,

where b, σ and β are predictable processes such that for all ω ∈ Ω and s ∈ [0, T ], it holds that

|βs|+ |σs| <∞ and

∫ T

0

(
|bt|+ |βs|2 + |σs|2

)
dt <∞.

Assume that the equality

dut(x) = ft(x) dt+ gt(x) dWt, t ∈ [0, T ],

holds in the sense of distribution and define vt(x) := ut(x+ xt). Then we have

dvt(x) =

(
ft(x+ xt) +

1

2
(|βt|2 + |σt|2)D2vt(x) + βtDgt(x+ xt) + btDvt(x)

)
dt

+ (gt(x+ xt) + βtDvt(x)) dWt + σtDvt(x) dBt, t ∈ [0, T ]

holds in the sense of distribution.

We note that in the Itô-Wentzell formula by Krylov [Kry10, Theorem 1], the Wiener pro-

cess (Wt)t≥0 may be general separable Hilbert space-valued and the process (xt)t≥0 may be

multi-dimensional. An application of the above Itô-Wentzell-Krylov formula gives the following

stochastic Feynman-Kac formula that is the probabilistic representation of the weak solution to

BSPDE (2.1) via the solution of associated BSDE (2.2) coupled with the forward SDE (1.8).

Theorem 2.4. Let Assumptions 1.1 and 2.1 hold. Let (u, ψ) be a weak solution of BSPDE

(2.1) such that there is Cu ∈ (0,∞) satisfying for each t ∈ [0, T ]

|ut(x)| ≤ Cu (1 + ex) , for almost all (ω, x) ∈ Ω× R. (2.3)

Then (u, ψ) admits a version (denoted by itself) satisfying a.s.

uτ (Xt,x
τ ) = Y t,x

τ ,
√

(1− ρ2)VτDuτ (Xt,x
τ ) = Zt,xτ , ψτ (Xt,x

τ ) + ρ
√
VτDuτ (Xt,x

τ ) = Z̃t,xτ ,

for 0 ≤ t ≤ τ ≤ T and x ∈ R, where (Y t,x
τ , Zt,xτ , Z̃t,xτ ) is the unique solution to BSDE (2.2).
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Proof. For each t ∈ [0, T ), recall

Xt,x
s = x−

∫ s

t

Vr
2
dr +

∫ s

t
ρ
√
VrdWr +

∫ s

t

√
(1− ρ2)VrdBr, t ≤ s ≤ T.

Applying Lemma 2.3 to u over the interval [t, T ] yields that

dus(X
t,x
s ) =

(
ψs(X

t,x
s ) + ρ

√
VsDus(X

t,x
s )
)
dWs +

√
(1− ρ2)VsDus(X

t,x
s )dBs

−Fs
(
eX

t,x
s , us(X

t,x
s ),

√
(1− ρ2)VsDus(X

t,x
s ), ψs(X

t,x
s ) + ρ

√
VsDus(X

t,x
s )
)
ds, s ∈ [t, T ],

holds in the sense of distribution with uT (Xt,x
T ) = G(eX

t,x
T ).

Notice that for all τ ∈ [t, T ], we have eX
t,x
τ ∈ L1(Ω,P) and E

[
eX

t,x
τ

]
≤ ex. This together with

Assumption 2.1 and relation (2.3), implies that uτ (Xt,x
τ ) ∈ L1(Ω,P) for all τ ∈ [t, T ]. Further,

the uniqueness of L1-solution for BSDEs (see [BDH+03, Section 6]) yields a version of (u, ψ)

(denoted by itself) satisfying that a.s.

uτ (Xt,x
τ ) = Y t,x

τ ,
√

(1− ρ2)VτDuτ (Xt,x
τ ) = Zt,xτ , ψτ (Xt,x

τ ) + ρ
√
VτDuτ (Xt,x

τ ) = Z̃t,xτ ,

for 0 ≤ t ≤ τ ≤ T and x ∈ R, where (Y t,x
τ , Zt,xτ , Z̃t,xτ ) is the unique solution to BSDE (2.2).

From the proof, we may see that the growth condition (2.3) confirms that the distribution-

valued process u is locally integrable and a.e. defined on Ω× [0, T ]×R which means more than

distributions. More importantly, it implies the integrability of u(τ,Xt,x
τ ) which is needed for the

uniqueness of solution to BSDEs. The growth condition (2.3) may be relaxed; however, power

growth condition like |ut(x)| ≤ C (1 + |ex|p) for some p > 1 may fail to imply the integrability of

u(τ,Xt,x
τ ) (see [Gas18, Theorem 2]). On the other hand, the stochastic Feynman-Kac formula in

Theorem 2.4 actually implies the uniqueness of weak solution for BSPDE (2.1) which together

with the existence is summarized in what follows.

Theorem 2.5. Under Assumptions 1.1 and 2.1, suppose further that there is an infinitely

differentiable function ζ such that ζ(x) > 0 for all x ∈ R and

G(e·+X
0,0
T )ζ(·) ∈ L2(Ω,FT ;L2(R)), ζ(·)F·(e·+X

0,0
· , 0, 0, 0) ∈ L2(Ω× [0, T ];L2(R)). (2.4)

Then BSPDE (2.1) admits a unique weak solution (u, ψ) such that there is Cu ∈ (0,∞) satisfying

for each t ∈ [0, T ]

|u(t, x)| ≤ Cu(1 + ex), for almost all (ω, x) ∈ Ω× R. (2.5)

Proof. Step 1 (Existence). Put θ(x) = ζ(x)
(1+ζ(x))(1+x2)

for x ∈ R. The theory of Banach space-

valued BSDEs in [DQT11, Section 3] may be extended to nonlinear cases under Lipschitz as-

sumptions with the standard application of Picard iteration. In particular, for the case of Hilbert

spaces, applying [HP91, Theorem 3.1] to the following Hilbert space-valued BSDE (with a trivial

operator A = 0 therein):

ũt(x) = G(ex+X0,0
T )θ(x) +

∫ T

t
θ(x)Fs(e

x+X0,0
s , (θ(x))−1ũs(x), (θ(x))−1ψ̃Bs (x), (θ(x))−1ψ̃Ws (x)) ds

−
∫ T

t
ψ̃Bs (x) dBs −

∫ T

t
ψ̃Ws (x) dWs, t ∈ [0, T ]. (2.6)
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gives the solution of the triple of L2(R)-valued (Ft)-adapted random fields

(ũ, ψ̃B, ψ̃W ) ∈ L2(Ω;C([0, T ];L2(R)))× L2(Ω× [0, T ]× R)× L2(Ω× [0, T ]× R). (2.7)

Obviously, we have (ũ, ψ̃B, ψ̃W ) ∈ D1
F ×D2

F ×D2
F , and thus by assertion (ii) of Lemma 2.1, it

holds that

(û, ψ̂B, ψ̂W ) :=
(ũ, ψ̃B, ψ̃W )

θ
∈ D1

F ×D2
F ×D2

F ,

satisfying BSDE:

ût(x) = G(ex+X0,0
T ) +

∫ T

t
Fs(e

x+X0,0
s , ûs(x), ψ̂Bs (x), ψ̂Ws (x)) ds−

∫ T

t
ψ̂Bs (x) dBs

−
∫ T

t
ψ̂Ws (x) dWs, t ∈ [0, T ].

Also, it is straightforward to have that

ût(x) = Y
t,x+X0,0

t
t a.s., for all (t, x) ∈ [0, T ]× R, (2.8)

with the triple (Y t,x
s , Zt,xs , Z̃t,xs )s∈[t,T ] satisfying BSDE (2.2).

By Lemma 2.1, we may apply the Itô-Wentzell-Krylov formula in Lemma 2.3 which yields

that the equality

− dût(x−X0,0
t ) (2.9)

=

{
− Vt

2
D2ût(x−X0,0

t ) +
√

(1− ρ2)VtDψ̂
B
t (x−X0,0

t ) + ρ
√
VtDψ̂

W
t (x−X0,0

t )

− Vt
2
Dût(x−X0,0

t ) + Ft(e
x, ût(x−X0,0

t ), ψ̂Bt (x−X0,0
t ), ψ̂Wt (x−X0,0

t ))

}
dt

−
(
ψ̂Wt (x−X0,0

t )− ρ
√
VtDût(x−X0,0

t )
)
dWt

−
(
ψ̂Bt (x−X0,0

t )−
√

(1− ρ2)VtDût(x−X0,0
t )
)
dBt, t ∈ [0, T ], (2.10)

holds in the sense of distribution. Notice that the equality (2.8) indicates that for each s ∈ [0, T ]

ûs(x−X0,0
s ) = Y s,x

s , (2.11)

which is just FW
s -measurable by Theorem 2.2. Thus, the stochastic integration w.r.t. B should

be vanishing, i.e., we have

ψ̂Bt (x)−
√

(1− ρ2)VtDût(x) = 0, a.s. for all (t, x) ∈ [0, T ]× R.

