
ar
X

iv
:2

00
3.

11
86

8v
4 

 [
m

at
h.

PR
] 

 1
 S

ep
 2

02
1

1

MEAN FIELD LIMITS OF PARTICLE-BASED STOCHASTIC REACTION-DIFFUSION

MODELS

S. ISAACSON, J. MA AND K. SPILIOPOULOS

Abstract. Particle-based stochastic reaction-diffusion (PBSRD) models are a popular approach for study-
ing biological systems involving both noise in the reaction process and diffusive transport. In this work we
derive coarse-grained deterministic partial integro-differential equation (PIDE) models that provide a mean
field approximation to the volume reactivity PBSRD model, a model commonly used for studying cellular
processes. We formulate a weak measure-valued stochastic process (MVSP) representation for the volume
reactivity PBSRD model, demonstrating for a simplified but representative system that it is consistent with
the commonly used Doi Fock Space representation of the corresponding forward equation. We then prove the
convergence of the general volume reactivity model MVSP to the mean field PIDEs in the large-population
(i.e. thermodynamic) limit.

1. Introduction

The dynamics of many biological processes rely on an interplay between spatial transport and chemi-
cal reaction. At the scale of a single cell, experiments have demonstrated that many such processes have
stochastic dynamics. Particle-based stochastic reaction-diffusion (PBSRD) models are a widely used ap-
proach for studying such processes, explicitly modeling the diffusion of, and reactions between, individual
molecules. PBSRD models are appropriate for studying chemical systems in cells containing up to hundreds
of thousands to millions of molecules, over timescales of days. They are more macroscopic descriptions than
millisecond-timescale quantum mechanical or molecular dynamics models of a few molecules [S09], but more
microscopic descriptions than deterministic 3D reaction-diffusion PDEs for the average concentration of each
species of molecule. One PBSRD model that has been widely used to study biological processes is the vol-
ume reactivity (VR) model of Doi [TS67, D76a, D76b]. In this model positions of individual molecules are
typically represented as points undergoing Brownian motion. Bimolecular reactions between two reactant
molecules occur with a probability per unit time based on their current positions [D76a, D76b]. Unimolecular
reactions are typically assumed to represent internal processes, and as such are modeled as occurring with
exponentially distributed times based on a specified reaction-rate constant.

Due to their mathematical complexity and high dimensionality, PBSRD models are almost entirely stud-
ied by Monte Carlo simulation approximating the underlying stochastic process of molecules diffusing and
reacting. The computational expense of such methods can greatly limit the size of chemical systems (in each
of number of molecules, number of reactions, or physical domain size) that can be studied. One approach
to overcoming this challenge is to use more coarse-grained mathematical models that accurately capture
the dynamics of the underlying PBSRD model in appropriate physical regimes. Deterministic and stochas-
tic partial differential equation (PDE/SPDE) models are often postulated as coarse-grainings of PBSRD
models in certain large-population or thermodynamic limits where the population size becomes unbounded
but species concentrations are held fixed. However, for the PBSRD models commonly used in biological
modeling, e.g. the VR model and the contact reactivity model, there is limited rigorous work identifying
and proving the existence of such deterministic coarse-grained limits (i.e. law of large numbers).

To facilitate the development of rigorous coarse-grainings of PBSRD models, our work begins with formu-
lating the dynamics of the diffusing and reacting molecules as measure-valued stochastic processes (MVSPs).
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These processes describe the evolution of the concentration fields of each chemical species as a sum of δ func-
tions in each molecule’s position. A weak formulation of the dynamics of these processes is then derived,
giving the action of the processes on an arbitrary test function. The subsequent equations for the time-
evolution of the pairing between a test function and the MVSP then involve both continuous noise processes
that account for the diffusion of individual molecules, and state-dependent Poisson-random measures that
encode the timing and occurrence of chemical reactions between molecules. We establish in a simplified, but
representative, case that the MVSP is equivalent to the commonly used Doi Fock Space representation for
the forward equation of the VR model.

We then investigate the large population limit of the MVSP dynamics in which the initial number of
molecules of each chemical species becomes unbounded, but the concentrations of each species are held
fixed. The latter can be achieved by considering molar concentrations, and treating Avogadro’s number
and/or the domain volume as a large “system size” parameter. As we work in free space, here we consider
the limit where Avogadro’s number can be considered a large parameter. Such limits are typically considered
one of the primary physical regimes in which PDE or SPDE models for biological systems arise as physical
approximations to the underlying process of molecules diffusing and reacting [AT80, LLN19, HCDWS19].

To rigorously determine the limit of the VR model, we will generalize the martingale problem approach
for studying solutions to stochastic differential equations developed by Stroock and Varadhan [EK86, SV06]
to our weak MVSP representation. Adaptations of this method have been successfully used to study large-
population limits in stochastic models for population dynamics, evolutionary dynamics, interacting particle
systems, and financial models [GSS13, GSSS15, DH96, DH09, DIRT15, IT15, MS02, SCS88]. We first
identify a macroscopic system of partial integro-differential equations (PIDEs) whose solution corresponds
to the large population limit of the MVSP, and then rigorously prove the convergence (in a weak sense) of
the MVSP to this solution.

Our approach is unique in using a bottom-up hierarchy to rigorously derive from spatial PBSRD models
new macroscopic PIDEs that correspond to the true large-population limit, and which correctly account for
chemical interactions between particles. This is in contrast to the standard macroscopic reaction-diffusion
PDE models of chemical reaction systems used at the cellular scale [NTS08, MNKS09]. The latter are typi-
cally obtained by formally modifying reaction-rate equation ODE models for non-spatial chemical reaction
systems by simply adding Laplacian terms to model molecular diffusion.

To illustrate our main result, consider the special case of the reversible reaction A + B ⇆ C reaction.
Let γ denote a system size parameter (i.e. Avogadro’s number, or in bounded domains the product of
Avogadro’s number and the domain volume). We assume all molecules move by Brownian Motion in R

d,
with species-dependent diffusivities, DA, DB and DC respectively. Let Kγ

1 (x, y) = K1(x, y)/γ denote the
probability per time an individual A molecule at x and B molecule at y can react, with m1(z|x, y) giving
the probability density that when the A and B molecules react they produce a C molecule at z. We define
Kγ

2 (z) = K2(z) and m2(x, y|z) similarly for the reverse reaction. Finally, denote by A(t) the stochastic
process for the number of species A molecules at time t, and label the position of ith molecule of species A

at time t by the stochastic process Q
A(t)
i ⊂ R

d. The random measure

Aγ(x, t) =
1

γ

A(t)
∑

i=1

δ
(

x−Q
A(t)
i

)

corresponds to the stochastic process for the the molar concentration of species A at x at time t. We can
similarly define Bγ(x, t) and Cγ(x, t). In this work we study the large population (thermodynamic) limit
where γ → ∞ and Aγ(x, 0) converges to a well defined limiting molar concentration field (with similar limits
for the molar concentrations of species B and C). We prove, in a weak sense, that as γ → ∞,

(Aγ(x, t), Bγ(x, t), Cγ(x, t)) →
(

Ā(x, t), B̄(x, t), C̄(x, t)
)

,

where

∂tĀ(x, t) = DA∆Ā(x, t)−
∫

Rd

K1(x, y)Ā(x, t)B̄(y, t) dy +

∫

R2d

K2(z)m2(x, y|z)C(z, t) dy dz.

∂tB̄(x, t) = DB∆B̄(x, t) −
∫

Rd

K1(x, y)Ā(y, t)B̄(x, t) dy +

∫

R2d

K2(z)m2(x, y|z)C(z, t) dy dz.
2



∂tC̄(x, t) = DC∆C̄(x, t) −K2(z)C(z, t) +

∫

R2d

K1(x, y)m1(z|x, y)Ā(x, t)B̄(y, t) dx dy.

Our main result, Theorem 5.5, establishes this rigorous limit for the VR PBSRD model of general chemical
reaction systems involving first and second order reactions. To simplify the (already detailed) exposition,
we impose one constraint, assuming that the reaction network structure is such that the total concentration
of molecules in the system has a strict upper bound. Theorem 5.5 therefore does not cover reaction systems
containing reactions that can lead to unbounded population growth, ruling out creation reactions like ∅ → A
and A → 2A. We note, however, that we expect our basic approach should be adaptable to such systems, but
would require the introduction and analysis of a stopping time for when the total population of molecules
reaches some threshold (see the discussion of Remark 5.2). This is similar to one approach used for proving
the classical large-population limit of non-spatial stochastic chemical kinetic systems [DK15].

Upon completion of this work we became aware of the recent publication [LLN19]. In [LLN19] the authors
study the rigorous large-population limit for a subset of the reactions we allow in our VR PBSRD model,
restricting to reactions of the form A + B → C + D. This ensures that the total number of particles is
preserved for all time in their system, allowing [LLN19] to formulate a strong-form pathwise representation
for the evolution of the stochastic processes for particle positions and types. Particle diffusion and particle-
particle reactions are then represented through separate but coupled equations. This formulation enabled
the authors to use relative entropy methods to prove propagation of chaos. In contrast, we consider general
reaction networks as are needed to model many biological processes, in which the number of particles in the
system changes over time. We therefore work with a weak formulation, studying the empirical distribution
of particle position and type directly. As such, while [LLN19] could leverage relative entropy methods and
large deviations estimates to establish their results and even get quantitative estimates, we will work with
the general martingale problem formulation.

The large-population limit was also studied in [O89] for PBSRD systems involving only birth reactions
(A → 2A), death reactions (A → ∅), and first-order conversion reactions (A → B). For such linear reaction
systems the resulting mean-field, large-population limit is a system of linear, local reaction-diffusion PDEs.
Our high level formulation for the system dynamics more closely follows [O89], which also studied a weak
MVSP representation for the reaction and diffusion of particles. We stress, however, that a key difference in
our work is in allowing for general second order reactions, i.e. reactions of the form A+B → · · · , where the
reaction dynamics critically depend on spatial interactions between two individual reactant particles. Such
reactions are prevalent in most cellular signaling processes, and common in many chemical network models
for biological systems. By including bimolecular reactions, formulation of the underlying equations describing
the particle dynamics is complicated by the need to model the two-body interactions between particles, and
to model the placement of reaction products in space given the positioning of reactants. The resulting large-
population limit becomes a system of nonlinear and non-local partial integral differential equations. Allowing
for both changing particle numbers and bimolecular reactions results in the mathematical formulation of the
problem, as presented in Sections 2 and 3, being more involved than in [O89], necessitating a number of
technical estimates (given in Appendix B).

An interesting future research direction is to obtain quantitative convergence results for general reaction
networks with uneven inputs and outputs, i.e. for reaction networks (like the ones studied in this paper)
where the total number of particles are not conserved in time. To do so, generalizations of the propagation
of chaos techniques used in [MMW15] and [LLN19] seem likely to be necessary, as such techniques largely
rely on conservation of the total number of particles in time, see also the related discussion in [LLN19]. We
leave this question for future work.

The paper is organized as follows. In Section 2 we describe the problem in more mathematical terms,
introducing basic notation for specifying chemical reaction systems, for describing system state as a MVSP
for the (number) density of particles in the system, and for representing reactant (product) configuration
spaces that encode possible positions of individual reactant (product) particles involved in a reaction. In
Section 3 we define reaction kernels specifying the probability per time a reaction involving specific reactants
can occur. For each reaction type we also specify a placement density. These give the probability density
that product particles of a reaction between one or more reactants are placed at specific positions. We
then introduce the stochastic equation describing the evolution of the empirical measure (MVSP) of the
chemical species in path space. In Section 4 we summarize the basic assumptions we make about the form
of the reaction rate functions and product placement densities. In Section 5 we present our main result,
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Theorem 5.5, describing for general reaction networks the evolution equation satisfied in the large-population
limit by the empirical measures for the molar concentration of each species. We also present a number of
illustrative examples showing the derived large-population limit for specific chemical systems. In Section 6
we prove that the MVSP formulation we study is equivalent to the more commonly used Fock-space (i.e.
Kolmogorov forward equation) representation popularized by Doi [D76a, D76b], focusing on the simplified
case of the reversible A + B ⇆ C reaction. Finally, in Section 7 we give the proof of Theorem 5.5. The
appendix includes proofs of a number of technical estimates as well as the existence, uniqueness and regularity
statement for the forward Kolmogorov equation of the A + B ⇆ C reaction system studied in Section 6.

2. Notation and preliminary definitions

We consider a collection of particles with J possible different types. Note, in the following we will
interchangeably use particle or molecule and type or species. Let S = {S1, · · · , SJ} denote the set of
different possible particle types, with pi ∈ S the value of the type of the i-th particle. In the remainder, we
also assume an underlying probability triple, (Ω,F,P), on which all random variables are defined.

The goal of this paper is to study the process that molecules diffuse in space Rd freely and undergo at most
L possible different type of reactions, denoted as R1, · · · ,RL. We describe the Rℓth reaction, ℓ ∈ {1, . . . , L},
by

J
∑

j=1

αℓjSj →
J
∑

j=1

βℓjSj,

where we assume the stoichiometric coefficients {αℓj}Jj=1 and {βℓj}Jj=1 are non-negative integers. Let α(ℓ) =

(αℓ1, αℓ2, · · · , αℓJ) and β(ℓ) = (βℓ1, βℓ2, · · · , βℓJ) be multi-index vectors collecting the coefficients of the

ℓth reaction. We denote the reactant and product orders of the reaction by |α(ℓ)| .
=
∑J

i=1 αℓi ≤ 2 and

|β(ℓ)| .= ∑J
j=1 βℓj ≤ 2, assuming that at most two reactants and two products participate in any reaction.

