
1

Initialization and Curing Policies for Polya Contagion Networks∗

Greg Harrington, Fady Alajaji and Bahman Gharesifard

Abstract

This paper investigates optimization policies for resource distribution in network epidemics using a model that
derives from the classical Polya process. The basic mechanics of this model, called the Polya network contagion
process, are based on a modified urn sampling scheme that accounts for both temporal and spatial contagion between
neighbouring nodes in a network. We present various infection metrics and use them to develop two problems: one
which takes place upon initialization and one which occurs continually as the Polya network process develops. We
frame these problems as resource allocation problems with fixed budgets, and analyze a suite of potential policies.
Due to the complexity of these problems, we introduce effective proxy measures for the average infection rate in each
case. We also prove that the two-sided infection-curing game on the so-called expected network exposure admits
a Nash equilibrium. In both the curing and initialization scenarios, we introduce heuristic policies that primarily
function on the basis of limiting the number of targeted nodes within a particular network setup. Simulations are run
for mid-to-large scale networks to compare performance of our heuristics to provably convergent gradient descent
algorithms run on the simplified proxy measures.

Index Terms

Network epidemics; interacting Polya urn models; processes with reinforcement; temporal and spatial contagion;
initialization and curing policies.

I. INTRODUCTION

The study of epidemics on networks is an active research topic, e.g., see [1]–[3] and the references therein.

Real-life examples include the propagation of burst errors in a wireless communication channel [4], of a biological

disease through a population [5], of malware in computer or smartphone systems [6], and the dissemination of

rumors [7] and competing opinions [8] in social networks.

Controlling the spread of contagion in networks has been thoroughly investigated for various systems, including

the well-known Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR) epidemics mod-

els [2] and extensions [9], models based on real epidemic data [10], as well as cascade models [1]. Other problem

formulations address link removal via immunization [11], optimization of curing resources [12], message-passing

methods [13], optimal control under performance and resource usage trade-offs [14], [15], and competing or co-

evolving contagions within networks [16]–[20]. We herein study initialization and curing strategies and related

game-theoretic problems for the (infinite-memory) Polya network contagion model introduced in [21], [22].

The classical Polya process [23]–[25] is a temporal contagion process that evolves through a method of sampling

from a single urn containing a finite number of red and black balls, representing units of “infection” and “health-

iness,” respectively. This model has been used in applications such as consensus dynamics [26] and generalized

for various other purposes [27], [28]. The Polya network contagion process [21], [22], generalizes this sampling

scheme to a general network, where each node is equipped with its own urn, by allowing for spatial interactions

between neighbouring nodes. This is realized by introducing “super urns,” which are allocated for each network

∗Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada (12gth@queensu.ca,
fa@queensu.ca, bahman.gharesifard@queensu.ca).
The work of the authors was funded by the National Science Foundation of Canada. The last author wishes to thank the Alexander von
Humboldt Foundation for their generous support.

ar
X

iv
:2

00
8.

01
78

2v
1

 [
m

at
h.

O
C

]
 4

 A
ug

 2
02

0

2

node and contain red and black balls from both a node’s individual urn as well as those of neighbouring nodes [21],

[22]. In addition to temporal contagion, this modification generates spatial contagion not present in the classical

model.

The resulting Polya model for network contagion [21], [22] is similar to the SIS model [1], [29], [30]. The Polya

model can be operated in two modes: an infinite-memory mode where the reinforcing balls added at each time

step remain permanently in the underlying urn of each node, and a finite-memory mode where the added balls

at a given time step remain in the system only for a fixed number of future time steps (this mode results in a

finite-order Markov network contagion process). While it was empirically observed in [22] that the Polya network

contagion model can mimic the behaviour of the SIS process, particularly in the finite-memory (Markovian) mode,

there are some notable differences between the two models. For example, the Polya model benefits from exactly

computable expressions for the joint and marginal probabilities of infection of its discrete-time contagion process,

while the underlying (or exact) Markov process of the SIS model is typically represented and analyzed via a

dynamical system using mean-field approximations; e.g., see [2], [30]–[32]. Furthermore, the Polya model captures

the network contagion process at a microscopic level by associating an urn to each node, whose composition of red

and black balls at each time step represents a granular profile for the degree of infection and healthiness of that node,

which upon interaction with urns of nodes in proximity, results in infected/healthy states with each super urn draw.

This allows us to minutely and analytically capture the stochastic evolution of the network-wide contagion process.

Finally, the underlying discrete-time Markov chain of the SIS model has an absorbing (all healthy or disease-free)

state [31], while the Polya model does not in general* as its contagion process is symbiotically generated from its

initial state (of red/black ball mixtures in the individual urns of the network nodes) via the Polya ball sampling

mechanism.

In this paper, we examine resource allocation problems for the (infinite-memory) Polya network contagion process.

The first problem considers a one-time application of a control policy upon initialization of the network, while the

second concerns the continual distribution of resources as the network contagion process develops. More specifically,

the initialization problem concerns one party judiciously controlling the distribution of resources in an effort to

minimize the average network-wide infection rate. This is a novel preemptive infection mitigation problem, not

typically considered in SIS models, due to the Polya model’s inherent characteristics where contagion organically

develops and propagates from initial network conditions. Resources in this case concern the distribution of red

and black balls within a network, prior to any draws taking place. We focus on the one-sided finite horizon case,

wherein a player controls the allocation of black balls according to a fixed budget, with the goal of minimizing

the average infection rate at some fixed point in the future. We provide a series of results showing that optimal

policies for this problem satisfy two conditions: nested nodes will receive no resources, and symmetric red ball

initializations will yield symmetric black ball initializations (the specifics of what is meant by “symmetry” in this

case is further detailed using fundamental ideas from graph theory). Since determining the average infection rate

at time n ≥ 1 becomes increasingly complex as n increases, we use the average infection rate at time n = 1 to

simplify the problem, and we prove that under certain conditions this proxy measure admits an optimal policy.

*The Polya model is more general than the exact SIS Markov process in terms of allowing different asymptotic behaviours for the contagion
process. For example, in the finite-memory M mode with homogeneous parameters, the Polya network contagion process is an M ’th order
irreducible and aperiodic Markov chain with a unique stationary distribution that is not necessarily the all-healthy state with probability one.

3

An algorithm to obtain such an optimal policy using gradient descent is given and used as a base with which we

compare our own heuristic policies. We detail three varieties of heuristic policies, each of which works on the basis

of limiting our set of viable target nodes. The first set of policies target the set of “inner nodes”, the second works

through a layered application of this inner node targeting technique, and the last works by iteratively targeting

the most central nodes until full network coverage (either direct or indirect) is obtained. We provide two different

algorithms for determining these target sets and variations based on previously tested heuristics (see [33]).

The second control problem, referred to as the “infection-curing problem” or the “Delta-curing problem,” concerns

reactive intervention policies deployed during the progress of contagion in the network. In this setup, which is an

extension of the contagion curing problem studied in [33], we define a two-player game on the average infection

rate for a given network. Prior work on competitive dynamics over SIS and social networks include [16] and [17],

respectively. In order to simplify the problem of finding optimal control policies, we consider a game on the proxy

measure of the expected network exposure. We show that the expected network exposure is convex as a function of

the curing parameters and concave as a function of the infection parameters. We prove that under budget constraints,

there exists a deterministic Nash equilibrium [34] for the game on the expected network exposure, which can be

determined using gradient descent algorithms. We also develop a set of heuristic policies for the Delta-curing

problem using the same methods as in the initialization case. We next provide simulations to demonstrate the

performance of the proposed heuristics for the initialization and curing problems on both sparse and dense large-

scale networks. These policies are compared to optimal policies for the one-step proxy measures.

The rest of the paper is organized as follows. In Section II, we describe in sufficient detail the (infinite-memory)

Polya network contagion process [22]. The initialization and infection-curing problems are theoretically investigated

in Sections III and IV, respectively. Heuristic optimization strategies for the above problems are developed in

Section V and simulation results are presented in Section VI. Finally, conclusions are stated in Section VII.

II. POLYA NETWORK CONTAGION

We devote this section to some background on the classical Polya urn process and the (infinite-memory) Polya

network contagion process under study. Throughout, a number of results are derived using standard probability

concepts, which can be found in various texts including [35], [36]. Herein, let (Ω,F , P) be a probability space.

Consider the stochastic process {Zn}∞n=1, where Zn = (Z1,n, . . . , ZN,n) is a random vector on Ω. Here we think

of the process indices as time indices, while the vector indices delineate spatial indices (to distinguish nodes

within a network). For i = 1, . . . , N , we write the n-tuple (Zi,1, . . . , Zi,n) as Zni , and more generally, we write

Zti,s = (Zi,s, Zi,s+1, . . . , Zi,t) for s < t.

A. Classical Polya Process [23]–[25]

An urn initially contains T = R + B balls of which R ∈ Z>0 are red and B ∈ Z>0 black. At each time, n, a

ball is drawn from the urn and returned with ∆ > 0 balls of the same colour. The random variable Zn is used to

indicate the colour of the ball on the nth draw, where

Zn =

1 if the nth draw is red

0 if the nth draw is black.

4

We can then use Un to denote the proportion of red balls in the urn after the nth draw, where

Un :=
R+ ∆

∑n
t=1 Zt

T + n∆
=
ρc + δc

∑n
t=1 Zt

1 + nδc
.

Here ρc = R
T is the initial proportion of red balls in the urn and δc = ∆

T is a correlation parameter. The conditional

probability of drawing a red ball at time n , given the past history of draws Zn−1 := (Z1, . . . , Zn−1), is given by

P (Zn = 1 | Zn−1) =
R+ ∆

∑n−1
t=1 Zt

T + (n− 1)∆
= Un−1. (1)

Additionally, we note that the process {Zn}∞n=1 is exchangeable (thus stationary) and non-ergodic and that both

Un and the process sample average 1
n

∑n
t=1 Zt converge almost surely (a.s.) to a random variable governed by a

Beta distribution with parameters ρc
δc

and 1−ρc
δc

[25], [37]. Variations on this model have been explored in a number

of other works. We focus exclusively on an adaptation of this model first introduced in [21] and further explored

in [22], [33], designed as a network process that introduces spatial contagion to the classical temporal contagion

process presented above.

