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Abstract

We prove that conflict-driven clause learning SAT-solvers with the
ordered decision strategy and the DECISION learning scheme are
equivalent to ordered resolution. We also prove that, by replacing
this learning scheme with its opposite that stops after the first new
clause when backtracking, it becomes equivalent to general resolution.
To the best of our knowledge, this is the first theoretical study of the
interplay between specific decision strategies and clause learning.

For both results, we allow nondeterminism in the solver’s ability to
perform unit propagation, conflict analysis, and restarts, in a way that
is similar to previous works in the literature. To aid the presentation
of our results, and possibly future research, we define a model and
language for discussing CDCL-based proof systems that allows for
succinct and precise theorem statements.

1. Introduction

SAT-solvers have become standard tools in many application domains
such as hardware verification, software verification, automated theo-
rem proving, scheduling and computational biology (see [24, 26, 16,
31, 19] among the others). Since their conception in the early 1960s,
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SAT-solvers have become significantly more efficient, but they have
also become significantly more complex. Consequently, there has been
increasing interest in understanding the theoretical limitations and
strengths of contemporary SAT-solvers. Much of the recent literature
has focused on the connections between SAT-solvers and subsystems
of the resolution proof system originally introduced in [12, 36].

This connection essentially started with the Davis-Putnam-Logemann-
Loveland procedure (DPLL) [21], a backtracking search algorithm that
builds partial assignments one literal at a time until a satisfying assign-
ment is found or all assignments have been exhausted. Since DPLL
is sound and complete, its computational trace when applied to an
unsatisfiable formula is a proof of unsatisfiability. It is generally ac-
cepted as a folklore result that the computational trace of DPLL on an
unsatisfiable formula can be converted into a tree-like resolution refu-
tation. Thus, tree-like resolution lower bounds imply DPLL running
time lower bounds. And in some sense, these lower bounds are tight:
DPLL, given oracle access to a tree-like resolution refutation Π of the
input formula, can run in time that is polynomial in the length of Π.
That is, DPLL is essentially equivalent to tree-like resolution and thus
can be viewed as a propositional proof system in the Cook-Reckhow
sense [20].

Nearly all contemporary SAT-solvers are variants of DPLL aug-
mented with modern algorithmic techniques and heuristics. The tech-
nique most often credited for their success is conflict-driven clause
learning (CDCL) [27, 30], so these solvers are interchangeably called
CDCL SAT-solvers, CDCL solvers, or simply CDCL (for further in-
formation regarding the design of SAT-solvers, see the 2009 Handbook
of Satisfiability [11]). Just as with DPLL, the computational trace
of CDCL can be converted into a resolution refutation, but may no
longer be tree-like or even regular. Thus, general resolution lower
bounds imply CDCL running time lower bounds, but it is unclear a
priori whether these bounds are tight in the same sense as above.

The line of work on the question of whether CDCL solvers simulate
general resolution was initiated by Beame et al. [6] and continued by
many others [23, 33, 25, 17, 8, 35, 3, 22]. The primary difference
between all these papers is in the details of the model, the models
considered by Pipatsrisawat and Darwich [35] and Atserias et al. [3]
being perhaps the most faithful to actual implementations of CDCL
SAT-solvers. But almost all models appearing in the literature make
a few nonstandard assumptions.
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1. Very frequent restarts. The solver restarts roughly O(n2) times
for every clause in the given resolution refutation Π. Though
many solvers do restart frequently in practice [10], it is unclear
if this is really necessary for the strength of CDCL.

2. No clause deletion policy. The solver has to keep every learned
clause. In practice, some solvers periodically remove half of all
learned clauses [4].

3. Nondeterministic decision strategy. The solver uses oracle access
to Π to construct a very particular decision strategy. In practice,
solvers use heuristics [29, 32, 28].

It is natural to ask whether these assumptions can be weakened
or removed entirely. In this respect, the first two assumptions have
become topics of recent interest. With regards to the first, much
research has been dedicated to the study of nonrestarting SAT-solvers
[23, 17, 18, 14, 7]. The exact strength of CDCL without restarts is still
unknown and, arguably, makes for the most interesting open problem
in the area. With regards to the second, Elffers et. al. [22] proved
size-space tradeoffs in a very tight model of CDCL, which may be
interpreted as results about aggressive clause deletion policies.

In this paper we are primarily concerned with the third assump-
tion, i.e. how much does the efficiency of CDCL-solvers depend on the
nondeterminism in the decision strategy? To the best of our knowl-
edge, this has not yet been considered in the literature, perhaps due
to the complexity of decision strategies in contemporary SAT-solvers.
We study a simple decision strategy that we call the ordered decision
strategy and, as a historical motivation, we remark that it is identical
to the strategy studied by Beame et. al. [5] in the context of DPLL
without clause learning. It is defined naturally: when the solver has
to choose a variable to assign, the ordered decision strategy dictates
that it chooses the smallest unassigned variable according to some
fixed order. There is still a choice in whether to fix the variable to 0
(false) or 1 (true), and we allow the solver to make this choice non-
deterministically. If unit propagation is used, the solver may assign
variables out of order; a unit clause does not necessarily correspond to
the smallest unassigned variable. This possibility to “cut the line” is
precisely what makes the situation much more subtle and nontrivial.

Thus, our motivating question is the following:

Is there a family of contradictory CNFs {τn}
∞
n=1 that pos-

sess polynomial size resolution refutations but require su-
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perpolynomial time for CDCL using the ordered decision
scheme, for any order?

Before describing our contributions towards this question, let us briefly
review analogous separations in the context of proof and computa-
tional complexities. Bonet et. al. [15] proved that a certain family of
formulas requires exponential-sized ordered resolution refutations but
have polynomial-sized regular resolution refutations. Bollig et. al. [13]
proved that a certain boolean function requires exponential-sized or-
dered binary decision diagrams (OBDDs) but have polynomial-sized
general BDDs. These results tell us that order tends to be a strong re-
striction, and the above question asks whether this same phenomenon
occurs for CDCL. It is also worth noting that this question may be
motivated as a way of understanding the strength of static decision
strategies such as MINCE [1] and FORCE [2]. But since such decision
strategies are rarely used in practice we will not dwell on this anymore.

Our contributions

Per the discussion above, a proof system that captures any class of
CDCL solvers should be no stronger than general resolution. It can
also be reasonably expected (and in two particular situations will be
verified below as easy directions of Theorems 2.13, 2.14) that CDCL
with the ordered decision strategy should be at least as strong as
ordered resolution w.r.t. the same order. Our main results show that,
depending on the learning scheme employed, both of these extremes
can be attained. More specifically, we prove

1. CDCL with the ordered decision strategy and a learning scheme
we call DECISION-L is equivalent to ordered resolution (Theorem
2.13). In particular, it does not simulate general resolution.

2. CDCL with the ordered decision strategy and a learning scheme
we call FIRST-L is equivalent to general resolution (Theorem
2.14).

Remark 1 As the name suggests, DECISION-L is the same as the so-
called DECISION learning scheme in the literature.1 Hence these two
results, taken together, go somewhat against the “common wisdom”.
Namely, it turns out that in the case of ordered decision strategy, an
assertive learning scheme is badly out-performed by a scheme that, to

1We use this slightly different name so that it fits our naming conventions below.
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the best of our knowledge, has not been used in practice. That said,
FIRST-L is similar to the learning scheme FirstNewCut [6], and both
schemes have the property that they are designed somewhat artificially
to target particular resolution steps in a given refutation.

We also prove linear width lower bounds for the second variant
(Theorem 2.15), which are in sharp contrast with the size-width rela-
tionship for general resolution proved by Ben-Sasson and Wigderson
[9].

In all these results, the CDCL solver may arbitrarily choose the
conflict/unit clause if there are several, may elect not to do conflict
analysis/unit propagations at all, and may restart at any time. We
work under these assumptions in part because our intention here is to
focus on the impact of decision strategies. But this substantial amount
of nondeterminism also allows us to identify two proof systems that
are, more or less straightforwardly, equivalent to the corresponding
CDCL variant. Determining the exact power of these systems consti-
tutes the main technical part of this paper.

The first proof system might be of independent interest; we call it
half-ordered resolution. For a given order on the variables, ordered res-
olution can be alternately described by the requirement that in every
application of the resolution rule, the resolved variable is larger than
any other variable appearing in both of the two antecedent clauses. We
relax this requirement by asking that this property holds only for one
of them, which reflects the inherent asymmetry in resolution rules re-
sulting from clause learning in CDCL solvers. Somewhat surprisingly
(at least to us), it turns out (Theorem 2.6) that this relaxation does
not add any extra power, and half-ordered resolution is polynomially
equivalent to ordered resolution w.r.t. the same order.

The second proof system (let us call it P0) extends half-ordered
resolution and is more auxiliary in nature. It is based on the obser-
vation that with the amount of nondeterminism we allow, all trails2

that a CDCL solver manages to create can be easily recreated when
needed. Accordingly, the system works with lines of two types, one
for clauses and another for trails. Clauses entail nontrivial trails via
a unit propagation rule while trails can be used to enhance the half-
ordered resolution rule. We show that P0 is polynomially equivalent
to resolution (Theorem 2.17), and since it is by far our most difficult

2A trail is essentially an ordered partial assignment constructed by CDCL during its
execution.
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result, let us reflect a bit on the ideas in its proof.
Like other CDCL-based proof systems, P0 is not closed under re-

strictions or weakening, so many standard methods no longer apply.
Instead, we use two operations on resolution proofs (lifting and vari-
able deletion) in tandem with some additional structural information
to give us a fine-grained understanding of the size and structure of
the general resolution refutation being simulated. The properties of
these operators allow for a surgery-like process; we simulate small lo-
cal pieces of the refutation and then stitch them together into a new
global refutation.

Theorem 2.14 may at first seem strange to those unfamiliar with
CDCL-based proof systems. We allow nondeterminism in parts of
CDCL that are typically deterministic, but then prove an upper bound
rather than a lower bound. Morally speaking, we show that it is possi-
ble to redistribute some of the nondeterminism in the decision strategy
to different parts of CDCL while maintaining the ability to simulate
general resolution. Although the resulting algorithm deviates fairly
drastically from standard implementations of CDCL, this deviation
is not unprecedented. The correspondence between proof systems
and algorithms here is very similar to the correspondence between
regWRTI and a variant of CDCL with similar features called DLL-
LEARN, both introduced by Buss et. al. [17]. Static proof systems are
easier to analyze, but these nonstandard sources of nondeterminism
manifest themselves naturally when translating CDCL into a static
proof system. Like our systems, lower bounds on regWRTI imply
lower bounds on standard implementations of CDCL, but recent re-
sults for regWRTI have been upper bounds [18, 14]. Of course, upper
bounds are interesting in their own right, but even for those who
are lower bound inclined, these results have value: they demonstrate,
often nontrivially, what convenient features of simple proof systems
must be dropped in order to prove separations.

Finally, in order to aid the above work (and, perhaps, even facil-
itate further research in the area), we present a model and language
for studying CDCL-based proof systems. This model is not meant
to be novel, and is heavily influenced by previous work [33, 3, 22].
However, the primary goal of our model is to highlight possible non-
standard sources of nondeterminism in variants of CDCL, as opposed
to creating a model completely faithful to applications. For example,
Theorem 2.14 can be written in this language as:

For any order π, CDCL(FIRST-L, π-D) is equivalent to gen-
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eral resolution.