We therefore implicitly assume all reactions are at most second order. This is motivated by the observation
that the probability three reactants in a dilute system simultaneously have the proper configuration and
energy levels to react is very small, so that trimolecular reactions are very rare [DD03]. In biological
models, such reactions are often considered to be approximations to sequences of bimolecular reactions. For
subsequent notational purposes, we order the reactions such that the first L̃ reactions correspond to those
that have no products, i.e. annihilation reactions of the form

J
∑

j=1

αℓjSj → ∅,

for ℓ ∈ {1, . . . , L̃}. We assume the remaining L− L̃ reactions have one or more product particles.
Let Di label the diffusion coefficient for the ith molecule, taking values in {D1, . . . , DJ}, where Dj is the

diffusion coefficient for species Sj, j = 1, · · · , J . We denote by Qi
t ∈ R

d the position of the ith molecule,

i ∈ N+, at time t. A particle’s state can be represented as a vector in P̂ = R
d × S, the combined space

encoding particle position and type. This state vector is subsequently denoted by Q̂i
t
def
= (Qi

t, pi).
We now formulate our representation for the (number) concentration, equivalently number density, fields

of each species. Let E be a complete metric space andM(E) the collection of measures on E. For f : E 7→ R

and µ ∈M(E), define

〈f, µ〉E =

∫

x∈E

f(x)µ(dx).

We will frequently have E = R
d. In this case we omit the subscript E and simply write 〈f, µ〉. For each

t ≥ 0, we define the concentration of particles in the system at time t by the distribution

(2.1) νt =

N(t)
∑

i=1

δQ̂i
t
=

N(t)
∑

i=1

δQi
t
δpi
,

where, borrowing notation from [BM15], N(t) = 〈1, νt〉P̂ represents the stochastic process for the total
number of particles at time t. To investigate the behavior of different type of particles, we denote the
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marginal distribution on the jth type, i.e. the concentration field for species j, by

νjt (·) = νt(· × {Sj}),

a distribution on R
d. Nj(t) =

〈

1, νjt

〉

will similarly label the total number of particles of type Sj at time t.

For ν any fixed particle distribution of the form (2.1), we will also use an alternative representation in terms
of the marginal distributions νj ∈M(Rd) for particles of type j,

(2.2) ν =
J
∑

j=1

νjδSj
∈M(P̂ ).

In addition to having notations for representing particle concentration fields, we will also often make use
of state vectors for all particles in the system. With some abuse of notation, for νt given by (2.1) denote by

H(νt) =
(

(Q
σ1(1)
t , S1), · · · , (Qσ1(N1(t))

t , S1), · · · · · · , (QσJ (1)
t , Sr), · · · , (QσJ (NJ(t))

t , SJ), 0, 0, · · ·
)

(2.3)

a state vector of the full particle system. Here, for each type j = 1, . . . , J , the particle index maps {σj(k)}Nj(t)
k=1

encode a fixed ordering for particles of species j, Qσj(1) � · · · � Qσj(Nj(t)), arising from an (assumed) fixed
underlying ordering on R

d. In H(νt), we order all particles of type 1 by the ordering on R
d first, followed

by particles of type 2, then type 3, etc. As particles of the same type are assumed indistinguishable, there
is no ambiguity in the value of H(νt) in the case that two particles of the same type have the same position.

Hi(νt) ∈ P̂ will label the ith entry of the vector H(νt). We denote by

HQ(ν
j
t ) =

(

Q
σj(1)
t , · · · , Qσj(Nj(t))

t , 0, 0, · · ·
)

(2.4)

an analogous position-only state vector for type j particles, using the same ordering on R
d, with Hi

Q(ν
j
t ) ∈ R

d

labeling the ith entry in HQ(ν
j
t ).

With the preceding definitions, we last introduce a system of notation to encode reactant and particle
positions and configurations that are needed to later specify reaction processes.

Definition 2.1. For reaction Rℓ, define the reactant index space

I
(ℓ) = (N \ {0})|α

(ℓ)|
,

with the convention that if
∣

∣α(ℓ)
∣

∣ = 0 then I
(ℓ) = ∅ is the empty set. In describing the dynamics of νt, we

will sample vectors containing the indices of the specific reactant particles participating in a single ℓ-type
reaction from I

(ℓ). For i ∈ I
(ℓ) a particular sampled set of reactant indices, we write

i = (i
(1)
1 , · · · , i(1)αℓ1

, · · · , i(J)1 , · · · , i(J)αℓJ
),

where i
(j)
r ∈ i labels the rth sampled index of species type j. Here we use the convention that if αℓj = 0 no

indices are included in i for particles of type j (as they do not participate in the ℓth reaction as a reactant).

Note, as we assumed that |α(ℓ)| .= ∑J
i=1 αℓi ≤ 2, in practice αℓi ∈ {0, 1, 2} and i correspondingly identifies

zero, one or two reactant particles.

Definition 2.2. For reaction Rℓ, analogous to our definition of I(ℓ), we define the reactant position space

X
(ℓ) = {x = (x

(1)
1 , · · · , x(1)αℓ1

, · · · , x(J)1 , · · · , x(J)αℓJ
) |x(j)r ∈ R

d, for all 1 ≤ j ≤ J, 1 ≤ r ≤ αℓj} =
(

R
d
)|α(ℓ)|

.

Similar to the last definition, when αℓj = 0 particles of species/type j are not involved in reaction ℓ, and hence

not included within possible reactant position vectors. For x ∈ X
(ℓ) a sampled reactant position configuration

for one individual Rℓ reaction, x
(j)
r then labels the sampled position for the rth reactant particle of species

j involved in the reaction. Let dx =
(

∧J
j=1(

∧αℓj

r=1 dx
(j)
r )
)

be the corresponding volume form on X
(ℓ), which

also naturally defines an associated Lebesgue measure.

Definition 2.3. For reaction Rℓ with L̃ + 1 ≤ ℓ ≤ L, i.e. having at least one product particle, define the
product position space

Y
(ℓ) = {y = (y

(1)
1 , · · · , y(1)βℓ1

, · · · , y(J)1 , · · · , y(J)βℓJ
) | y(j)r ∈ R

d, for all 1 ≤ j ≤ J, 1 ≤ r ≤ βℓj} =
(

R
d
)|β(ℓ)|

.
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Analogous to Definition 2.1, when βℓj = 0 species j is not a product for the ℓth reaction, and hence there

will be no indices for particles of species j within the product position space. For y ∈ Y
(ℓ) a sampled product

position configuration for one individual Rℓ reaction, y
(j)
r then labels the sampled position for the rth product

particle of species j involved in the reaction. Let dy =
(

∧J
j=1(

∧βℓj

r=1 dy
(j)
r )
)

be the corresponding volume

form on Y
(ℓ), which also naturally defines an associated Lebesgue measure.

Definition 2.4. Consider a fixed reaction Rℓ, with i ∈ I
(ℓ) and ν corresponding to a fixed particle distribution

given by (2.1) with representation (2.2). We define the ℓth projection mapping P(ℓ) :M(P̂ )× I
(ℓ) → X

(ℓ) as

P(ℓ)(ν, i) = (H
i
(1)
1

Q (ν1), · · · , Hi(1)αℓ1

Q (ν1), · · · , Hi
(J)
1

Q (νJ ), · · · , Hi(J)
αℓJ

Q (νJ )).

When reactants with indices i in particle distribution ν are chosen to undergo a reaction of type ℓ, P(ℓ)(ν, i)
then gives the vector of the corresponding reactant particles’ positions. For simplicity of notation, in the
remainder we will sometimes evaluate P(ℓ) with inconsistent particle distributions and index vectors. In all
of these cases the inconsistency will occur in terms that are zero, and hence not matter in any practical way.

Definition 2.5. Consider a fixed reaction Rℓ, with ν a fixed particle distribution given by (2.1) with rep-
resentation (2.2). Using the notation of Def. 2.1, we define the allowable reactant index sampling space
Ω(ℓ)(ν) ⊂ I

(ℓ) as

Ω(ℓ)(ν) =



















∅,
∣

∣α(ℓ)
∣

∣ = 0,

{i = i
(j)
1 ∈ I

(ℓ) | i(j)1 ≤
〈

1, νj
〉

},
∣

∣α(ℓ)
∣

∣ = αℓj = 1,

{i = (i
(j)
1 , i

(j)
2 ) ∈ I

(ℓ) | i(j)1 < i
(j)
2 ≤

〈

1, νj
〉

},
∣

∣α(ℓ)
∣

∣ = αℓj = 2,

{i = (i
(j)
1 , i

(k)
1 ) ∈ I

(ℓ) | i(j)1 ≤
〈

1, νj
〉

, i
(k)
1 ≤

〈

1, νk
〉

},
∣

∣α(ℓ)
∣

∣ = 2, αℓj = αℓk = 1, j < k.

Note that in the calculations that follow Ω(ℓ)(ν) will change over time due to the fact that ν = νt changes
over time, but this will not be explicitly denoted for notational convenience.

Definition 2.6. Consider a fixed reaction Rℓ, with ν any element of M(P̂ ) having the representation (2.2).

We define the ℓth reactant measure mapping λ(ℓ)[ · ] :M(P̂ ) →M(X(ℓ)) evaluated at x ∈ X
(ℓ) via λ(ℓ)[ν](dx) =

⊗J
j=1(⊗

αℓj

r=1ν
j(dx

(j)
r )).

Definition 2.7. For blue reaction Rℓ, define a subspace X̃
(ℓ) ⊂ X

(ℓ) by removing all particle reactant position
vectors in X

(ℓ) for which two particles of the same species have the same position. That is

X̃
(ℓ) = X

(ℓ) \ {x ∈ X
(ℓ) |x(j)r = x

(j)
k for some 1 ≤ j ≤ J, 1 ≤ k 6= r ≤ αℓj}.

3. Generator and process level description

Let us consider the time evolution of the process νζt =
∑Nζ(t)

i=1 δQ̂i
t
which gives the spatial distribution of

all particles (i.e. number density or concentration). Here Nζ(t) =
〈

1, νζt

〉

P̂
denotes the total number of

particles at time t and ζ = ( 1γ , η) is a two-vector consisting of a scaling parameter, γ, and a displacement

range parameter, η. In the large population limit we consider γ plays the role of a system size, and is
considered to be large (e.g. Avogadro’s number, or in bounded domains the product of Avogadro’s number
and the domain volume) [DK15]. On the other hand, η is a regularizing parameter allowing us to be able to
consider and rigorously handle delta-function placement densities for reaction products (a common choice
in many PBSRD simulation methods). We will further clarify these parameters later on, focusing on the
(large-population) limit that γ → ∞ and η → 0 jointly, denoted as ζ → 0.

To formulate the process-level model, it is necessary to specify more concretely the reaction process
between individual particles. For reaction Rℓ, denote by Kγ

ℓ (x) the rate (i.e. probability per time) that

reactant particles with positions x ∈ X
(ℓ) react. As described in the next section, we assume this rate

function has a specific scaling dependence on γ. Let mη
ℓ (y |x) be the placement density when the reactants

at positions x ∈ X
(ℓ) react and generate products at positions y ∈ Y

(ℓ). We assume this placement density
depends on the displacement range parameter η, and that for each x and fixed η > 0, mη

ℓ (· |x) is bounded.
Stochastic particle dynamics involve both diffusive motion and chemical reactions. In describing particle

motion we will make use of {Wn
t }n∈N+ , a countable collection of standard independent Brownian motions
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in R
d. To describe a reaction Rℓ with no products, i.e. 1 ≤ ℓ ≤ L̃, we associate with it a Poisson

point measure dNℓ(s, i, θ) on R+ × I
(ℓ) × R+. Here i ∈ I

(ℓ) gives the sampled reactant configuration, with

i
(j)
r labeling the rth sampled index of species j. The corresponding intensity measure of dNℓ is given by

dN̄ℓ(s, i, θ) = ds
(

∧J
j=1

(

∧αℓj

r=1

(

∑

k≥0 δk(i
(j)
r )
)))

dθ. Analogously, for each reaction Rℓ with products, i.e.

L̃+1 ≤ ℓ ≤ L, we associate with it a Poisson point measure dNℓ(s, i,y, θ1, θ2) on R+× I
(ℓ)×Y

(ℓ)×R+×R+.

Here i ∈ I
(ℓ) gives the sampled reactant configuration, with i

(j)
r labeling the rth sampled index of species

j. y ∈ Y
(ℓ) gives the sampled product configuration, with y

(j)
r labeling the sampled position for the rth

newly created particle of species j. The corresponding intensity measure is given by dN̄ℓ(s, i,y, θ1, θ2) =

ds
(

∧J
j=1

(

∧αℓj

r=1

(

∑

k≥0 δk(i
(j)
r )
)))

dy dθ1 dθ2.