Put

ut(x) = ût(x−X0,0
t ) and ψt(x) = ψ̂Wt (x−X0,0

t )− ρ
√
VtDût(x−X0,0

t ), (t, x) ∈ [0, T ]× R.

The FW
t -adaptedness of ut(x), and the assertions (i) and (iii) of Lemma 2.1 imply (u, ψ) ∈

D1
FW ×D2

FW , and the equality (2.8) writes equivalently

−dut(x) =

{
Vt
2
D2ut(x) + ρ

√
VtDψt(x)− Vt

2
Dut(x)
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+ Ft(e
x, ut(x),

√
(1− ρ2)VtDut(x), ψt(x) + ρ

√
VtDut(x))

}
dt− ψt(x) dWt, t ∈ [0, T ],

which holds in the sense of distribution with the terminal condition uT (x) = G(ex). The

local integrability of (u,
√

(1− ρ2)VtDu,ψ + ρ
√
VtDu) required in Definition 2.1 (ii) may be

obtained by combining the relation (2.7), the path-continuity of (X0,0
s )s≥0, and the positivity of

θ. Therefore, the pair (u, ψ) is a weak solution of BSPDE (2.1).

Step 2 (Growth condition (2.5)). Consider the following Hilbert space-valued BSDE:
Ỹt(x) =

∣∣∣G(ex+X0,0
T )
∣∣∣ θ(x)−

∫ T

t
Z̃Bs (x) dBs −

∫ T

t
Z̃Ws (x) dWs

+

∫ T

t

(
θ(x)

∣∣Fs(ex+X0,0
s , 0, 0, 0)

∣∣+ L0θ(x) + L0|Ỹs(x)|
)
ds,

(2.12)

where the positive constant L0 is from Assumption 2.1 (iii). The standard BSDE theory (see

[PP90]) yields the unique existence of the L2-solution to BSDE (2.12). In fact, for each (t, x) ∈
[0, T )× R we have

Ỹt(x) = E

[∣∣∣G(ex+X0,0
T )
∣∣∣ θ(x)γtT +

∫ T

t
θ(x)(L0 +

∣∣Fs(ex+X0,0
s , 0, 0, 0)

∣∣) · γts ds∣∣∣Ft

]
, (2.13)

with γts = exp {L0(s− t)} , s ∈ [t, T ].

Putting the BSDEs (2.6) and (2.12) together, we may use the comparison theorem (see [EPQ97,

Theorem 2.2]) to achieve the relation

ũt(x) ≤ Ỹt(x), a.s., ∀(t, x) ∈ [0, T ]× R,

which together with (2.13) implies that

ut(x) ≤ (θ(x−X0,0
t ))−1Ỹt(x−X0,0

t )

= E

[∣∣∣G(eX
t,x
T )
∣∣∣ γtT +

∫ T

t

(∣∣Fs(eXt,x
s , 0, 0, 0)

∣∣+ L0

)
· γts ds

∣∣∣Ft

]
≤ E

[(
LeX

t,x
T + L

)
γtT +

∫ T

t

(
L0e

Xt,x
s + 2L0

)
· γts ds

∣∣∣Ft

]
≤ E

[
Lex+L0(T−t) + LeL0(T−t) +

∫ T

t

(
L0e

x+L0(s−t) + 2L0e
L0(s−t)

)
ds
∣∣∣Ft

]
≤ C(L, T, L0)(1 + ex), a.s., ∀(t, x) ∈ [0, T ]× R,

where we have used the relation E
[
eX

t,x
s
∣∣Ft

]
≤ ex a.s., for 0 ≤ t ≤ s ≤ T . This gives the

growth estimate (2.5).

Step 3 (Uniqueness). The uniqueness follows from Theorem 2.4 and the proof is complete.

Remark 2.1. In view of the above proof, the assumption (2.4) on G and F is to ensure

(ψ̃B, ψ̃W ) ∈ D2
F × D2

F and further ψ ∈ D2
FW . It is for simplicity and may be relaxed; for

instance, the L2-requirements in (2.4) may be replaced correspondingly by Lp-integrability but

with 1 < p < ∞ and the associated well-posedness result with Lp-integrability in (2.7) may be
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obtained by standardly extending the theory of Banach space-valued BSDEs in [DQT11, Section

3] as stated at the beginning of the proof. A typical example satisfying (2.4) is the European

put option where Ft(x, y, z, z̃) = −ry, G(ex) = (K − ex+rT )+ for some K ∈ (0,∞) and one may

take ζ(x) = 1
1+x2

for instance. However, it is by no means obvious to see if it is satisfied for the

call options, while for pricing calls, we may use the put-call parity if applicable.

3 An application: approximating American option prices

Assuming the same setting as the European options, we consider instead the American type,

that is to compute

ut(x) := sup
τ∈Tt

E
[
e−(τ−t)rgτ (eX

t,x
τ )
∣∣Ft

]
, (t, x) ∈ [0, T ]× R,

where r ≥ 0 is the interest rate and Tt denotes all the stopping times τ satisfying t ≤ τ ≤ T .

For simplicity, we assume:

Assumption 3.1. The function g : (Ω × [0, T ] × R, PW ⊗ B(R)) → (R,B(R)) satisfies that

there exists a positive constant L1 > 0 such that for each (t, x) ∈ [0, T ]× R,

(i) gs(e
Xt,x
s ) is almost surely continuous in s ∈ [t, T ];

(ii) gs(e
x) ≤ L1(1 + ex), a.s.;

(iii)

∣∣∣gs (eXt,x
s

)∣∣∣ ≤ Γtsθ̃(x), a.s., ∀ s ∈ [t, T ], with E

[
sup
s∈[t,T ]

∣∣Γts∣∣2
]
<∞,

where the positive function θ̃ : R→ (0,∞) is infinitely differentiable.

A typical example satisfying Assumption 3.1 is the American put option with gt(e
x) =

(K − ex+rt)+ for some K > 0, where one may take L1 = K, Γts ≡ K, and θ̃(x) ≡ 1. By the

theory of reflected BSDEs (see [EKP+97, Section 3]), the following reflected BSDE
−dY t,x

s = −rY t,x
s ds+ dAt,xs − Z

t,x;B
s dBs − Z

t,x;W
s dWs, s ∈ [t, T ];

Y
t,x
T = gT (eX

t,x
T ); Y

t,x
s ≥ gs(eX

t,x
s ), s ∈ [t, T ];

At,x· is increasing and continuous, At,xt = 0,

∫ T

t
(Y

t,x
s − gs(eX

t,x
s )) dAt,xs = 0,

(3.1)

admits a unique solution (Y
t,x
, At,x, Z

t,x;B
, Z

t,x;W
) for each (t, x) ∈ [0, T ]×R, and in particular,

by [EKP+97, Proposition 7.1], we have

Y
t,x
t = ut(x), a.s. for each (t, x) ∈ [0, T ]× R. (3.2)

We would stress that the above relation (3.2) only indicates that ut(x) is Ft-measuable for each

(t, x) ∈ [0, T ]× R.
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In fact, the penalization method provides an approximation of reflected BSDE (3.1) with a

sequence of BSDEs without reflections (see [EKP+97, Section 6]), i.e., for each N ∈ N+, the

following BSDE
−dY t,x;N

s =

[
−rY t,x;N

s +N
(
gs(e

Xt,x
s )− Y t,x;N

s

)+
]
ds− Zt,x;B,N

s dBs

− Zt,x;W,N
s dWs, s ∈ [t, T ];

Y
t,x;N
T = gT (eX

t,x
T ),

(3.3)

admits a unique solution (Y
t,x;N

, Z
t,x;B,N

, Z
t,x;W,N

) such that Y
t,x;N
s converges increasingly to

Y
t,x
s with

lim
N→∞

E

[
sup
s∈[t,T ]

∣∣∣Y t,x;N
s − Y t,x

s

∣∣∣2 +

∫ T

t

∣∣∣Zt,x;B,N
s − Zt,x;B

s

∣∣∣2 +
∣∣∣Zt,x;W,N

s − Zt,x;W
s

∣∣∣2 ds] = 0, (3.4)

lim
N→∞

E

[
sup
s∈[t,T ]

∣∣At,x;N
s −At,xs

∣∣2] = 0, (3.5)

for each (t, x) ∈ [0, T ]× R, where

At,x;N
r =

∫ r

t
N
(
gs(e

Xt,x
s )− Y t,x;N

s

)+
ds, for 0 ≤ t ≤ r ≤ T.