We will also try to pay a special attention to finer details of the model
sometimes left implicit in previous works. This entails several subtle
choices to be made, and we interlace the mathematical description of
our model with informal discussion of these choices.

The paper is organized as follows. In Section 2 we give all necessary
definitions and formulate our main results as we go along.

In Section 3 we prove Theorem 2.13 on the power of CDCL with
the ordered decision strategy and the DECISION-L learning strategy.
Section 3.1 contains proof-complexity theoretic arguments about half-
ordered resolution, while in Section 3.2 we establish its translation to
the language of CDCL.

In Section 4 we prove Theorem 2.14 on the power of CDCL with
the ordered decision strategy and the FIRST-L learning strategy. To
that end, in Section 4.1 we show the equivalence of this system to the
proof system P0 mentioned above, and in Section 4.2 we establish that
P0 is actually equivalent to general resolution (Theorem 2.17).

In Section 5 we prove Theorem 2.15 that, roughly speaking, states
that the simulation provided by Theorem 2.14 fails extremely badly
with respect to width. Among other things, this implies that there
does not seem to exist any useful width-size relation in the context of
CDCL with ordered decision strategy.

We conclude in Section 6 with a few remarks and suggestions for
future work.

2. Preliminaries and main results

Throughout the paper, we assume that the set of propositional vari-

ables is fixed as V
def
= {x1, . . . , xn}. A literal is either a propositional

variable or its negation. We will sometimes use the abbreviation x0

for x̄ and x1 for x (so that the Boolean assignment x = a satisfies the
literal xa). A clause is a set of literals, thought of as their disjunction,
in which no variable appears together with its negation. For a clause
C, Var(C) is the set of variables appearing in C. A CNF is a set of
clauses thought of as their conjunction. For a CNF τ , Var(τ) is the
set of variables appearing in τ , i.e. the union of Var(C) for all C ∈ τ .
We denote the empty clause by 0. The width of a clause is the number
of literals in it. A w-CNF is a CNF in which all clauses have width
≤ w.
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The resolution proof system is a Hilbert-style proof system whose
lines are clauses and that has only one resolution rule

C ∨ xai D ∨ x1−a
i

C ∨D
, a ∈ {0, 1}. (1)

We will sometimes make use of the notation Res(C ∨ xai ,D ∨ x
1−a
i ).

The size of a resolution proof Π, denoted as |Π|, is the number of
lines in it. For a CNF τ and a clause C, SR(τ ⊢ C) is the minimal
possible size of a resolution proof of the clause C from clauses in τ (∞
if C is not implied by τ). Likewise, w(τ ⊢ C) is the minimal possible
width of such a proof, defined as the maximal width of a clause in it.
For a proof Π that derives C from τ , the clauses in τ that appear in
Π are called axioms, and if C = 0 then Π is called a refutation. Let
Var(Π) denote the set of variables appearing in Π, i.e. the union of
Var(C) for C appearing in Π.

Note that the weakening rule

C

C ∨D

is not included by default. In the full system of resolution it is admis-
sible in the sense that SR(τ ⊢ 0) does not change if we allow it. But
this will not be the case for some of the CDCL-based fragments we
will be considering below.

Remark 2 Despite the above distinction, it is often convenient to
consider systems that do allow the weakening rule. We make it clear
when we do this by adding the annotation ‘+ weakening’ to the system.
For example, resolution + weakening is the resolution proof system
with the weakening rule included (as in Section 4.2.1).

Resolution Graphs

Our results depend on the careful analysis of the structure of resolu-
tion proofs. For example, it will be useful for us to maintain struc-
tural properties of the proof while changing the underlying clauses
and derivations. We build up the following collection of definitions for
this analysis, to which we will refer throughout the later sections. The
reader may skip this section for now and return to it in the future as
needed.

8



Definition 2.1 For a resolution + weakening proof Π, its resolution
graph, G(Π), is an acyclic directed graph representing Π in the natural
way: each clause in Π has a distinguished node, and for each node
there are incoming edges from the nodes corresponding to the clauses
from which it is derived. Every node has in-degree 0, 1, or 2 if its
corresponding clause is an axiom, derived by weakening, or derived by
resolving two clauses, respectively. Denote the set of nodes by V (Π),
and the clause at v ∈ V (Π) by cΠ(v). We do not assume that cΠ
is injective, that is we allow the same clause to appear in the proof
several times. There is a natural partial order on V (Π) reflecting
the order of appearances of clauses in Π: v > u if and only if v is
a descendant of u, or equivalently, there is a (directed) path from
u to v. We sometimes say that v is above (resp. below) u if v > u
(resp. v < u). If, moreover, (u, v) is an edge (directed from u to v),
we say that u is a parent of v. A set of nodes is independent if any
two nodes in the set are incomparable. Maximal and minimal nodes of
any nonempty S ⊂ V (Π) are defined with respect to this partial order:

maxΠ S
def
= {v ∈ S : ∀u ∈ S¬(v < u)}, and similarly for minΠ S.

Definition 2.2 Let S ⊆ V (Π). The upward closure and downward

closure of S in G(Π) are uclΠ(S)
def
= {v ∈ V (Π) : ∃w ∈ S(v ≥ w)} and

dclΠ(S)
def
= {v ∈ V (Π) : ∃w ∈ S(v ≤ w)}, respectively. A subset of

nodes S is parent-complete if for any v ∈ S of in-degree 2, one parent
of v being in S implies that the other parent of v is also in S. It is
path-complete if for any directed path p in G(Π), the two end points
of p being in S implies all nodes of p are.

Example 1 The upward closure uclΠ(S) is path-complete but need
not be parent-complete. The downward closure dclΠ(S) is always both
path-complete and parent-complete.

These definitions behave naturally, as demonstrated by the follow-
ing proposition.

Proposition 2.3 Let S ⊂ V (Π) be a nonempty set of nodes that is
both parent-complete and path-complete. Then the following holds.

1. The induced subgraph of G(Π) on S is the graph of a subproof in
Π of maxΠ S from minΠ S;

2. If v ∈ S has a parent that is not in S then v ∈ minΠ S.
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Proof.

1. Let S∗ ⊆ S be the set of all nodes in S “provable” from minΠ S
inside S. Formally, it is the closure of minΠ S according to the follow-
ing rule: if v ∈ S and all its parents are in S∗ then v is also in S∗. We
need to show that S∗ = S.

Assume not, and fix an arbitrary v ∈ minΠ(S \ S∗). Since v 6∈
minΠ S, there exists w ∈ S below v. Since S is path-complete, we can
assume w.l.o.g. that w is a parent of v, and since S is parent-complete,
all parents of v are in S. Now, since v is minimal in S \S∗, all of them
must be actually in S∗. Hence v ∈ S∗, a contradiction.

2. All parents of v are not in S by parent-completeness and, for all
u < v, it follows that u 6∈ S by path-completeness.

Definition 2.4 A resolution graph is connected if |maxΠ V (Π)| = 1,
i.e. there is a unique sink.

Example 2 For a resolution proof Π and v ∈ V (Π), the subgraph
on dclΠ({v}) is a connected resolution graph whose axiom nodes are
among those of G(Π).

Ordered and Half-Ordered Resolution

Fix now an order π ∈ Sn. For any literal l = xak, π(l)
def
= π(k). For

k ∈ [n], let Varkπ denote the k smallest variables according to π. Say
that a clause C is k-small with respect to π if Var(C) ⊆ Varkπ.

The proof system π-ordered resolution is the subsystem of reso-
lution defined by imposing the following restriction on the resolution
rule (1):

∀l ∈ C ∨D (π(l) < π(xi)).

That is, the two antecedents are i-small. We note that in the literature
this system is usually defined differently, namely in a top-down manner
(see e.g. [15]). It is easy to see, however, that our version is equivalent.

Definition 2.5 π-half-ordered resolution is the subsystem of resolu-
tion in which the rule (1) is restricted by the requirement

∀l ∈ C (π(l) < π(xi)). (2)

That is, at least one of the antecedents is i-small.
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Recall [20] that a proof system P p-simulates another proof system
Q if there exists a polynomial time algorithm that takes any Q-proof
to a P -proof from the same axioms (in particular, the size of the P -
proof is bounded by a polynomial in the size of the original proof).
Two systems P and Q are polynomially equivalent if they p-simulate
each other.

We are now ready to state our first result.

Theorem 2.6 For any order π ∈ Sn, π-ordered resolution is polyno-
mially equivalent to π-half-ordered resolution.

The next proof system, P0, is even more heavily motivated by
CDCL solvers. For this reason we interrupt our proof-complexity ex-
position to define the corresponding model.

2.1. CDCL-based proof systems

As we noted in Introduction, we will try to highlight certain subtle
points in the definition of the model by injecting informal remarks.

A unit clause is a clause consisting of a single literal. An assign-
ment is an expression of the form xi = a (1 ≤ i ≤ n, a ∈ {0, 1}). A
restriction ρ is a set of assignments in which all variables are pairwise
distinct. We denote by Var(ρ) the set of all variables appearing in
ρ. Restrictions naturally act on clauses, CNFs and resolution proofs,
etc.; we denote by C|ρ, τ |ρ, Π|ρ . . . the result of this action. Note that
both π-ordered resolution and π-half-ordered resolution are closed un-
der restrictions, i.e. if Π is a π-(half)-ordered resolution proof, then
Π|ρ is a π|ρ-(half)-ordered resolution proof of no-bigger size, where π|ρ
is the order induced by π on V \ Var(ρ).

An annotated assignment is an expression of the form xi
∗
= a (1 ≤

i ≤ n, a ∈ {0, 1}, ∗ ∈ {d, u}). Informally, a CDCL solver builds
(ordered) restrictions one assignment at a time, and the annotation
indicates in what way the assignment is made: ‘d’ means by a decision,
and ‘u’ means by unit propagation. See Definition 2.8 and Remark 5
below for details about these annotations.

Definition 2.7 A trail is an ordered list of annotated assignments in
which all variables are again pairwise distinct. A trail acts on clauses,
CNFs etc. just in the same way as does the restriction obtained from
it by disregarding the order and the annotations on assignments. For
a trail t and an annotated assignment xi

∗
= a such that xi does not
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appear in t, we denote by [t, xi
∗
= a] the trail obtained by appending

xi
∗
= a to its end. t[k] is the kth assignment of t. A prefix of a trail

t = [xi1
∗1= a1, . . . , xir

∗r= ar] is any trail of the form [xi1
∗1= a1, . . . , xis

∗s=
as] (0 ≤ s ≤ r) denoted by t[≤ s]. Λ is the empty trail.

A state is a pair (C, t), where C is a CNF and t is a trail. The
state (C, t) is terminal if either C|t ≡ 1 for all C ∈ C or C contains
0. All other states are nonterminal. We let Sn denote the set of all
states (recall that n is reserved for the number of variables), and let
Son ⊂ Sn be the set of all nonterminal states.

Remark 3 As unambiguous as Definition 2.7 may seem, it already
reflects one important choice, to consider only positional3 solvers, i.e.
those that are allowed to carry along only CNFs and trails, but not
any other auxiliary information. The only mathematical ramification
of this restriction is that we will have to collapse the whole clause
learning stage into one step, but that is a sensible thing to do anyway.
From the practical perspective, however, this restriction is far from
obvious and we will revisit this issue in our concluding section 6.