The existence of the Poisson point measure follows as the intensity measure is σ-finite (see Chapter I - The-

orem 8.1 in [NW14] or Corollary 9.7 in [K01]). Let dÑℓ(s, i,y, θ1, θ2) = dNℓ(s, i,y, θ1, θ2)−dN̄ℓ(s, i,y, θ1, θ2)

be the compensated Poisson measure, for L̃+1 ≤ ℓ ≤ L. For any measurable set A ∈ I
(ℓ) ×Y

(ℓ) ×R+ ×R+,

Nℓ( · , A) is a Poisson process and Ñℓ( · , A) is a martingale (see Proposition 9.18 in [K01]). Similarly, we

can define dÑℓ(s, i, θ) = dNℓ(s, i, θ) − dN̄ℓ(s, i, θ), for 1 ≤ ℓ ≤ L̃. In this case, given any measurable set

A ∈ I
(ℓ) × R+, we then have that Nℓ( · , A) is a Poisson process and Ñℓ( · , A) is a martingale.

With the preceding definitions, we now define the dynamics of νζt via a weak representation. We consider

test functions denoted by f ∈ C2
b (P̂ ), which we define to mean f(·, Sj) ∈ C2

b (R
d) for each j. The time

evolution for the process
〈

f, νζt

〉

P̂
can then be represented by

〈

f, νζt

〉

P̂
=
〈

f, νζ0

〉

P̂
+
∑

i≥1

∫ t

0

1{i≤〈1,νζ
s−〉P̂ }

√
2Di

∂f

∂Q
(Hi(νζs−))dW

i
s +

∫ t

0

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2
(Hi(νζs−))ds

+

L̃
∑

ℓ=1

∫ t

0

∫

I(ℓ)

∫

R+





〈

f, νζs− −
J
∑

j=1

αℓj
∑

r=1

δ
(H

i
(j)
r

Q
(νζ,j

s− ),Sj)

〉

P̂

−
〈

f, νζs−

〉

P̂





× 1{i∈Ω(ℓ)(νζ
s−)} × 1{θ≤Kγ

ℓ (P(ℓ)(νζ
s−,i))}dNℓ(s, i, θ)

+

L
∑

ℓ=L̃+1

∫ t

0

∫

I(ℓ)

∫

Y(ℓ)

∫

R2
+





〈

f, νζs− −
J
∑

j=1

αℓj
∑

r=1

δ
(H

i
(j)
r

Q
(νζ,j

s− ),Sj)
+

J
∑

j=1

βℓj
∑

r=1

δ
(y

(j)
r ,Sj)

〉

P̂

−
〈

f, νζs−

〉

P̂



(3.1)

× 1{i∈Ω(ℓ)(νζ

s−)} × 1{θ1≤Kγ

ℓ (P(ℓ)(νζ

s−,i))} × 1{θ2≤mη

ℓ (y | P(ℓ)(νζ

s−,i))}dNℓ(s, i,y, θ1, θ2).

Formula (3.1) captures the dynamics of our particle system.Recall that Nj(s) =
〈

1, νζs
〉

P̂
denotes the total

number of molecules at time s, and Di labels the diffusion coefficient for the ith molecule, taking values
in {D1, . . . , DJ}, where Dj is the diffusion coefficient for species Sj , j = 1, · · · , J . The diffusion of each
particle is modeled by the two integrals on the first line of (3.1). The second and third lines model reactions
with no products, while the fourth and fifth lines model reactions with products. The integrals involving the
Poisson measures Nℓ model the different components of the reaction processes, and correspond to sampling
the times at which reactions occur, which reactant particles react, and where reaction products are placed.
When the ℓth reaction happens for ℓ = L̃+1, · · · , L (and analogously for ℓ = 1, · · · , L̃), with probability per
time given by the kernel Kγ

ℓ , the system loses reactant particles and gains product particles. Sampling of
possible reaction occurrences according to Kγ

ℓ occurs through the corresponding indicator functions on the
third and fifth lines. The corresponding loss and gain of particles is encoded by the sums of delta functions
on the second and fourth lines of (3.1). Product positions are sampled according to the placement density

mη
ℓ

(

y | P(ℓ)(νζs−, i)
)

through the indicator function on the fifth line. The indicators over elements of the

sets Ω(ℓ)(νζs−) ensure that reactions can only occur between particles that correspond to a possible set of
reactants. Note, the particle labeled by i in (3.1) will change dynamically as reactions occur. For this reason,
particle positions are accessed through the use of the state vectors, Hi and Hi

Q, as is also done in structured

population models [BM15]. Well-posedness properties of the model equation (3.1) are further discussed in
Section 5, see also Chapter 6 of [BM15] for related results in regards to the formulation and well-posedness.
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We will subsequently assume that Nj(t) =
〈

1, νζs
〉

is uniformly bounded in time in Assumption 5.1. The
stochastic integral with respect to Brownian motion in (3.1) is then a martingale (for a fixed ζ). Taking the
expectation, we obtain for the mean that

E[
〈

f, νζt

〉

P̂
] = E[

〈

f, νζ0

〉

P̂
] + E[

∫ t

0

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2
(Hi(νζs−))ds]

+

L̃
∑

ℓ=1

E[

∫ t

0

∑

i∈Ω(ℓ)(νζ
s−)





〈

f, νζs− −
J
∑

j=1

αℓj
∑

r=1

δ
(H

i
(j)
r

Q
(νζ,j

s− ),Sj)

〉

−
〈

f, νζs−

〉

P̂



×Kγ
ℓ

(

P(ℓ)(νζs−, i)
)

ds]

+

L
∑

ℓ=L̃+1

E[

∫ t

0

∑

i∈Ω(ℓ)(νζ
s−)

∫

Yℓ





〈

f, νζs− −
J
∑

j=1

αℓj
∑

r=1

δ
(H

i
(j)
r

Q (νζ,j
s− ),Sj)

+

J
∑

j=1

βℓj
∑

r=1

δ
(y

(j)
r ,Sj)

〉

P̂

−
〈

f, νζs−

〉

P̂

)

×Kγ
ℓ

(

P(ℓ)(νζs−, i)
)

×mη
ℓ

(

y | P(ℓ)(νζs−, i)
)

dy ds].(3.2)

4. Assumptions on reaction functions and placement densities

In studying the large population limit that γ → ∞, we will constrain our choices of reaction kernels and
placement densities through the following assumptions. Special cases of our choices include a variety of
kernels and placement densities that are commonly used in modeling and simulation [D76b, EC09, LE11,
IS13, IZ18, DYK18].

Assumption 4.1. We assume that for all 1 ≤ ℓ ≤ L, the reaction rate kernel Kℓ(x) is uniformly bounded
for all x ∈ X

(ℓ). We denote generic constants that depend on this bound by C(K).

Assumption 4.2. We assume that for any η ≥ 0, L̃ + 1 ≤ ℓ ≤ L, y ∈ Y
(ℓ) and x ∈ X

(ℓ), the placement
density mη

ℓ (y |x) is a bounded probability density, i.e.
∫

Y(ℓ) m
η
ℓ (y |x) dy = 1.

As previously mentioned, we want to allow for placement densities involving delta-functions. To do so in
a mathematically rigorous way we introduced the smoothing parameter η, through which we can define a
corresponding mollifier in a standard way, as given by Definition (4.1). This is needed for (3.1) to be well-

defined, since expressions like {θ2 ≤ mη
ℓ

(

y | P(ℓ)(νζs−, i)
)

} are non-sensical when η = 0 and the placement

density is a Dirac delta function.

Definition 4.1. For x ∈ R
d, let G(x) denote a standard positive mollifier and Gη(x) = η−dG(x/η). That

is, G(x) is a smooth function on R
d satisfying the following four requirements

(1) G(x) ≥ 0,
(2) G(x) is compactly supported in B(0, 1), the unit ball in R

d,
(3)

∫

Rd G(x) dx = 1,

(4) limη→0Gη(x) = limη→0 η
−dG(x/η) = δ0(x), where δ0(x) is the Dirac delta function and the limit is

taken in the space of Schwartz distributions.

The allowable forms of the placement density for each possible reaction are given by Assumptions 4.3-4.6:

Assumption 4.3. If Rℓ is a first order reaction of the form Si → Sj, we assume that the placement density
mη

ℓ (y |x) takes the mollified form of
mη

ℓ (y |x) = Gη(y − x),

with the distributional limit as η → 0 given by

mℓ(y |x) = δx(y).

This describes that the newly created Sj particle is placed at the position of the reactant Si particle.

Assumption 4.4. If Rℓ is a second order reaction of the form Si + Sk → Sj, we assume that the binding
placement density mℓ(z |x, y) takes the mollified form of

mη
ℓ (z |x, y) =

I
∑

i=1

pi ×Gη (z − (αix+ (1− αi)y)) ,
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with the distributional limit as η → 0 given by

mℓ(z |x, y) =
I
∑

i=1

pi × δ (z − (αix+ (1− αi)y)) ,

where I is a fixed finite integer and
∑

i pi = 1. This describes that the creation of particle Sj is always on the
segment connecting the reactant Si and reactant Sk particles, but allows some random choice of position. A
special case would be I = 2, pi =

1
2 , α1 = 0 and α2 = 1, which corresponds to placing the particle randomly

at the position of one of the two reactants. One common choice is taking I = 1, p1 = 1 and choosing α1 to
be the diffusion weighted center of mass [IZ18].

Assumption 4.5. If Rℓ is a second order reaction of the form Si + Sk → Sj + Sr, we assume that the
placement density mℓ(z, w |x, y) takes the mollified form of

mη
ℓ (z, w |x, y) = p×Gη (x− z)⊗Gη (y − w) + (1− p)×Gη (x− w) ⊗Gη (y − z) ,

with the distributional limit as η → 0 given by

mℓ(z, w |x, y) = p× δ(x,y) ((z, w)) + (1 − p)× δ(x,y) ((w, z)) .

This describes that newly created product Sj and Sr particles are always at the positions of the reactant Si

and Sk particles. p is typically either 0 or 1, depending on the underlying physics of the reaction.

Assumption 4.6. If Rℓ is a first order reaction of the form Si → Sj + Sk, we assume the unbinding
displacement density is in the mollified form of

mη
ℓ (x, y | z) = ρ(|x− y|)

I
∑

i=1

pi ×Gη (z − (αix+ (1− αi)y)) ,

with the distributional limit as η → 0 given by

mℓ(x, y | z) = ρ(|x− y|)
I
∑

i=1

pi × δ (z − (αix+ (1− αi)y)) ,

with
∑

i pi = 1. Here we assume the relative separation of the product Sj and Sk particles, |x− y|, is sampled
from the probability density ρ(|x− y|). Their (weighted) center of mass is sampled from the density encoded
by the sum of δ functions. Such forms are common for detailed balance preserving reversible bimolecular
reactions [IZ18].

We further assume some regularity of the separation placement density, ρ(r), introduced in Assump-
tion 4.6:

Assumption 4.7. For Assumption 4.2 to be true, we’ll need
∫

Rd

ρ(|w|) dw = 1.

Since ρ is a probability density and non-negative, this implies the tail estimate
∫

r>R

rd−1ρ(r) dr ≤ ε,

which we will use in subsequent calculations.

Finally, to study the large-population limit of the population density measures, we must specify how the
reaction kernels depend on the scaling parameter (i.e. system size parameter) γ. Motivated by the classical
spatially homogeneous reaction network large-population limit [DK15], we choose

Assumption 4.8. The reaction kernel is assumed to have the explicit γ dependence that

Kγ
ℓ (x) = γ1−|α(ℓ)|Kℓ(x)

for any x ∈ X
(ℓ), 1 ≤ ℓ ≤ L.
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When interpreting the scaling parameter γ as Avogadro’s number, or in bounded domains as the product of
Avogadro’s number and the domain volume [DK15], such scalings can be derived by requiring the formal well-
mixed (i.e. infinitely fast diffusion) limit of the volume reactivity PBSRD model to match the corresponding
classical spatially homogeneous stochastic chemical kinetics model. See Appendix A for an illustrative
example of how the chosen scalings arise in this case.

Recall that |α(ℓ)| represents the number of reactant particles needed for the ℓ-th reaction. As we assume

|α|ℓ ≤ 2, we obtain three scalings for the three allowable reaction orders:

• |α(ℓ)| = 0 corresponds to a pure birth reaction. By Assumption 4.8, the scaling is γ; i.e. a larger
system size implies more births. In a well-mixed model this would imply that as γ and the initial
number of molecules are increased, we maintain a fixed rate with units of molar concentration per
time for the birth reaction to occur.

• |α(ℓ)| = 1 corresponds to a unimolecular reaction. By Assumption 4.8, there’s no rescaling as it’s
linear. We assume the rates of first order reactions are internal processes to particles, and as such
independent of the system size.

• |α(ℓ)| = 2 corresponds to a bimolecular reaction. By Assumption 4.8, the scaling of reaction kernel
is γ−1. As the system size increases it is harder for two individual reactant particles to encounter
each other.

5. Main result and examples

We now formulate a weak representation for the time evolution of scaled empirical measures µζ,j
t = 1

γ ν
ζ,j
t

with j = 1, · · · , J and µζ
t = 1

γ ν
ζ
t =

∑J
j=1 µ

ζ,j
t δSj

. µζ,j
t physically corresponds to the molar concentration

field for species j at time t.
For a test function f ∈ C2

b (R
d) and for each species j = 1, · · · , J , let us define the generator

(Ljf)(x) = Dj∆xf(x).

We’ll focus on proving the convergence as ζ → 0 of the marginal distribution vector
(

µζ,1
t , µζ,2

t , · · · , µζ,J
t

)

.