Notice that Theorem 2.2 says that Y
t,x;N
t is FW

t -measurable for each (t, x) ∈ [0, T ]×R. Hence,

the approximation (3.4) implies that Y
t,x
t (and thus ut(x)) is also just FW

t -measurable for each

(t, x) ∈ [0, T ]× R, which together with Theorems 2.4 and 2.5 yields the following

Corollary 3.1. Let Assumptions 1.1 and 3.1 hold. It holds that:

(i) The value function ut(x) is just FW
t -measurable for each (t, x) ∈ [0, T ]× R.

(ii) For each N ∈ N+, the following BSPDE
−duNt (x) =

[Vt
2
D2uNt (x) + ρ

√
VtDψ

N
t (x)− Vt

2
DuNt (x)− ruNt (x)

+N
(
gt(e

x)− uNt (x)
)+ ]

dt− ψNt (x) dWs;

uNT (x) = gT (ex),

(3.6)

admits a unique weak solution (uN , ψN ) such that there exists CN ∈ (0,∞) satisfying for

each t ∈ [0, T ]

|uNt (x)| ≤ CN (1 + ex), for almost all (ω, x) ∈ Ω× R.

(iii) For each N ∈ N+, the above weak solution (uN , ψN ) satisfies a.s. uNτ (Xt,x
τ ) = Y

t,x;N
τ ,√

(1− ρ2)VτDu
N
τ (Xt,x

τ ) = Z
t,x;B,N
τ , and ψNτ (Xt,x

τ ) + ρ
√
VτDu

N
τ (Xt,x

τ ) = Z
t,x;W,N
τ ,

for 0 ≤ t ≤ τ ≤ T and x ∈ R, where (Y
t,x;N

, Z
t,x;B,N

, Z
t,x;W,N

) is the unique solution to

BSDE (3.3).
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(iv) For each (t, x) ∈ [0, T ]× R, uNt (x) converges increasingly to ut(x) in L2(Ω,Ft;R).

(v) There is a triple (u, ψ
B
, ψ

W
) defined on (Ω× [0, T ]× R,PW ⊗ B(R)) such that

uτ (Xt,x
τ ) = Y

t,x
τ , ψ

B
τ (Xt,x

τ ) = Z
t,x;B
τ , and ψ

W
τ (Xt,x

τ ) = Z
t,x;W
τ , a.s.,

for 0 ≤ t ≤ τ ≤ T .

Remark 3.1. The assertion (v) is concluded from the approximating relations (3.4) and (3.5).

In fact, by the theory of reflected BSPDEs (see [QW14] or [Qiu17, Section 3.3]), one may expect

the value function ut(x) to be characterized via the following reflected BSPDE

−dut(x) =
[Vt

2
D2ut(x) + ρ

√
VtDψt(x)− Vt

2
Dut(x)− rut(x)

]
dt+ µ(dt, x)

− ψ(t, x) dWt, (t, x) ∈ [0, T ]× R;

uT (x) = gT (ex), x ∈ R;

ut(x) ≥ gt(ex), dP⊗ dt⊗ dx-a.e.;∫
[0,T ]×R

(
ut(x)− gt(ex)

)
µ(dt, dx) = 0, a.s., (Skorohod condition)

(3.7)

for which the solution is a triple (u, ψ, µ) with µ being a regular random radon measure. A

solution theory may be developed by generalizing the regular stochastic potential and capacity

theory in [Qiu17, QW14]; nevertheless, we would not seek such a generality in this paper, in

order to put more efforts in the numerical approximations.

4 Numerical approximations with a deep learning-based method

Throughout this section, we assume that the functions G, F and g are deterministic, i.e.,

(A∗) G : R→ R, F : [0, T ]× R4 → R, g : [0, T ]× R→ R.

In fact, this assumption may be relaxed by allowing (explicit) dependence on the variance

process V and the Wiener process W , and together with Assumptions 1.1, 2.1, and 3.1, it

ensures that all the coefficients may be simulated in the subsequent numerical computations,

given the approximations of the unknown functions. In what follows, we first introduce and

discuss the neural networks approximating random functions, a deep learning-based method is

then introduced for non-Markovian BSDEs and associated BSPDEs and finally, the numerical

examples are presented for the rough Bergomi model.

4.1 Neural networks approximating random functions

First, we introduce a feedforward neural network with input dimension d0 and output dimension

d1. Suppose that it has M + 1 ∈ N+�{1, 2} layers with each layer having mn neurons, n =

0, · · · ,M . For simplicity, we choose an identical number of neurons for all hidden layers, i.e.,

mn = m,n = 1, · · · ,M − 1. Obviously, we have m0 = d0, and mM = d1. The neural network

may be thought of as a function from Rd0 to Rd1 defined by composition of simple functions as

x ∈ Rd0 7→ AM o % o AM−1 o · · · o % o A1(x) ∈ Rd1 . (4.1)
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Here, A1 : Rd0 7→ Rm, AM : Rm 7→ Rd1 and An : Rm 7→ Rm, n = 2, · · · ,M − 1 are affine

transformations on a whole layer and defined by

An(x) =Wnx+ βn,

where the matrix Wn and the vector βn are called weight and bias respectively for the nth layer

of the network. For the last layer we choose identity function as activation function, and the

activation function % is applied component-wise on the outputs of An, for n = 1, . . . ,M − 1.

The parameters of neural network may be denoted by θ = (Wn, βn)Mn=1. Given d0, d1,M and

m, the total number of parameters in a network is Mm =
∑M−1

n=0 (mn+1)mn+1 = (d0+1)m+(m+

1)m(M−1)+(m+1)d1 and thus θ ∈ RMm . By Θm, we denote the set of all possible parameters

and if there are no constraints on parameters, we have Θm = RMm . By Φm(·; θ) we denote the

neural network function defined in (4.1) and set of all such neural networks Φm(·; θ), θ ∈ Θm is

denoted by NN %
d0,d1,M,m(Θm).

Deep neural networks may approximate large classes of unknown functions. Following is a

fundamental result by Hornik et al. [HSW89, HSW90]:

Lemma 4.1 (Universal Approximation Theorem). It holds that:

(i) For each M ∈ N+ \ {1}, the set ∪m∈NNN %
d0,d1,M,m(RMm) is dense in L2(Rd0 , ν(dx);Rd1)

for any finite measure ν on Rd0, whenever % is continuous and non-constant.

(ii) Assume that % is a non-constant Ck function. Then the neural networks/functions in

∪m∈NNN %
d0,d1,2,m

(R2m) can approximate any function and its derivatives up to order k,

arbitrarily well on any compact set of Rd0.

Notice that in the above lemma the approximated functions are defined on the finite dimen-

sional spaces i.e., Rd0 . In fact, the approximations may be extended to some classes of functions

defined on infinite dimensional spaces. In this paper, we need the following one:

Proposition 4.2. For each T0 ∈ (0, T ], M ∈ N+ \ {1}, and d0, d1 ∈ N+, the function set{
Φm(Wt1 , · · · ,Wtk , x; θ) : Φm(·; θ) ∈ NN %

d0+k,d1,M,m(RMm), m, k ∈ N+,

0 < t1 < t2 < · · · < tk ≤ T0

}
is dense in L2

(
Ω× Rd0 ,FW

T0
⊗ B(Rd0),P(dω)⊗ dx;Rd1

)
, whenever % is continuous and non-

constant.

Proof. Take f ∈ L2
(
Ω× Rd0 ,FW

T0
⊗ B(Rd0),P(dω)⊗ dx

)
arbitrarily. Notice that

L2
(

Ω× Rd0 ,FW
T0 ⊗ B(Rd0),P(dω)⊗ dx;Rd1

)
≡ L2

(
Ω,FW

T0 ,P;L2(Rd0 ;Rd1)
)
.

The denseness of simple random variables (see [DPZ14, Lemma 1.2, Page 16] for instance)

implies that the function f may be approximated monotonically by simple random variables of

the following form:

l∑
i=1

1Ai(ω)hi(x), with hi ∈ L2(Rd0 ;Rd1), Ai ∈ FT0 , l ∈ N+, i = 1, . . . , l.
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Further, applying [Oks03, Lemma 4.3.1., page 50] yields that each 1Ai may be approximated

in L2(Ω,FT0) by functions in the following set

{gi(Wt̃i1
, . . . ,Wt̃iki

) : ki ∈ N+, gi ∈ C∞c (Rki), 0 < t̃i1 < · · · < t̃iki ≤ T0}.