Remark 4 We are now about to describe the core of our (or, for that
matter, any other) model, that is transition rules between states. But
since this definition is the longest one, we prefer to change gears and
precede it with some informal remarks rather than give them after the
definition.

Proof systems attempting to capture performance of modern CDCL
solvers are in general much bulkier than their logical counterparts and
are built from several heterogeneous blocks. At the same time, most
papers highlight the impact of one or a few of the features, with a
varying degrees of nondeterminism allowed, while the features out of
focus are treated in often unpredictable and implicit ways. We have
found this state of affairs somewhat impending for the effort of trying
to compare different results to each other or to build useful structure
around them of the kind existing in “pure” proof complexity. There-
fore, we adapt an approach that in a sense is the opposite. Namely,
we rigorously describe a basic model that is very liberal and nonde-
terministic and intends to approximate the union of most conceivable
features of CDCL solvers. Then models of actual interest will be de-
fined by their deviations from the basic model. These deviations will

3The name is suggested by a similar term “positional strategy” in game theory.
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take the form of “amendments” forbidding certain forms of behavior
or, potentially, allowing for new ones.

Besides this point, there are only few (although sometimes subtle)
differences from the previous models, so our description is given more
or less matter-of-factly.

Definition 2.8 For a (nonterminal) state S = (C, t) ∈ Son, we de-
fine the finite nonempty set Actions(S) and the function TransitionS :
Actions(S) −→ Sn; the fact TransitionS(A) = S′ will be usually ab-

breviated to S
A

=⇒ S′. Those are described as follows:

Actions(S)
def
= D(S)

.
∪ U(S)

.
∪ L(S),

where the letters D,U,L have the obvious meaning4.

• D(S) consists of all annotated assignments xi
d
= a such that xi

does not appear in t and a ∈ {0, 1}. We naturally let

(C, t)
xi

d
=a

=⇒ (C, [t, xi
d
= a]). (3)

• U(S) consists of all those assignments xi
u
= a for which C|t con-

tains the unit clause xai ; the transition function is given by the
same formula (3) but with a different annotation:

(C, t)
xi

u
=a

=⇒ (C, [t, xi
u
= a]). (4)

• As should be expected, L(S) is the most sophisticated part of the

definition (cf. [3, Section 2.3.3]). Let t = [xi1
∗1= a1, . . . , xir

∗r= ar].
By reverse induction on k = r+ 1, . . . , 1 we define the set Ck(S)
that, intuitively, is the set of clauses that can be learned by
backtracking up to the prefix t[≤ k].

We let
Cr+1(S)

def
= {D ∈ C |D|t = 0}

be the set of all conflict clauses.

For 1 ≤ k ≤ r, we do the following: if the k-th assignment of t is

of the form xik
d
= ak, then Ck(S)

def
= Ck+1(S). Otherwise, it is of

the form xik
u
= ak, and we build up Ck(S) by processing every

clause D ∈ Ck+1(S) as follows.

4Restarts will be treated as a part of the learning scheme.
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– If D does not contain the literal xakik then we include D into
Ck(S) unchanged.

– If D contains xakik , then we resolve D with all clauses C ∈ C

such that C|t[≤k−1] = xakik and include into Ck(S) all the
results Res(C,D). D itself is not included.

To make sure that this definition is sound, we have to guarantee
that C and D are actually resolvable (that is, they do not contain
any other conflicting variables but xik). For that we need the
following observation, easily proved by reverse induction on k,
simultaneously with the definition:

Claim 2.9 D|t = 0 for every D ∈ Ck(S).

Finally, we let

C(S)
def
=

r⋃

k=1

Ck(S),

L(S)
def
=

{
{(0,Λ)} if 0 ∈ C(S);

{(C, t∗) | C ∈ (C(S) \ C) , t∗ a prefix of t such that C|t∗ 6= 0} otherwise

(5)
and

(C, t)
(C,t∗)
=⇒ (C ∪ {C}, t∗).

This completes the description of the basic model.

Remark 5 For nearly all modern implementations of CDCL, the an-
notations are redundant because CDCL solvers typically require unit
propagation always to be performed when it is applicable (in our lan-
guage of amendments, this feature will be called ALWAYS-U). Nev-
ertheless, the presence of annotations makes the basic model flexible
enough to carry on various, sometimes subtle, restrictions and ex-
tensions. In particular, we consider solvers that are not required to
record unit propagations as such. This allows for the situation in which

xi
d
= a and xi

u
= a are in Actions(S), and the set of learnable clauses

is sensible to this.

Remark 6 In certain pathological cases, mostly resulting from ne-
glecting to do unit propagation, the set Actions(C, t) may turn out to
be empty even if (C, t) is nonterminal and C is contradictory. But for
the reasons already discussed above, we prefer to keep the basic model
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as clean as possible syntactically, postponing such considerations for
later.

The transition graph Γn is the directed graph on Sn defined by
erasing the information about actions; thus (S, S′) ∈ E(Γn) if and
only if S′ ∈ im(TransitionS). It is easy to see (by double induc-
tion on (|C|, n − |t|)) that Γn is acyclic. Moreover, both the set
{(S,A) | A ∈ Actions(S)} and the function (S,A) 7→ TransitionS(A)
are polynomially5 time computable. These observations motivate the
following definition.

Definition 2.10 Given a CNF C, a partial run on C from the state
S to the state T is a sequence

S = S0
A0=⇒ S1

A1=⇒ . . . SL−1
AL−1
=⇒ SL = T, (6)

where Ak ∈ Actions(Sk). In other words, a partial run is an annotated
path in Γn. A successful run is a partial run from (C,Λ) to a terminal
state. A CDCL solver is a partial function µ on Son such that µ(S) ∈
Actions(S) whenever µ(S) is defined. The above remarks imply that
when we apply a CDCL solver µ to any initial state (C,Λ), it will
always result in a finite sequence like (6), with T being a terminal
state (successful run) or such that µ(T ) is undefined (failure).

Remark 7 Theoretical analysis usually deals with classes (i.e., sets)
of individual solvers rather than with individual implementations, and
there might be several different approaches to defining such classes.
One might consider for example various complexity restrictions like
demanding that µ be polynomially time computable. But in this paper
we are more interested in classes defined by prioritizing and restricting
various actions.

Definition 2.11 A local class of CDCL solvers is described by a col-
lection of subsets AllowedActions(S) ⊆ Actions(S), S ∈ Son. It con-
sists of all those solvers µ for which µ(S) ∈ AllowedActions(S), when-
ever µ(S) is defined.

We will describe local classes of solvers in terms of amendments
prescribing what actions should be removed from the set Actions(S)
to form AllowedActions(S). Without further ado, let us give a few

5in the size of the state S, not in n
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examples illustrating how do familiar restrictions look in this language.
Throughout the description, we fix a nonterminal state S = (C, t).

ALWAYS-C If C|t contains the empty clause, then D(S) and U(S)
are removed from Actions(S). In other words, this amendment
requires the solver to perform conflict analysis if it can do so.

ALWAYS-U If C|t contains a unit clause, then D(S) is removed from
Actions(S). This amendment insists on unit propagation, but
leaves to nondeterminism the choice of the unit to propagate if
there are several choices. Note that as defined, ALWAYS-U is a
lower priority amendment than ALWAYS-C: if both a conflict and
a unit clause are present, the solver must do conflict analysis.

ALWAYS-R In the definition (5) of learning actions we keep only those
(C, t∗) for which t∗ = Λ.

NEVER-R In the definition (5), we require that t∗ is the longest pre-
fix of t satisfying C|t∗ 6= 0 (in which case C|t∗ is necessarily
a unit clause). As described, this amendment does not model
nonchronological backtracking or require that the last assign-
ment in the trail is a decision. However, this version is easier to
state and it is not difficult to modify to have the aforementioned
properties. Furthermore, all open questions pertaining to this
amendment remain open for either version.

ASSERTING-L In the definition (5), we shrink C(S)\C to (
⋃s

k=1Ck(S))\
C, where s < r is the largest index for which xis = as is anno-
tated as ‘d’ in t. This amendment is meaningful (and mostly
used) only when combined with ALWAYS-C and ALWAYS-U, in
which case we can state expected properties like the fact that
every learned clause contains the literal x1−as

is
.

DECISION-L In the definition (5), we shrink C(S)\C to C1(S)\C.

FIRST-L In the definition (5), we shrink C(S)\C to those clauses that
are obtained by resolving, in the notation of Definition 2.8, be-
tween pairs C and D with D ∈ C. As noted in the introduction,
this is similar to the scheme FirstNewCut [6].

π-D, where π ∈ Sn is an order on the variables We keep inD(S)

only the two assignments xi
d
= 0, xi

d
= 1, where xi is the small-

est variable w.r.t. π that does not appear in t. Note that this
amendment does not have any effect upon U(S), and the main
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technical contributions of our paper can be also phrased as ask-
ing under which circumstances this “loophole” can circumvent
the severe restriction placed on the set D(S).

WIDTH-w, where w is an integer In the definition (5), we keep in
C(S) \ C only clauses of width ≤ w. Note that this amendment
still allows us to use wide clauses as intermediate results within
a single clauses learning step.

SPACE-s, where s is an integer If |C| ≥ s, then L(S) is entirely
removed from Actions(S). This amendment makes sense when
accompanied by the possibility to do bookkeeping by removing
“unnecessary” clauses. We will briefly discuss positive amend-
ments in Remark 9 below.

Thus, our preferred way to specify local classes of solvers and the
corresponding proof systems is by listing one or more amendments,
with the convention that their effect is cumulative: an action is re-
moved from Actions(S) if and only if it should be removed according
to at least one of the amendments present. More formally,

Definition 2.12 For a finite set A1, . . . ,Ar of poly-time computable
amendments, we let CDCL(A1, . . . ,Ar) be the (possibly incomplete)
proof system whose proofs are those successful runs (6) in which none
of the actions Ai is affected by any of the amendments A1, . . . ,Ar.

Remark 8 The amendments ALWAYS-C, ALWAYS-U are present in
almost all previous work and, arguably, it is precisely what distin-
guishes conflict-driven clause learning techniques. Nonetheless, we
have decided against including them into the basic model as they may
be distracting in theoretical studies focusing on other features; our
work is one example. Also, from the practical point of view (this
sentence is admittedly rather hypothetical and speculative!) it is not
a priori clear why it is always a good idea to jump up at the very
first opportunity to do unit propagation or conflict analysis instead of
waiting for “more promising” clauses to pop up.

Remark 9 Let us briefly discuss the possibility of extending the basic
model rather than restricting it. The most substantial deviation would
be to forfeit the assumption of positionality (see Remark 3) or, in other
words, to allow the solver to carry along more information than just
a set of clauses and a trail. Two such examples are dynamic variable
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ordering and phase saving. The first is very pertinent to the technical
part of our paper, so we defer the corresponding discussion to Section
6.

For positional solvers, extending the basic model amounts to in-
troducing positive amendments enlarging the sets Actions(S) instead
of decreasing them. Here are a few suggestions we came across during
our deliberations.

CLAUSE DELETION For S = (C, t) ∈ Son, we add to Actions(S) all
subsets C0 ⊆ C. The transition function is obvious:

(C, t)
C0=⇒ (C0, t).