We make two final assumptions before stating our main result. First, to simplify the analysis we assume the
total molar concentration is bounded as ζ → 0:

Assumption 5.1. We assume that the total (molar) population concentration satisfies
∑J

j=1

〈

1, µζ,j
t

〉

≤
C(µ) for all t < ∞, i.e. is uniformly in time bounded by some constant C(µ). In the remainder we abuse
notation and also denote generic constants that depend on this bound by C(µ).

Remark 5.2. If we define the stopping time

(5.1) τζ = inf







t ≥ 0,
J
∑

j=1

〈

1, µζ,j
t

〉

> C(µ)







,

Assumption 5.1 essentially requires that P
(

τζ = ∞
)

= 1 for all ζ. We have chosen to use the condition

of Assumption 5.1 instead of introducing the stopping time τζ in order to simplify some of the arguments,
notation, and presentation. Because of Assumption 5.1, our main result, Theorem 5.5, does not apply to
reaction networks that include zeroth order birth reactions (i.e. reactions of the form ∅ → Si). Similarly,
reactions of the form Si → Si + Sk would be excluded since they also allow the possibility of unbounded
population growth. In order to include such reactions, one would need to introduce a stopping time like (5.1)
for when the total molar population concentration first exceeds C(µ), and study its limiting behavior as η → 0.
Though we do not show it here, we conjecture that in these cases the large-population limit of Theorem 5.5 will
hold till time t ∧ T0, where T0 is any finite time over which the solution to the limiting mean-field equations
is well defined (see [IMS21a]). For large-population limits of non-spatial stochastic chemical kinetic systems
a stopping time-based approach is carried out in [DK15], while for related structured population models a
stopping time-based approach is used in [BM15].

Note, assuming a fixed, finite number of each particle at t = 0, Assumption 5.1 would, for example,
always hold in systems with fully reversible reactions that do not create particles from nothing. These include
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reactions of the form Si+Sj ↔ Sk+Sl, Si+Sj ↔ Si+Sk, Si+Sj ↔ Sk, 2Si ↔ Sj, Si ↔ Sj, etc. Reversible
reactions like ∅ ↔ Si, Si ↔ Si + Sj, or Si ↔ 2Si would again be excluded since they involve the creation of
new particles from nothing.

Remark 5.3. Let us now discuss the well-definiteness of the process {νζt }t≥0 (equivalently {µζ
t }t≥0) as

defined via (3.1). For general reaction-networks, one cannot expect (3.1) to be well-posed for all times as,
for instance, one could have finite time blow-up (consider, for example, the standard ODE model for the
reaction 2Si → 3Si). On the other hand, for most biologically-motivated systems one does not expect almost
sure blow-up in finite time. In fact, for systems with the pure conversion reactions Si + Sj ↔ Sk + Sl,
one can check that our formulation is analogous to the formulation of [LLN19], where well-posedness of the
pre-limit Markov system is indeed established. Instead of trying to prove for which combinations of reaction
kernels and networks one has well-posedness, an open problem even for deterministic reaction-diffusion PDE
models, we have made Assumption 5.1.

While we do not prove well-posedness of {νζt }t≥0 here, a basic approach one could take to try to establish
it is as follows. We first note that between the times that two consecutive reactions take place, the number of
particles in the system is fixed, and each particle moves independently by Brownian motion. When a reaction
occurs the number of particles changes, with the positions and types of reactants and substrates updated
based on the sampling, reaction and placements rules of (3.1) (see also the description after equation (3.1)).
Assumption 5.1 guarantees that the total population concentration stays bounded. The Markov property holds
because the sampling and placement rules at the next reaction time, say τ , depend only on the state of the
system at time τ−. Hence, Assumption 5.1, together with the boundedness and regularity Assumptions 4.1

and 4.2, is expected to lead to a well-defined process {νζt }t≥0 (equivalently {µζ
t }t≥0).

As also indicated in Chapter 6 in [BM15], instead of Assumption 5.1 it should be sufficient to know that

for every T < ∞ we have the integrability condition E

[

supt∈[0,T ]

∑J
j=1

〈

1, νζ,jt

〉p]

< ∞ for an appropriate

p ≥ 1 (together with appropriate boundedness and regularity of reaction kernels and placement densities). A
potential method for establishing this would be to build the process step by step. An outline for this process is
indicated in the related results of Chapter 6 in [BM15] (see Theorem 6.4 there), where one builds the solution
up to the time that the total population concentration reaches a certain threshold, and then proves that the
sequence of jump times goes almost surely to infinity as the aforementioned threshold tends to infinity. We
have chosen to make the stronger Assumption 5.1 in part to simplify some of the arguments for the a-priori
bounds that are needed in order to prove our main convergence result, Theorem 5.5.

We reiterate though; it is an open question to characterize all the possible general spatial reaction-networks
for which (3.1) is well-posed. In the remainder we assume that we have a reaction-network for which this is

the case, and, with that assumed, our goal is to establish the limit of {µζ
t }t≥0 as ζ → 0.

Finally, we assume convergence of the initial molar concentrations of each type at t = 0 as γ → ∞:

Assumption 5.4. We assume that the initial distribution µζ,j
0 → ξj0 weakly as ζ → 0, where ξj0 is a

compactly supported measure, for all 1 ≤ j ≤ J .

We are now ready to state our main result. Let MF (R
d) be the space of finite measures endowed with

the weak topology and DMF (Rd)[0, T ] be the space of cadlag paths with values in MF (R
d) endowed with

Skorokhod topology.

Theorem 5.5. (Main result) Recall that ζ = (1/γ, η) and assume that in the prelimit γ < ∞ and
η > 0. Let T < T0 ≤ ∞ be given with T0 to be specified later on. Assume Assumptions 4.1-4.7 for
the reaction kernels and placement densities, scaling Assumption 4.8, Assumption 5.1 (hence the initial
total population concentration is assumed to be bounded), Assumption 5.4, and that the reaction-network

is such that {(µζ,1
t , · · · , µζ,J

t )}t∈[0,T ] ∈ D⊗J
j=1MF (Rd)([0, T ]) is well-defined (see Remark 5.3). Then, the

sequence of measure-valued processes {(µζ,1
t , · · · , µζ,J

t )}t∈[0,T ] ∈ D⊗J
j=1MF (Rd)([0, T ]) is relatively compact

in D⊗J
j=1MF (Rd)([0, T ]) for each j = 1, 2, · · · , J . It converges in distribution to {(ξ1t , · · · , ξJt )}t∈[0,T ] ∈

C⊗J
j=1MF (Rd)([0, T ]) as ζ → 0, where the limit is taken such that η > 0 for each finite γ. Each ξjt is

respectively the unique solution to
〈

f, ξjt

〉

=
〈

f, ξj0

〉

+

∫ t

0

〈

(Ljf)(x), ξ
j
s(dx)

〉

ds

11



−
L̃
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

(αℓj
∑

r=1

f(x(j)r )

)

λ(ℓ)[ξs](dx) ds

+
L
∑

ℓ=L̃+1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mℓ (y |x) dy −
αℓj
∑

r=1

f(x(j)r )



 λ(ℓ)[ξs](dx) ds.(5.2)

Here T0 is the maximal time up to which the deterministic system (5.2) has a well defined solution.

Remark 5.6. In the companion paper [IMS21a] we study well-posedness and regularity of the limiting system
(5.2) and we present numerical studies related to the behavior of the pre-limit and limit systems. It is proven
in [IMS21a] that (5.2) always has an appropriate local in-time solution (i.e. there exists some 0 < T0 <∞)
and global in-time solution (i.e. T0 = ∞) is established for specific reaction networks. We refer the interested
reader to [IMS21a] for details.

Remark 5.7. Given that weak convergence to a constant implies convergence in probability, we get that
Theorem 5.5 actually implies convergence in probability. Namely, for any δ > 0:

lim
ζ→0

P

[

d⊗J
j=1MF (Rd)

(

(µζ,1, · · · , µζ,J), (ξ1, · · · , ξJ)
)

≥ δ
]

= 0,

where d⊗J
j=1MF (Rd) is the metric for D⊗J

j=1MF (Rd)[0, T ], see for example Section 3.2 of [CSY20] for an expo-

sition in an analogous situation.

Proof of Theorem 5.5. Let πζ be the P−law of (µζ,1, · · · , µζ,J), i.e.

πζ(A) = P
[

(µζ,1, · · · , µζ,J) ∈ A
]

,

for allA ∈ B(D⊗J
j=1MF (Rd)([0, T ])). This means that for all ζ ∈ (0, 1)2 we have that πζ ∈M(D⊗J

j=1MF (Rd)([0, T ])).

By the relative compactness of Theorem 7.7 we get that every subsequence πζk has a further sub-sequence
πζkm which converges weakly. Lemma 7.1 says that any limit point π of πζkm is such that π = δ(ξ1,··· ,ξJ )
where ξj satisfies the evolution equation (5.2). Lemma 7.10 proves uniqueness of solutions to Eq (5.2).
Therefore, by Prokhorov’s theorem πζ converges weakly to π, where π is the distribution of (ξ1, · · · , ξJ ),
the unique solution to (5.2). That is to say that (µζ,1, · · · , µζ,J) converges in distribution to (ξ1, · · · , ξJ ).
Lemma 7.6 proves that for each j = 1, · · · , J , {ξjt }t∈[0,T ] ∈ CMF (Rd)([0, T ]). This concludes the proof of the
theorem.

�

Remark 5.8. If the limiting measures (ξ1t (dx), · · · , ξJt (dx)) have marginal densities (i.e. molar concentra-
tions) (ρ1(x, t), · · · , ρJ(x, t)), then the marginals are expected to solve the following reaction-diffusion partial
integro-differential equations (PIDEs) in a weak sense.

∂tρj(x, t) = Dj∆xρj(x, t)−
L
∑

ℓ=1

(

1

α(ℓ)!

αℓj
∑

r=1

∫

x̃∈X(ℓ)

δx(x̃
(j)
r )Kℓ(x̃)

(

ΠJ
k=1Π

αℓk

s=1ρk(x̃
(k)
s , t)

)

dx̃

)

+

L
∑

ℓ=L̃+1





1

α(ℓ)!

βℓj
∑

r=1

∫

x̃∈X(ℓ)

Kℓ(x̃)

(∫

y∈Y(ℓ)

δx(y
(j)
r )mℓ(y | x̃) dy

)

(

ΠJ
k=1Π

αℓk

s=1ρk(x̃
(k)
s , t)

)

dx̃



 .(5.3)

Remark 5.9. We note that we have slightly abused notation in Eq. (5.3). In particular, the expressions
∫

δx(x̃
(j)
r ) · · · dx̃(j)r and

∫

δx(y
(j)
r ) · · · dy(j)r are used to represent replacing x̃

(j)
r and y

(j)
r with x through the

formal action of the δ-function. That is to say for a given function f ,
∫

Rd

δx(x̃
(j)
r )f(x̃(j)r ) dx̃(j)r

.
= f(x).

Similarly, for simplicity of notation we have written
∫

y∈Y(ℓ)

δx(y
(j)
r )mℓ(y | x̃) dy,
12



where the integrand formally contains products of shifted δ-functions when using the specific choices of place-
ment densities given by Assumptions 4.3 through 4.6. To write the precise and rigorous version of such
expressions, we use the substitution

∫

Rd

δ(x− y)δ(y − x̃) dy := δ(x− x̃).

In Appendix E we show how the nested integrals on the second line of (5.3) simplify using this identity
for several choices of mℓ that appear in the following examples.

To illustrate our main result, we now present a few examples to illustrate the limiting PIDEs for basic
reaction types:

Example 5.10. A system with birth and death reactions for one species, A. Let R1 be the death reaction
A → ∅ with probability per time Kγ

1 (x) to happen for a particle at x. Since R1 involves only one reactant
and one species, α11 = 1. As there are no products, β11 = 0. Let R2 be the birth reaction ∅ → A with
constant probability per time Kγ

2 to happen. When one birth event occurs, the position of the new A particle
is sampled from the placement density m2(x). For R2 there are no reactants, so α21 = 0. One product A
particle is generated, so β21 = 1. There are two types of reactions in total, L = 2, but reaction R1 has no
products so L̃ = 1.

Let the spatial number distribution for particle A at time t be νζ,1t ∈ M(Rd), with νζt = νζ,1t δS1 ∈ M(P̂ ).

In this example, we would have λ(1)[νζt ](dx) = νζ,1t (dx). By (3.1) νζt satisfies

〈

f, νζt

〉

P̂
=
〈

f, νζ0

〉

P̂
+
∑

i≥1

∫ t

0

1{i≤〈1,νζ

s−〉P̂ }
√
2Di

∂f

∂Q
(Hi(νζs−))dW

i
s +

∫ t

0

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2
(Hi(νζs−))ds

−
∫ t

0

∫

(N\{0})

∫

R+

〈

f, δ(Hi
Q
(νζ,1

s− ),S1)

〉

P̂
× 1{i≤〈1,νζ,1

s− 〉} × 1{θ≤Kγ
1 (H

i
Q
(νζ,1

s− ))}dN1(s, i, θ)

+

∫ t

0

∫

Rd

∫

R+

∫

R+

〈

f, δ(x,S1)

〉

P̂
× 1{θ1≤Kγ

2 } × 1{θ2≤mη
2 (x)}dN2(s, x, θ1, θ2).(5.4)

If the limiting spatial distributed measure for species A has marginal density ρ(x, t), by Remark 5.8 it
must solve the following reaction-diffusion equation in a weak sense:

∂tρ(x, t) = D1∆xρ(x, t)−K1(x)ρ(x, t) +K2m2(x).(5.5)

Remark 5.11. Note that Theorem 5.5 does not apply to reaction networks including zero order birth reac-
tions. We conjecture it can be extended to allow zero order reactions on some deterministic time interval
[0, T∗] by introducing and analyzing the limiting behavior of the stopping time (5.1), assuming that the place-
ment density for birth mη

2(x) is in L
1(Rd), and assuming that mη

2 does not depend on η, i.e. mη
2(x) = m2(x).