To sum up, the function f may be approximated in L2
(
Ω× Rd0 ,FW

T0
⊗ B(Rd0),P(dω)⊗ dx;Rd1

)
by the following random fields:

fk(Wt̄1 , · · · ,Wt̄k , x) =
l∑

i=1

gi

(
Wt̃i1

, . . . ,Wt̃iki

)
hi(x),

where gi ∈ C∞c (Rki), hi ∈ L2(Rd0), 0 < t̄1 < · · · < t̄k ≤ T , and

{t̄1, . . . , t̄k} = ∪li=1{t̃i1, . . . , t̃iki}.

Applying the approximation in (i) of Lemma 4.1 to the functions fk yields the approximation

of f , and this completes the proof.

Remark 4.1. In fact, the process (Wt)t≥0 and the filtration (FW
t )t≥0 may be replaced by an

arbitrary continuous process (W t)t≥0 and corresponding gernerated filtration (FW
t )t≥0, where

the process (W t)t≥0 is not necessarily a Brownian motion.

4.2 Deep learning-based method for non-Markovian BSDEs and associated

BSPDEs

Inspired by [HPW19, HJW18], we adopt a deep learning method based on the following repre-

sentation relationship by Theorems 2.4 and 2.5. Letting the quadruple (Xs, Ys, Zs, Z̃s) be the

solution to the following FBSDE

−dYs = Fs(e
Xs , Ys, Zs, Z̃s) ds− Z̃s dWs − Zs dBs, 0 ≤ s ≤ T ;

YT = G(eXT ),

dXs =
√
Vs

(
ρ dWs +

√
1− ρ2 dBs

)
− Vs

2
ds, 0 ≤ s ≤ T ;

X0 = x;

Vs = ξs E(η Ŵs) with Ŵs =

∫ s

0
K(s, r) dWr, s ∈ [0, T ],

(4.2)

with K being a general Kernel function including the particular cases in Examples 1.1 and 1.2,

one has

uτ (Xτ ) = Yτ ,
√

(1− ρ2)VτDuτ (Xτ ) = Zτ , ψτ (Xτ ) + ρ
√
VτDuτ (Xτ ) = Z̃τ ,

for 0 ≤ τ ≤ T and x ∈ R, where the pair (u, ψ) is the unique weak solution to BSPDE (2.1) in

Theorem 2.5. In particular, we may write forwardly, for t ∈ [0, T ],

ut(Xt) = u0(X0)−
∫ t

0
Fs

(
eXs , us(Xs),

√
(1− ρ2)VsDus(Xs), ψs(Xs) + ρ

√
VsDus(Xs)

)
ds

+

∫ t

0

(
ψs(Xs) + ρ

√
VsDus(Xs)

)
dWs +

∫ t

0

√
(1− ρ2)VsDus(Xs) dBs. (4.3)
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Given a partition of the time interval: π = {0 = t0 < t1 < ... < tN = T} with modulus

|π| = max
i=0,1,...,N−1

∆ti, ∆ti = ti+1 − ti, we first simulate (or approximate) the joint process

(B,W, V ), and then the forward process X may be approximated by Xπ obtained through an

Euler scheme. Further, the forward representation (4.3) yields an approximation for (u, ψ) under

the Euler scheme

uti+1(Xti+1) ≈ Hti(Xti , uti(Xti),
√

(1− ρ2)VtiDuti(Xti), ψti(Xti) + ρ
√
VtiDuti(Xti),∆Bti ,∆Wti)

with

Ht(x, y, z, z̃, b, w) := y − Ft(ex, y, z, z̃)∆ti + zb+ z̃w.

Inspired by [HPW19], we design the numerical approximation of uti(Xti) as follows:

(1) start with ÛN = G;

(2) for i = N − 1, ..., 0, given Ûi+1, use the triple of deep neural networks

(Ui(·, θ),Zi(·, θ), Z̃i(·, θ)) ∈ NN %
1+2i,1,M,m(RMm)×NN %

1+2i,1,M,m(RMm)

×NN %
1+2i,1,M,m(RMm) (4.4)

for the approximation of(
uti(Xti),

√
(1− ρ2)VtiDuti(Xti), ψti(Xti) + ρ

√
VtiDuti(Xti)

)
,

to achieve an estimate

Ui+1 = Hti

(
Xti ,Ui(Xti , θi),Zi(Xti , θi), Z̃i(Xti , θi),∆Bti ,∆Wti

)
;

(3) compute the minimizer of the expected quadratic loss function

L̂i(θ) : = E
∣∣∣Ûi+1 −Hti

(
Xti ,Ui(Xti , θi),Zi(Xti , θi), Z̃i(Xti , θi),∆Bti ,∆Wti

)∣∣∣2 ,
≈ 1

J

J∑
j=1

∣∣∣Û (j)
i+1 −Hti

(
X

(j)
ti ,Ui(X

(j)
ti , θi),Zi(X

(j)
ti , θi), Z̃i(X

(j)
ti , θi),∆B

(j)
ti ,∆W

(j)
ti

)∣∣∣2
θ∗i ∈ arg min

θ∈RMm
L̂i(θ),

where the Adam (adaptive moment estimation) optimizer may be used to get the optimal

parameter θ∗;

(4) update and set Ûi = Ui(·, θ∗i ), Ẑi = Zi(·, θ∗i ), and ̂̃Z i = Z̃i(·, θ∗i ).

Remark 4.2. Here, (X(j), B(j),W (j), Ŵ (j), V (j))1≤j≤J are independent simulations of (X,B,W, Ŵ , V ).

Noticing that FW
t = FW,Ŵ

t for t ∈ [0, T ], by Proposition 4.2 and Remark 4.1 we have the func-

tions in NN %
1+2i,1,M,m(RMm) of the following form:

Φm(Wt1 , · · · ,Wti , Ŵt1 , · · · , Ŵti , x), i = 0, 1, 2, · · · , N − 1,

which incorporates all the simulated values of (W, Ŵ ) until time ti, leading to the changing

dimension of the inputs. One may also see that the finer the partition of [0, T ] is, the higher input
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dimension it involves. The changing and high dimensionality arising from the approximations

prompts us to adopt a deep learning-based method, and this also unveils the difference from the

scheme in [HPW19].

On the other hand, a convergence analysis of the above scheme is given in the appendix.

Even though we are working with dimension-changing neural networks under a non-Markovian

framework with different assumptions, we adopt a similar strategy to [HPW19] for the proof of

the convergence analysis.

4.3 Numerical examples for the rough Bergomi model

4.3.1 European put option

We consider the rough Bergomi model of [BFG16] in Example 1.1 with the following choice of

parameters: H = 0.07, η = 1.9, ρ = −0.9, r = 0.05, T = 1, X0 = ln(100). For simplicity, we

choose the forward variance curve to be ξ(t) ≡ 0.09, independent of time.

We compute the numerical approximations to the European option price given in (1.7). The

value function u together with another random field ψ constitutes the unique solution to BSPDE

(1.9) which corresponds to the BSPDE (2.1) in Theorem 2.5 with

Fs(x, y, z, z̃) = −ry, and G(ex) = (K − ex+rT )+.

By Theorems 2.4 and 2.5, the triple (Y 0,x
t , Z0,x

t , Z
0,x
t )t∈[0,T ] with

Y 0,x
t := ut(X

0,x
t ), Z0,x

t := ρ
√
VtDut(X

0,x
t ) + ψt(X

0,x
t ), Z

0,x
t :=

√
(1− ρ2)VtDut(X

0,x
t ),

for t ∈ [0, T ] satisfies the following FBSDE:

dX0,x
s =

√
Vs

(
ρ dWs +

√
1− ρ2 dBs

)
− Vs

2
ds, 0 ≤ s ≤ T ;

X0,x
0 = x;

Vs = ξs E(η Ŵs) with Ŵs =

∫ s

0

√
2H(s− r)H−1/2 dWr, s ∈ [0, T ];

dY 0,x
s = rY 0,x

s ds+ Z0,x
s dWs + Z

0,x
s dBs, s ∈ [0, T ];

Y 0,x
T = G(eX

0,x
T ).

(4.5)

Then the deep learning-based method in Section 4.2 is used for the numerical approximations.

We take N = 20 in the Euler Scheme and set a single hidden layer whose number of neurons

is equal to half of the total number of neurons in the input and output layers. We adopt

the Sigmoid function for the activation function and the optimization algorithm is Adam. We

implement 10000 trajectories in mini-batch and check the loss convergence every 50 iterations.

In the following Table 1, the reference values are calculated by Monte Carlo method and they are

close to the results obtained by averaging 20 independent runs with the deep learning method.