This is the space model whose study was initiated in [22], and like
in that paper, we do not see compelling reasons to differentiate
between original clauses and the learned ones.

MULTI-CLAUSE LEARNING In the definition (5) of L(S), we can allow
arbitrary nonempty subsets C0 ⊆ C(S) \ C instead of a single
clause C and require that C|t∗ 6= 0 for any C ∈ C, with the
obvious transition

(C, t)
(C0,t

∗)
=⇒ (C ∪ C0, t

∗).

Though existing SAT-solver implementions tend not to do this,
it is natural to consider when thinking of Pool resolution or RTL
proof systems as variants of CDCL.

INCOMPLETE LEARNING In the definition (5) of L(S), we could re-
move the restriction C|t∗ 6= 0 on the prefix t∗. This positive
amendment could make sense in the absence of ALWAYS-C, that
is, if we are prepared for delayed conflict analysis.

In this language, the (nonalgorithmic part of the) main result from
[3, 35] can be roughly summarized as

CDCL(ALWAYS-C, ALWAYS-U, ALWAYS-R, DECISION-L) is
polynomially equivalent to resolution.

The algorithmic part from [3] roughly says that any CDCL solver in
the associated class, subject to the only condition that the choice of
actions from D(S) (when it is allowed by the amendments) is random,

18



polynomially simulates bounded-width resolution6. The open question
asked in [3, Section 2.3.4] can be reasonably interpreted as whether
CDCL(ALWAYS-C, ALWAYS-U, WIDTH-w) is as powerful as width-w
resolution, perhaps with some gap between the two width constraints
(We took the liberty to remove those amendments that do not appear
to be relevant to the question.) Finally, we would like to abstract the
“no-restarts” question as

Does CDCL(ALWAYS-C, ALWAYS-U, NEVER-R) (or at least
CDCL(NEVER-R)) simulate general resolution?

where we have again removed all other amendments in the hope that
this will make the question more clean mathematically.

2.2. Our contributions

As they had already been discussed in the introduction, here we formu-
late our results (in the language just introduced) more or less matter-
of-factly.

Theorem 2.13 For any fixed order π on the variables, the system
CDCL(DECISION-L, π-D) is polynomially equivalent to π-ordered res-
olution.

Theorem 2.14 For any fixed order π on the variables, the system
CDCL(FIRST-L, π-D) is polynomially equivalent to general resolution.

Theorem 2.15 For any fixed order π on the variables and every ǫ > 0
there exist contradictory CNFs τn with w(τn ⊢ 0) ≤ O(1) not provable
in CDCL(π-D, WIDTH-(1 − ǫ)n).

Finally, let us mention that while CDCL(A1, . . . ,Ar) is a (possibly
incomplete) proof system in the Cook-Reckhow sense, it need not nec-
essarily be a Hilbert-style proof system, operating with “natural” lines
and inference rules. Assume, however, that the set AllowedActions(S)
additionally satisfies the following two properties:

1. whenever AllowedActions(S) ∩ L(S) 6= ∅, it contains an action
leading to a state of the form (C,Λ) (i.e, restarts are allowed);

6That is, has running time nO(w(τn⊢0)) with high probability, given an contradictory
CNF τn as an input.
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2. (monotonicity) If S = (C, t), S′ = (C′, t) and C ⊆ C′ then
AllowedActions(S) ∩ (D(S)

.
∪ U(S)) ⊆ AllowedActions(S′) ∩

(D(S′)
.
∪ U(S′)).

Then every trail t that appears in a run can always be recreated,
at a low cost, when it is needed again. Thus, under these restrictions
we get a “normal” proof system with nice properties. We formulate it
explicitly for the case π-D we are mostly interested in.

Definition 2.16 Fix an order π on the variables. π-P0 is the follow-
ing (two-typed) proof system. Its lines are either clauses or trails, and
it has the following rules of inference:

t

[t, xi
d
= a]

, (Decision rule)

where xi is the π-smallest index such that xi does not appear in t and
a ∈ {0, 1} is arbitrary;

t C

[t, xi
u
= a]

, (Unit propagation rule)

where C|t = xai ;

C ∨ xai D ∨ x1−a
i t

C ∨D
, (Learning rule)

where (C ∨D)|t = 0, (xi
∗
= a) ∈ t and all other variables of C appear

before xi in t.

It is straightforward to see that without the unit propagation rule,
this is just the π-half-ordered resolution.

Then, the main technical part in proving Theorem 2.14 is the fol-
lowing

Theorem 2.17 For every fixed order π on the variables, π-P0 is poly-
nomially equivalent to general resolution.

3. CDCL(π-D,DECISION-L) =p π-Ordered

In this section we prove Theorem 2.13. The proof breaks into two
parts (Theorem 2.6, Theorem 3.4), with half-ordered resolution as the
intermediate.
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3.1. Half-Ordered =p Ordered

Half-ordered resolution trivially p-simulates ordered resolution, so the
core of Theorem 2.6 is the other direction. In this section we will
depend heavily on resolution graphs (Definition 2.1) and related defi-
nitions from Section 2.

Definition 3.1 A resolution refutation Π is ordered up to k (with
respect to an order π) if it satisfies the property that ∀v ∈ V (Π), if
cΠ(v) is derived by resolving two clauses on some variables xi ∈ Varkπ,
then all resolution steps above v are on variables in Vark−1

π . We note
that π-ordered resolution proofs are precisely those that are ordered
up to n− 1.

We now prove the main part of Theorem 2.6, namely that π-
ordered resolution p-simulates π-half-ordered resolution.

Proof. (of theorem 2.6) Let Π be a π-half-ordered resolution refuta-
tion of τ . Without loss of generality, assume that π = id (otherwise
rename variables).

We will construct by induction on k (0 ≤ k ≤ n−1) a half-ordered
resolution refutation Πk of τ , which is ordered up to k. For the base
case, let Π0 = Π. Suppose Πk has been constructed; without loss of
generality we can assume that Πk is connected (otherwise take the
subrefutation below any occurrence of 0).

Consider the set of nodes whose clauses are k-small. Note that this
set is parent-complete. We claim that it is also upward-closed (and
hence path-complete). Indeed, let u be a parent of v, and assume
that c(u) = cΠk

(u) is k-small. Then (since we disallowed weakenings),
c(v) is obtained by resolving on a variable xi ∈ Varkπ. But since Πk

is ordered up to k, Var(c(v)) ⊆ Vari−1
π ⊆ Varkπ, as otherwise some

variable in c(v) would have remained unresolved on a path connecting
v to the sink (here we have used connectedness). Hence c(v) is also
k-small.

So by Proposition 2.3(1), it defines the subrefutation of the inde-
pendent set

Lk
def
= minΠk

{v| c(v) is k-small}. (7)

Since any node in Πk can be connected to the sink (which is k-small) by
a path, and the set of k-small nodes is parent-complete, by Proposition
2.3, Lk splits Πk into two parts: Πk = uclΠk

(Lk) ∪ dclΠk
(Lk), Lk =

uclΠk
(Lk) ∩ dclΠk

(Lk), where dclΠk
(Lk) is (the graph of) a subproof

21



of Lk and uclΠk
(Lk) is (the graph of) a subrefutation of Lk. Denote

these two subproofs by D and U , respectively: D is comprised of all
nodes in Π that either are marked by a clause that is not k-small or
belong to Lk, and U is comprised of all nodes marked by an k-small
clause. In particular, all axioms are in D, all resolutions in U are on
the variables in Varkπ and, since Πk is ordered up to k, all resolutions
in D are on the variables not in Varkπ. Let

M
def
= minD{w| c(w) is the result of resolving two clauses on xk+1}.

(8)

If M is empty, Πk+1
def
= Πk.

Otherwise, suppose M = {w1, . . . , ws} and let

Ai
def
= uclD({wi}). (9)

We will eliminate all resolutions on xk+1 in D by the following process,
during which the set of nodes stays the same while edges and clause-
labeling function will possibly change. More precisely, we update D
in s rounds, defining π-half-ordered resolution + weakening proofs
D1,D2, . . . ,Ds. Initially D0 = D, i = 1. Let ci−1 denote the clause-
labeling cDi−1

. To define the transition Di−1 → Di, we need the
following structural properties of Di−1 (that will also be proved by
induction simultaneously with the definition).

Claim 3.2

a. Compared to D, Di−1 has no new relation of ‘one node being
above another’ (there might be fewer);

b. ∀v ∈ V (D), ci−1(v) is either cD(v) or cD(v) ∨ xk+1 or cD(v) ∨
xk+1;

c. If v /∈
i−1
∪
j=1

Aj then ci−1(v) = cD(v) and, moreover, this clause is

obtained in Di−1 with the same resolution rule as in D;

d. Di−1 is a π-half-ordered resolution + weakening proof.

In the base case (i = 1), Claim 3.2 holds simply because D0 = D.
Let us construct Di. By Claim 3.2(c), the resolution step at wi

(which is not in
i−1
∪
j=1

Aj) is unchanged from D to Di−1. Assume that it

resolves cD(w′) = B ∨ xk+1 and cD(w′′) = C ∨ xk+1. Since Πk is half-
ordered, either B or C is k-small. Assume without loss of generality
that B is k-small.
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Recall that there is no resolution in D on variables in Varkπ. Thus,
for all v ∈ Ai, it follows that B is a subclause of cD(v), and by Claim
3.2(b), we get the following crucial property:

For all v ∈ Ai, B is a subclause of ci−1(v). (10)

Note that Ai is upward closed in Di−1 by Claim 3.2(a). Accordingly,
as the first step, for any v 6∈ Ai we set ci(v) := ci−1(v) and we do not
touch its incoming edges.

Next, we update vertices v ∈ Ai in an arbitrary D-topological
order maintaining the property ci(v) ∈ {ci−1(v), ci−1(v) ∨ xk+1} (in
particular, ci(v) = ci−1(v) whenever ci−1(v) contains a literal of the
variable xk+1).

First we set ci(wi) := ci−1(wi) ∨ xk+1 (recall that cDi−1
(wi) =

cD(wi) by Claim 3.2(c) and hence does not contain xk+1 by (8)), and
replace incoming edges by a weakening edge from w′′.

For v ∈ Ai \ {wi}, we proceed as follows.

1. If xk+1 ∈ ci−1(v), keep the clause but replace incoming edges
with a weakening edge (w′, v). This is well-defined by (10), and
note for the record that since w′ <D w <D v, we do not enlarge
the “above” relation compared to D.

2. If ci−1(v) = Res(ci−1(u), ci−1(w)) on xk+1 where xk+1 ∈ ci−1(u),
set ci(v) := ci−1(v) ∨ xk+1 (or, equivalently, ci−1(v) ∨ ci(u)) and
replace incoming edges by a weakening edge (u, v).

3. If ci−1(v) is weakened from ci−1(u) (and xk+1 6∈ ci−1(v)), set
ci(v) := ci−1(v) ∨ ci(u). In other words, we append the literal
xk+1 to ci(v) if and only if this was previously done for ci(u).

4. Otherwise, xk+1 /∈ ci−1(v), and ci−1(v) = Res(ci−1(u), ci−1(w))
on some xℓ, ℓ > k + 1. In particular, xk+1 /∈ {ci−1(u), ci−1(w)}.
Set ci(v) := Res(ci(u), ci(w)) that is, like in the previous item,
we append xk+1 if and only if it was previously done for either
ci(v) or ci(w). Note that since ℓ > k + 1, this step remains
π-half-ordered.