The latter conditions ensure the product particle is most probably placed within a compact subset of Rd.

Example 5.12. A system with three species, A, B and C that can undergo the reversible bimolecular reaction
A + B ⇄ C. Let R1 be the reaction A + B → C, with Kγ

1 (x, y) the probability per time one A particle at
position x and one B particle at position y bind. Once reaction R1 fires, we generate a new particle C
at position z following the placement density m1(z|x, y). For R1, the reactants are particle A and B, so
α11 = α12 = 1 and α13 = 0. The product is particle C, so that β11 = β12 = 0, while β13 = 1.

Let R2 be the reaction C → A + B, with Kγ
2 (z) the probability per time one C particle at position z

unbinds. Once reaction R2 fires, we generate a new A particle at position x and B particle at position y
following the placement density m2(x, y|z). For R2, the reactant is a C particle, so α21 = α22 = 0 and
α23 = 1. The products are A and B particles, so that β21 = β22 = 1, while β23 = 0.

Let the spatial number distribution for A particles at time t be νζ,1t ∈ M(Rd), the spatial number

distribution for B particles at time t be νζ,2t ∈ M(Rd) and the spatial number distribution for C par-

ticles at time t be νζ,3t ∈ M(Rd). Then νζt = νζ,1t δS1 + νζ,2t δS2 + νζ,3t δS3 ∈ M(P̂ ). We have that

λ(1)[νζt ](dx) = νζ,1t (dx
(1)
1 ) νζ,2t (dx

(2)
1 ) and λ(2)[νζt ](dx) = νζ,3t (dx

(3)
1 ). νζt then satisfies

〈

f, νζt

〉

P̂
=
〈

f, νζ0

〉

P̂
+
∑

i≥1

∫ t

0

1{i≤〈1,νζ
s−〉P̂ }

√
2Di

∂f

∂Q
(Hi(νζs−))dW

i
s +

∫ t

0

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2
(Hi(νζs−))ds
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+

∫ t

0

∫

(N\{0})2

∫

Rd

∫

R+

∫

R+

〈

f,−δ(Hi
Q(νζ,1

s− ),S1)
− δ(Hj

Q(νζ,2
s− ),S2)

+ δ(z,S3)

〉

P̂
× 1{i≤〈1,νζ,1

s− 〉}
× 1{j≤〈1,νζ,2

s− 〉} × 1{θ1≤Kγ
1 (Hi

Q
(νζ,1

s− ),Hj

Q
(νζ,2

s− ))} × 1{θ2≤mη
1(z|Hi

Q
(νζ,1

s− ),Hj

Q
(νζ,2

s− ))}dN1(s, i, j, z, θ1, θ2)

+

∫ t

0

∫

N\{0}

∫

Rd×Rd

∫

R+

∫

R+

〈

f, δ(x,S1) + δ(y,S2) − δ(Hk
Q
(νζ,3

s− ),S3)

〉

P̂
× 1{k≤〈1,νζ,3

s− 〉}
× 1{θ1≤Kγ

2 (Hk
Q(νζ,3

s− ))} × 1{θ2≤×mη
2(x,y|Hk

Q(νζ,3
s− ))}dN2(s, k, x, y, θ1, θ2).(5.6)

If the limiting spatially distributed measures for species A, B and C have marginal densities (ρ1(x, t), ρ2(x, t), ρ3(x, t))
respectively, by Remark 5.8 they must solve the following reaction-diffusion equations in a weak sense:

∂tρ1(x, t) = D1∆xρ1(x, t)−
(∫

Rd

K1(x, y)ρ2(y, t) dy

)

ρ1(x, t) +

∫

Rd

K2(z)

(∫

Rd

m2(x, y|z)dy
)

ρ3(z, t) dz

∂tρ2(y, t) = D2∆yρ2(y, t)−
(∫

Rd

K1(x, y)ρ1(x, t) dx

)

ρ2(y, t) +

∫

Rd

K2(z)

(∫

Rd

m2(x, y|z)dx
)

ρ3(z, t) dz

∂tρ3(z, t) = D3∆zρ3(z, t)−K2(z)ρ3(z, t) +

∫

R2d

K1(x, y)m1(z|x, y)ρ1(x, t)ρ2(y, t) dx dy.

(5.7)

Example 5.13. A system with two species, A and B, that can undergo the reversible dimerization reaction
A + A ⇄ B. Let R1 be the reaction A + A → B with Kγ

1 (x, y) the probability per time one A particle at
position x and another A particle at position y bind. Once reaction R1 fires, we generate a new B particle
at position z by sampling from the placement density m1(z|x, y). For R1, the reactants are two A particles,
so α11 = 2 and α12 = 0. The product is one B particle, so that β11 = 0 and β12 = 1.

Let R2 be the reaction B → A + A, with Kγ
2 (z) the probability per time one B particle at position z

unbinds. Once reaction R2 fires, we generate two new A particles at positions x and y by sampling from the
placement density m2(x, y|z). For R2, the reactant is one B particle, so α21 = 0 and α22 = 1. The products
are two A particles, so that β21 = 2 and β22 = 0.

Let the spatial number distribution for A particles at time t be νζ,1t ∈ M(Rd) and the spatial number

distribution for B particles at time t be νζ,2t ∈M(Rd). Then νζt = νζ,1t δS1 + νζ,2t δS2 ∈M(P̂ ). We have that

λ(1)[νζt ](dx) = νζ,1t (dx
(1)
1 )νζ,1t (dx

(1)
2 ) and λ(2)[νζt ](dx) = νζ,2t (dx

(2)
1 ). νζt then satisfies

〈

f, νζt

〉

P̂
=
〈

f, νζ0

〉

P̂
+
∑

i≥1

∫ t

0

1{i≤〈1,νζ
s−〉P̂ }

√
2Di

∂f

∂Q
(Hi(νζs−))dW

i
s +

∫ t

0

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2
(Hi(νζs−))ds

+

∫ t

0

∫

(N\{0})2

∫

Rd

∫

R+

∫

R+

〈

f,−δ(Hi
Q(νζ,1

s− ),S1)
− δ(Hj

Q(νζ,1
s− ),S1)

+ δ(z,S2)

〉

P̂
× 1{i<j≤〈1,νζ,1

s− 〉}
× 1{θ1≤Kγ

1 (Hi
Q
(νζ,1

s− ),Hj

Q
(νζ,1

s− ))} × 1{θ2≤mη
1(z|Hi

Q
(νζ,1

s− ),Hj

Q
(νζ,1

s− ))}dN1(s, i, j, z, θ1, θ2)

+

∫ t

0

∫

N\{0}

∫

Rd×Rd

∫

R+

∫

R+

〈

f, δ(x,S1) + δ(y,S1) − δ(Hk
Q
(νζ,2

s− ),S2)

〉

P̂
× 1{k≤〈1,νζ,2

s− 〉}
× 1{θ1≤Kγ

2 (Hk
Q(νζ,2

s− ))} × 1{θ2≤mη
2(x,y|Hk

Q(νζ,2
s− ))}dN2(s, k, x, y, θ1, θ2).(5.8)

If the spatially distributed measures for species A and B have marginal densities (ρ1(x, t), ρ2(z, t)) respec-
tively, then from Remark 5.8 they must solve the following reaction-diffusion equations in a weak sense:

∂tρ1(x, t) = D1∆xρ1(x, t)−
(∫

Rd

K1(x, y)ρ1(y, t) dy

)

ρ1(x, t) + 2

∫

Rd

K2(z)

(∫

Rd

m2(x, y|z)dy
)

ρ2(z, t) dz

∂tρ2(z, t) = D2∆zρ2(z, t)−K2(z)ρ2(z, t) +
1

2

∫

R2d

K1(x, y)m1(z|x, y)ρ1(x, t)ρ1(y, t) dx dy.

(5.9)
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6. Equivalence between measure valued formulation and forward Kolmogorov equation

In this section, we demonstrate equivalence of the measure-valued stochastic process formulation (3.1) to
the forward Kolmogorov equation representation of the volume-reactivity model popularized by Doi [D76a,
D76b]. For ease of notation, and brevity of presentation, we restrict attention to the special case of the
reversible A + B ⇄ C reaction, i.e. Example 5.12. Though we do not show here the general case, we note
that this reversible example includes the key complicating components; two-body particle interactions and
changing (total) numbers of particles. It is therefore illustrative of other reactions that may only involve
particle creation (e.g. ∅ → A), or involve interactions but preserve particle numbers (e.g. A+B → C +D
or A→ B).

Denote by Kγ
1 (x, y) the probability per time a particle of type A at x and a particle of type B at y

react, and by Kγ
2 (z) the probability per time a particle of type C at z dissociates. We let mη

1(z |x, y) be the
corresponding placement density for the A + B → C reaction, producing a particle of type C at z, given a
particle of type A at x and a particle of type B at y. Similarly, mη

2(x, y | z) is the placement density for the
C → A + B reaction, producing a particle of type A at x and a particle of type B at y given a particle of
type C at z respectively.

6.1. Weak MVSP Formulation for the A+B ⇆ C Reaction. The weak MVSP representation is given
by (5.6). Taking expectation we obtain for the mean

E[
〈

f, νζt

〉

P̂
] = E[

〈

f, νζ0

〉

P̂
] + E[

∫ t

0

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2
(Hi(νζs−))ds]

+ E[

∫ t

0

〈1,νζ,1
s− 〉
∑

i=1

〈1,νζ,2
s− 〉
∑

j=1

∫

Rd

〈

f,−δ(Hi
Q(νζ,1

s− ),S1)
− δ(Hj

Q(νζ,2
s− ),S2)

+ δ(z,S3)

〉

P̂

×Kγ
1

(

Hi
Q(ν

ζ,1
s− ), Hj

Q(ν
ζ,2
s− )
)

mη
1

(

z|Hi
Q(ν

ζ,1
s− ), Hj

Q(ν
ζ,2
s− )

)

dz ds]

+ E[

∫ t

0

〈1,νζ,3
s− 〉
∑

k=1

∫

R2d

〈

f, δ(x,S1) + δ(y,S2) − δ(Hk
Q
(νζ,3

s− ),S3)

〉

P̂

×Kγ
2

(

Hk
Q(ν

ζ,3
s− )
)

mη
2

(

x, y|Hk
Q(ν

ζ,3
s− )

)

dx dy ds]

= E[
〈

f, νζ0

〉

P̂
] + E[

∫ t

0

〈

Lf, νζs−
〉

P̂
ds]

+ E[

∫ t

0

∫

R3d

(−f(x, S1)− f(y, S2) + f(z, S3))K
γ
1 (x, y)m

η
1(z|x, y) νζ,1s− (dx) νζ,2s− (dy) dz ds]

+ E[

∫ t

0

∫

R3d

(f(x, S1) + f(y, S2)− f(z, S3))K
γ
2 (z)m

η
2(x, y|z) dx dy νζ,3s− (dz) ds].(6.1)

In Eq (6.1), we denote Lf(Q,Sj) = Dj∆Qf , for all j = 1, 2, 3. As we shall demonstrate soon, this is
consistent with what we expect from the forward equation (6.2).

6.2. Doi Forward Kolmogorov Equation for the A+B ⇆ C Reaction. We use a notation consistent
with that introduced by Doi [D76a, D76b]. Suppose A(t) is the stochastic process for the number of species
A particles in the system at time t, with B(t) and C(t) defined similarly. Values of A(t), B(t) and C(t) will
be given by a, b and c (i.e. A(t) = a). When A(t) = a, we will let Qa

l (t) ∈ R
d label the stochastic process

for the position of the lth molecule of species A. qa
l will denote a possible value of Qa

l (t). The species A
position vector when A(t) = a is then given by

Qa(t) = (Qa
1(t), . . . ,Q

a
a(t)) ∈ R

da.

Similarly, qa will denote a possible value of Qa(t),

Qa(t) = qa = (qa
1 , . . . , q

a
a).

Qb(t), Qb
m(t), Qc(t), Qc

n(t), q
b
m, qc

n, q
b and qc will all be defined analogously. The state of the system is

then a hybrid discrete–continuous state stochastic process given by
(

A(t), B(t), C(t),QA(t),QB(t),QC(t)
)

.
15



With this notation, denote by p(a,b,c)(qa, qb, qc, t) the probability density that A(t) = a, B(t) = b and
C(t) = c with Qa(t) = qa, Qb(t) = qb and Qc(t) = qc. We assume that particles of the same species are
indistinguishable, that is for 1 ≤ l < l′ ≤ a fixed

p(a,b,c)
(

qa
1 , . . . , q

a
l−1, q

a
l , q

a
l+1, . . . , q

a
l′−1, q

a
l′ , q

a
l′+1, . . . , q

a
a , q

b, qc, t
)

= p(a,b,c)
(

qa
1 , . . . , q

a
l−1, q

a
l′ , q

a
l+1, . . . , q

a
l′−1, q

a
l , q

a
l′+1, . . . , q

a
a , q

b, qc, t
)

,

with similar relations holding for permutations of the molecule orderings within qb and qc. With this
assumption the p(a,b,c) are chosen to be normalized so that

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

[

1

a! b! c!