B. Polya Network Contagion Process

We now review the Polya network contagion process [21], [22]. Let G = (V, E) be a graph, where V = {1, . . . , N}
is the set of N ∈ Z>0 nodes and E ⊂ V × V is the set of edges. Throughout, G is taken to be undirected, i.e.,

(i, j) ∈ E if and only if (j, i) ∈ E for all i, j ∈ V , and is assumed to be connected, i.e., there exists a series of

edges connecting any two nodes in G. The set of neighbours to node i is given by Ni = {v ∈ V : (i, v) ∈ E}.
We then define N ′i = {i} ∪ Ni. Each node i ∈ V is assigned an urn with Ri ∈ Z≥0 red balls and Bi ∈ Z≥0

black balls, with the total number of balls at node i denoted by Ti = Ri + Bi. We denote the black and red ball

initializations by the vectors B := (B1, . . . , BN) and R := (R1, . . . , RN), respectively. We will refer to B as the

curing initialization and R as the infection initialization.

We next introduce the concept of a super urn for a given node i, which contains the red and black balls at node

i as well as the red and black balls of each of its neighbouring nodes. This concept is illustrated in Figure 1. For

each node i ∈ V , we use R̄i =
∑

j∈N ′i Rj and B̄i =
∑

j∈N ′i Bj to denote the number of red and black balls,

respectively, in node i’s super urn, and we assume throughout that R̄i + B̄i > 0 for all i ∈ V (to ensure that

the super urn associated to each node is non-empty). The total number of balls in the ith super urn is given by

T̄i = R̄i + B̄i. Similar to the classical Polya process, a draw is conducted for each node at each time, and then

a number of balls of the same colour is added to that node’s individual urn. In this case, however, the draw is

conducted on the super urn of each node. As well, we may allow for the number of added balls to vary based on

which node the draw was for, the colour of the draw, and the time at which the draw occurred. Thus, for node i

at time n, if a red ball is drawn, we add ∆r,i(n) red balls to node i’s individual urn, and if a black ball is drawn,

we add ∆b,i(n) black balls to node i’s individual urn. We also assume that there exists i ∈ V and n such that

∆b,i(n) + ∆r,i(n) > 0. We let Zi,n indicate the colour of the nth draw for node i:

Zi,n =

1 if the nth draw for node i is red

0 if the nth draw for node i is black.

5

Translating the above parameters to the framework of an epidemic in a population, black and red balls represent

units of “healthiness” (such as white blood cells) and “infection” (such as bacteria or viruses), respectively [22]. In

the super urn of a given node (such as a “person” or an “organism”), white blood cells (resp., bacteria) combine

to improve (resp., impair) the overall health in the node’s neighborhood. Drawing red at time n from the super urn

means that the bacteria in the neighborhood were successful in replicating, making the individual more infected or

less immune; otherwise, they were healthier since the white blood cells reproduced (as balls of the the same color

as the drawn balls are added). Thus, when Zi,n = 1, we declare that node i is infected at time n, and if Zi,n = 0,

then it is healthy. We refer to {∆b,i(n)}∞n=1 as the curing parameters and {∆r,i(n)}∞n=1 as the infection parameters

for node i. From an urn-sampling point of view, these ∆’s are nonnegative integers; however, we allow them to be

nonnegative real-valued numbers for mathematical convenience (e.g., when determining optimal control policies).

We will likewise do the same for the initialization parameters B and R. Ultimately, the collection of draw values

Node 1’s super urn

1

2 3

4
5 6

7

Fig. 1. Illustration of a super urn in a network [38].

at each time step form our Polya network contagion process, represented as {Zn}∞n=1, where Zn represents the

vector (Z1,n, . . . , ZN,n). If desired, we can also separate out the individual draw process {Zi,n}∞n=1 for a given

node i. We introduce some metrics to measure the infection spread in the network.

Similar to the classical Polya process, we use Ui,n to denote the proportion of red balls in node i’s urn after the

nth draw. Letting

Xi,n = Ti +

n∑
t=1

∆r,i(t)Zi,t + ∆b,i(t)(1− Zi,t) (2)

with Ti > 0, represent the total number of balls in node i’s urn after the nth draw, we can write

Ui,n =
Ri +

∑n
t=1 ∆r,i(t)Zi,t
Xi,n

. (3)

We note that Ui,0 = Ri
Ti

represents the initial (at time n = 0) proportion of red balls in node i’s individual urn.

Though for the classical Polya process the individual urn proportion is commonly used in the analysis, in this case,

the information we gain through this value is limited by the fact that our draws are performed on the super urns

for each node, rather than the urns for the individual nodes themselves. We therefore also need a metric to measure

the proportion of red balls in the super urn of node i at time n, which we denote by Si,n. This proportion is given

6

by the equation

Si,n =
R̄i +

∑
j∈N ′i

∑n
t=1 ∆r,j(t)Zj,t∑

j∈N ′i Xj,n
=

∑
j∈N ′i Uj,nXj,n∑
j∈N ′i Xj,n

. (4)

Like for the individual node proportions at time n = 0, we use the convention Si,0 = R̄i
T̄i

. This is simply

representative of the proportion of red balls in node i’s super urn when the process is initialized. We next define

Ũn =
1

N

N∑
i=1

Ui,n,

which we refer to as the network susceptibility, and

S̃n =
1

N

N∑
i=1

Si,n,

which we refer to as the network exposure. Both the network susceptibility and network exposure are functions of

the underlying network contagion process {Zn}∞n=1, as are the respective measures for each node. In general, for

notational ease, we will omit these arguments, unless otherwise noted. For example, for a given node i, we will

write Si,n rather than Si,n({Znj }Nj=1).

We next calculate infection probabilities within the network, i.e., the likelihood of drawing red balls. To start,

the conditional probability of drawing a red ball for node i at time n , given the past history of draws for all the

nodes

{Zn−1
j }Nj=1 := {(Z1,1, . . . , Z1,n−1), . . . , (ZN,1, . . . , ZN,n−1)},

is given by

P
(
Zi,n = 1|{Zn−1

j }Nj=1

)
=
R̄i +

∑
j∈N ′i

∑n−1
t=1 ∆r,j(t)Zj,t∑

j∈N ′i Xj,n−1
= Si,n−1. (5)

This is analogous to (1) of the classical Polya process, except that for the network contagion process this conditional

probability is represented by the super urn proportion rather than the individual urn proportion. We also need an

unconditioned version of this equation. The n-fold joint probability of the network G, which is a function defined

for each specific draw history ani ∈ {0, 1}n, i ∈ V , can be written as

P
(n)
G (an1 , . . . , a

n
N) := P ({Zni = ani }Ni=1)

=

n∏
t=1

P ({Zi,t = ai,t}Ni=1|{Zt−1
i = at−1

i }
N
i=1)

=

n∏
t=1

N∏
i=1

(Si,t−1)ai,t(1− Si,t−1)1−ai,t . (6)

It is important to note here that the draw value of different nodes at a given time t are independent when conditioned

on the history of the process up to that point, thus allowing us to write P (n)
G in the form above. Finally, we introduce

7

the metric

Ĩn :=
1

N

N∑
i=1

P (Zi,n = 1), (7)

which we call the average infection rate at time n. Since P (Zi,n = 1) represents the marginal probability that

a node i is infected at time n, the average infection rate gives us the network-wide average of seeing infection

within a node. Thus, this value represents the marginal probability that a randomly selected node within the network

is infected at time n. In most cases where we look to study the asymptotic behaviour of the network contagion

process, we do so in regard to this metric.

We can further break down (7) by noting that

P (Zi,n = 1) =
∑

{an−1
j }Nj=1

P (Zi,n = 1|{Zn−1
j = an−1

j }Nj=1)P ({Zn−1
j = an−1

j }Nj=1)

=
∑

{an−1
j }Nj=1

Si,n−1({an−1
j }Nj=1)P

(n−1)
G ({an−1

j }Nj=1), (8)

where the summation is over all possible draw histories an−1
j ∈ {0, 1}n−1, j ∈ V .

Each of these measures, Ũn, S̃n, and Ĩn,are closely related to one another and can be useful in various situations.

However, all of these values are network-specific as in general all three depend in some way on the underlying

network topology and the initial ball distributions. The quantity Ĩn is particularly difficult to analyze, and hence

we often resort to using alternative measures that allow us to simplify our analysis or gain insight into how Ĩn

behaves.

By inspecting (3) and (4), it is clear that an increase in the node-specific proportion of red balls increases the

super urn proportion of red balls in all neighbouring nodes. Likewise, if we consider how (5) relates to (8), it would

make sense that an increase in the super urn proportion would also lead to an increase in the marginal network-wide

infection rate; we further discuss these observations in later sections. For now, we have that

↑ Ui,n =⇒ ↑ Sj,n for all j ∈ N ′i ,

and since Ĩn is essentially the marginal version of the conditional S̃n, we often start our analysis by using S̃n in

place of Ĩn, without losing significant information.

III. INITIALIZATION PROBLEMS

When we consider the problem of limiting the spread of infection for the Polya network contagion model, there

are different ways to implement a curing policy. One method is to control the allocation of our curing parameters

{∆b,i(n)}Ni=1 at each time n, which we explore in Section IV. We can, alternatively, control how the process is

initialized. This is where we currently draw our focus for discussion.

The initialization parameters B ∈ RN≥0 and R ∈ RN≥0 can be tailored to alter the evolution of the Polya network

contagion process for a given network. The goal is to determine how to allocate such resources so as to achieve

a more desirable result, and determine whether or not a theoretically optimal initial allocation policy exists. Such

optimizations may be performed for either or both sets of initialization parameters subject to an initialization budget

8

B ∈ R≥0. We start with a formal setup for the one-sided initialization problem, wherein we aim to minimize the

average infection rate for a given time n over the black ball initialization parameters B subject to a budget Bb.
Throughout this section we assume the initial distribution of red balls R is fixed such that R̄i > 0 for all i ∈ V .

Problem 1: (One-Sided Finite Horizon Constrained Budget Initialization): For a fixed time n, minimize the

average infection rate Ĩn subject to a budget Bb on the curing initialization B = (B1, . . . , BN), i.e., find:

min
{Bi}Ni=1∈RN≥0:

∑N
i=1Bi≤Bb

Ĩn.