This completes our description of Di, but we still have to check
Claim 3.2 for it. For (a), note that the only new edges were added
in item 1, and see the remark made there. The cases (b) and (c) are
straightforward. For (d), the only new resolution rules were introduced
in item 4; again, see the remark made there.

The next claim summarizes the necessary properties of the end
result, Ds.
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Claim 3.3

a. Ds is a π-half-ordered resolution + weakening proof without res-
olutions on xk+1.

b. If cs(v) 6= cD(v) for some v ∈ D, then ∃w ∈ dclD(M) \ {M}
such that cD(v) = Res(cs(w), cs(v)) on xk+1, and this resolution
is half-ordered. In fact, w is a parent of some wi in D, i ∈ [s].

Proof.

a. No new resolution on the variable xk+1 has been introduced, while
all old ones are in A1 ∪ · · · ∪ As and thus have been eliminated. The
conclusion follows from this observation together with Claim 3.2(d).

b. Suppose c(v) was changed in Di−1 → Di (and hence stayed un-
changed afterwords) so that in particular v ∈ Ai. Set w := w′,
where w′ is the parent of wi from above. Note that cs(w) = cD(w)
since the latter contains the literal (say) xk+1. Then we readily have
cD(v) = cDi−1

(v) = Res(B ∨ xk+1, cD(v) ∨ xk+1) by (10), and it is
half-ordered since B is k-small.

Now to get Πk+1, we try to reconnect Ds with U along Lk and
then clear out weakenings. The problem with this approach is the
added appearances of xak+1 in cs(v) for v ∈ Lk, as in Claim 3.2(b).
We introduce new nodes to deal with them. Namely, for v ∈ Li, if
cs(v) 6= cD(v), apply Claim 3.3(b) to create a new node ṽ to add to
Ds with the clause Res(cs(w), cs(v)). Denote by Π̃k+1 the result of
connecting Ds and U along Lk and this new set of vertices. Since
neither Ds nor U contain resolutions on xk+1, Π̃k+1 is a half-ordered
refutation (with weakenings) that is ordered up to k + 1. Let Πk+1

be obtained by contracting all weakening rules. It will still be half-
ordered and ordered up to k + 1, and it only remains to analyze its
size (note that a priori it can be doubled at every step, which is
unacceptable).

Since
|Πk+1| ≤ |Πk|+ |Lk|, (11)

we only have to control |Lk|. For that we will keep track of the invari-
ant |dclΠk

(Lk)|; more precisely, we claim that

|dclΠk+1
(Lk+1)| ≤ |dclΠk

(Lk)|. (12)

Let us prove this by constructing an injection from dclΠk+1
(Lk+1) to

dclΠk
(Lk); we will utilize the previous notation.
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C ∨ x1
¬x1

C

C ′

xi ¬xi

0

→

C ∨ x1
¬x1

C

C ′ ∨ x1

xi ∨ x1 ¬xi

x1

0

Figure 1: A toy example of the transformation from Π0 to Π1

First note that the resolution + weakening refutation Π̃k+1 and its
weakening-free contraction Πk+1 can be related as follows. For every
node v ∈ V (Πk+1) there exists a node v∗ ∈ V (Π̃k+1) with cΠ̃k+1

(v∗) ⊇

cΠk+1
(v) which is minimal among those contracting to v. If v is an

axiom node of Πk+1 then so is v∗ in Π̃k+1. Otherwise, if u and w are
the two parents of v, and u′, w′ are the corresponding parents of v∗ (v∗

may not be obtained by weakening due to the minimality assumption),
then cΠ̃k+1

(u∗) is a subclause of cΠ̃k+1
(u′) and cΠ̃k+1

(w∗) is a subclause

of cΠ̃k+1
(w′). We claim that (v 7→ v∗) |dclΠk+1

(Lk+1) (which is injective

by definition) is the desired injection. We have to check that its image
is contained in dclΠk

(Lk).
Fix v ∈ dclΠk+1

(Lk+1). Then either v is an axiom or both its
parents are not (k + 1)-small (by (7)). By the above mentioned facts
about the contraction Π̃k+1 → Πk+1, this property is inherited by v∗.
In particular, v∗ 6∈ {w̃ | w ∈ Lk} as all nodes in this set have at least
one (k + 1)-small parent due to half-orderedness. Finally, since the
corresponding clauses in D and Ds differ only in the variable xk+1, v

∗

cannot be in U , for the same reason (recall that all axioms are in D).
Hence v∗ ∈ V (Ds) = V (D) = dclΠk

(Lk).
Having thus proved (12), we conclude by the obvious induction

that |Lk| ≤ |dclΠk
(Lk)| ≤ |dclΠ0

(L0)| ≤ |Π|. Then (11) implies
|Πn−1| ≤ n|Π|, as desired.
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3.2. Half-Ordered =p CDCL(π-D,DECISION-L)

In this section, we prove the following theorem.

Theorem 3.4 The systems CDCL(π-D,DECISION-L) and π-half-ordered
resolution are p-equivalent.

One direction is almost trivial.

Proposition 3.5 CDCL(π-D,DECISION-L) p-simulates π-half-ordered
resolution.

Proof. As usual, assume π = id. Suppose C∨D = Res(C∨xi, D∨xi)
is any half-ordered resolution, and without loss of generality assume
C is i-small. It is enough to present a partial run from (τ,Λ) to
(τ ∪ {C ∨ D},Λ) of length at most n + 1, where τ is any clause set
containing C ∨ xi and D ∨ xi.

Let xj be the largest variable in C (thus j < i). Consider a trail
of the form

t = [x1
d
= a1, . . . , xj

d
= aj, xi

u
= 1, xj+1

d
= aj+1, . . . , xi−1

d
= ai−1, xi+1

d
= ai+1, . . . , xn

d
= an]

such that (C ∨D)|t = 0. By definition, t[l] ∈ AllowedActions((τ, t[≤
l− 1])) for all l 6= j+ 1. But since C is i-small, (C ∨xi)|t[≤j] = xi and

thus xi
u
= 1 ∈ AllowedActions((τ, t[≤ j])) as well. Therefore,

(τ,Λ)
t[1]
=⇒ (τ, t[≤ 1])

t[2]
=⇒ (τ, t[≤ 2]) · · ·

t[n]
=⇒ (τ, t)

is a partial run from (τ,Λ) to (τ, t). It now suffices to show (τ ∪ {C ∨
D},Λ) ∈ L((τ, t)). This follows by verifying Definition 2.8 directly:
(D∨xi)|t = 0 so D∨xi ∈ Cn+1((τ, t)). For j′ > j+ 1, the assignment
t[j′] is a decision, so D ∨ xi ∈ Cj+2((τ, t)). Since (C ∨ xi)|t[≤j] =
xi, C ∨ D = Res(C ∨ xi,D ∨ xi) ∈ Cj+1((τ, t)). Finally, for j′ ≤
j, t[j′] is a decision, so C ∨ D ∈ C1(τ, t) and (τ ∪ {C ∨ D},Λ) ∈
AllowedActions((τ, t)).

The other direction of Theorem 3.4 is less obvious. We begin with
some additional notation.

Previous works describe standard learning schemes like DECISION-L
with respect to so-called trivial resolution on a set of particular clauses
(e.g., in [35, 6]). We can recast this notion in our model by the fol-
lowing lemma. Let
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D ◦x C
def
=

{
Res(D,C) if C and D are resolvable on x

D otherwise (“null case”)
,

and extend it by left associativity, i.e., C0 ◦
xi1 C1 ◦

xi2 · · · ◦xik Ck
def
=

(. . . (C0◦
xi1 C1)◦

xi2 . . . )◦xik Ck. We note that if xij appears maximally
in Cj (according to π) for each j ∈ [k], then all the resolutions are
π-half-ordered.

Lemma 3.6 Assume that a clause D is learned from the state S =
(C, t = [y1

∗1= a1, . . . , yr
∗r= ar]) as described in Definition 2.8, i.e. D ∈

Cj(S) for some j ∈ [r+ 1] . Then, there are clauses C1, . . . , Ck+1 ∈ C

and indices j ≤ i1 < · · · < ik ≤ r such that

1. Ck+1|t = 0,

2. Cν |t[≤iν−1] = y
aiν
iν

for ν ∈ [k], and

3. D = Ck+1 ◦
yik Ck · · · ◦

yi1 C1, where all operators are not null.

Moreover, let ℓ ∈ [r], ∗ℓ = u and assume that there exists ν ∈ [k]
such that iν > ℓ and Cν contains the literal yaℓℓ . Then ℓ ∈ {i1, . . . , ik}.

Proof. By tracing Definition 2.8 using reverse induction on j. If
j = r+ 1, the clause D itself satisfies the above properties. For j ≤ r,
D ∈ Cj+1(S) or there are clauses D′ ∈ Cj+1(S) and C ∈ C such that
C|t[≤j−1] = y

aj
j and D = Res(D′, C) on yj. The first case follows by

the inductive hypothesis. In the second case, enlarge the index list by
including j and the clause list by including C.

The last claim follows from the observation that the literal yaℓℓ will
propagate all the way down to D′ ∈ Cℓ+1(S). Hence, at the ℓth stage
the second case above must take place.

In other words, Ck+1 is a conflict clause and the other Cν ’s are
clauses in C chosen to do resolutions while backtracking in a learning
step. These clauses are not necessarily unique, but we fix a choice

arbitrarily. For convenience, we let ik+1
def
= r+1 and I

def
= {i1, ..., ik+1}.

Proposition 3.7 completes the proof of Theorem 3.4, which together
with Theorem 2.6 finishes the proof of Theorem 2.13.

Proposition 3.7 π-half-ordered resolution p-simulates CDCL(π-D,DECISION-L).
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Proof. Fix a successful run in CDCL(π-D,DECISION-L). Since the
clause set only changes after a learning step, it suffices to show that for

each learning step S = (C, t)
(D,t∗)
=⇒ (C∪ {D}, t∗), there is a short half-

ordered resolution proof of D from C. Suppose t = [y1
∗1= a1, . . . , yr

∗r=
ar] and assume π = id, as usual. Fix the clauses Cν for ν ∈ [k+1] and
the set I as in Lemma 3.6 with j := 1 (it is crucial that D ∈ C1(S)
due to the presence of the amendment DECISION-L); recall that

D = Ck+1 ◦
yik Ck · · · ◦

yi1 C1. (13)

The sequence of resolutions (13) is not all half-ordered only if some
y
aiν
iν

is not the largest in Cν (which may happen since the assignments
in t need not necessarily respect the order π). Thus our goal is to
replace in this sequence, this time going from the right to the left, each
clause Cν for ν ∈ [k] by a clause C ′

ν in which yiν appears maximally.
First, let C ′

1 = C1. For ν ∈ [2, k + 1], let

C ′
ν

def
= Cν ◦

yiν−1 C ′
ν−1 · · · ◦

yi1 C ′
1 (14)

where this time some operators may be null.
It is immediate from (14) that

yaνiν ∈ C
′
ν for all ν ∈ [k] (15)

and

C ′
ν ⊆

ν⋃

µ=1

Cµ for all ν ∈ [k + 1] (by induction on ν). (16)

Lemma 3.8 For all ν ∈ [k + 1] and µ ≤ ν,

(Cν ◦
yiν−1 C ′

ν−1 · · · ◦
yiµ C ′

µ)|t[≤iν−1] = y
aiν
iν

where y
aik+1

ik+1
:= 0.