∫

Rda

∫

Rdb

∫

Rdc

p(a,b,c)
(

qa, qb, qc, t
)

dqc dqb dqa

]

= 1.

Here the bracketed term corresponds to the probability of having a given number of each species, i.e.

Pr [A(t) = a,B(t) = b, C(t) = c] =
1

a! b! c!

∫

Rda

∫

Rdb

∫

Rdc

p(a,b,c)
(

qa, qb, qc, t
)

dqc dqb dqa.

Let P (t) = {p(a,b,t)(qa, qb, qc, t)}∞a,b,c=0 denote the vector of all the probabilities. The forward equation

(see [IZ18]) is given by the coupled system of PIDEs that

(6.2) ∂tP (t) = (L+R+ +R−)P (t).

Here the linear operators L, R+ and R− correspond to diffusion, the forward association reaction and the
reverse dissociation reaction respectively. The diffusion operator in the (a, b, c) equation is given by

(6.3) (LP (t))(a,b,c)(q
a, qb, qc.t) =

(

D1

a
∑

l=1

∆qa
l
+D2

b
∑

m=1

∆qb
m
+D3

c
∑

n=1

∆qc
n

)

p(a,b,c)(qa, qb, qc, t),

where ∆qa
l
denotes the d-dimensional Laplacian acting on the qa

l coordinate, and ∆qb
m

and ∆qc
n
are defined

similarly. (Recall D1, D2, D3 are the diffusivity of species A, B. and C respectively.) To define the reaction
operators, R+ and R−, we introduce notations for adding or removing a particle from a given state, qa. Let

qa ∪ x = (qa
1 , . . . , q

a
a ,x) , qa \ qa

l =
(

qa
1 , . . . , q

a
l−1, q

a
l+1, . . . , q

a
a

)

,

which correspond to adding a particle to species A at x, and removing the lth particle of species A respec-
tively. With these definitions, the reaction operator for the A + B → C association reaction in the (a, b, c)
equation is
(6.4)

(R+P (t))(a,b,c)(q
a, qb, qc.t) =−

(

a
∑

l=1

b
∑

m=1

Kγ
1

(

qa
l , q

b
m

)

)

p(a,b,c)(qa, qb, qc, t)

+

c
∑

n=1

[
∫

R2d

mη
1(q

c
n|x,y)Kγ

1 (x,y) p(a+1,b+1,c−1)(qa ∪ x, qb ∪ y, qc \ qc
n, t)dxdy

]

,

while the reaction operator for the dissociation reaction C → A+ B in the (a, b, c) equation is

(6.5) (R−P (t))(a,b,c)(q
a, qb, qc.t) = −

(

c
∑

n=1

Kγ
2 (q

c
n)

)

p(a,b,c)(qa, qb, qc, t)

+
a
∑

l=1

b
∑

m=1

[∫

Rd

mη
2

(

qa
l , q

b
m|z

)

Kγ
2 (z)p

(a−1,b−1,c+1)
(

qa \ qa
l , q

b \ qb
m, q

c ∪ z, t
)

dz

]

.

This representation is consistent with the classical second quantization representation of Doi [D76a, D76b].

Suppose the initial condition P (0) = P0 = {p(a,b,c)0 }∞a,b,c=0 is fixed, and we have (a0, b0, c0) particles of

A, B and C respectively at time zero. We consider the evolution of P (t) as a vector in a L2 Fock Space
F = L2(X) equipped with inner product defined by (C.1), where

X =

a0∨b0+c0
⊕

a,b,c≥0
a+b+2c=a0+b0+2c0

R
d(a+b+c).
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Remark 6.1. For the A + B ⇆ C reaction, the quantity A(t) + B(t) + 2C(t) = a0 + b0 + 2c0 is always
conserved. For our example, X is therefore a finite sum of Euclidean spaces over a, b, c ∈ N+ such that
a+ b+ 2c = a0 + b0 + 2c0.

To simplify the calculation of regularity results for (6.2) for comparison to the forward equation, in this
section we make

Assumption 6.2. We assume the reaction kernel function K(x, y) for the A+B → C reaction only depends

on the separation of two reactant particles, |x−y|, denoted as K(x, y) = K̃(|x−y|). Furthermore, we assume

K̃(|w|) ∈ L2(Rd), w ∈ R
d.

Assumption 6.3. We assume the function ρ(|w|), w ∈ R
d, defined in Assumption 4.6 for the C → A+ B

reaction, is in L2(Rd).

Under these two assumptions the following regularity theorem holds, for which the proof is given in
Appendix D.

Theorem 6.4. Given Assumptions 6.2 and 6.3, there exists a unique global mild solution to (6.2), P (·) ∈
C([0,∞);H2(X)). That is, P (t) satisfies

P (t) = etLP0 +

∫ t

0

e(t−s)L(R+P (s) +R−P (s)) ds,

with the initial condition P (0) = P0 ∈ H1(X). Further, if p
(a,b,c)
0 ≥ 0 for each (a, b, c), and satisfies the

normalization condition
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

[

1

a! b! c!

∫

Rda

∫

Rdb

∫

Rdc

p
(a,b,c)
0

(

qa, qb, qc
)

dqc dqb dqa

]

= 1,

then P (t) is always non-negative for all t ≥ 0 and the same normalization condition holds,

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

[

1

a! b! c!

∫

Rda

∫

Rdb

∫

Rdc

p(a,b,c)
(

qa, qb, qc, t
)

dqc dqb dqa

]

= 1.

Note, as a+ b+ 2c is conserved, see Remark 6.1, the above summation is only over a finite set of indices.

6.3. Equivalence of the two approaches. Now, we are in position to compare the two approaches as
described in Sections 6.1 and 6.2. For this purpose we have Proposition 6.5 and Proposition 6.6 whose proofs
are deferred to Appendix C.

Proposition 6.5. For any M ∈ N, any function ϕ ∈ C∞(RM ) and any set of functions {fm}Mm=1 ∈ C2
b (P̂ ),

the evolution equations satisfied by E[ϕ
(〈

f1, ν
ζ
t

〉

P̂
,
〈

f2, ν
ζ
t

〉

P̂
, · · · ,

〈

fM , ν
ζ
t

〉

P̂

)

] are the same when derived

using either the formulation of the weak measure-valued process representation, or the formulation based on
the forward Kolmogorov equation. This implies that these two approaches produce the same statistics.

By Proposition 6.5 we know that the measure-valued formulation and the forward Kolmogorov equation
yield the same statistics, at least when the statistics involve smooth test functions. We next derive equations
for the mean particle spatial field density of different species at time t in Proposition 6.6. Note that Propo-
sition 6.6 can be viewed as a special case of the equations derived in Proposition 6.5 by formally setting
M = 1, ϕ = 1 and f1 = δ(x,S1), f1 = δ(y,S2) or f1 = δ(z,S3) respectively for representing the spatial field
density for species A, B, and C. Using the weak measure-valued process representation, we do not show here
but expect that one can make this rigorous by introducing appropriate mollifiers and taking the mollification
to zero afterwards. For simplicity, we instead use the formulation via the forward Kolmogorov equation,
which for deriving the mean density fields in Proposition (6.6) does not require the introduction of mollifiers.

Proposition 6.6. Let A(x, t), B(y, t) and C(z, t) denote the spatial field number density in the particle
model at time t for species A at position x, B at position y and C at position z respectively. Under the
assumptions of Theorem 6.4, the evolution equations for their expectations at time t satisfy

∂tE[A(x, t)] = D1∆xE[A(x, t)] −
∫

Rd

Kγ
1 (x,y)E[A(x, t)B(y, t)] dy

17



+

∫

Rd

[∫

Rd

m2 (x,y|z)Kγ
2 (z)dy

]

E[C(z, t)]dz,

∂tE[B(y, t)] = D2∆yE[B(y, t)] −
∫

Rd

Kγ
1 (x,y)E[A(x, t)B(y, t)] dx

+

∫

Rd

[∫

Rd

m2 (x,y|z)Kγ
2 (z)dx

]

E[C(z, t)]dz,

∂tE[C(z, t)] = D3∆zE[C(z, t)] −Kγ
2 (z)E[C(z, t)] +

∫

R2d

m1 (z|x,y)Kγ
1 (x,y)E[A(x, t)B(y, t)] dx dy.

(6.6)

7. Details of the Proof of Theorem 5.5

The purpose of this section is to prove the various lemmas and theorems cited in the proof of our main
result, Theorem 5.5. Without loss of generality we assume that L̃ = 0 in this section. The case when L̃ > 0
follows by similar arguments as we now give in the L̃ = 0 case.

To rigorously determine the large-population limit of the MVSP, we use the martingale problem approach
for studying solutions to stochastic differential equations developed by Stroock and Varadhan [EK86, SV06].

The proof is organized as follows. In Subsection 7.1 we provide the path level description of µζ,j
t , analogous

to (3.1) for νζt , and in Subsection 7.2 we derive equations for its expectation. Assuming that the large-
population limit exists, its identification is presented in Subsection 7.3. Then, in Subsection 7.4 we prove
that the limit exists by proving that the sequence of measures is appropriately tight. We conclude in
Subsection 7.5 by proving that the limit equation has a unique solution. Collectively, these results imply
Theorem 5.5.

7.1. Path level description. Using that we can write the marginal distribution (molar concentration) of
species j as

µζ,j
t (dx) =

1

γ

γ〈1,µζ,j
t 〉

∑

i=1

δHi
Q
(γµζ,j

t )(dx), j ∈ {1, . . . , J},

we have, analogously to (3.1), the coupled system

〈

f, µζ,j
t

〉

=
〈

f, µζ,j
0

〉

+
1

γ

∑

i≥1

∫ t

0

1{i≤γ〈1,µζ,j
s−〉}

√

2Dj
∂f

∂Q
(Hi(γµζ,j

s−))dW i
s +

1

γ

∫ t

0

γ〈1,µζ,j
s−〉

∑

i=1

Dj
∂2f

∂Q2
(Hi(γµζ,j

s−))ds

+
L
∑

ℓ=1

∫ t

0

∫

I(ℓ)

∫

Y(ℓ)

∫

R2
+





〈

f, µζ,j
s− − 1

γ

αℓj
∑

r=1

δ
H

i
(j)
r

Q
(γµζ,j

s− )
+

1

γ

βℓj
∑

r=1

δ
y
(j)
r

〉

−
〈

f, µζ,j
s−

〉





× 1{i∈Ω(ℓ)(γµζ
s−)} × 1{θ1≤Kγ

ℓ (P(ℓ)(γµζ
s−,i))} × 1{θ2≤mη

ℓ (y | P(ℓ)(γµζ
s−,i))}dNℓ(s, i,y, θ1, θ2),

(7.1)

for j ∈ {1, . . . , J}.
In this formulation, one important fact is that for fixed ζ, γ

〈

1, µζ,j
s−

〉

is finite by assumption, which

provides exchangeability of the sum and Lebesgue integral.

7.2. Taking expectations. By taking expectation on (7.1) we obtain

E[
〈

f, µζ,j
t

〉

] = E[
〈

f, µζ,j
0

〉

] + E[
1

γ

∫ t

0

γ〈1,µζ,j
s−〉

∑

i=1

Dj
∂2f

∂Q2
(Hi(γµζ,j

s−))ds] +

L
∑

ℓ=1

E[
1

γ

∫ t

0

∫

Y(ℓ)

∑

i∈Ω(ℓ)(γµζ
s−)



−
αℓj
∑

r=1

f(H
i(j)r

Q (γµζ,j
s−)) +

βℓj
∑

r=1

f(y(j)r )



×Kγ
ℓ

(

P(ℓ)(γµζ
s−, i)

)

×mℓ

(

y|P(ℓ)(γµζ
s−, i)

)

dy ds],
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= E[
〈

f, µζ,j
0

〉

] + E[

∫ t

0

∫

Rd

1

γ

γ〈1,µζ,j
s−〉

∑

i=1

Dj
∂2f

∂Q2
(x)δHi

Q
(γµζ,j

s− )(dx)ds]

−
L
∑

ℓ=1

E[

∫ t

0

1

γ

∑

i∈Ω(ℓ)(γµζ
s−)

(αℓj
∑

r=1

f(H
i(j)r

Q (γµζ,j
s−))

)

Kγ
ℓ

(

P(ℓ)(γµζ
s−, i)

)

(∫

Y(ℓ)

mη
ℓ

(

y|P(ℓ)(γµζ
s−, i)

)

dy

)

ds],

+

L
∑

ℓ=1

E[

∫ t

0

1

γ

∑

i∈Ω(ℓ)(γµζ
s−)

Kγ
ℓ

(

P(ℓ)(γµζ
s−, i)

)





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mη
ℓ

(

y|P(ℓ)(γµζ
s−, i)

)

dy



 ds],

= E[
〈

f, µζ,j
0

〉

] + E[

∫ t

0

〈

(Ljf)(x), µ
ζ,j
s− (dx)

〉

ds]

−
L
∑

ℓ=1

E[

∫ t

0

1

γ

∫

X(ℓ)

∑

i∈Ω(ℓ)(γµζ
s−)

(αℓj
∑

r=1

f(x(j)r )

)

Kγ
ℓ (x) δP(ℓ)(γµζ

s−,i)(dx) ds],

+
L
∑

ℓ=1

E[

∫ t

0

1

γ

∫

X(ℓ)

∑

i∈Ω(ℓ)(γµζ
s−)

Kγ
ℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mη
ℓ (y |x) dy



 δP(ℓ)(γµζ
s−,i)(dx) ds],

= E[
〈

f, µζ,j
0

〉

] + E[

∫ t

0

〈

(Ljf)(x), µ
ζ,j
s− (dx)

〉

ds]

−
L
∑

ℓ=1

E[

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!