We remark that the problem above can be extended to the infinite horizon case, but for the purposes of our work,

we limit ourselves to a finite horizon. Moreover, one can establish a two-sided initialization problem, wherein the

objective is to minimize the average infection rate for a given n, but we do so over both sets of initialization

parameters B and R. We, however, only focus on Problem 1 in this work.

We first consider Problem 1 for n = 1. We have

Ĩ1 =
1

N

N∑
i=1

P (Zi,1 = 1) =
1

N

N∑
i=1

R̄i
R̄i + B̄i

. (9)

As a function of the initialization parameters, Ĩ1 is well-defined over {(B,R) ∈ R2N
≥0 |B̄i + R̄i 6= 0, ∀i ∈ V }.

Furthermore, Ĩ1 is convex in B and concave in R. We use the form of (9) to provide some simplifications regarding

solutions to Problem 1 for n = 1. We will then extend these results to a general time n.

A. Outer Node Allocation

We first show that for the one-sided initialization problem (Problem 1) with n = 1, nodes with a nested

neighbourhood (i.e., nodes with neighborhood N ′ contained in the neighborhood of another node) can be ignored.

We refer to such nodes as “outer nodes” due to their topological location.

Lemma 1: For a general network G = (V, E) equipped with the Polya network contagion model, if for any nodes

i, j ∈ V we have N ′i ⊂ N ′j , then it can be assumed that Bi = 0 when minimizing Ĩ1 over the initial distribution

of black balls. Likewise, we can assume Ri = 0 when maximizing Ĩ1 over the initial distribution of red balls.

Proof: Consider a given initial distribution of black balls B = (B1, . . . , BN), and red balls R = (R1, . . . , RN).

As written in (9), we have

Ĩ1 =
1

N

N∑
k=1

R̄k
R̄k + B̄k

.

Without loss of generality, assume that N ′1 ⊂ N ′2, and let the distribution B∗ = (0, B1 + B2, B3, . . . , BN) be an

alternative curing initialization. For a given node k ∈ V , we have 3 cases to consider:

1) k ∈ N ′1 =⇒ k ∈ N ′2;

2) k /∈ N ′1 and k ∈ N ′2;

3) k /∈ N ′2 =⇒ k /∈ N ′1.

For cases 1 and 3, note that
∑

l∈N ′k Bl =
∑

l∈N ′k B
∗
l . For case 2, we have

∑
l∈N ′k Bl ≤

∑
l∈N ′k B

∗
l with equality if

9

and only if B1 = 0. Denoting B̄∗k =
∑

l∈N ′k B
∗
l , we have

R̄k
R̄k + B̄k

≥ R̄k
R̄k + B̄∗k

, ∀k ∈ V .

Therefore, for Ĩ1 as a function of the initial distribution of black balls we have that Ĩ1(B∗) ≤ Ĩ1(B). The proof

for the maximization case follows similarly.

To extend Lemma 1 for general n, we derive the following intermediate results.

Lemma 2: Consider two sequences of draw values {anj }Nj=1 and {bnj }Nj=1, where both sequences are equal, except

for some (k, s) ∈ V ×{1, . . . , n}, where ak,s = 1 and bk,s = 0. Then P (Zi,n+1 = 1|{Znj = anj }Nj=1) ≥ P (Zi,n+1 =

1|{Znj = bnj }Nj=1), for all i ∈ V .

Proof: Assume that k ∈ N ′i (note that if this is not the case, the two values we wish to compare are equal).

Let

y =
∑
j∈N ′i

n∑
t=1

aj,t∆r,j(t) x =
∑
j∈N ′i

n∑
t=1

(1− aj,t)∆b,j(t).

Then letting y∗ = y −∆r,k(s), and x∗ = x+ ∆b,k(s), we obtain

P (Zi,n+1 = 1|{Znj = anj }Nj=1) ≥ R̄i + y

R̄i + B̄i + y + x∗

≥ R̄i + y∗

R̄i + B̄i + y∗ + x∗

= P (Zi,n+1 = 1|{Znj = bnj }Nj=1).

Intuitively, this result states that the process is self-reinforcing; i.e., higher rates of infection increase the likelihood

of the infection recurring. We will use this lemma in the proof of Lemma 3.

Given the general form of Ĩn given in (7), we next compare the performance of two curing initializations, B and

B∗, in limiting the spread of infection. In order to differentiate between the resultant probabilities, we will use ∗

to denote any probability obtained using the curing initialization B∗, e.g., Ĩ∗n = Ĩn(B∗).

Lemma 3: For a general network G = (V, E) equipped with the Polya network contagion model with two different

curing initializations B = (B1, . . . , BN) and B∗ = (B∗1 , . . . , B
∗
N). If S∗i,t(a

t
1, . . . , a

t
N) ≤ Si,t(a

t
1, . . . , a

t
N) for all

(i, t) ∈ V × {1, . . . , n} and any sequence of draws an = (a1,s, . . . , aN,s)
n
s=1 ∈ {0, 1}N×n, then Ĩ∗n+1 ≤ Ĩn+1.

Proof: Let {Yi,t : t = 1, . . . , n, i = 1 . . . , N} be independent random variables each uniformly distributed on

the unit interval [0,1]. For all i = 1, . . . , N , let Zi,t and Z∗i,t be inductively defined for t = 1, . . . , n by

Zi,t =

1 if Yi,t ≤ Si,t−1({Zt−1
i }Ni=1)

0 otherwise,
(10)

and

Zi,t =

1 if Yi,t ≤ S∗i,t−1({Z∗,t−1
i }Ni=1)

0 otherwise.
(11)

10

Here we assume that Si,0 ≥ S∗i,0 for all i = 1 . . . , N . Note that since

P (Zi,t = 1|{Zt−1
i }Ni=1) = Si,t−1({Zt−1

i }Ni=1),

and P (Z∗i,t = 1|{Z∗,t−1
i }Ni=1) = S∗i,t−1({Z∗,t−1

i }Ni=1),

for all i = 1, . . . , N and t = 1, . . . , n, the processes have the required Polya network process distribution with

initializations B and B∗, respectively.

We claim that if for some t ∈ {1, . . . , n− 1} the sequence {Zt−1
i }Ni=1 dominates {Z∗,t−1

i }Ni=1, in the sense that

Zi,s ≥ Z∗i,s for all i = 1, . . . , N and s = 1, . . . , t− 1, then {Zti}Ni=1 dominates {Z∗,ti }Ni=1. To prove this claim, note

that by repeated application of Lemma 2, we have that

Si,t−1({Zt−1
i }Ni=1) ≥ S∗i,t−1({Z∗,t−1

i }Ni=1),

for all i = 1, . . . , N ; specifically, since Zi,s ≥ Z∗i,s means that either Zi,s = Z∗i,s or Zi,s = 1 and Z∗i,s = 0, Lemma 2

is applied K = |{(i, s) : Zi,s 6= Z∗i,s}| times. This, (10), and (11) then give Zi,t ≥ Z∗i,t, which in turn implies that

{Zti}Ni=1 dominates {Z∗,ti }Ni=1, finishing the proof of the claim.

To proceed with the proof of the result, by using the conclusion of the claim for t = 0, which vacuously holds

by the assumption that Si,0 ≥ S∗i,0 for all i = 1, . . . , N , we obtain Zi,1 ≥ Z∗i,1, i = 1, . . . , N . Applying now the

result of the claim inductively, for t = 2, . . . , n, we obtain that

Zi,t ≥ Z∗i,t, i = 1, . . . , N, t = 1, . . . , n

with probability one. Thus the event {Z∗i,t = 1} implies {Zi,t = 1} and so P (Z∗i,t = 1) ≤ P (Zi,t = 1), for all

i = 1, . . . , N and t = 1, . . . , n. Therefore Ĩ∗t ≤ Ĩ∗t , for all t = 1, . . . , n.

We can now use this result to extend Lemma 1 to the case of a general time n.

Theorem 1: For a general network G = (V, E) equipped with the Polya network contagion model, if for any nodes

i, j ∈ V we have N ′i ⊂ N ′j , then it can be assumed that Bi = 0 when minimizing Ĩn over the curing initialization.

Likewise, it can be assumed that Ri = 0 when maximizing Ĩn over the infection initialization.

Proof: Without loss of generality, assume N ′1 ⊂ N ′2. Consider the general form of Si,n(an1 , . . . , a
n
N):

R̄i +
∑

j∈N ′i
∑n

t=1 aj,t∆r,j(t)

R̄i + B̄i +
∑

j∈N ′i
∑n

t=1(aj,t∆r,j(t) + (1− aj,t)∆b,j(t))
. (12)

Letting B∗1 = 0, and B∗2 = B1 +B2, as in the proof of Lemma 1, we have for any i ∈ V that B̄∗i ≥ B̄i. Plugging

into (12) yields that S∗i,n ≤ Si,n for any realization of the draw process. This will hold for any i ∈ V and for any

time t. Applying Lemma 3 yields the desired result.

B. Symmetry

The next simplification we make regarding solutions to Problem 1 has to do with networks that possess “sym-

metry” properties, in a sense that we make precise shortly. We start with some preliminaries, referring the reader

to [39]–[41] for more details.

11

Definition 1: An automorphism of a graph G = (V, E) is a permutation σ of V , such that (u, v) ∈ E if and only

if (σ(u), σ(v)) ∈ E . The set of automorphisms of a given graph forms a group under the composition operation,

called the automorphism group of G and denoted Aut(G).

Definition 2: For a graph G = (V, E), if H ≤ Aut(G) is a subgroup of automorphisms of G, then u, v ∈ V are

similar under H if there exists an automorphism in H which maps u to v. Equivalence classes defined by similarity

under H are called orbits of the graph G by H . The sets of orbits by H form a partition of the vertices of G, called

an orbit partition.

If there exists an automorphism which maps between two different nodes, it means that those nodes are distinguish-

able only by their labels. For our purposes, “symmetry” between nodes is characterized by graph automorphisms,

and an orbit partition allows us to divide a network based on these symmetries. Our goal is to prove that under

certain conditions, sets of nodes that are similar under some H ≤ Aut(G) will be treated equivalently; i.e., they

will all be given the same number of resources by an optimal policy. We start with a preliminary result.