In particular, if µ < ν the operator ◦yiµ in (14) can be null only if

y
aµ
iµ
6∈ Cν ◦

yiν−1 C ′
ν−1 ◦

yiν−2 · · · ◦yiµ+1 C ′
µ+1.

Proof. Use double induction, first on ν and then on µ = ν . . . 1. For
µ = ν, this is Lemma 3.6(2) (and Lemma 3.6(1) when µ = ν = k+ 1).

If µ < ν then let E
def
= (Cν ◦

yiν−1 C ′
ν−1 · · · ◦

yiµ+1 C ′
µ+1); we have to

prove that (E ◦yiµ C ′
µ)|t[≤iν−1] = y

aiν
iν

from E|t[≤iν−1] = y
aiν
iν

. We can
assume w.l.o.g. that this operator is not null. Now we only have to
remark that C ′

µ |t[≤iµ−1]= y
aµ
iµ

by the inductive assumption applied to
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the pair ν := µ, µ := 1. The “in particular” part also follows from
this remark.

By Lemma 3.8, the variable yiµ does not appear in Cν ◦
yiν−1

C ′
ν−1 · · · ◦

yiµ C ′
µ (µ < ν). Also, it does not appear in Cµ−1, . . . , C1 (by

Lemma 3.6(2)) and hence also in C ′
µ−1, . . . , C

′
1 (by (16)). Therefore it

does not appear in C ′
ν and we arrive at the following strengthening of

(16):

∀ν ∈ [k + 1], C ′
ν ⊆ (

ν⋃

µ=1

Cµ)\(
ν−1⋃

µ=1

{yiµ , yiµ}). (17)

By the last part of Lemma 3.8, (17) means any variable different from
yiν in C ′

ν is marked as d in tiν−1. This clearly implies that yiν is
maximal in C ′

ν . Therefore, for all ν ∈ [k + 1] the sequence Cν ◦
yiν−1

C ′
ν−1 · · · ◦

yi1 C ′
1 is half-ordered. Taken together, these sequences yield

a half-ordered derivation of C ′
k+1 with O(k2) steps in total.

Finally, by (17) C ′
k+1 ⊆ (

k+1⋃
µ=1

Cµ)\(
k⋃

µ=1
{yiµ , yiµ}), where the lat-

ter clause is contained in D by Lemma 3.6(3). This suffices for the
proposition since the weakening rule is admissible in π-half-ordered
resolution.

4. CDCL(π-D, FIRST-L) =p Resolution

In this section we prove Theorem 2.14. We first show that CDCL(π-D,FIRST-L)
and π-P0 (see Definition 2.16) are p-equivalent and then prove size up-
per bounds for π-P0.

4.1. π-P0 =p CDCL(π-D, FIRST-L)

Theorem 4.1 For any fixed order π, the systems CDCL(π-D), CDCL(π-D,FIRST-L)
and π-P0 are p-equivalent.

Proof. Let Π be a π-P0 refutation of a contradictory CNF τ . We
simulate Π step-by-step in CDCL(π-D,FIRST-L) by directly deriving
each clause in Π. Suppose we have arrived at a state (C,Λ), where C

contains both premises in the inference

C ∨ xai D ∨ x1−a
i t

C ∨D
, (18)
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as well as all preceding clauses, and assume that all variables in C
appear before xi in t. Let t = [xj1

∗1= a1, . . . , xjr
∗r= ar, xi

∗
= a, . . .]

and (for ease of notation) ts
def
= t[≤ s]. To derive C ∨ D, we first

build the trail tr; note that since t might be derived in Π using the
Unit Propagation rule, the sequence j1, . . . , jr need not necessarily be
π-increasing.

We do it simply by performing the corresponding actions in CDCL(π-D,FIRST-L)
for decisions and unit propagations. By induction, assume that we
have already built ts−1. If ∗s = d then xjs is the smallest vari-

able according to π that is not in ts−1, so by definition xjs
d
= as ∈

D((C, ts−1)). In the case of the Unit Propagation rule (∗s = u), there
is a clause E in Π preceding (18) such that E|ts−1

= x
as−1

s−1 . Since

E ∈ C by assumption, xjs
u
= ajs ∈ U((C, ts−1)).

Next, we build the trail [tr, xi
u
= a] (note that it is different from

tr+1 if ∗ = d). It is possible since C ∨ xai ∈ C by our assumption.
Then we can further extend it by making decisions in π-ascending
order on the rest of the variables until D ∨ x1−a

i becomes a conflict
clause. Denote the resulting state by S = (C, t′).

Since all assignments after xi in t′ are decisions, D ∨ x1−a
i ∈

Cr+2(S), in the notation of Definition 2.8. Therefore, C∨D ∈ Cr+1(S),
and hence (C ∨D,Λ) is in AllowedActions(S) even in the presence of
FIRST-L. Induction completes the simulation.

The other direction is more direct: π-P0 p-simulates CDCL(π-D)
by design. Whenever a run arrives at a state (C, t), we infer in π-
P0 all clauses C ∈ C as well as all suffixes of t, including t itself.

More specifically, for a transition (C, t)
A

=⇒ (C′, t′), if A is a decision
action or a unit propagation action, then we can derive suffixes of t′

using the Decision rule and the Unit propagation rule, respectively. If
A is a learning action, then it suffices to make the following simple
observation: by construction, for any γ ∈ [|t|], the clauses in Cγ((C, t))
can be derived from clauses in C and Cγ+1((C, t)) using the Learning
rule with the trail t.

It is easy to see that both simulations increase size by at most a
multiplicative factor n.

4.2. π-P0 =p Resolution

We start by considering π-P0 with the weakening rule, for which the
proof of p-equivalence with resolution is much easier but still demon-
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strates some ideas necessary for the full proof of Theorem 2.17.

4.2.1. π-P0 + weakening =p Resolution

We begin with a basic observation: if a clause is falsified by a trail,
then weakening it may allow us to derive new trails with the Unit
propagation rule. It is, then, natural to expect that introducing the
weakening rule may increase the power of π-P0. The following lemma
formally demonstrates how to leverage this observation.

Lemma 4.2 Let π be any order. Suppose C ∨x, D∨ x are resolvable
clauses and t is a trail such that (C ∨D)|t 6= 1 and x is not assigned
by t. For any clause E such that E|t = 0, there is a π-P0 + weakening
derivation of C∨D from C∨x,D∨x,E and t of length at most 2n+1.

Proof. Suppose (C ∨ D)|t = xa1i1 ∨ x
a2
i2
∨ · · · ∨ xakik (in an arbitrary

order). Define the trail

t′
def
= [t, xi1

u
= 1− a1, xi2

u
= 1− a2, . . . , xik

u
= 1− ak, x

u
= 0].

so that (C ∨D)|t′ = 0. Let t′γ denote t′[≤ |t|+ γ] for γ ∈ [0, k+ 1] and

define xik+1

def
= x, aik+1

def
= 0. For γ ∈ [0, k + 1], define

Eγ
def
= E ∨ x

1−aγ+1

iγ+1

which can be derived from E by weakening. Since Eγ |tγ = x
1−aγ+1

iγ+1
,

tγ+1 can be derived from Eγ and tγ by the Unit Propagation rule.
Finally, (C ∨D)|t′ = 0 and x is the last variable in C assigned by t′,
so C ∨D can be derived using the Learning rule with t′. Altogether,
we have used 2(k + 1) + 1 ≤ 2n + 1 steps.

Theorem 4.3 For any order π, π-P0 + weakening is p-equivalent to
resolution.

Proof. We prove the nontrivial direction. Let Π be a resolution refu-
tation of a contradictory CNF τ . Assume, without loss of generality,
that π = id and all variables appear in τ . Define

Ci
def
= x1 ∨ ... ∨ xi.
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We construct a π-P0 +weakening derivation of Ci by reverse induction
on i. For i = n, since τ is contradictory, there must be a clause
containing only positive literals, which can be weakened to Cn. Now
suppose Ci+1 has been derived. Using the Decision rule, derive the
two trails

tai
def
= [x1

d
= 0, ..., xi

d
= 0, xi+1

d
= a].

for a ∈ {0, 1}.
Let Πi denote the following resolution derivation from Π|t1i : replace

each axiom A with A∨Ci and then let the added literals be inherited
naturally throughout. Note that Πi ends in Ci and does not contain
any appearances of xi+1. We use Πi to construct the desired proof by
deriving each clause in order, applying Lemma 4.2 for each resolution
step.

The axioms in Πi can be derived either by weakening or by π-half-
ordered resolution with Ci+1, depending on whether xi+1 appears in
the original axiom of Π. For each resolution step Res(C∨xaj ,D∨x

1−a
j )

in Πi, we can apply Lemma 4.2 with E := Ci+1, t := t0i , and x := xj ,
noting that xj is greater than xi+1 by design. As a result, there is a
π-P0 + weakening derivation of C ∨D with O(n) steps.

The number of steps to derive Ci by this process is O(n|Π|), so
the total number of steps to derive each Cj for j ∈ [0, n] is O(n2|Π|).
Finally note that n ≤ |τ | ≤ |Π| since all variables appear in τ .

4.2.2. Proof of Theorem 2.17

It remains to prove that π-P0 simulates resolution. This is the in-
teresting direction of Theorem 2.17 and follows from Theorem 4.10
below.

Throughout this section, assume that π = id. We first introduce
operators for lifting π-P0 proofs to include appearances of the literal
x1 and deleting variables from resolution refutations, both of which
we use extensively in the proof of Theorem 4.10.

The lifting operator is primarily a bookkeeping mechanism for
managing auxiliary appearances of the literal x1 in proofs.

Definition 4.4 Let ψ and τ be CNFs such that x1 6∈ Var(ψ) and
for each C ∈ ψ, τ contains either C or C ∨ x1. For C ∈ ψ, define
Liftτ (C) to be the smallest of these two clauses that is in τ . For a
π-P0 proof Π from ψ define Liftτ (Π) to be the π-P0 proof resulting
from the following operations on Π.
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• Add the derivation of [x1
d
= 0] by the Decision rule to the begin-

ning of Π.

• Replace each trail t in Π with [x1
d
= 0, t].

• Replace each axiom A appearing in Π with Liftτ (A) and then let
the added appearances of x1 be naturally inherited throughout
the clauses of Π.

Note that we used a similar lifting operation for resolution in
the proof of Theorem 4.3 above. It is straightforward to verify that
Liftτ (Π) is a π-P0 proof and if Π derives C from ψ then Liftτ (Π) de-
rives C or C ∨ x1 from τ . Note also that this is only possible because
x1 is the smallest variable according to π and hence does not interfere
with the Learning rule. In the proof of Theorem 4.10, we will want
to construct Π but will only be able to derive clauses in τ , so we con-
struct Liftτ (Π) instead and then manage the additional appearances
of x1.

The second operator, variable deletion, is an analog of restriction
for sets of variables as opposed to assignments. Let S ⊆ V be a set of
variables. For a clause C, let DelS(C) denote the result of removing
from C all literals whose underlying variables are in S. For a CNF

τ , define DelS(τ)
def
= {DelS(C) : C ∈ τ} \ {0}. Here we see the first

interesting feature of variable deletion, namely that we ignore clauses
that become 0 after removing variables from S. But, as we show
below, if τ is contradictory and the subset S is proper then DelS(τ) is
also contradictory. This is not true in general for τ |ρ \ {0} of course.