(αℓj
∑

r=1

f(x(j)r )

)

Kℓ (x) λ
(ℓ)[µζ

s−](dx) ds],

+

L
∑

ℓ=1

E[

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mη
ℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds],

= E[
〈

f, µζ,j
0

〉

] + E[

∫ t

0

〈

(Ljf)(x), µ
ζ,j
s− (dx)

〉

ds]

+

L
∑

ℓ=1

E[

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mη
ℓ (y |x) dy −

αℓj
∑

r=1

f(x(j)r )



 λ(ℓ)[µζ
s−](dx) ds],

(7.2)

where in the third equality we use the assumption that
∫

Y(ℓ) m
η
ℓ (y|x) dy = 1. For the second to last equality

we switch integrals of the form
∫

X(ℓ)

∑

i∈Ω(ℓ)(γµζ
s−) · · · δP(ℓ)(γµζ

s−,i)(dx) to
∫

X̃(ℓ)
1

α(ℓ)!
· · ·λ(ℓ)[µζ

s−](dx) using

the definition of µζ,j
s (dx) and λ(ℓ)[ · ] (see Definition 2.6), and removing probability zero sets where two

particles with the same type are simultaneously located at the same spatial location (see Definition 2.7).
Note, by definition the allowable reactant index sampling space Ω(ℓ) (see Definition 2.5) orders indices for
particles of the same species. In converting from integrals involving the positions of individual particles (i.e.

δP(ℓ)(γµζ
s−,i)(dx)) to integrals involving product measures (λ(ℓ)[µζ

s−](dx)) we need to remove the ”diagonal”

indices by means of integrating on X̃
(ℓ) (see Definition 2.7) and normalizing by the total number of index

orderings, (α(ℓ)!).

7.3. Identification of the Limit. Inspired by Eq (7.2), we expect that if the weak limit, as ζ goes to zero,

of the marginal distribution vector µ
ζ
t := (µζ,1

t , µζ,2
t · · · , µζ,J

t ) exists and is unique, then it will satisfy the
analogous equation. For this purpose, denote ξt := (ξ1t , ξ

2
t , · · · , ξJt ) to be the corresponding limiting particle

distribution on R
J×d and ξt =

∑J
j=1 ξ

j
t δSj

to be the corresponding limiting particle distribution on P̂ . Then
for each 1 ≤ j ≤ J , the following must be satisfied,
〈

f, ξjt

〉

=
〈

f, ξj0

〉

+

∫ t

0

〈

(Ljf)(x), ξ
j
s(dx)

〉

ds
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+

L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mℓ (y |x) dy −
αℓj
∑

r=1

f(x(j)r )



 λ(ℓ)[ξs](dx) ds.(7.3)

Existence of the limit is shown in the tightness Section 7.4, while uniqueness is shown in Section 7.5.
Let S be the collection of elements Φ in B(⊗J

j=1MF (R
d)) i.e., bounded functionals) of the form

(7.4) Φ(µ) = ϕ (〈f1,µ〉 , 〈f2,µ〉 . . . 〈fM ,µ〉)
for someM ∈ N, some ϕ ∈ C∞(RJ×M ), 〈fm,µ〉 =

(〈

f1,m, µ
1
〉

, · · · ,
〈

fJ,m, µ
J
〉)

where each {fj,m} ∈ C2
b (R

d)

for j = 1, · · · , J and m = 1, · · · ,M . Then S separates points in ⊗J
j=1MF (R

d) (see Chapter 3.4 of [EK86]
and Proposition 3.3 of [CSY20]). As long as the limiting process exists and is unique, to identify the limit,
it thus suffices to show convergence of the martingale problem for functions of the form (7.4).

For Φ ∈ S of the form (7.4), µ := (µ1, µ2 · · · , µJ) ∈ ⊗J
j=1MF (R

d) and µ =
∑J

j=1 µ
jδSj

∈ MF (P̂ ) with

each µj ∈MF (R
d), define

(AΦ)(µ)
def
=

M
∑

m=1

J
∑

j=1

∂ϕ

∂x(m−1)∗J+j
(〈f1,µ〉 , 〈f2,µ〉 . . . 〈fM ,µ〉)

{

〈

Lℓfj,m, µ
j
〉

+
L
∑

ℓ=1

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fj,m(y(j)r )



mℓ (y |x) dy −
αℓj
∑

r=1

fj,m(x(j)r )



 λ(ℓ)[µ](dx)

}

(7.5)

We claim that A, which is the generator of the system described by (7.3) for 1 ≤ j ≤ J , will be the generator
of the limiting martingale problem.

Lemma 7.1 (Weak Convergence). For any Φ ∈ S and 0 ≤ r1 ≤ r2 · · · ≤ rW = s < t < T and {ψw}Ww=1 ⊂
B(⊗J

j=1MF (R
d)), we have that

(7.6) lim
ζ→0

E[

{

Φ(µζ
t )− Φ(µζ

s )−
∫ t

s

(AΦ)(µζ
r )dr

} W
∏

w=1

ψw(µ
ζ
rw)] = 0.

Proof. For each j = 1, · · ·J , we can rewrite Eq (7.1) as
〈

f, µζ,j
t

〉

=
〈

f, µζ,j
0

〉

+Mf,j
t +Af,j

t ,

where

Af,j
t =

∫ t

0

〈

(Ljf)(x), µ
ζ,j
s−(dx)

〉

ds

+

L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mη
ℓ (y |x) dy −

αℓj
∑

r=1

f(x(j)r )



 λ(ℓ)[µζ
s−](dx) ds.(7.7)

and

Mf,j
t =

1

γ

∑

i≥1

∫ t

0

1{i≤γ〈1,µζ,j
s−〉}

√

2Dj
∂f

∂Q
(Hi(γµζ,j

s−))dW i
s

+
L
∑

ℓ=1

∫ t

0

∫

I(ℓ)

∫

Y(ℓ)

∫

R2
+





〈

f, µζ,j
s− − 1

γ

αℓj
∑

r=1

δ
H

i
(j)
r

Q
(γµζ,j

s− )
+

1

γ

βℓj
∑

r=1

δ
y
(j)
r

〉

−
〈

f, µζ,j
s−

〉





× 1{i∈Ω(ℓ)(γµζ
s−)} × 1{θ1≤Kγ

ℓ (P(ℓ)(γµζ
s−,i))} × 1{θ2≤mη

ℓ (y | P(ℓ)(γµζ
s−,i))}dÑℓ(s, i,y, θ1, θ2),(7.8)

is a square integrable martingale (See Proposition 2.4 in [NW14]) with quadratic variation

〈

Mf,j
〉

t
=

1

γ2

∫ t

0

γ〈1,µζ,j

s−〉
∑

i=1

(

√

2Dj
∂f

∂Q
(Hi(γµζ,j

s−))

)2

ds
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+

L
∑

ℓ=1

∫ t

0

∫

Y(ℓ)

1

γ2

∑

{i∈Ω(ℓ)(γµζ
s−)}



−
αℓj
∑

r=1

f(H
ijr
Q (γµζ,j

s−)) +

βℓj
∑

r=1

f(yjr)





2

×Kγ
ℓ

(

P(ℓ)(γµζ
s−, i)

)

×mη
ℓ

(

y | P(ℓ)(γµζ
s−, i)

)

dy ds,

≤ 1

γ

∫ t

0

〈

2Dj

(

∂f

∂x

)2

, µζ,j
s−

〉

ds

+

L
∑

ℓ=1

∫ t

0

∫

Y(ℓ)

1

γ2

∑

{i∈Ω(ℓ)(γµζ
s−)}

||f ||2Cb(Rd)(αℓj + βℓj)
2Kγ

ℓ

(

P(ℓ)(γµζ
s−, i)

)

mη
ℓ

(

y | P(ℓ)(γµζ
s−, i)

)

dy ds,

≤
C(Dj)t||f ||2C1

b
(Rd)

γ
C(µ) +

L
∑

ℓ=1

||f ||2Cb(Rd)(αℓj + βℓj)
2

∫ t

0

1

γ2

∑

{i∈Ω(ℓ)(γµζ
s−)}

Kγ
ℓ

(

P(ℓ)(γµζ
s−, i)

)

ds,

≤
C(Dj)t||f ||2C1

b
(Rd)

γ
C(µ) + C(K)42||f ||2Cb(Rd)

L
∑

ℓ=1

∫ t

0

1

γ2

∑

{i∈Ω(ℓ)(γµζ
s−)}

γ1−|α(ℓ)| ds,

≤
C(Dj)t||f ||2C1

b
(Rd)

γ
C(µ) +

C(K)tL||f ||2Cb(Rd)

γ
C(µ).

(7.9)

The quadratic variation is therefore uniformly bounded and goes to 0 as ζ → 0 (γ → ∞) since f and its
partial derivatives are uniformly bounded.

Now define Mf,j
t = C

f,j
t +D

f,j
t , where

C
f,j
t =

1

γ

∑

i≥1

∫ t

0

1{i≤γ〈1,µζ,j
s−〉}

√

2Dj
∂f

∂Q
(Hi(γµζ,j

s−))dW i
s

(7.10)

is the continuous martingale part and

D
f,j
t =

L
∑

ℓ=1

∫ t

0

∫

I(ℓ)

∫

Y(ℓ)

∫

R2
+





〈

f, µζ,j
s− − 1

γ

αℓj
∑

r=1

δ
H

i
(j)
r

Q
(γµζ,j

s− )
+

1

γ

βℓj
∑

r=1

δ
y
(j)
r

〉

−
〈

f, µζ,j
s−

〉





× 1{i∈Ω(ℓ)(γµζ
s−)} × 1{θ1≤Kγ

ℓ (P(ℓ)(γµζ
s−,i))} × 1{θ2≤mη

ℓ (y | P(ℓ)(γµζ
s−,i))}dÑℓ(s, i,y, θ1, θ2),(7.11)

is the martingale part coming from the stochastic integral with respect to the Poisson point processes. Here,
for simplicity of notation, we let

gℓ,f,µ
ζ,j

(s, i,y, θ1, θ2) =





〈

f, µζ,j
s− − 1

γ

αℓj
∑

r=1

δ
H

i
(j)
r

Q
(γµζ,j

s− )
+

1

γ

βℓj
∑

r=1

δ
y
(j)
r

〉

−
〈

f, µζ,j
s−

〉





× 1{i∈Ω(ℓ)(γµζ
s−)} × 1{θ1≤Kγ

ℓ (P(ℓ)(γµζ
s−,i))} × 1{θ2≤mη

ℓ (y | P(ℓ)(γµζ
s−,i))}

=
1

γ



−
αℓj
∑

r=1

f
(

H
i(j)r

Q (γµζ,j
s−)
)

+

βℓj
∑

r=1

f
(

y(j)r

)





× 1{i∈Ω(ℓ)(γµζ
s−)} × 1{θ1≤Kγ

ℓ (P(ℓ)(γµζ
s−,i))} × 1{θ2≤mη

ℓ (y | P(ℓ)(γµζ
s−,i))},(7.12)

which represents the jumps and is uniformly bounded by O( 1γ ). With some abuse of notation we shall write

gℓ,f,µζ

for the vector (gℓ,f,µ
ζ,1

, · · · , gℓ,f,µζ,J

). Then (7.11) becomes

D
f,j
t =

L
∑

ℓ=1

∫ t

0

∫

I(ℓ)

∫

Y(ℓ)

∫

R2
+

gℓ,f,µ
ζ,j

(s, i,y, θ1, θ2)dÑℓ(s, i,y, θ1, θ2).
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Now we apply Itô’s formula (See Theorem 5.1 in [NW14]) to Φ(µζ
t ). We obtain for θ = (θ1, θ2),

Φ(µζ
t )− Φ(µζ

s )−
∫ t

s

(AΦ)(µζ
r )dr =

∫ t

s

M
∑

m=1

J
∑

j=1

∂ϕ

∂x(m−1)∗J+j

(〈

f1,µ
ζ
r

〉

,
〈

f2,µ
ζ
r

〉

. . .
〈

fM ,µ
ζ
r

〉)

dCfj,m,j
r

+
1

2

∫ t

s

M
∑

m=1

J
∑

j=1

∂2ϕ

∂x2(m−1)∗J+j

(〈

f1,µ
ζ
r

〉

,
〈

f2,µ
ζ
r

〉

. . .
〈

fM ,µ
ζ
r

〉)

d
〈

C
fj,m,j

〉

r

+
L
∑

ℓ=1

∫ t

s

∫

I(ℓ)

∫

Y(ℓ)

∫

R2
+

(

ϕ
(

〈

f1,µ
ζ
r

〉

+ gℓ,f1,µ
ζ

(r, i,y, θ), . . . ,
〈

fM ,µ
ζ
r

〉

+ gℓ,fM ,µζ

(r, i,y, θ)
)

− ϕ
(〈

f1,µ
ζ
r

〉

,
〈

f2,µ
ζ
r

〉

. . .
〈

fM ,µ
ζ
r

〉))

dÑℓ(r, i,y, θ)

+

L
∑

ℓ=1

∫ t

s

∫

I(ℓ)

∫

Y(ℓ)

∫

R2
+

(

ϕ
(

〈

f1,µ
ζ
r

〉

+ gℓ,f1,µ
ζ

(s, i,y, θ), . . . ,
〈

fM ,µ
ζ
r

〉

+ gℓ,fM ,µζ

(s, i,y, θ)
)

− ϕ
(〈

f1,µ
ζ
r

〉

,
〈

f2,µ
ζ
r

〉

. . .
〈

fM ,µ
ζ
r

〉)

−
M
∑

m=1

J
∑

j=1

gℓ,fj,m,µζ,j

(s, i,y, θ)
∂ϕ

∂x(m−1)J+j

(〈

f1,µ
ζ
r

〉

, . . . ,
〈

fM ,µ
ζ
r

〉)





dN̄ℓ(s, i,y, θ)

+

M
∑

m=1

J
∑

j=1

L
∑

ℓ=1

∫ t

0

∂ϕ

∂x(m−1)J+j

(〈

f1,µ
ζ
r

〉

,
〈

f2,µ
ζ
r

〉

. . .
〈

fM ,µ
ζ
r

〉)

×
∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fj,m(y(j)r )



 (mη
ℓ (y |x)−mℓ (y |x)) dy



 λ(ℓ)[µζ
s−](dx)ds

=

5
∑

κ=1

Λζ
κ(t).