Lemma 4: Consider a general network G = (V, E) with a given initialization (B,R) = (B1, . . . , BN , R1, . . . , RN).

Suppose there exists a subset of nodes V ′ ⊂ V such that R̄i = R̄j for all i, j ∈ V ′. Now suppose we can find

some alternate curing initialization B∗ = (B∗1 , . . . , B
∗
N) such that B̄∗i = 1

|V ′|
∑

j∈V ′ B̄j for all i ∈ V ′. Then∑
i∈V ′ P

∗(Zi,1 = 1) ≤
∑

i∈V ′ P (Zi,1 = 1).

Proof: We prove this result by induction on |V ′|. Start with the base case, where |V ′| = 2. Consider two nodes

i, j ∈ V such that R̄i = R̄j . Let B̄∗i = B̄∗j = 1
2(B̄i + B̄j). We have

P (Zi,1 = 1) + P (Zj,1 = 1) =
R̄i

R̄i + B̄i
+

R̄i
R̄i + B̄j

, (13)

P ∗(Zi,1 = 1) + P ∗(Zj,1 = 1) =
2R̄i

R̄i + 1
2(B̄i + B̄j)

. (14)

The difference between (13) and (14) yields

R̄i
R̄i + B̄i

+
R̄i

R̄i + B̄j
− 2R̄i

R̄i + 1
2(B̄i + B̄j)

=R̄i

[
2R̄i + B̄i + B̄j

(R̄i + B̄i)(R̄i + B̄j)
− 2

R̄i + 1
2(B̄i + B̄j)

]

=R̄i

[
(2R̄i + B̄i + B̄j)(R̄i + 1

2(B̄i + B̄j))− 2(R̄i + B̄i)(R̄i + B̄j)

(R̄i + B̄i)(R̄i + B̄j)(R̄i + 1
2(B̄i + B̄j))

]

=R̄i

[
2R̄2

i + 2R̄i(B̄i + B̄j) + 1
2(B̄i + B̄j)

2 − 2R̄2
i − 2R̄i(B̄i + B̄j)− 2B̄iB̄j

(R̄i + B̄i)(R̄i + B̄j)(R̄i + 1
2(B̄i + B̄j))

]

=R̄i

[
1
2(B̄2

i + B̄2
j − 2B̄iB̄j)

(R̄i + B̄i)(R̄i + B̄j)(R̄i + 1
2(B̄i + B̄j))

]

=R̄i

[
1
2(B̄i − B̄j)2

(R̄i + B̄i)(R̄i + B̄j)(R̄i + 1
2(B̄i + B̄j))

]
≥ 0.

Now, consider a subset of nodes V ′ ⊂ V such that R̄i = R̄j for all i, j ∈ V ′, and suppose |V ′| = n. Without

loss of generality, let V ′ = {1, . . . , n}. We assume the result holds for any subset of n− 1 of these nodes. Thus,

12

we can write that
n−1∑
i=1

P (Zi,1 = 1) =

n−1∑
i=1

R̄i
R̄i + B̄i

≥ (n− 1)
R̄1

R̄1 + 1
n−1

∑n−1
i=1 B̄i

.

Let B̄ = 1
n−1

∑n−1
i=1 B̄i, and let B̄∗i = 1

n((n − 1)B̄ + B̄n), for all i ∈ V ′. We note that B̄∗i = 1
n

∑
j∈V ′ B̄j for all

i ∈ V ′. We have ∑
i∈V ′

P (Zi,1 = 1) ≥ (n− 1)
R̄1

R̄1 + B̄
+

R̄1

R̄1 + B̄n
, (15)

∑
i∈V ′

P ∗(Zi,1 = 1) = n
R̄1

R̄1 + 1
n((n− 1)B̄ + B̄n)

. (16)

To prove the result, we take the difference between the right-hand sides of (15) and (16), obtaining

R̄1

[
(n− 1)(R̄1 + B̄n) + (R̄1 + B̄)

(R̄1 + B̄)(R̄1 + B̄n)
− n

R̄1 + 1
n((n− 1)B̄ + B̄n)

]

=R̄1

[
nR̄1 + (n− 1)B̄n + B̄

(R̄1 + B̄)(R̄1 + B̄n)
− n

R̄1 + 1
n((n− 1)B̄ + B̄n)

]

=R̄1

[
(nR̄1 + (n− 1)B̄n + B̄)(R̄1 + 1

n((n− 1)B̄ + B̄n)− n(R̄1 + B̄)(R̄1 + B̄n)

(R̄1 + B̄)(R̄1 + B̄n)(R̄1 + 1
n((n− 1)B̄ + B̄n))

]

=R̄1

[
n−1
n (B̄2 + B̄2

n − 2B̄B̄n)

(R̄1 + B̄)(R̄1 + B̄n)(R̄1 + 1
n((n− 1)B̄ + B̄n))

]

=R̄1

[
n−1
n (B̄ − B̄n)2

(R̄1 + B̄)(R̄1 + B̄n)(R̄1 + 1
n((n− 1)B̄ + B̄n))

]
≥ 0.

We now use this result to prove that for networks with symmetry, solutions to Problem 1 will be symmetric in

nature as well. Suppose for a graph G = (V, E) we have an automorphism σ of G. Assuming G is finite, we have

that Aut(G) is a finite group, and thus we can use σ to generate a cyclic subgroup 〈σ〉 of Aut(G). The subgroup

〈σ〉 is necessarily finite and of finite order. We also have that for any node i in V there exists some integer k ∈ Z>0

such that i = σk(i). We will denote by ki the smallest such integer for which this holds for a given i ∈ V .

Theorem 2: For a network G = (V, E) with a given initialization (B,R), consider an automorphism σ of G. Let

m be the order of the cyclic subgroup 〈σ〉 of Aut(G). Suppose Ri = Rσ(i), for all i ∈ V . Let B∗ be an alternate

curing initialization such that B∗i = 1
m

∑m
j=1Bσj(i) for all i ∈ V . Then, Ĩ∗1 ≤ Ĩ1.

Proof: Note that for a given i ∈ V , R̄i =
∑

j∈N ′i Rj . We have that if j ∈ N ′i then σk(j) ∈ N ′σk(i) for any

k ∈ Z>0. Since by assumption Rj = Rσ(j) = Rσk(j) for all j ∈ N ′i , we have that R̄i = R̄σk(i) for all i ∈ V and

k ∈ Z>0. From Lemma 4, we need only to prove that B̄∗i = 1
ki

∑ki
j=1 B̄σj(i), for all i ∈ V . We start with

B̄∗i =
∑
j∈N ′i

B∗j =
∑
j∈N ′i

1

m

m∑
l=1

Bσl(j).

13

We note that for a given positive integer p,

p

kj∑
l=1

Bσl(j) =

kj∑
l=1

(Bσl(j) +Bσl+kj (j) + · · ·+Bσl+(p−1)kj (j)) =

pkj∑
l=1

Bσl(j),

which follows from the definition of kj . Since m is the order of 〈σ〉, we have σm(j) = j, and since kj is the

smallest such integer for which this holds, we must have kj |m (i.e., kj divides m). Choosing p = m
kj

and using the

identity between the left-most and right-most terms in the above equation, we have that

1

kj

kj∑
l=1

Bσl(j) =
p

pkj

kj∑
l=1

Bσl(j) =
1

pkj

pkj∑
l=1

Bσl(j) =
1

m

m∑
l=1

Bσl(j),

and thus

B̄∗i =
∑
j∈N ′i

1

m

m∑
l=1

Bσl(j) =
1

m

m∑
l=1

∑
j∈N ′i

Bσl(j) =
1

m

m∑
l=1

∑
j∈N ′

σl(i)

Bj

=
1

m

m∑
l=1

B̄σl(i) =
1

ki

ki∑
l=1

B̄σl(i).

The result then follows from Lemma 4.

Another way to think about Theorem 2 is that the optimal allocation distributes resources equally within sets of

the orbit partition by 〈σ〉. We assume that infection resources are distributed evenly within this orbit partition, a

consequence of assuming that Ri = Rσ(i) for all i ∈ V . We then prove redistributing curing resources within each

set of the partition, i.e., letting B∗i = 1
m

∑m
j=1Bσj(i) for all i ∈ V , will result in a decrease in the overall average

infection rate.

We finish this part with few remarks. First, due to the complicated nature of Ĩn, it is difficult to analytically

prove this result for time n > 1. Also, while Theorem 2 can be applied to a given automorphism, one can push this

idea further. Consider a network G = (V, E), and the orbit partition of G by Aut(G), denoted P = {V1, . . . , Vq},
where q ≤ N . For any given initialization, (B,R), for which R̄i = R̄j if i and j are similar under Aut(G), we

postulate that we can reduce the average infection rate Ĩn by redistributing curing resources evenly within each set

of the partition. To elaborate, for each i ∈ V , if i ∈ Vk, we conjecture that taking B∗i = 1
|Vk|
∑

j∈Vk Bj yields that

Ĩn(B∗) ≤ Ĩn(B), for any n. This conjecture is supported empirically, but for reasons of space, we omit including

a sample simulation.