Variable deletion for refutations will be given in Definition 4.5.
It is presented as a (linear time) algorithm that operates on the un-
derlying resolution graph as its input, by recursively changing edges
and clauses while nodes keep their identity (although some may be
deleted). This is similar to the approach we took in Section 3.1. In
order to more easily keep the node structure fixed, the algorithm first
produces a proof in the subsystem of resolution + weakening in which
all applications of the weakening rule are dummy (that is, are of the

form
C

C
). We call proofs in this system generalized resolution proofs.

We further emphasize that variable deletion is defined only on con-
nected refutations, as connectedness is necessary for the output to be
a refutation (cf. Claim 4.6(1)). Consequently, we ensure in the proof
of Theorem 4.10 that we only apply it to connected refutations.
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Definition 4.5 Let Π be a connected resolution refutation of τ and
let S be a proper subset of Var(Π). Let Γ be the generalized reso-
lution refutation of DelS(τ) whose resolution graph is output by the
algorithm below. The resolution refutation DelS(Π) is the result of
contracting dummy applications of the weakening rule in Γ.

Deletion Algorithm

1. For each axiom node v, set c(v)← DelS(cΠ(v)). If c(v) becomes
0 (that is, when Var(cΠ(v)) ⊆ S), delete it.

2. Processing nodes in topological order, let v be a resolution node
and let v1, v2 be its parents.

(a) If both v1 and v2 were previously deleted, delete v as well.

(b) If only one of them was deleted or none was deleted but
c(v1), c(v2) are not resolvable, then one of them, say, c(v1)
is a subclause of DelS(c(v)) (we will see this in Claim 4.6).
Set c(v)← c(v1), and replace incoming edges with a dummy
weakening edge from v1.

(c) If both v1 and v2 survived and c(v1), c(v2) are resolvable, set
c(v)← Res(c(v1), c(v2)).

We claim that this algorithm is well-defined (that is, the condition
in step 2b is always met) and that the root vertex v is not deleted and
c(v) = 0 (that is, it produces a generalized resolution refutation of
DelS(τ)). Both statements are immediate corollaries of the following
claim.

Claim 4.6

1. A vertex v is deleted if and only if for every axiom node w ∈
dclΠ(v) it holds that Var(cΠ(v)) ⊆ S. In particular:

• The root vertex is not deleted (recall that Π is connected);

• If v is deleted then Var(cΠ(v)) ⊆ S.

2. For every remaining vertex v, c(v) is a subclause of DelS(cΠ(v)).

3. In the situation of step 2b, there indeed exists vi such that c(vi)
is a subclause of DelS(cΠ(v)).

Proof. Item 1 is straightforward. The two remaining items 2 and 3
are proved by induction, simultaneously with the construction. The
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only interesting case is step 2b when precisely one of the two vertices
(say, v2) was deleted. But then Var(cΠ(v2)) ⊆ S by Claim 4.6(1) and
hence cΠ(v) was obtained by resolving on a variable xi in S. Applying
Claim 4.6(2) to the other parent v1, we see that c(v1) is a subclause of
DelS(cΠ(v1)) which in turn is a subclause of DelS(cΠ(v)) since xi ∈ S.

One key difference between variable deletion and restriction is that
Π|ρ may be trivial, in the sense that it is a single empty clause, while
DelVar(ρ)(Π) is not. As a simple example, consider the CNF {x1, x1 ∨
x2, x2} and the refutation

x1 x1 ∨ x2
x2 x2

0

If ρ = {x1 = 0}, then Π|ρ is trivial, whereas Del{x1}(Π) is

x2 x2
0

The final property of DelS(Π) is that its size can be characterized
with respect to the relationship between Π and S. This allows us to
“slough off” parts of the Π that we might have already seen before.

Lemma 4.7 Let Π be a connected resolution refutation and let S (

Var(Π). Let t denote the number of resolution steps Res(C,D) in Π
on variables in S. Then

|DelS(Π)| ≤ |Π| − t.

Proof. By Claim 4.6(2), all remaining resolution steps 2c are on
variables that do not belong to S.

We now have sufficient machinery to prove Theorem 4.10. As is
sometimes useful, the simulation we define is more ambitious than nec-
essary. Rather than outputting a refutation, it outputs a proof that
derives all literals (as unit clauses) appearing in the input. The moti-
vation for this is twofold. First, unit clauses make π-P0 significantly
more powerful because they grant more control over the trails that
can be derived. In particular, if all literals appearing in a refutation Π
have been derived, then Π can be simulated in n|Π| steps by directly
simulating each resolution appearing in it. Second, in reference to the
deletion operator, all clauses of DelS(τ) can be derived using clauses
of τ and unit clauses x0 and x1 for x ∈ S.

35



Our simulation algorithm is based on the obvious restrict-and-
branch method, by which one recurses on Π|{xi=0} and Π|{xi=1}, lifts
the resulting proofs to have axioms in τ , and then derives 0 (if it has
not been derived already) by resolving the unit clauses xi and xi. The
clear issue with this approach is that we cannot afford to recurse on
both restricted proofs: there are parts of Π that are “double counted”
as a consequence of its DAG structure and the size may blow up. But
recursing on just Π|{xi=0} may ignore relevant parts of Π, namely those
resolutions on variables not even appearing in Π|{xi=0}. This is the
purpose of the deletion operator. The refutation DelVar(Π|{xi=0})(Π)
is a refutation with resolutions that correspond to resolutions in Π
but not in Π|{xi=0}, so we can recurse on it without worrying about
this double counting issue. This can be iterated so that we eventually
see all literals appearing in Π without considering a particular reso-
lution more than once. So an incomplete but instructive outline of
our algorithm is this: recurse on Π|{xi=0} and lift the proof to axioms
of τ , iterate the deletion operator to derive all literals appearing in Π
with possible additional appearances of xi, and then simulate Π|{xi=1}

directly to derive xi and remove all additional appearances of xi.
Before we finally state and prove Theorem 4.10, we present two

simple lemmas that are factored out of the proof to simplify its pre-
sentation. The first essentially states that a variable in a connected
refutation must play a nontrivial role, which intuitively should be
true if we want to derive its corresponding literals. The second tells
us that once we can directly simulate a connected resolution refuta-
tion in π-P0, we can also directly simulate a proof of all its literals;
this is essentially a stronger version of the observation in the previous
paragraphs that is more suited to the goal of deriving all literals.

Lemma 4.8 Let Π be a connected resolution refutation of τ such that
x ∈ Var(Π) and let Π′ be the downward closure of any appearance of
0 in Π|{x=a}. Then there is a clause C ∈ τ that contains x1−a.

Proof. Suppose for contradiction that there is no such clause. Then
all axioms in Π′ are axioms in Π not containing the variable x, so in the
standard definition of restriction no edges are contracted and G(Π′) is
a downward-closed subgraph of G(Π) with identical labels. Since Π is
connected it has a unique appearance of 0 (otherwise, 0 would be the
premise of some resolution step that is impossible). Therefore Π′ = Π
which contradicts the fact that x ∈ Var(Π).
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Lemma 4.9 For any connected resolution refutation Π of τ , there is
a resolution proof from τ of size at most |Π|+2n2 that derives, as unit
clauses, all literals of variables in Var(Π).

Proof. It suffices to note that if literals of all variables in Res(C ∨
x0i ,D ∨ x

1
i ) have been derived as unit clauses, then there is a proof of

size at most 2n that derives x0i and x1i . This process can be repeated
on clauses in Π in reverse topological order (skipping clauses for which
x0i and x1i have already been derived). Connectedness guarantees that
every clause appearing in Π (and hence every variable) is processed.

Theorem 4.10 There is a polynomial time algorithm that, given a
connected resolution refutation Π of τ , outputs a π-P0 proof of size
O(n2|τ ||Π|) that derives, as unit clauses, all literals of variables in
Var(Π).

Proof. We present the algorithm Sim recursively.

Simulation Algorithm (Sim)

1. If |Var(Π)| = 1, then for some variable xi, Π contains only a
resolution of xi and ¬xi. In this case, output the axioms xi and
xi.

2. Assume without loss of generality that all variables appear in Π.
Define Π0 to be the downward closure of some appearance of 0
in Π|{x1=0}. Derive Liftτ (Sim(Π0)) and let ly,a ∈ {y

a, ya∨x1} for
y ∈ Var(Π0) denote the lifted unit clauses appearing in it. Note
that Π0 might be trivial, in which case x1 is an axiom in τ and
the next step can be skipped.

3. If x1 appears in any ly,a from the previous step, then derive
x1 = Res(ly,0, ly,1). Otherwise, by Lemma 4.8, there is a clause
C ∈ τ containing the literal x1. Derive x1 by consecutively
resolving C with literals ℓy,a, for all ℓy,a in C. We note here that
these are half-ordered resolutions and hence admissible in π-P0,
but we refrain from pointing this out in similar cases below.

4. Derive the clauses {C ◦x1 x1 : C ∈ τ}. At this point we have
derived a set of clauses τ∗ such that for every clause C in

ψ
def
= Del{x1}(τ) ∪

⋃

y∈Var(Π0)

{y0, y1},
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τ∗ contains either C or C ∨ x1.

5. Set S ← Var(Π0). While S ∪ {x1} 6= V perform the following
procedure constructing a π-P0 proof from the set of axioms ψ.
We maintain that at the start of each iteration, all unit clauses in⋃

y∈S{y
0, y1} have been derived. Also, to make clear, the proof

constructed in this step is not part of the output, as not all the
clauses in ψ have actually been derived, but is used in the next
step to derive part of the output.

(a) Construct the clauses of DelS∪{x1}(τ) by resolving each clause
in Del{x1}(τ) with the unit clauses xa for x ∈ S. Then build
DelS∪{x1}(Π) using the deletion algorithm.

(b) Assume without loss of generality that DelS∪{x1}(Π) is con-
nected; otherwise, as usual, take the downward closure of
any appearance of 0. Construct the proof Sim(DelS∪{x1}(Π)).

(c) Set S ← S ∪Var(DelS∪{x1}(Π)).

6. Since DelS∪{x1}(Π) is always nontrivial when S ∪{x1} 6= V (this
follows from the well-definedness of the Deletion operator, Claim
4.6), the previous step terminates. Call the resulting proof Υ. It
derives from ψ all unit clauses xai for i ∈ [2, n]. Derive the proof
Liftτ∗(Υ), where τ∗ is the set of clauses in step 4. This proof
derives (this time from τ) li,a ∈ {x

a
i , x

a
i ∨ x1} for i ∈ [2, n]. It

remains to derive x1.

7. For that purpose, it is now possible to build any trail (up to

annotations) that extends [x1
d
= 0] by using the Unit Propaga-

tion Rule with the lifted unit clauses from the previous step.
Therefore, we can simulate any resolution proof not containing
the variable x1 by directly simulating each resolution step. Do
this to the resolution proof extending Π|{x1=1} that derives all
literals appearing in it (Lemma 4.9).

8. By Lemma 4.8, there is a clause C ∈ τ containing x1 that appears
restricted in Π|{x1=1}. Derive x1 by resolving C with all new
literals from the previous step, when possible.