Reference value RSD = standard deviation
average value Estimated value RSD

K = 90 4.9550 0.0259 4.9535 0.0228

K = 100 7.8284 0.0135 7.8061 0.0201

K = 110 12.1844 0.0100 12.1940 0.0143

K = 120 18.1631 0.0077 18.1699 0.0055

Table 1: Prices of European put options at t=0 under the different strike prices K.
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On the other hand, we also investigate the dependence of the value function on the paths

of process V . We simulate 10000 independent trajectories of the stochastic variance process V

and evaluate the corresponding values of u(0.5, ln 100) when t = 0.5, x = ln 100, and K = 100.

The mean of these u(0.5, ln 100) is 9.9287 and the standard deviation 0.4240. Four of these

trajectories are randomly chosen in Figure 1 (a), and the corresponding values of u(0.5, ln 100)

are listed in Table 2. From Figure 1(a) and Table 2, one may see that bigger values of V (0.5)

do not always lead to bigger option prices. Meanwhile, for the simulated 10000 trajectories of

V , we reset the values of V to be the same and equal to the average of simulated values of V (t)

at time t = 0.5, i.e., we fix V (0.5) = 0.0825. Then the mean of these values of u(0.5, ln 100)

turns out to be 9.9292 with the standard deviation equal to 0.4226. Four of the trajectories cor-

responding to Figure 1 (a) are drawn in Figure 1 (b), and we show the corresponding values of

u(0.5, ln 100) in Table 3. Comparing the obtained means, the standard deviations, and the four

paths and associated values of u(0.5, ln 100) in these two cases, we may see that the value of V

at t = 0.5 does not play a dominating role in determining the price of the options u(0.5, ln 100),

which is different from the classical Markovian cases; this is due to the path-dependence and

thus the non-Markovianity, i.e., the trajectory of V before t = 0.5 actually affects the value of

u(0.5, ln 100) in a non-negligible manner.

(a) Paths of V with different values at t=0.5 (b) Paths of V with a fixed value at t = 0.5

Figure 1: Different paths of V on time interval [0, 0.5]

Paths of process V with u(0.5, ln 100)

V 1(t = 0.5) = 0.0038 10.3310

V 2(t = 0.5) = 0.0237 10.4847

V 3(t = 0.5) = 0.0369 10.1519

V 4(t = 0.5) = 0.0014 10.3003

Table 2: u(0.5, ln 100) on different paths of V in Figure 1(a)
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Paths of process V with u(0.5, ln 100)

V 1(t = 0.5) = 0.0825 10.3290

V 2(t = 0.5) = 0.0825 10.4878

V 3(t = 0.5) = 0.0825 10.1457

V 4(t = 0.5) = 0.0825 10.2769

Table 3: u(0.5, ln 100) on different paths of V in Figure 1(b)

4.3.2 Two schemes for approximating American put options

Again, consider the rough Bergomi model in Example 1.1 with the following choice of parameters:

H = 0.07, η = 1.9, ρ = −0.9, r = 0.05, T = 1, X0 = ln(100). Also, we choose the forward

variance curve to be ξ(t) ≡ 0.09 independent of time, for simplicity. The strike prices may take

different values. Then, pricing the American put option is to compute

u0(x) := sup
τ∈T0

E
[
e−τrgτ (eX

0,x
τ )
]
, with gτ (ex) = (K − erτ+x)+, for (τ, x) ∈ [0, T ]× R.

We shall adopt two different schemes for the computations for the numerical approximations.

The first scheme is based on the penalization. By Corollary 3.1, u0(x) may be approximated

by uÑ0 (x) as Ñ tends to infinity, where the pair (uÑ , ψ
Ñ

) is the unique weak solution to BSPDE

(2.1) with

Ft(e
x, y, z, z̃) = −ry + Ñ (gt(e

x)− y)+ and G(ex) = gT (ex).

Then the first scheme is to use the algorithm in Section 4.2 to compute uÑ0 (X0) which approxi-

mates u0(x) when Ñ tends to infinity.

The second scheme is based on the representation via the following forward-backward system:

dX0,x
s =

√
Vs

(
ρ dWs +

√
1− ρ2 dBs

)
− Vs

2
ds, 0 ≤ s ≤ T ;

X0,x
0 = x;

Vs = ξs E(η Ŵs) with Ŵs =

∫ s

0

√
2H(s− r)H−1/2 dWr, s ∈ [0, T ];

−dY 0,x
s = −rY 0,x

s ds+ dA0,x
s − Z

0,x;B
s dBs − Z

0,x;W
s dWs, s ∈ [0, T ];

Y
0,x
T = gT (eX

0,x
T ); Y

0,x
s ≥ gs(eX

0,x
s ), s ∈ [0, T ];

A0,x
· is increasing and continuous, A0,x

0 = 0,

∫ T

0

(
Y

0,x
s − gs(eX

0,x
s )
)
dA0,x

s = 0.

(4.6)

Recalling the assertion (v) in Corollary (3.1) which gives the following representation

uτ (X0,x
τ ) = Y

0,x
τ , ψ

B
τ (X0,x

τ ) = Z
0,x;B
τ , and ψ

W
τ (X0,x

τ ) = Z
0,x;W
τ , a.s.,

for 0 ≤ τ ≤ T , for some triple (u, ψ
B
, ψ

W
) defined on (Ω× [0, T ]×R,PW ⊗B(R)), we may use

the following scheme:

(1) Start with ÛN = gT .
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(2) For i = N − 1, ..., 0, given Ûi+1, use the triple of deep neural networks

(Ui(·, θ),ZBi (·, θ), Z̃Wi (·, θ)) ∈ NN %
1+2i,1,M,m(RMm)×NN %

1+2i,1,M,m(RMm)

×NN %
1+2i,1,M,m(RMm) (4.7)

for the approximation of
(
uti(Xti), ψ

B
ti (Xti), ψ

W
ti (Xti)

)
, and obtain an estimate

Ui+1 = Ui(Xti , θi) + rUi(Xti , θi)∆ti + ZBi (Xti , θi) ∆Bti + ZWi (Xti , θi) ∆Wti .

(3) Compute the minimizer of the expected quadratic loss function:
L̂i(θ) : = E

∣∣∣Ûi+1 − Ui+1

∣∣∣2 ,
θ∗i ∈ arg min

θ∈RNm
L̂i(θ).

(4) Update Ûi = max {Ui(Xti , θ
∗
i ), gti(Xti)}.

The above scheme extends the one proposed in [HPW19, Section 3.3] from Markovian cases to

a non-Markovian setting, with the main difference lying in the changing dimensions in the neural

networks (4.7). Looking into Appendix for the convergence analysis of the scheme in Section 4.2,

we may extend the convergence analysis in [HPW19, Section 4.3] to our non-Markovian setting,

and as such an extension is similar to that of the scheme in Section 4.2, the proof is omitted.

In Table 4, the estimates of the above two schemes are presented together with the reference

values which are lower bound estimates from [BTW18]. We take N = 20 and implement a

single hidden layer whose number of neurons is equal to half of the total number of neurons in

the input and output layers. The activation function and optimization algorithm we use here

are Sigmoid function and Adam. The results are obtained by averaging 20 independent runs.

For the first scheme, in theory, uÑ0 (X0) is (bigger and) closer to the real value than uN̄0 (X0)

when Ñ > N̄ , which is affirmed by the numerical experiments. We set Ñ equal to 40 and

10000 for comparisons. The same neural networks are put to use in the second scheme. Here,

neural networks with ≥ 2 hidden layers and/or big number of neurons were also tried, which, we

believed, might produce better approximations. However, we found the obtained results were

largely different and quite sensitive to the learning rate, the optimizer, the iteration numbers,

and even the activation function, and this enlightened us to reduce the complexity to use the

selected neural networks for relatively stable estimates.

reference value
1st scheme

2nd scheme RSD
N=40 RSD N=10000 RSD

K = 90 5.32 5.5053 0.0998 5.5113 0.0980 5.5497 0.0895

K = 100 8.51 9.6392 0.0553 9.6672 0.0582 9.6867 0.0552

K = 110 13.24 15.4707 0.0196 15.4882 0.0243 15.5020 0.0292

K = 120 20 22.5800 0.0213 22.6069 0.0221 22.5742 0.0114

Table 4: Prices of American put options at t=0 under two different schemes.

While the two schemes presented in this paper yield results that are very close to each other

(well within confidence intervals for the Monte Carlo error), the references values from [BTW18]
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differ significantly. It should be noted that the results from [BTW18] – which were also recovered

by a similar method suggested in [GMZ20] – are only supported by theory for Markov models.

Moreover, those results are lower bounds, and currently, to the best of our knowledge, no efficient

numerical methods providing upper bounds of American option prices in rough volatility models

has been provided. In contrast, our method is supported by theory. In essence, this leads us to

the uncomfortable conclusion that either the reference values from [BTW18] or our own results

– or both – are highly inaccurate, and that we are unable to discern which.