C. Gradient Descent

As in [22], and further explored in Section IV, one can implement a gradient descent algorithm [42] to find

solutions to Problem 1. We first verify that this strategy can be employed for our initialization problem. For the

curing problem presented in [22], the objective was to minimize the limiting average infection rate. As this measure

is rather complicated to analyze, a proxy measure given by the expected average network exposure, E[S̃n|Fn−1],

is used instead. For the initialization problem the equivalent method would be to study this value for time n = 1,

at which point this simply reduces to minimizing the average infection rate at time one, given by Ĩ1, as a function

of the curing initialization B. In Problem 1, we assign curing resources subject to a budget Bb. If for a general

14

Algorithm 1 Constrained gradient descent on a simplex [42]
f(x1, . . . , xN)← function to be minimized
Start at an arbitrary node:
y1 = (y1,1, . . . , y1,N) = (Bb, 0, . . . , 0)
for k = 1 : stoptime do

Find the direction of steepest descent:
i = arg minj∈V

∂f
∂xj
|yk

Move only in that direction:
ȳk,i = Bb, and ȳk,j = 0 for all j 6= i
Select the step size using the limit minimization rule:
αk = arg minα∈[0,1] f(yk + α(ȳk − yk))
Perform the gradient descent:
yk+1 = yk + αk(ȳk − yk)

end for

time n we instead use Ĩ1 as a simple proxy, it is easy to use gradient flow techniques to find an optimal policy for

this one-step problem. We note that any optimal policy will make full use of the budget Bb.
Proposition 1: (Gradient descent conditions): For a general network G = (V, E) equipped with the Polya

network contagion model, if for a given infection initialization R we have that R̄i > 0 for each i ∈ V , then the

average infection rate at time one, Ĩ1, is convex with respect to the curing initialization parameters B. Moreover,

the feasible set

X =

{
{Bi}Ni=1 ∈ RN≥0

∣∣∣∣∣
N∑
i=1

Bi = Bb

}
is convex and compact.

The proof of this proposition is straightforward, with the matter of convexity of Ĩ1 having been discussed earlier

in this section. Of note, however, is the fact that we require R̄i > 0 for each i ∈ V , in order to ensure our feasible

set X remains valid. If this is satisfied, we can then use a constrained gradient descent method [42, Chapter 2],

as described in Algorithm 1. This algorithm will converge to an optimal solution for the one-step optimization

problem, but not necessarily for the n-step case.

IV. CURING-INFECTION PROBLEMS

Another technique to control network infection for the Polya network model is to control the allocation of our

curing parameters, {∆b,i(n)}Ni=1, subject to a fixed budget, B. As in the initialization setup, this can be done for a

finite or infinite horizon. Previously, [33] examined the problem of minimizing the limiting average infection rate

and introduced a number of heuristic optimization policies. We begin by refocusing the problem in a game-theoretic

setup.

We consider a two player game, where player one minimizes the average infection rate, Ĩn, while player two

maximizes this same value. Player one controls the distribution of curing parameters, {∆b,i(n)}Ni=1, in accordance

with a budget, Bb, while player two controls the distribution of the infection parameters, {∆r,i(n)}Ni=1 in accordance

with a budget, Br. The budget in each case is fixed for all time steps, and the allocation of resources for a given

time n is determined prior to any draws being made at that time. Thus, if either player allocates resources to a

node for which the opposite colour ball is drawn, those resources will go to waste.

15

Formally, player one’s objective is to find:

min
{{∆b,i(k)}Ni=1:

∑N
i=1 ∆b,i(k)=Bb},k=1,...,n

Ĩn, (17)

assuming the minimum exists, while player two’s objective is to find:

max
{{∆r,i(k)}Ni=1:

∑N
i=1 ∆r,i(k)=Br},k=1,...,n

Ĩn, (18)

assuming the maximum exists. We refer to (17)-(18) as the Delta-curing problem.

Since finding an optimal control policy for either player is not tractable for a general network, we simplify

the problem by adopting the expected network exposure, E[S̃n|Fn−1] = E[S̃n|σ({Zn−1
j }Nj=1)], as the metric to

optimize instead of the average infection rate. Using this (strongly correlated) proxy measure drastically facilitates

the analysis. We thus consider a two player zero-sum game, where player one minimizes the expected network

exposure over the curing parameters {∆b,i(n)}Ni=1 and player two maximizes the same value over the infection

parameters {∆r,i(n)}Ni=1. We begin with an important result about the expected network exposure.

Proposition 2: (Convexity-Concavity of Network Exposure): Let G = (V, E) be a general network, and consider

the Polya network contagion model on G, with arbitrary initial conditions. Then, the expected network exposure

E[S̃n|Fn−1] is convex with respect to the curing parameters {∆b,i(n)}Ni=1 and concave with respect to the infection

parameters {∆r,i(n)}Ni=1, for all n.

Proof:

Using (2) and (4), we consider E[S̃n|Fn−1] as a function of the vectors

x = (x1, . . . , xN)T = (∆b,1(n), . . . ,∆b,N (n))T

y = (y1, . . . , yN)T = (∆r,1(n), . . . ,∆r,N (n))T ,

by reformulating (4) as follows:

Si,n = fi,n(x,y, Zn) =
ci + δi(y, Zn)

ci + di + σi(x, Zn) + δi(y, Zn)
,

where

ci = R̄i +

n−1∑
t=1

∑
j∈N ′i

∆r,j(t)Zj,t, di = B̄i +

n−1∑
t=1

∑
j∈N ′i

∆b,j(t)(1− Zj,t)

δi(y, Zn) =
∑
j∈N ′i

yjZj,n, σi(x, Zn) =
∑
j∈N ′i

xj(1− Zj,n).

Alternatively, we let A represent the adjacency matrix, including self-loops, for our given network G, where

Aij = 1 if and only if i ∈ N ′j , and Aij = 0 otherwise. We then construct an N × N square matrix, D, where

Dij = Aij(1− Zj,n). Letting Di represent the ith row of the matrix D, we have that σi(x, Zn) = Dix. Likewise,

we can construct an N ×N square matrix, C, where Cij = AijZj,n. Letting Ci represent the ith row of the matrix

C, we have that δi(y, Zn) = Ciy, and hence

fi,n(x,y, Zn) =
ci + Ciy

ci + di + Ciy +Dix
,

16

where we have dropped the dependencies of the matrices C and D on Zn for simplicity.

Taking the expectation of Si,n given the history of the contagion process up to time n− 1, we have

E[Si,n|Fn−1] = E[fi,n(x,y, Zn)|Fn−1]

=
∑

zn∈{0,1}N
fi,n(x,y, zn)P (Zn = zn|Zn−1 = zn−1). (19)

We note that P (Zn = zn|Zn−1 = zn−1) is independent of our choice of x, and for any fixed realization

zn = (z1,n, . . . , zN,n) ∈ {0, 1}N , fi,n(x,y, zn) is convex in x over RN≥0 (the proof is given in [33]). Hence, it

follows that E[Si,n|Fn−1] is convex in x over RN≥0, and thus so too is E[S̃n|Fn−1]. Concavity in y follows from

a symmetry argument since

1− fi,n(x,y, Zn) =
di +Dix

ci + di + Ciy +Dix

is convex in y, thus showing fi,n(x,y, Zn) is concave in y. The rest of the proof follows as in the convexity

argument for x.

The natural symmetry of this model makes this result rather intuitive, and allows us to establish a nice setup for

the game theoretic problem. We have proven that E[S̃n|Fn−1] is convex in x and concave in y over RN≥0 × RN≥0.

In order to get a better understanding of this function, we consider the partial derivatives with respect to x and y.

We note that

∇xfi,n(x,y, zn) =
−∇xDix(ci + Ciy)

(ci + di + Ciy +Dix)2

∇yfi,n(x,y, zn) =
∇yCiy(di +Dix)

(ci + di + Ciy +Dix)2
,

and furthermore,

∂

∂xj
Dix = Aij(1− zj,n), and

∂

∂yj
Ciy = Aijzj,n.

Since Aij and zj,n can only take values in {0, 1}, we have that ∂
∂xj

fi,n(x,y, zn) ≤ 0 and ∂
∂yj
fi,n(x,y, zn) ≥ 0.

Using this fact in conjunction with (19), we determine that over the space X ×Y = RN≥0 ×RN≥0, E[S̃n|Fn−1] has

no saddle point. Given our fixed allocation budgets Bb and Br, we restrict ourselves to considering sets of the form

X × Y = {{∆b,i(n)}Ni=1 ∈ RN≥0|
∑N

i=1 ∆b,i(n) ≤ Bb} × {{∆r,i(n)}Ni=1 ∈ RN≥0|
∑N

i=1 ∆r,i(n) ≤ Br}. Returning to

our game over the expected network exposure, we remark that for any given n, the sets X = {{∆b,i(n)}Ni=1 ∈
RN≥0|

∑N
i=1 ∆b,i(n) ≤ Bb} and Y = {{∆r,i(n)}Ni=1 ∈ RN≥0|

∑N
i=1 ∆r,i(n) ≤ Br} are convex and compact. This

gives rise to the following result.

Theorem 3: (Nash Equilibrium for Network Exposure): Let G = (V, E) be a general network equipped with

the Polya network contagion model, with arbitrary initial conditions. For a given time n, consider a two-player

zero-sum game where player one tries to minimize E[S̃n|Fn−1] over the parameters {∆b,i(n)}Ni=1 and player two

tries to maximize E[S̃n|Fn−1] over the parameters {∆r,i(n)}Ni=1. Then, if we take our set of allowable policies to

be of the form X ×Y = {{∆b,i(n)}Ni=1 ∈ RN≥0|
∑N

i=1 ∆b,i(n) ≤ Bb}×{{∆r,i(n)}Ni=1 ∈ RN≥0|
∑N

i=1 ∆r,i(n) ≤ Br},
the resulting game admits a Nash equilibrium . Moreover, the equilibrium policy will satisfy

∑N
i=1 ∆b,i(n) = Bb

and
∑N

i=1 ∆r,i(n) = Br.

17

Proof: Since the function is convex-concave and over a compact set, the existence follows from the classical

minimax theorem, see [43]. By the definition of E[S̃n|Fn−1], and since the function has no saddle point in the

interior of its domain, the optimal policy will utilize the full budget.

The equilibrium policy from Theorem 3 can be determined numerically using gradient descent algorithms [42],

as we are optimizing a convex/concave function over a simplex, but for large networks such algorithms can be

computationally expensive, especially when considering the complexity of E[S̃n|Fn−1] as seen in (19). We next

develop efficient heuristic strategies for both the initialization and Delta-curing problems (studied in Section III and

the current section, respectively). Naturally, their effectiveness will be measured via the original metric intended

for the problems, which is average network infection rate.

V. HEURISTIC STRATEGIES

We provide here heuristic strategies based on the analysis performed thus far, while also integrating some of the

previously tested techniques in [38], [33].

When developing heuristics in the initialization case, we make heavy use of Theorem 1, which proved that any

optimal solution to Problem 1 would allocate no resources to outer nodes (i.e., nodes with a nested neighbourhood).