9. Derive all remaining literals by resolving li,a with x1 when nec-
essary.

Let f(n,m) and s(n,m) be upper bounds on the running time of
Sim and the size of π-P0 proof output by Sim, respectively, when Sim

is run on a proof containing at most n variables and whose size is at
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most m. Our primary focus is understanding the contributions of step
2 and 5 since the algorithm is called recursively in these steps. Step 2
adds at most s(n− 1, |Π0|) to s(n, |Π|) and

f(n− 1, |Π0|) +O(n · s(n− 1, |Π|))

to f(n, |Π|).
Suppose that step 5 iterates T (≤ n) times. For i ∈ [T ], define

Si to be the state of S before the ith iteration and define Πi to be
DelSi∪{x1}(Π). Then steps 5-6 contribute at most

∑T
i=1 s(n− 1, |Πi|)

to the size bound and

T∑

i=1

f(n− 1, |Πi|) +O(n|τ | · |Π|)

to the running time bound.
The most important fact here is that, by Lemma 4.7,

∑T
i=0 |Π

i| ≤
|Π|. This is because the sets Var(Πi) for i ∈ [0, T ] are pairwise dis-
joint and so the resolutions in each proof Πi correspond to unique
resolutions in Π. Note the special case of Π0, which uses the fact that
restrictions, like variable deletion, have the property that all resolu-
tions in the resulting proof correspond to resolutions in Π on the same
variable.

The auxiliary operations performed throughout the algorithm (e.g.,
recreating trails by adding assignments to x1 at the start) are clearly
O(n|τ | · |Π|) that yields the bounds

s(n, |Π|) ≤
T∑

i=0

s(n− 1, |Πi|) +O(n|τ | · |Π|)

and

f(n, |Π|) ≤
T∑

i=0

f(n− 1, |Πi|) +O

(
T∑

i=0

s(n− 1, |Πi|)

)
+O(n2|τ | · |Π|).

By induction on n, first for s and then f , it follows that s(n,Π) =
O(n2|τ | · |Π|) and f(n, |Π|) = O(n3|τ | · |Π|).

5. Width lower bound

Our last piece of technical work is Theorem 2.15, which demonstrates
the limitations of bounded width clause learning in the presence of
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the ordered decision strategy. Using the connection to π-P0 from
the previous section, Theorem 2.15 follows from a general width lower
bound for π-P0. Some of the formulas to which this bound applies have
constant width refutations and hence, by Theorem 2.14, automatically
have polynomial size π-P0 refutations. Thus this result also shows that
there is no size-width relationship for π-P0 like the one for resolution
proved by Ben-Sasson and Wigderson [9].

Say that a clause C is almost-k-small if |Var(C) \ Varkπ| ≤ 1, and

that a trail t = [xi1
∗1= a1, . . . , xir

∗r= ar] is k-trivial if for s
def
= min(r, k),

all assignments in t[≤ s] are decisions on variables in Varkπ in π-

increasing order: t[≤ s] = [xπ(1)
d
= a1, . . . , xπ(s)

d
= as].

Definition 5.1 The order π is k-robust for a contradictory CNF τ
if for any restriction ρ such that |Var(ρ) \ Varkπ| ≤ 1, the following
properties hold:

• the formula τ |ρ is minimally unsatisfiable, i.e., all strict subsets
of τ |ρ are satisfiable;

• for all i ∈ [n], if xi ∈ Var(ρ) then there is a clause in τ that
appears restricted in τ |ρ (i.e., is not satisfied by ρ) and contains
the variable xi.

For a CNF τn, the r-ary parity substitution of τn, denoted by
τn[⊕r], is the formula in which for all i ∈ [n], each variable xi is
replaced with

⊕r
j=1 yi,j where the variables yi,1, yi,2, . . . , yi,r are new

and distinct. As described, τn[⊕r] is technically not a CNF, but its
encoding as a CNF is straightforward and natural; see [34] for full de-
tails. It is also straightforward to check that whenever τn is minimally
unsatisfiable and contains all variables x1, . . . , xn, the order π on the
variables of τn[⊕r] given by

π(y1,1) < π(y2,1) < · · · < π(yn,1) <

π(y1,2) < π(y2,2) < · · · < π(yn,2) < · · · <

π(y1,r) < π(y2,r) < · · · < π(yn,r)

is ((r − 2)n)-robust. In fact, this readily follows from the observation
that any restriction ρ as in Definition 5.1 must leave unassigned at
least one variable in each group {yi,1, . . . , yi,r}.

The following theorem shows that robustness implies large width
in π-P0.
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Theorem 5.2 Let τ be a contradictory CNF formula and let π be an
w-robust order for τ . Then the width of any π-P0 refutation of τ is at
least w.

Proof. Assume without loss of generality that π = id. Let Π be
a π-P0 refutation of τ and let C be the first almost-w-small clause
appearing in Π. We will actually prove that Varwπ ⊆ Var(C).

First, we claim that all trails that appear before C in Π are (w+1)-
trivial. Suppose otherwise and let t be the first trail in Π that is not.
Since Π contains all prefixes of t, and all such prefixes precede t, it

follows that t is of the form [t′, xi
u
= a], where t′ = [x1

d
= a1, x2

d
=

a2 . . . , xj
d
= aj] and j < w + 1. Suppose that t follows from t′ by

the Unit Propagation rule with the clause D. This means D|t′ is
a unit clause, which implies D is almost-w-small, contradicting the
assumption that C is the first almost-w-small clause in Π.

It then follows that all resolutions (corresponding to applications
of the Learning rule) that appear before C are on variables not in
Varw+1

π . Indeed, suppose that the inference

D ∨ xai E ∨ xai t

D ∨ E

appears before C in Π. By the claim in the previous paragraph, t is
(w + 1)-trivial. Therefore if xi ∈ Varw+1

π , then it is actually assigned
in t[≤ w + 1] and so are all variables appearing in D. This implies
D is almost-w-small, contradicting the assumption that C is the first
such clause.

Finally let Π∗ be the resolution refutation corresponding to Π;
that is, the refutation constructed from Π by ignoring all trails. Let
Γ be the connected subproof of C in Π∗ on the downward closure
of C. By the remark in the previous paragraph, all resolutions in Γ
are on variables not in Varw+1

π . Lastly, let ρ be any restriction with
the domain Varwπ ∪Var(C) that falsifies C, so that Γ|ρ is a refutation
of τ |ρ. By the first property in the definition of robustness, τ |ρ is
minimal, which implies that all clauses in τ |ρ appear as axioms of Γ|ρ.
Therefore, there are paths from these clauses (unrestricted) to C in Γ.
By the second property of robustness, each variable in Varwπ appears
at least one of these clauses. Since all resolutions in Γ are on variables
not in Varw+1

π , it follows that Varwπ ⊆ Var(C).

Finally, we prove Theorem 2.15, which is restated here for conve-
nience. The proof is a simple variation of the one above (we only have
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to make sure that the variables in Varwπ appear in a learned clause).

Theorem 5.3 (Theorem 2.15 restated) For any fixed order π on the
variables and every ǫ > 0 there exist contradictory CNFs τn with
w(τn ⊢ 0) ≤ O(1) not provable in CDCL(π-D, WIDTH-(1 − ǫ)n).

Proof. The formula used here is Indm[⊕r] where Indm is the Induc-
tion principle

x1 ∧
m−1∧

i=1

(xi ∨ xi+1) ∧ xm,

and r will be chosen as a sufficiently large constant. The natural
resolution refutation of this formula has width O(r).

Fix ǫ > 0. Let R be a successful run in CDCL(π-D,WIDTH-(1 −
ǫ)rm) on Indm[⊕r] and let Π be the natural π-P0 simulation of this
run given by Theorem 4.1. We begin with some observations about
Π that are easily verified by examining the proof of Theorem 4.1.
First, all clauses learned in R are derived exactly in Π, in the order
they appear in R. Second, for any learning step (C, t′) in R from the
state (C, t), the proof Π contains the connected subproof of C from C

corresponding exactly to the sequence of resolutions used to learn C
(Lemma 3.6). Furthermore, the trail t appears before this subproof in
Π.

Let w = (r − 2)m and let D be the first almost-w-small clause in
Π. As in the proof of Theorem 5.2, it follows that Varwπ ⊆ Var(D)
and all trails appearing before D in Π are (w + 1)-trivial. If D is
not a learned clause, then it appears in the subproof of some learned
clause C. Suppose that C follows from the state (C, t) in R. As is
made clear in Lemma 3.6, all resolutions in the subproof of C are
on variables whose assignments are unit propagations in t. Since t
appears before D, it is (w+1)-trivial, so none of the variables in Varwπ
are resolved on to derive C. This implies all variables in Varwπ are
inherited in C from D.

The result follows by taking r > 2/ǫ so that (r−2)m > (1−ǫ)rm.

6. Conclusion

This paper continues the line of research aimed at better understand-
ing theoretical limitations of CDCL solvers. We have focused on the
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impact of decision strategies, and we have considered the simplest ver-
sion that always requires to choose the first available variable, under
a fixed orderings. We have shown that, somewhat surprisingly, the
power of this model heavily depends on the learning scheme employed
and may vary from ordered resolution to general resolution.

Practically speaking, the fact that CDCL(π-D,ALWAYS-C,ALWAYS-U,DECISION-L)
is not as powerful as resolution supports the observation that CDCL
solvers with the ordered decision strategy are less efficient than those
with more powerful decision strategies like VSIDS. But, although
DECISION-L is an asserting learning strategy, most solvers use more ef-
ficient asserting strategies like 1-UIP. What can be proved if DECISION-L
is replaced with some other amendment modeling a different, possibly
more practical asserting learning scheme? Furthermore, is it possi-
ble that CDCL(π-D,ALWAYS-C,ALWAYS-U) does not simulate general
resolution?

Just as in [6, 35, 3], our simulations use very frequent restarts.
Perhaps the most interesting open question in this area is whether
it is actually necessary. In the language we have introduced, this
amounts to understanding the power of proof systems CDCL(NEVER-
R) and CDCL(ALWAYS-C, ALWAYS-U, NEVER-R), the latter version
being more oriented towards actual CDCL solvers.

We have also proved that our simulations fail quite badly with re-
spect to width (as opposed to size): there are contradictory CNFs τn
refutable in constant width but not belonging to CDCL(π-D,WIDTH-(1−
ǫ)n). The ordering π in our result, however, essentially depends on
τn. Is a uniform version possible? That is, do there exist contradic-
tory CNFs τn refutable in small width that do not belong to (say)
CDCL(π-D,WIDTH-Ω(n)) for any ordering π? Another interesting
question, extracted from [3], asks if τn refutable in small width are
always in (say) CDCL(ALWAYS-C,ALWAYS-U,WIDTH-Ω(n)).

Finally (cf. Remark 3) our model is geared towards “positional
solvers”, i.e., those that are allowed to carry along only the set of
learned clauses and the current trail. This restriction is of little im-
portance in the theoretical, nondeterministic part of the spectrum, but
it will make a big difference if we would like to study dynamic decision
strategies like VSIDS, further strengthen the amendments ALWAYS-C

and ALWAYS-U by postulating the behavior in the presence of multiple
choices, etc. It would be interesting to develop a rigorous mathemat-
ical formalism that would include nonpositional behavior as well.
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