In order to backtest our algorithm, we additionally consider a classical Markovian case,

setting ρ = η = 0 and keeping the other parameters unchanged, The estimates of the above two

schemes are compared with the option prices calculated by binprice function in the financial

toolbox of Matlab. It can be seen from Table 5 that our results are pretty close to the option

price estimates by using the Cox-Ross-Rubinstein binomial model.

Reference value
1st scheme

2nd scheme RSD
N=40 RSD N=10000 RSD

K = 90 5.6168 5.5700 0.0949 5.5945 0.0931 5.6157 0.0881

K = 100 9.7980 9.7465 0.0520 9.7779 0.0504 9.7928 0.0555

K = 110 15.6720 15.6176 0.0265 15.6516 0.0210 15.6341 0.0221

K = 120 22.7501 22.7140 0.0204 22.7367 0.0185 22.6994 0.0106

Table 5: American option prices when ρ = η = 0.

A Convergence analysis

This section is to devoted to a convergence analysis for the deep learning-based scheme proposed

in Section 4.2. The discussions are conducted under Assumptions (A∗), 1.1, 2.1, and the following

one:

(H1) (i) There exists a continuous and increasing function ρ : [0,∞) → [0,∞) with ρ(0) = 0

such that for any 0 ≤ t1 ≤ t2 ≤ T , it holds that

E

[∫ t2

t1

Vs ds

]
+ E

[(∫ t2

t1

Vs ds

)2
]
≤ ρ(|t1 − t2|).

(ii) There exists a constant L2 > 0 such that

|Ft1(ex1 , y1, z1, z̃1)− Ft2(ex2 , y2, z2, z̃2)|

≤ L2(
√
ρ(|t2 − t1|) + |x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |z̃2 − z̃1|),

for all (t1, x1, y1, z1, z̃1) and (t2, x2, y2, z2, z̃2) in [0, T ]× R× R× R× R.

Remark A.1. In fact, for examples like 1.1 and 1.2, one has

E

[∫ T

0
|Vt|p dt

]
<∞, for some p > 2,

which, by Hölder’s inequality, implies

E

∫ t2

t1

Vt dt ≤ |t1 − t2|
p−1
p

(
E

∫ t2

t1

|Vt|p dt
)1/p

≤ Cp |t1 − t2|
p−1
p , for 0 ≤ t1 ≤ t2 ≤ T,
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E

[(∫ t2

t1

Vt dt

)2
]
≤ |t1 − t2|

2(p−1)
p

(
E

∫ t2

t1

|Vt|p dt
)2/p

≤ C2
p |t1 − t2|

2(p−1)
p , for 0 ≤ t1 ≤ t2 ≤ T,

and thus, we may take ρ(r) = (Cp + C2
p) ·

(
|r|

p−1
p ∨ |r|

2(p−1)
p

)
, for r ≥ 0. Further, one may

straightforwardly check that the numerical examples discussed in Section 4.3 have Assumption

(H1) satisfied.

In what follows, we denote by C a positive generic constant whose value is independent

of π and may vary from line to line, and by X we denote the unique (strong) solution to the

SDE (1.8) start at t = 0 and by X = Xπ the Euler-Maruyama approximation with a time grid

π = {t0 = 0 < t1 < ... < tN = T}, with modulus |π| = max1≤i≤N |ti − ti−1| bounded by CT
N for

some constant C. Under Assumptions 1.1 and (H1), standard calculations yield that

E

[
sup

0≤t≤T
|Xt|2

]
≤ C(1 + |x0|2), (A.1)

max
i=0,...,N−1

E

[
|Xti+1 −Xti+1 |2 + sup

t∈[ti,ti+1]
|Xt −Xti |2

]
≤ Cρ(|π|). (A.2)

By the theory of BSDEs (see [BDH+03] for instance), Assumptions 1.1, 2.1, and (H1) imply

the existence and uniqueness of an adapted L2-solution (Y,Z, Z̃) to BSDE (2.2), which together

with (A.1) and (H1)-(ii) gives

E

[∫ T

0
|Ft(eXt , Yt, Zt, Z̃t)|2dt

]
<∞ (A.3)

and the standard L2-regularity result on Y :

max
i=0,...,N−1

E

[
sup

t∈[ti,ti+1]
|Yt − Yti |2

]
= O(|π|). (A.4)

For the pair (Z, Z̃), set εZ(π) := E
[∑N−1

i=0

∫ ti+1

ti
|Zt − Z̄ti |2dt

]
, with Z̄ti := 1

∆ti
Ei

[∫ ti+1

ti
Ztdt

]
,

εZ̃(π) := E
[∑N−1

i=0

∫ ti+1

ti
|Z̃t − ¯̃Zti |2dt

]
, with ¯̃Zti := 1

∆ti
Ei

[∫ ti+1

ti
Z̃tdt

]
,

(A.5)

where Ei denotes the conditional expectation given Fti .
To investigate the convergence of the deep learning scheme, we define, for i = 0, ..., N − 1,

V̂ti := Ei[Ûi+1(Xti+1)] + Fti(e
Xti , V̂ti , Ẑti ,

̂̃Zti)∆ti,
Ẑti := 1

∆ti
Ei[(Ûi+1(Xti+1)∆Bti ],̂̃Zti := 1

∆ti
Ei[(Ûi+1(Xti+1)∆Wti ],

(A.6)

where, V̂ti is well-defined for sufficiently small |π| due to the uniform Lipschitz continuity of F .

In view of Theorem 2.4, we may find FW
ti ⊗ B(R)-measurable functions v̂i, ẑi, and ˆ̃zi s.t.

V̂ti = v̂i(Xti), Ẑti = ẑi(Xti), and ̂̃Zti = ˆ̃zi(Xti), i = 0, ..., N − 1. (A.7)
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On the other hand, by the martingale representation theorem, there exist two R-valued square

integrable processes {Ẑt} and { ̂̃Zt} s.t.

Ûi+1(Xti+1) = V̂ti − Fti(eXti , V̂ti , Ẑti ,
̂̃Zti)∆ti +

∫ ti+1

ti

Ẑt dBt +

∫ ti+1

ti

̂̃Zt dWt, (A.8)

and Itô’s isometry gives

Ẑti = 1
∆ti

Ei[
∫ ti+1

ti
Ẑtdt],

̂̃Zti = 1
∆ti

Ei[
∫ ti+1

ti

̂̃Ztdt], i = 0, ..., N − 1.

The distance between the optimal triple (Ûi, Ẑi, ̂̃Z i) from the deep learning-based scheme and

(V̂ti , Ẑti ,
̂̃Zti) from the system (A.6) is given as follows.

Lemma A.1. Let Assumptions (A∗), 1.1, 2.1, and (H1) hold. When |π| is sufficiently small,

we have

E|V̂ti − Ûi(Xti)|2 + ∆tiE

[
|Ẑti − Ẑi(Xti)|2 + | ̂̃Zti − ̂̃Z i(Xti)|2

]
≤ CεN ,vi + C∆tiε

N ,z
i + C∆tiε

N ,z̃
i , (A.9)

where we use

εN ,vi := inf
ξ
E|v̂i(Xti)− Ui(Xti ; ξ)|2, εN ,zi := inf

η
E|ẑi(Xti)−Zi(Xti ; η)|2,

and εN ,z̃i := infη E|ˆ̃zi(Xti)− Z̃i(Xti ; η)|2 to denote the L2-approximation errors of v̂i ,ẑi, and ˆ̃zi
by neural networks Ui , Zi, and Z̃i, for i = 0, ..., N − 1.

To focus on the convergence analysis, we postpone the proof of Lemma A.1. Define the

following square error:

E [(Û , Ẑ, ̂̃Z), (Y,Z, Z̃)] = max
i=0,...,N−1

E
[
|Yti − Ûi(Xti)|2

]
+ E

[
N−1∑
i=0

∫ ti+1

ti

|Zt − Ẑi(Xti)|2dt

]

+ E

[
N−1∑
i=0

∫ ti+1

ti

|Z̃t − ̂̃Z i(Xti)|2dt

]
.

Theorem A.2. Under Assumptions (A∗), 1.1, 2.1, and (H1), it holds that

E [(Û , Ẑ, ̂̃Z), (Y,Z, Z̃)]

≤ C

{
E|G(XT )−G(XT )|2 + ρ(|π|) + |π|+ εZ(π) + εZ̃(π) +

N−1∑
i=0

(NεN ,vi + εN ,zi + εN ,z̃i )

}
, (A.10)

where the constant C is independent of the partition π.