For the general Delta-curing problem, we have no such result, as it is possible to manufacture situations where

the equilibrium policy as in Theorem 3 will assign resources to outer nodes. Such cases arise under specific

circumstances, and it is uncommon for these nodes to receive significant resources. Thus, we introduce a similar

set of resource allocation policies for both the initialization and Delta-curing problems of Sections III and IV,

respectively. While any of these resource allocation policies can be similarly applied to a player controlling the

distribution of infection resources, for the purposes of our analysis here, we will consider these strategies from the

perspective of the player controlling the curing resources.

A. Interior Node Targeting

We now discuss our first strategy. Given a network, we determine which nodes are inner nodes, i.e., which nodes

have a neighbourhood that is not a strict subset of another node’s neighbourhood. We then distribute initialization

resources uniformly among these nodes. If we let Bb represent our curing initialization budget, and let V ′ = {i ∈
V |N ′i 6⊂ N ′j , ∀j ∈ V }, we allocate our resources according to the following scheme:

Bi =

1
|V ′|Bb if i ∈ V ′

0 else.
(20)

For the Delta-curing problem, a similar policy is employed as follows:

∆b,i(n) =

1
|V ′|Bb if i ∈ V ′

0 else,
(21)

We can also combine these schemes with the heuristic strategies in [38], [33]. Among these strategies, the best

performing heuristic strategy allocates resources based on a combination of centrality measures, node degree and

closeness centrality, as well as the infection level of each node’s super urn. In the case of initialization policies, as

18

they are implemented before the onset of contagion, we implement an allocation strategy based on only the node

degree and closeness centrality.

The degree of a node is simply measured as the size of a node’s neighbourhood, |Ni|. The closeness centrality

of a node, Ci, is a measure used to determine a node’s topological position within a network, defined as

Ci =
1∑

j∈V d(i, j)
, (22)

where d(i, j) is the shortest path length from node i to node j. Thus the node with the highest closeness centrality

has the shortest average path length to every node within the network. We can distribute resources as follows:

Bi =

|Ni|Ci∑

j∈V ′ |Nj |Cj
Bb if i ∈ V ′

0 else.
(23)

In the Delta-curing setup, we also account for the evolution of the super urn proportion, Si,n−1, of each node. As

before, we let Ci represent the closeness centrality of a given node i, calculated by (22). We then allocate resources

as follows:

∆b,i(n) =

|Ni|CiSi,n−1∑

j∈V ′ |Nj |CjSj,n−1
Bb if i ∈ V ′

0 else.
(24)

Alternatively, similar strategies based on “betweenness centrality” can be used [33].

B. Minimized Node Targeting

We can improve upon our initialization and curing policies by using the idea of minimizing the number of nodes

we target at once. We introduce a method that attempts to target nodes in such a manner that all nodes have

resources within their immediate neighbourhood N ′i (i.e., ensuring B̄i > 0, ∀i ∈ V), while targeting the fewest

possible nodes. We use Algorithm 2 to determine which nodes will be allocated resources.

This algorithm starts by locating outer nodes in the network and then targets nodes directly adjacent these outer

nodes. All nodes that are within the neighbourhood of the targeted nodes are then removed from the set of nodes

being evaluated. Within this new, smaller set of nodes, we once again locate outer nodes and repeat the process.

In the case that there are no outer nodes within the set of nodes being evaluated, all remaining nodes are added

to the set of targeted nodes. The purpose of this algorithm is to effectively employ Theorem 1 and ensure that our

curing policy does not target outer nodes, while still requiring that B̄i > 0 for these nodes. Once the set of outer

nodes is excluded from directly receiving resources, the algorithm then works inwards, attempting to minimize the

number of targeted nodes.

Once the set of nodes to be targeted V ′ has been determined, we can once again distribute resources in one

of two manners as in the previous strategy set. We can distribute resources to these nodes uniformly according

to (20). Alternatively, we can distribute resources to more central nodes among those targeted using (23). We note

that these heuristics are entirely based on network structure, and by design will symmetrically allocate resources

in accordance with Theorem 2. Furthermore, by limiting the number of nodes that are targeted, we limit the

computational complexity of determining resource allocation.

19

Algorithm 2 Node Targeting Algorithm
V ← set of all nodes
V ′ ← target set
Vtest ← nodes to test for this loop
Start with V ′ = ∅, Vtest = V
while Vtest 6= ∅ do

Identify outer nodes:
Set Vouter = {i ∈ Vtest|N ′i ⊂ N ′j , for some j ∈ Vtest}
if Vouter = ∅ then
V ′ = V ′ ∪ Vtest
break

end if
Target nodes adjacent to outer nodes:
Set Vinner = Vtest\Vouter
Set Vadded targets = {i ∈ Vinner|i ∈ N ′j for some j ∈ Vouter}
Set V ′ = V ′ ∪ Vadded targets
Update parameters for next loop:
Set Vcoverage = {i ∈ Vtest|i ∈ N ′j for some j ∈ Vadded targets}
Set Vtest = Vtest\Vcoverage

end while

We can apply the same techniques for the Delta-curing setup, where we consider a uniform allocation within the

target set via (21), or use a strategy that accounts for the centrality and super urn proportion of the targeted nodes

according to (24).

C. Dense Networks

We now consider a limitation of the heuristics presented thus far. Our previous sets of solutions depend on the

assumption that a network will possess a set of nodes whose respective neighbourhoods are strict subsets of some

other node’s neighbourhood. While this may be a useful tactic for sparse networks, it is a stringent requirement for

dense networks. To account for this, we introduce a final node targeting strategy that does not have this limitation,

but works based on similar principles.

Our previous methods utilized the idea of leveraging Theorem 1, in order to prevent suboptimal node targeting

while still ensuring B̄i > 0, for every node i ∈ V . We introduce an alternative method for defining inner and outer

nodes when the conditions of Theorem 1 are not met.

This technique, presented in Algorithm 3, begins by ranking the nodes by a centrality measure (closeness centrality

for our purposes), from highest to lowest. Nodes are added one-by-one to the set of targeted nodes, V ′, in order of

rank. Once the set of targeted nodes provides total coverage of the network (i.e., the neighbourhoods of these nodes

contain the entire network), the algorithm stops. For an additional reduction, we go through the list of targeted

nodes in reverse order and remove any nodes not required to maintain full coverage of the network.

Once the target set has been determined, we can distribute resources either uniformly among these nodes via (20),

or preferentially according to centrality as per (23). Likewise for the Delta-curing case, we can allocate resources

uniformly among these nodes using (21) or based on centrality and super urn proportion of the targeted nodes

via (24).

20

Algorithm 3 Node Targeting Algorithm for Dense Networks
V ← set of all nodes
V ′ ← nodes to be targeted
Ci ← centrality score of given node
Without loss of generality, assume C1 > C2 > · · · > CN , where N is the network size
Start with V ′ = ∅, Vcoverage = ∅, n=0
while Vcoverage 6= V do

Add most central node to target set:
V ′ = V ′ ∪ {n}
Update loop parameters:
Set Vcoverage = {i ∈ V |i ∈ N ′j , for some j ∈ V ′}
n++

end while
Optional:
for n = |V ′| : 1 do

Let Vcoverage = {i ∈ V |i ∈ N ′j , for some j ∈ V ′\{n}}
if Vcoverage = V then

Set V ′ = V ′\{n}
end if

end for

VI. SIMULATION RESULTS

We evaluate the performance of the heuristic policies detailed in Section V, and compare their performance to

supposed ‘optimal’ strategies obtained through gradient descent (note that we say ‘optimal’ because the gradient

descent only converges to an optimal policy for the one-step proxy measures we introduced in both the initialization

and Delta-curing cases). Algorithm 4 provides the general format of the simulations, while specifics of both the

initialization and Delta-curing setups are provided in Sections VI-B and VI-C, respectively.

In order to ensure effectiveness of different strategies, we test these policies for a few different networks, each of

which is depicted in Figure 2. These networks include algorithmically generated 100 node Barabasi-Albert networks,

depicted in Figures 2(a) and 2(b), with average densities of 1.98 and 18.9 connections per node, respectively. The

third network, depicted in Figure 2(c), was generated by a tool [44] that crawled through posts in a Facebook group

in order to establish connections between users based on interactions on user posts (either via commenting, or

‘likes’ on the post or comments). The resulting 1,363 node graph contains an average density of 3.56 connections

per node, and provides a topology for a real-world social network.

A. Targeting Algorithms

Since the majority of the following analysis applies curing policies based on targeting subsets of nodes, we

provide a brief comparison of the different node targeting algorithms.

Figure 3 depicts a comparison of the different targeting algorithms for the sparse network seen in Figure 2(a). For

this specific network, the target set in Figure 3(b) is a subset of the set of inner nodes in Figure 3(a), which itself

is a subset of the target set shown in Figure 3(c). While, this is not a general rule, it is a common trend for very

low-density networks. Algorithm 3 is not designed for use over sparse networks, and does not successfully leverage

Theorem 1. Thus, we know that distributing resources among this set of target nodes will result in inefficiencies. If

21

Algorithm 4 Simulation Setup
A← adjacency matrix of the network
numTrials← trials to run for given policy
steps← number of time steps for each trial
initPolicy← initialization policy (uniform in no control case)
curePolicy← Delta-curing policy (uniform in no control case)
Assign (B,R) using initPolicy (under initialization budget)
for s = 1 : numTrials do
~Zs ← RUNTRIAL(A,R,B,Br,Bb, steps, curePolicy)

end for
RunTrialA,R,B,Br,Bb, steps, curePolicy
Initialize Si,0 using Ri and Bi for all i ∈ V
for t = 1 : steps do

Assign ∆b,i(t), ∆r,i(t) using curePolicy (under curing budget)
Generate ~Y ∼ Uniform([0, 1])N

if Yi ≤ Si,t−1 then
Zi,t = 1

else
Zi,t = 0

end if
Update Si,t using ∆r,i and ∆b,i(t) for all i ∈ V

end for

we compare this to how Algorithm 3 applies to denser networks, as shown in Figure 3(d), we observe a significant

reduction in size of the set of target nodes. Algorithm 2, on the other hand, will be entirely ineffective at determing

a subset of nodes to target for this same network, due to the lack of nested nodes.