The computations involved in the proofs of Lemma A.1 and Theorem A.2 are conducted in

a similar way to [HPW19, Section 4.1] by Huré, Pham, and Warin, with the main differences

lying in the approximations of the random variables with dimension-varying neural networks

and the general modulus function ρ(π). We provide the proofs for the reader’s interests.
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Proof of Theorem A.2. Step 1. We first derive a recursive estimate for the square norm of

Yti − V̂ti , i.e.,

E|Yti − V̂ti |2 ≤ (1 + C|π|)E|Yti+1 − Ûi+1(Xti+1)|2 + C|π|E
[∫ ti+1

ti

|Ft(eXt , Yt, Zt, Z̃t)|2dt
]

+ CE

[∫ ti+1

ti

(
|Z̃t − ¯̃Zti |2 + |Zt − Z̄ti |2

)
dt

]
+ Cρ(|π|)|π|, (A.11)

for each i ∈ {0, ..., N − 1}.
In view of (2.2) and (A.6), we have

Yti − V̂ti =Ei[Yti+1 − Ûi+1(Xti+1)] + Ei

[∫ ti+1

ti

Ft(e
Xt , Yt, Zt, Z̃t)− Fti(eXti , V̂ti , Ẑti ,

̂̃Zti)dt] .
Young’s inequality gives (a + b)2 ≤ (1 + γ∆ti)a

2 + (1 + 1
γ∆ti

)b2 for any a, b ∈ R and γ > 0,

which combined with Cauchy-Schwarz inequality, the Lipschitz condition on F in (H1), and the

estimation (A.2) on the forward process, implies that

E|Yti − V̂ti |2

≤ E
{

(1 + γ∆ti)
(
Ei[Yti+1 − Ûi+1(Xti+1)]

)2

+

(
1 +

1

γ∆ti

)(
Ei

[ ∫ ti+1

ti

(Ft(e
Xt , Yt, Zt, Z̃t)− Fti(eXti , V̂ti , Ẑti ,

̂̃Zti))dt])2}
≤ (1 + γ∆ti)E

[
|Ei[Yti+1 − Ûi+1(Xti+1)]|2

]
+ 5

(
1 +

1

γ∆ti

)
L2

2∆ti

{
Cρ(|π|)|π|

+ E

[ ∫ ti+1

ti

|Yt − V̂ti |2dt
]

+ E

[ ∫ ti+1

ti

(
|Zt − Ẑti |2 + |Z̃t − ̂̃Zti |2) dt]}

≤ (1 + γ∆ti)E
[
|Ei[Yti+1 − Ûi+1(Xti+1)]|2

]
+ 5 (1 + γ∆ti)

L2
2

γ

{
Cρ(|π|)|π|

+ 2∆tiE|Yti − V̂ti |2 + E

[ ∫ ti+1

ti

(
|Zt − Ẑti |2 + |Z̃t − ̂̃Zti |2) dt]}, (A.12)

where the L2-regularity of Y (A.4) is used in the last inequality.

Recalling that Z̄ and ¯̃Z are the L2-projections of Z and Z̃ respectively, we have
E[
∫ ti+1

ti
|Zt − Ẑti |2dt] = E[

∫ ti+1

ti
|Zt − Z̄ti |2dt] + ∆tiE

[
|Z̄ti − Ẑti |2

]
,

E[
∫ ti+1

ti
|Z̃t − ̂̃Zti |2dt] = E[

∫ ti+1

ti
|Z̃t − ¯̃Zti |2dt] + ∆tiE

[
| ¯̃Zti −

̂̃Zti |2]. (A.13)

Integrate equation (2.2) over time interval [ti, ti+1] multiplied by ∆Wti and ∆Bti respectively.

This together with (A.6) gives

∆ti

(
¯̃Zti −

̂̃Zti) =Ei

[
∆Wti

(
Yti+1 − Ûi+1(Xti+1)− Ei[Yti+1 − Ûi+1(Xti+1)]

)]
+ Ei

[
∆Wti

∫ ti+1

ti

Ft(e
Xt , Yt, Zt, Z̃t)dt

]
,

∆ti

(
Z̄ti − Ẑti

)
=Ei

[
∆Bti

(
Yti+1 − Ûi+1(Xti+1)− Ei[Yti+1 − Ûi+1(Xti+1)]

)]
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+ Ei

[
∆Bti

∫ ti+1

ti

Ft(e
Xt , Yt, Zt, Z̃t)dt

]
.

Standard computations further indicate that

∆tiE
[
|Z̄ti − Ẑti |2

]
≤2
(
E|Yti+1 − Ûi+1(Xti+1)|2 − E|Ei[Yti+1 − Ûi+1(Xti+1)]|2

)
+ 2∆tiE

[∫ ti+1

ti

|Ft(eXt , Yt, Zt, Z̃t)|2dt
]

; (A.14)

it follows similarly for Z̃. Then, by plugging (A.13) and (A.14) into (A.12), and choosing

γ = 20L2
2, we have

E
[
|Yti − V̂ti |2

]
≤ (1 + γ∆ti)E

[
|Ei
[
Yti+1 − Ûi+1(Xti+1)

]
|2
]

+ 5(1 + γ∆ti)
L2

2

γ

{
Cρ(|π|)|π|+ 2∆tiE|Yti − V̂ti |2

+ E

[∫ ti+1

ti

(
|Zt − Z̄ti |2 + |Z̃t − ¯̃Zti |2

)
dt

]
+ 4
(
E|Yti+1 − Ûi+1(Xti+1)|2

− E
[
|Ei[Yti+1 − Ûi+1(Xti+1)]|2

])
+ 4∆tiE

[∫ ti+1

ti

|Ft(eXt , Yt, Zt, Z̃t)|2dt
]}

≤ Cρ(|π|)|π|+ (1 + γ∆ti)E|Yti+1 − Ûi+1(Xti+1)|2 + C∆tiE|Yti − V̂ti |2

+ CE

[ ∫ ti+1

ti

(
|Zt − Z̄ti |2 + |Z̃t − ¯̃Zti |2

)
dt

]
+ C∆tiE

[ ∫ ti+1

ti

|Ft(eXt , Yt, Zt, Z̃t)|2dt
]
, (A.15)

which implies (A.11) when |π| is sufficiently small.

Step 2. We prove the estimate for the Y -component in (A.10), i.e.,

max
i=0,...,N−1

E|Yti − Ûi(Xti)|2 ≤ Cρ(|π|) + CE|G(XT )−G(XT )|2 + CεZ(π) + CεZ̃(π)

+ C

N−1∑
i=0

(NεN ,vi + εN ,zi + εN ,z̃i ). (A.16)

Indeed, using Young inequality of the form:

(a+ b)2 ≥ (1− |π|)a2 +

(
1− 1

|π|

)
b2 ≥ (1− |π|)a2 − 1

|π|
b2,

we have

E|Yti − V̂ti |2 = E|Yti − Ûi(Xti) + Ûi(Xti)− V̂ti |2

≥ (1− |π|)E|Yti − Ûi(Xti)|2 −
1

|π|
E|Ûi(Xti)− V̂ti |2. (A.17)

Plugging the above inequality into (A.11) and letting |π| be small enough yield that

E|Yti − Ûi(Xti)|2

≤ Cρ(|π|)|π|+ (1 + C|π|)E|Yti+1 − Ûi+1(Xti+1)|2 + CE

[ ∫ ti+1

ti

(
|Zt − Z̄ti |2 + |Z̃t − ¯̃Zti |2

)
dt

]
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+ C|π|E
[ ∫ ti+1

ti

|Ft(eXt , Yt, Zt, Z̃t)|2dt
]

+ CNE|V̂ti − Ûi(Xti)|2. (A.18)

Recalling YtN = G(XT ) and Ûi(XtN ) = G(XT ), and (A.3), we may use the discrete Gronwall’s

inequality to reach the following estimate:

max
i=0,...,N−1

E|Yti − Ûi(Xti)|2

≤ C

{
ρ(|π|) + |π|+ E|G(XT )−G(XT )|2 + εZ(π) + εZ̃(π) +N

N−1∑
i=0

E|Ûi(Xti)− V̂ti |2
}
,

(A.19)

which combined with Lemma A.1 gives (A.16).

Step 3. We prove the estimate for the (Z, Z̃)-component in (A.10), i.e.,

E

[
N−1∑
i=0

∫ ti+1

ti

(
|Zt − Ẑi(Xti)|2 + |Z̃t − ̂̃Z i(Xti)|2

)
dt

]

≤ C

{
εZ(π) + εZ̃(π) + ρ(|π|) + |π|+ E|G(XT )−G(XT )|2 +

N−1∑
i=0

(NεN ,vi + εN ,zi ),+εN ,z̃i )

}
.

From (A.13) and (A.14), it follows that for any i = 0, ..., N − 1,

E[

∫ ti+1

ti

|Zt − Ẑti |2dt]

≤ E
[∫ ti+1

ti

|Zt − Z̄ti |2dt
]

+ 2
(
E|Yti+1 − Ûi+1(Xti+1)|2 − E|Ei[Yti+1 − Ûi+1(Xti+1)]|2

)
+ 2|π|E

[∫ ti+1

ti

|Ft(eXt , Yt, Zt, Z̃t)|2dt
]
.

which, together with (A.3), gives

E

[
N−1∑
i=0

∫ ti+1

ti

|Zt − Ẑti |2dt

]
≤ εZ(π) + 2E|G(XT )−G(XT )|2 + 2

N−1∑
i=0

(
E|Yti − Ûi(Xti)|2

− E|Ei[Yti+1 − Ûi+1(Xti+1)]|2
)

+ C|π|, (A.20)

where the indices are changed in the last summation. Analogously,

E

[
N−1∑
i=0

∫ ti+1

ti

|Z̃t − ̂̃Zti |2dt
]
≤ εZ̃(π) + 2E|G(XT )−G(XT )|2 + 2

N−1∑
i=0

(
E|Yti − Ûi(Xti)|2

− E|Ei[Yti+1 − Ûi+1(Xti+1)]|2
)

+ C|π|. (A.21)

Notice that by (A.12) and (A.17) we have

2
(
E|Yti − Ûi(Xti)|2 − E|Ei[Yti+1 − Ûi+1(Xti+1)]|2

)
≤ 2

1− |π|

{
(1 + γ∆ti)E

[
|Ei[Yti+1 − Ûi+1(Xti+1)]|2

]
+ 5(1 + γ∆ti)

L2
2

γ

(
Cρ(|π|)|π|
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+ 2|π|E|Yti − V̂ti |2 + E
[ ∫ ti+1

ti

|Zt − Ẑti |2dt
]

+ E
[ ∫ ti+1

ti

|Z̃t − ̂̃Zti |2dt])}
+

3

|π|(1− |π|)
E|Ûi(Xti)− V̂ti |2. (A.22)

Take γ = 50L2
2 so that

10L2
2

γ (1 + γ|π|)/(1 − |π|) ≤ 1/4 for |π| small enough and notice that

[(1 + γ|π|)/(1− |π|)− 1] = O(|π|). This together with (A.3), (A.9), (A.11), (A.16), and (A.20),
yields

1

2
E

[
N−1∑
i=0

∫ ti+1

ti

(
|Zt − Ẑti |2 + |Z̃t − ̂̃Zti |2) dt

]
≤ εZ(π) + εZ̃(π) + C max

i=0,...,N
E|Yti − Ûi(Xti)|2 + Cρ(|π|) + CE|G(XT )−G(XT )|2

+ C|π|
N−1∑
i=0

E|Yti − V̂ti |2 + CN

N−1∑
i=0

E|Ûi(Xti)− V̂ti |2 + C|π|

≤ εZ(π) + εZ̃(π) + C max
i=0,...,N

E|Yti − Ûi(Xti)|2 + Cρ(|π|) + C|π|

+ C|π|
N−1∑
i=0

{
Cρ(|π|)|π|+ CE

[ ∫ ti+1

ti

(
|Zt − Z̄ti |2 + |Z̃t − ¯̃Zti |2

)
dt

]
+ (1 + C|π|)E|Yti+1

− Ûi+1(Xti+1
)|2 + C|π|E

[ ∫ ti+1

ti

|F (t,Xt, Yt, Zt, Z̃t)|2dt
]}

+ CN

N−1∑
i=0

E|Ûi(Xti)− V̂ti |2

≤ C
{
εZ(π) + εZ̃(π) + ρ(|π|) + |π|+ E|G(XT )−G(XT )|2 +

N−1∑
i=0

(NεN ,vi + εN ,zi + εN ,z̃i )

}
. (A.23)

Finally, noticing the relations

E

[∫ ti+1

ti

∣∣∣Zt − Ẑi (Xti)
∣∣∣2 dt

]
≤ 2E

[∫ ti+1

ti

∣∣∣Zt − Ẑti∣∣∣2 dt

]
+ 2∆tiE

∣∣∣Ẑti − Ẑi (Xti)
∣∣∣2 ,

E

[∫ ti+1

ti

∣∣∣Z̃t − ̂̃Z i (Xti)
∣∣∣2 dt

]
≤ 2E

[∫ ti+1

ti

∣∣∣∣Z̃t − ̂̃Zti∣∣∣∣2 dt

]
+ 2∆tiE

∣∣∣∣ ̂̃Zti − ̂̃Z i (Xti)

∣∣∣∣2 ,
and using (A.9), (A.23), we obtain by summing over i = 0, ..., N − 1, the desired error estimate

for the (Z, Z̃)-component, completing the proof.

Finally, we prove the claim in Lemma A.1.

Proof of Lemma A.1. Fix i ∈ {0, ..., N−1}.Using relation (A.8) in the expression of the expected

quadratic loss function, and recalling the definitions of Ẑti and ̂̃Zti as L2-projection of Ẑt and̂̃Zt, we have for all parameters θ of the neural networks Ui(.; θ), Zi(.; θ), and Z̃i(.; θ),

L̂i(θ) = L̃i(θ) + E

[∫ ti+1

ti

(∣∣∣Ẑt − Ẑti∣∣∣2 +

∣∣∣∣ ̂̃Zt − ̂̃Zti∣∣∣∣2
)

dt

]
, (A.24)

with

L̃i(θ) :=E

[
|V̂ti − Ui(Xti ; θi)
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+ (Fti(e
Xti ,Ui(Xti ; θ),Zi(Xti ; θi), Z̃i(Xti ; θi))− Fti(eXti , V̂ti , Ẑti ,

̂̃Zti))∆ti|2]
+ ∆tiE

[
|Ẑti −Zi(Xti ; θi)|2

]
+ ∆tiE

[
| ̂̃Zti − Z̃i(Xti ; θi)|2

]
. (A.25)

By using Young inequality: (a+ b)2 ≤ (1 + γ∆ti)a
2 + (1 + 1

γ∆ti
)b2, together with the Lipschitz

condition on F in (H1), we see that

L̃i(θ) ≤ (1 + C∆ti)E|V̂ti − Ui(Xti ; θi)|2

+ C∆tiE

[
|Ẑti −Zi(Xti ; θi)|2 + | ̂̃Zti − Z̃i(Xti ; θi)|2

]
. (A.26)

On the other hand, using Young inequality in the form: (a+ b)2 ≥ (1−γ∆ti)a
2 + (1− 1

γ∆ti
)b2 ≥

(1− γ∆ti)a
2 − 1

γ∆ti
b2, together with the Lipschitz condition on F , gives

L̃i(θ) ≥(1− γ∆ti)E|V̂ti − Ui(Xti ; θi)|2 −
3∆tiL

2
2

γ

(
E|V̂ti − Ui(Xti ; θi)|2 + E|Ẑti −Zi(Xti ; θi)|2

+ E| ̂̃Zti − Z̃i(Xti ; θi)|2
)

+ ∆tiE|Ẑti −Zi(Xti ; θi)|2 + ∆tiE| ̂̃Zti − Z̃i(Xti ; θi)|2. (A.27)

Choosing γ = 6L2
2, this yields

L̃i(θ) ≥ (1−C∆ti)E|V̂ti−Ui(Xti ; θi)|2 +
∆ti
2
E

[
|Ẑti−Zi(Xti ; θi)|2 + | ̂̃Zti−Z̃i(Xti ; θi)|2

]
. (A.28)

For each i ∈ {0, . . . , N − 1}, take θ∗i ∈ arg minθ L̂i(θ) so that Ûi = Ui(·; θ∗i ), Ẑi = Zi(·; θ∗i ), and̂̃Z i = Z̃i(·; θ∗i ). As the second term of the right hand side of (A.24) is independent of parameters

θi, it also holds that θ∗i ∈ arg minθ L̃i(θ). Combining (A.28) and (A.26) implies that for all θ

(1− C∆ti)E|V̂ti − Ûi(Xti)|2 +
∆ti
2
E

[
|Ẑti − Ẑi(Xti)|2 + | ̂̃Zti − ̂̃Z i(Xti)|2

]
≤ L̃i(θ∗i ) ≤ L̃i(θ)

≤ (1 + C∆ti)E|V̂ti − Ui(Xti ; θi)|2 + C∆tiE

[
|Ẑti −Zi(Xti ; θi)|2 + | ̂̃Zti − Z̃i(Xti ; θi)|2

]
.

(A.29)

By (A.7), letting |π| be sufficiently small gives (A.9).
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