B. Initialization Trials

We start by comparing solutions to Problem 1, and evaluating their effectiveness for various network compositions.

Table I provides an overview of the considered initialization strategies. More detailed explanations of these strategies

can be found in Sections III and V. It is important to note that we do not include any trials that use the optional

component of Algorithm 3, simply because we have the same target set as Algorithm 2 when applied to the networks

in 2(a) and 2(c), and it does not provide any further reduction to the target set when applied to the network in

Figure 2(b). The same reasoning applies to our curing strategies in Table II.

We follow the same process for each of the three networks in Figure 2. We begin with equal initialization budgets

for both red and black resources (i.e., take Bb = Br), and let the infection initialization be uniform over the network

(i.e., take Ri = Br
N , for all i ∈ V). We choose our curing initialization B in accordance with the desired strategy

from Table I. Then, we run the Polya network contagion process with ∆r,i(n) = ∆b,i(n) = ∆ fixed for each node

i ∈ V and each time n. We record the draw value, Zi,n, for each node i at each time n. The draw values are

averaged over the number of trials that are run and then averaged over the set of nodes in the network to obtain

an empirical measure for the average infection rate Ĩn at a given time n. The resulting output of these trials can

be seen in Figure 4.

We start our comparison with a few observations. First, as expected, the solution determined using the gradient

descent algorithm results in the lowest empirical average infection rate at time n = 1. For time n > 1, however,

22

(a) Barabasi-Albert network with 100 nodes and 99 edges. (b) Barabasi-Albert network with 100 nodes and 945
edges.

(c) Facebook network with 1,363 nodes and 2,425 edges.

Fig. 2. Mid-to-large scale networks used for simulation purposes. Adjacency matrices for each of these networks is available online at
https://bit.ly/2ygLEqg.

this is not always the case. Figure 4(c) is of particular interest, as we clearly see that the gradient descent strategy

begins with a much lower infection rate, but over time is surpassed by strategy (vi), which targets a reduced subset

of nodes in accordance with Algorithm 2, with resources being focused more around central nodes.

The fact that the best strategy at time n = 1 is not optimal as n increases supports our hypothesis that the optimal

solution will change for increasing values of n and as n→∞. It is important to note, however, that our gradient

algorithm merely converges to the optimal solution at time n = 1, and thus the solution we have from using this

algorithm is not necessarily optimal, as the algorithm has not been run indefinitely. Indeed, we note that had we

chosen to either use a finer filter when implementing the limit minimization rule, as described in Algorithm 1, or

increased the stopping time, or even chosen a step size that allowed for faster convergence, we would have seen

an improved performance using this strategy (at least at time n = 1).

Regardless, we consistently see that targeting a reduced subset of nodes, whether via Algorithms 2 or 3, results

in performance that is close to or better than that obtained using gradient descent. These strategies, (vi) and (viii),

always provide the best results of all the heuristic strategies being compared. This illustrates that we obtain near

https://bit.ly/2ygLEqg

23

(a) Example set of inner nodes. (b) Example target set using Algorithm 2.

(c) Example target set using Algorithm 3 for sparse
networks.

(d) Example target set using Algorithm 3 for dense
networks.

Fig. 3. Comparison of target sets for various node targeting algorithms. In each case, the set of targeted nodes is enlarged and coloured
black. It is important to note that Figure 3(c), as depicted here, does not apply the optional component of Algorithm 3. In fact, if we instead
choose to apply that option, we end up getting the same target set as shown in Figure 3(b).

optimal performance while only distributing resources amongst a greatly reduced subset of nodes. Performance

between the other heuristic strategies varies greatly depending on the network, though we note that even just

targeting the inner nodes using strategy (iii) sees a significant improvement over the no control case (i.e., the

results obtained using a uniform distribution of initialization resources).

We also remark that the general curve for each of these trials remains relatively flat. This is mostly due to the

fact that ∆ is assigned a fixed value. At a given time for a given node the expected number of red balls added

to that particular node’s super urn will be proportional to the average super urn proportion of the neighbouring

nodes. This causes the super urn proportion of a given node to trend towards the average super urn proportion of

its neighbours, which often takes a similar value because these nodes have overlapping sets of neighbours.

We next examine whether these same results carry over to the general curing case, or whether there are any

notable differences. We should note that the curing and initialization policies are by nature not identical. They do,

however, mirror one another in such a way that we can at least provide a surface-level comparison between the

two setups.

24

TABLE I
INITIALIZATION STRATEGIES

(i) Constrained gradient descent on a simplex:
Find Bi using Algorithm 1 on the function Ĩ1

(ii) Uniformly allocate the budget to all nodes:
Bi = Bb

N

(iii) Uniformly allocate the budget to inner nodes:

Bi =

{
1
|V ′|Bb if i ∈ V ′

0 else
, where V ′ = {k ∈ V |N ′k 6⊂ N ′j ,∀j ∈ V }

(iv) Ratio of degree and closeness centrality (inner):

Bi =

{ |Ni|Ci∑
j∈V ′ |Nj |Cj

Bb if i ∈ V ′

0 else
(v) Allocate as in (iii) using V ′ from Algorithm 2
(vi) Allocate as in (iv), using V ′ from Algorithm 2
(vii) Allocate as in (iii) using V ′ from Algorithm 3 (without Optional)
(viii) Allocate as in (iv), using V ′ from Algorithm 3 (without Optional)
(ix) Ratio of degree and closeness centrality:

Bi = |Ni|Ci∑
j∈V |Nj |Cj

Bb

TABLE II
DELTA-CURING STRATEGIES

(i) Constrained gradient descent on a simplex:
Find ∆b,i(n) using Algorithm 1 on the function E[S̃n|Fn−1]

(ii) Uniformly allocate the budget to all nodes:
∆b,i(n) = Bb

N

(iii) Uniformly allocate the budget to inner nodes:

∆b,i(n) =

{
1
|V ′|Bb if i ∈ V ′

0 else
, where V ′ = {k ∈ V |N ′k 6⊂ N ′j , ∀j ∈ V }

(iv) Ratio of degree, closeness centrality, and super urn proportion (inner):

∆b,i(n) =

{ |Ni|CiSi,n−1∑
j∈V ′ |Nj |CjSj,n−1

Bb if i ∈ V ′

0 else
(v) Allocate as in (iii) using V ′ from Algorithm 2
(vi) Allocate as in (iv), using V ′ from Algorithm 2
(vii) Allocate as in (iii) using V ′ from Algorithm 3 (without Optional)
(viii) Allocate as in (iv), using V ′ from Algorithm 3 (without Optional)
(ix) Ratio of degree, closeness centrality and super urn proportion:

Bi = |Ni|CiSi,n−1∑
j∈V |Nj |CjSj,n−1

Bb

C. Delta-Curing Trials

We consider the one-sided curing problem of trying to find a solution for (17), for some time n. As in the

initialization case, we compare the effectiveness of the various curing policies presented in Section V. A brief

overview of these policies is found in Table II.

We begin with a uniform initialization, where each node is allocated a fixed number of red balls, R, and black

25

(a) Results of initialization trials for low density Barabasi-Albert network depicted in 2(a)

(b) Results of initialization trials for high density Barabasi-Albert network depicted in 2(b)

(c) Results of initialization trials for Facebook network depicted in 2(c)

Fig. 4. Plots of empirical average infection rate, Ĩn, for various initialization strategies across multiple networks. Lower values indicate
lower levels of infection. In each case the network was given a fixed initialization budget of Br = Bb = 10N , with Ri = 10 ∀i ∈ V , and
the Polya network contagion process was run over 1000 trials with a fixed ∆ = 5.

balls, B, with R = B. We then run the Polya network contagion process. Before each draw is performed, we assign

a number of curing resources to each node ∆b,i(n) in accordance with the desired policy from Table II, while the

infection resources are assigned uniformly, ∆r,i(n) = Br
N (with a fixed budget Bb = Br for each time n). As in

the initialization case, we record the draw value, Zi,n for each node i ∈ V at each time n. The draw values are

averaged over the number of trials and the set of nodes to obtain a measure for the empirical average infection

rate, Ĩn. The results of these simulations are depicted in Figure 5.

We first remark that unlike the initialization case, targeting a reduced subset of nodes based on centrality does not

always lead to the best performance. This is evidenced by both Figures 5(a) and 5(c), where strategy (vi) appears

to perform worst of all the heuristics apart from the no control case. In fact, between the three network setups,

the heuristics vary wildly in performance, with the best performing heuristic from [38] performing extremely well

26

(a) Results of curing trials for low density Barabasi-Albert network depicted in 2(a)

(b) Results of curing trials for high density Barabasi-Albert network depicted in 2(b)

(c) Results of curing trials for Facebook network depicted in 2(c)

Fig. 5. Plots of empirical average infection rate, Ĩn, for various curing strategies across multiple networks. Lower values indicate lower
levels of infection. In each case the network was initialized with Ri = Bi = 10, ∀i ∈ V , and the Polya network contagion process was run
over 500 trials with a fixed budget Br = Bb = 10N , with ∆r = 10 fixed.

in Figure 5(c), but performing significantly worse than the other techniques in 5(b). The various strategies also

perform to different degrees of success for different values of n (see strategy (vi) in Figure 5(c)).

Between the three networks, the strategies that seem to perform the most consistently well are strategies that

target only the inner set of nodes (strategies (iii), (iv) and the analogous strategies for denser networks, (vii) and

(viii)). It is interesting that these strategies would perform most consistently for the Delta-curing problem, but

would perform far from optimally for the one-time initialization policy as seen in Figure 4. The main difference

between these setups is that the solutions to the Delta-curing problem are applied continually as the infection evolve,

while solutions to the initialization problem are applied once. Obviously, some of the benefits of targeting a greatly

reduced set of nodes, as in seen in Figure 3(b), are lost when they do not properly account for changes in the urn

compositions. Interestingly, for denser networks, targeting a greatly reduced set of nodes as in Figure 3(d) was still

27

Fig. 6. Empirical average infection rate, Ĩn, for small 8 node test network. The performance of gradient descent over the expected network
exposure, E[S̃n|Fn−1], was compared to the two best performing heuristics from Figure 5(a). The network was initialized with Ri = Bi = 10,
∀i ∈ V , and the Polya network contagion process was run over 500 trials with a fixed budget Br = Bb = 80, with ∆r = 10 fixed.

very effective, most likely as a direct result of the high network density.

One notable exclusion from Figure 5 is the fact that none of the three subplots show the performance obtained

using gradient descent, in part due to the highly complex nature of the expected network exposure E[S̃n|Fn−1],

which is the function we are minimizing over the curing parameters. While any large scale gradient-descent

simulations are somewhat infeasible as a result, it is still possible to provide a comparison on a smaller scale,

in order to see how far from ‘optimal’ our various heuristics are.† We provide such a comparison in Figure 6.

While it is clear that the gradient descent does marginally improve the empirical average infection rate, we see that

strategy (iv) still performs comparably, at a fraction of the computational cost.

VII. CONCLUSION

We considered the (infinite-memory) Polya network contagion model and formulated (preemptive and reactive)

control policies to mitigate the spread of infection. We framed these problems in two lights: both as a one-time

initialization problem, and as a continual control problem that is an extension of contagion curing methods in

prior work. We provided simplified metrics for the one-sided finite-horizon version of these problems and proved

the existence of optimal policies. We developed effective heuristics that functioned primarily by modifying the

scope of solutions to only a limited number of nodes. We then compared these heuristics to the one-step optimal

policies that were obtained through use of gradient descent. We established underlying results for the initialization

problem proving that optimal initialization strategies would only allocate resources to inner nodes. We showed how

network symmetry impacts the allocation of resources for optimal policies. We also demonstrated that the proposed

heuristics perform comparably to the one-step optimal policy in certain situations. Finally, we framed the Delta-

curing problem as a two-person zero sum game on the expected network exposure, and we proved the existence of a

Nash equilibrium. We borrowed ideas from the initialization problems in order to implement heuristics for the Delta-

curing problem and demonstrated that these strategies can perform near-optimally at a fraction of the computational

expense. Future directions include analogous optimization problems when underlying resource distribution is hidden

†As noted earlier, we say ‘optimal’ since the gradient-descent algorithm only converges to an optimal solution for the one-step problem
of minimizing E[S̃n|Fn−1] over the curing resources.

28

from the observer, studying the initialization problem in a game-theoretic framework, and investigating the spread

of the Polya contagion process in networks with unknown topologies.

ACKNOWLEDGEMENT

The authors sincerely thank Tamás Linder for considerably shortening the proof of Lemma 3.

REFERENCES

[1] D. Easley and J. Kleinberg, Networks, Crowds and Markets: Reasoning about a Highly Connected World. Cambridge Univ. Press,
2010.

[2] P. V. Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,” IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 1–14, 2009.
[3] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control of epidemics: A survey of spreading processes on complex

networks,” IEEE Control Systems Magazine, vol. 36, pp. 26–46, 2016.
[4] F. Alajaji and T. Fuja, “A communication channel modeled on contagion,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 2035–2041,

1994.
[5] L. Kim, M. Abramson, K. Drakopoulos, S. Kolitz, and A. Ozdaglar, “Estimating social metwork structure and propagation dynamics

for an infectious disease,” in Proc. Int. Conf. Social Computing, Behavioral-Cultural Modeling, and Prediction. Springer, 2014, pp.
85–93.

[6] M. Garetto, W. Gong, and D. Towsley, “Modeling malware spreading dynamics,” in Proc. Conf. Comp. Comm., vol. 3, 2003, pp.
1869–1879.

[7] E. M. Rogers, Diffusion of Innovations, 5th ed., 2003.
[8] E. Adar and L. A. Adamic, “Tracking information epidemics in blogspace,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intelligence, 2005,

pp. 207–214.
[9] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Optimal resource allocation for control of networked epidemic models,” IEEE Trans.

Cont. Netw. Sys., vol. 4, no. 2, pp. 159–169, 2017.
[10] L. Wang and J. T. Wu, “Characterizing the dynamics underlying global spread of epidemics,” Nature Comm., vol. 9, no. 1, pp. 1–11,

2018.
[11] N. Madar, T. Kalisky, R. Cohen, D. Ben-Avraham, and S. Havlin, “Immunization and epidemic dynamics in complex networks,” The

European Physical Journal B, vol. 38, no. 2, pp. 269–276, 2004.
[12] C. Borgs, J. Chayes, A. Ganesh, and A. Saberi, “How to distribute antidote to control epidemics,” Rand. Struct. & Alg., vol. 37, no. 2,

pp. 204–222, 2010.
[13] M. Khouzani, S. Sarkar, and E. Altman, “Optimal control of epidemic evolution,” 2011, pp. 1683–1691.
[14] V. M. Preciado, M. Zargham, and D. Sun, “A convex framework to control spreading processes in directed networks,” 2014, pp. 1–6.
[15] K. Kandhway and J. Kuri, “How to run a campaign: Optimal control of SIS and SIR information epidemics,” Applied Mathematics

and Computation, vol. 231, pp. 79–92, 2014.
[16] P. E. Par, J. Liu, C. L. Beck, A. Nedi, and T. Baar, “Multi-competitive viruses over static and time-varying networks,” in 2017 American

Control Conference (ACC), May 2017, pp. 1685–1690.
[17] W. Mei and F. Bullo, “Competitive propagation: Models, asymptotic behavior and quality-seeding games,” IEEE Transactions on

Network Science and Engineering, vol. 4, no. 2, pp. 83–99, 2017.
[18] Q.-H. Liu, L.-F. Zhong, W. Wang, T. Zhou, and H. E. Stanley, “Interactive social contagions and co-infections on complex networks,”

Chaos, vol. 28, no. 2, 2018.
[19] W. Wang, Q.-H. Liu, J. Liang, Y. Hu, and T. Zhou, “Coevolution spreading in complex networks,” Physics Reports, vol. 820, pp. 1–51,

2019.
[20] A. R. Hota and S. Sundaram, “Game-theoretic protection against networked SIS epidemics by human decision-makers,” IFAC-

PapersOnLine, vol. 51, pp. 145–150, 2019.
[21] M. Hayhoe, F. Alajaji, and B. Gharesifard, “A Polya urn-based model for epidemics on networks,” Proc. 2017 American Cont. Conf.,

2017.
[22] ——, “A Polya contagion model for networks,” IEEE Trans. Cont. Netw. Sys., vol. 5, pp. 1998–2010, 2018.
[23] F. Eggenberger and G. Polya, “Über die Statistik verketteter Vorgänge,” Z. Angew. Math. Mech., vol. 3, no. 4, pp. 279–289, 1923.
[24] G. Polya and F. Eggenberger, “Sur l’interprétation de certaines courbes de fréquences,” Comptes Rendus C. R., vol. 187, pp. 870–872,

1928.
[25] G. Polya, “Sur quelques points de la théorie des probabilités,” Annales de l’institut Henri Poincaré, vol. 1, no. 2, pp. 117–161, 1930.
[26] A. Fazeli and A. Jadbabaie, “On consensus in a correlated model of network formation based on a Polya urn process,” 2011.
[27] M. Chen and M. Kuba, “On generalized Polya urn models,” Journal of Appl. Probab., vol. 50, no. 4, pp. 1169–1186, 2013.
[28] F. Chung, S. Handjani, and D. Jungreis, “Generalizations of Polya’s urn problem,” Ann. Combin., vol. 7, pp. 141–153, 2003.
[29] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spreading in real networks: An eigenvalue viewpoint,” in Proceedings

22nd IEEE International Symposium on Reliable Distributed Systems, 2003, pp. 25–34.
[30] H. J. Ahn and B. Hassibi, “Global dynamics of epidemic spread over complex networks,” in 52nd IEEE Conference on Decision and

Control, 2013, pp. 4579–4585.
[31] N. A. Ruhi, H. J. Ahn, and B. Hassibi, “Analysis of exact and approximated epidemic models over complex networks,” arXiv preprint

arXiv:1609.09565, 2016.

29

[32] W. Mei, S. Mohagheghi, S. Zampieri, and F. Bullo, “On the dynamics of deterministic epidemic propagation over networks,” Annual
Reviews in Control, vol. 44, pp. 116–128, 2017.

[33] M. Hayhoe, F. Alajaji, and B. Gharesifard, “Curing epidemics on networks using a Polya contagion model,” IEEE/ACM Transactions
on Networking, vol. 27, no. 5, pp. 2085–2097, 2019.

[34] J. Nash, “Equilibrium points in n-person games,” in Proceedings of the National Academy of Sciences USA, vol. 36, 1950, pp. 48–49.
[35] R. Ash and C. Doléans-Dade, Probability and Measure Theory, 2000.
[36] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 3rd ed. Oxford Univ. Press, 2001.
[37] W. Feller, An Introduction to Probability Theory and its Applications, 2nd ed. New York: Wiley, 1971, vol. 2.
[38] M. Hayhoe, “A Polya urn stochastic model for the analysis and control of epidemics on networks,” Master’s thesis, Queen’s University,

2017.
[39] J. A. Bondy and U. S. R. Murty, Graph theory with applications. Macmillan London, 1976, vol. 290.
[40] N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1994.
[41] C. D. Godsil and G. F. Royle, Algebraic Graph Theory, ser. Graduate Texts in Mathematics. Springer, 2001, vol. 207.
[42] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Athena Scientific, 1999.
[43] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and Optimization, 1st ed. Belmont, MA: Athena Scientific, 2003.
[44] B. Rieder, “Studying Facebook via data extraction: the Netvizz application,” Proc. 5th ACM Web Science Conf., pp. 346–355, 2013.

	I Introduction
	II Polya Network Contagion
	II-A Classical Polya Process GP-FE:23, GP-FE:28, GP:30
	II-B Polya Network Contagion Process

	III Initialization Problems
	III-A Outer Node Allocation
	III-B Symmetry
	III-C Gradient Descent

	IV Curing-Infection Problems
	V Heuristic Strategies
	V-A Interior Node Targeting
	V-B Minimized Node Targeting
	V-C Dense Networks

	VI Simulation Results
	VI-A Targeting Algorithms
	VI-B Initialization Trials
	VI-C Delta-Curing Trials

	VII Conclusion
	References