(7.13)

We now use the Skorokhod representation theorem (Theorem 1.8 in [EK86]) which, for the purposes of
identifying the limit and proving (7.6), allows us to assume that the aforementioned claimed convergence of

µ
ζ
t = (µζ,1

t , µζ,2
t · · · , µζ,J

t ) holds with probability one in the topology of weak convergence of measures. The
Skorokhod representation theorem involves the introduction of another probability space, but we ignore this
distinction in the notation. To show (7.6), it is then sufficient to prove that the left hand side of (7.13) goes
to zero in probability. With this goal in mind we proceed with proving convergence in probability to zero
for Λζ

κ(t) for κ = 1, · · · , 5.
By Lemma B.2, we immediately have that

lim
ζ→0

sup
t∈[0,T ]

E|Λζ
5(t)| = 0.

In addition, notice that Λζ
1(t) and Λζ

3(t) are square integrable martingales. In fact, by (7.9), (7.12) and the
fact that the jump size is uniformly bounded by O( 1γ ), we have that

lim
ζ→0

sup
t∈[0,T ]

E|Λζ
1(t) + Λζ

3(t)|2 = 0.

For similar reasons, we also have by (7.10) that

lim
ζ→0

sup
t∈[0,T ]

E|Λζ
2(t)| = 0,

and by (7.12) that

lim
ζ→0

sup
t∈[0,T ]

E|Λζ
4(t)| = 0.

We then have that the left hand side of (7.13) goes to zero in probability, concluding the proof of the lemma.
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7.4. Tightness. Recall that MF (R
d) denotes the space of finite measures endowed with the weak topology,

and denote by M ′
F (R

d) the space of finite measures endowed with the vague topology. In this section, we

prove tightness of the measure-valued processes {µζ,j
t }t∈[0,T ], j = 1, 2, · · · , J on DMF (Rd)[0, T ], the space of

cadlag paths with values in MF (R
d) endowed with Skorokhod topology. Towards this aim, we first show

that the processes {µζ,j
t }t∈[0,T ], j = 1, · · · , J, are tight on DM ′

F (Rd)[0, T ].

7.4.1. Tightness in DM ′

F
(Rd)[0, T ]. It suffices to show that the real-valued processes {

〈

f, µζ,j
t

〉

}, j = 1, · · · , J ,
for any test function f(x) ∈ C2

0 (R
d), which is dense in C0(R

d), are tight in DR[0, T ], see [S89]. In establishing
this we use the Rebolledo Criterion [AM86] (Lemma 7.4) and the Aldous Condition [D78] (Lemma 7.3).

Lemma 7.2. For any T > 0 and δ > 0 , there exists constants C and C′ such that for any pair of stopping
times (σ, τ) with 0 ≤ σ ≤ τ ≤ σ + δ ≤ T , we have

E[
〈

Mf,j
〉

τ
−
〈

Mf,j
〉

σ
] ≤ Cδ.

and

E[|Af,j
τ −Af,j

σ |2] ≤ C′δ2,

for j = 1, · · · , J and Af,j , Mf,j follow the definitions (7.7), (7.8) respectively.

Proof. Following (7.9), we can obtain that

E[
〈

Mf,j
〉

τ
−
〈

Mf,j
〉

σ
] =

1

γ2
E[

∫ τ

σ

γ〈1,µζ,j
s−〉

∑

i=1

(

√

2Dj
∂f

∂Q
(Hi(γµζ,j

s−))

)2

ds]

+

L
∑

ℓ=1

E[

∫ τ

σ

∫

Y(ℓ)

1

γ2

∑

{i∈Ω(ℓ)(γµζ
s−)}



−
αℓj
∑

r=1

f(H
ijr
Q (γµζ,j

s−)) +

βℓj
∑

r=1

f(yjr)





2

×Kγ
ℓ

(

P(ℓ)(γµζ
s−, i)

)

×mη
ℓ

(

y | P(ℓ)(γµζ
s−, i)

)

dy ds],

≤
C(µ)E[τ − σ]||f ||2

C1
0(R

d)

γ
(C(Dj) + C(K)L),

≤ Cδ.

From (7.7), we obtain

E[|Af,j
τ −Af,j

σ |2] = E[|
∫ τ

σ

〈

(Ljf)(x), µ
ζ,j
s− (dx)

〉

ds+

L
∑

ℓ=1

∫ τ

σ

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

×





∫

Y(ℓ)





βℓj
∑

r=1

f(y(j)r )



mη
ℓ (y |x) dy −

αℓj
∑

r=1

f(x(j)r )



 λ(ℓ)[µζ
s−](dx) ds|2].

≤ 2E[|
∫ τ

σ

〈

|(Ljf)(x)|, µζ,j
s−(dx)

〉

ds|2] + 2E[|
L
∑

ℓ=1

∫ τ

σ

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)

×





∫

Y(ℓ)





βℓj
∑

r=1

|f(y(j)r )|



mη
ℓ (y |x) dy +

αℓj
∑

r=1

|f(x(j)r )|



 λ(ℓ)[µζ
s−](dx) ds|2]

≤ C(Dj)||f ||2C1
0 (R

d)C(µ)
2
E[|τ − σ|2] + C(K)||f ||2C2

0(R
d)L

2C(µ)4E[|τ − σ|2]
≤ C′δ2.

�
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Lemma 7.3 (Aldous condition). For any T > 0, ε1 > 0, ε2 > 0, j = 1, 2, · · · , J, there exists δ > 0 and n0

such that for any sequence (σn, τn)n∈N
of pairs of stopping times with σn ≤ τn ≤ T ,

sup
n≥n0

P{|
〈

f, µn,j
σn

〉

−
〈

f, µn,j
τn

〉

| ≥ ε2, τn ≤ σn + δ} ≤ ε1.

Proof. This follows as for τn ≤ σn + δ.

sup
n≥n0

P{|Mf,j
σn

−Mf,j
τn |+ |Af,j

σn
−Af,j

τn | ≥ ε2}

≤ sup
n≥n0

2
1

ε22
E[
〈

Mf,j
〉

τn
−
〈

Mf,j
〉

σn
+ |Af,j

τn −Af,j
σn

|2] (by Markov inequality)

≤ 2

ε22
(Cδ + C′δ2) ≤ ε1 (by Lemma 7.2 and when δ sufficiently small)

�

Lemma 7.4 (Rebolledo Criterion). For each j = 1, · · · , J , the sequence of real-valued processes {
〈

f, µζ,j
t

〉

}ζ∈(0,1)2

is tight in DR[0, T ] .

Proof. By assumption, we always have
〈

1, µζ,j
t

〉

, j = 1, · · · , J are uniformly bounded. Since f ∈ C2
0 (R

d),

we have

sup
‖ζ‖≤1

E[ sup
t∈[0,T ]

|
〈

f, µζ,j
t

〉

|] <∞

holds. Combined with the Aldous condition from Lemma 7.3, we obtain that, for each j = 1, 2, · · · , J , the
sequence of real-valued processes {

〈

f, µζ,j
t

〉

}ζ∈(0,1)2 is tight in DR[0, T ] by the Rebolledo Criterion [AM86].

�

7.4.2. Tightness in DMF (Rd)[0, T ]. By the next Lemma 7.5, we’re able to control the mass of measures outside
of compact sets so that we can go from tightness in DM ′

F
(Rd)[0, T ] to tightness in DMF (Rd)[0, T ].

Lemma 7.5. There exists a sequence of C2
b (R

d) functions {fm(x)}m≥0, in particular, f0 ≡ 1, such that

fm(x) = 0 when ||x|| ≤ m− 1

fm(x) = 1 when ||x|| > m

0 ≤ fm(x) ≤ 1 when m− 1 < ||x|| ≤ m.(7.14)

and furthermore, supm≥0 ||fm(x)||C2
b
(Rd) := supm≥0 supx∈Rd,|α|≤2 |Dαfm(x)| < ∞. For such sequence of

functions {fm(x)}m≥0,

(7.15) lim
m→∞

lim sup
ζ→0

E

(

sup
t∈[0,T ]

〈

fm, µ
ζ,j
t

〉

)

= 0.

for all j = 1, 2, · · · , J .
Proof. Following [BMW12], consider the function ψ(s) = 6s5 − 15s4 +10s3 ∈ C2([0, 1]). One can check that
ψ(0) = 1−ψ(1) = ψ′(0) = ψ′(1) = ψ′′(0) = ψ′′(1) = 0. Now we define our functions {fm(x), x ∈ R

d, m ≥ 1}
as fm(x) = ψ(0 ∨ (||x|| − (m − 1)) ∧ 1). The derivatives of f ′

ms are uniformly controlled by the derivatives
of ψ, thus this choice satisfies our conditions. For any ε > 0, by Assumption 4.7, there exists a large enough
integer-valued radius R such that

∫

r>R ρ(r)r
d−1dr < ε. As a consequence, for m sufficiently large

〈

fm, µ
ζ,j
t

〉

=
〈

fm, µ
ζ,j
0

〉

+Mfm,j
t +

∫ t

0

〈

(Ljfm)(x), µζ,j
s− (dx)

〉

+
L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mη
ℓ (y |x) dy −

αℓj
∑

r=1

fm(x(j)r )



 λ(ℓ)[µζ
s−](dx) ds,

≤
〈

fm, µ
ζ,j
0

〉

+Mfm,j
t + ||fm||C2

b
(Rd)

∫ t

0

〈

1{m−1≤||x||<m}, µ
ζ,j
s−(dx)

〉
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+

L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mη
ℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds,

≤
〈

fm, µ
ζ,j
0

〉

+Mfm,j
t + ||fm||C2

b
(Rd)

∫ t

0

〈

fm−1(x), µ
ζ,j
s− (dx)

〉

+
L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mη
ℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds.

(7.16)

Taking supremum over time and then expectation on Eq 7.16, we get

E[ sup
t∈[0,T ]

〈

fm, µ
ζ,j
t

〉

] ≤ E[
〈

fm, µ
ζ,j
0

〉

] + E[ sup
t∈[0,T ]

∣

∣

∣M
fm,j
t

∣

∣

∣] + ||fm||C2
b
(Rd)E[ sup

t∈[0,T ]

∫ t

0

〈

fm−1(x), µ
ζ,j
s− (dx)

〉

]

+ E[ sup
t∈[0,T ]

L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mη
ℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds].

≤ E[
〈

fm, µ
ζ,j
0

〉

] + E[ sup
t∈[0,T ]

∣

∣

∣M
fm,j
t

∣

∣

∣] + ||fm||C2
b
(Rd)E[ sup

t∈[0,T ]

∫ t

0

〈

fm−1(x), µ
ζ,j
s− (dx)

〉

]

+ sup
1≤i≤J

E[ sup
t∈[0,T ]

C

∫ t

0

〈

fm−1−R(x), µ
ζ,i
s−(dx)

〉

ds] + C2T (ε+ Cη),

( by Lemma B.1 studying the different cases of allowed reactions)

≤ E[ sup
t∈[0,T ]

〈

fm, µ
ζ,j
0

〉

] + E[ sup
t∈[0,T ]

∣

∣

∣M
fm,j
t

∣

∣

∣]

+ C1

∫ T

0

sup
1≤i≤J

E[ sup
s∈[0,t]

〈

fm−1−R(x), µ
ζ,i
s−(dx)

〉

] dt+ C2T (ε+ Cη),

(7.17)

where C = 2LC(K) (C(µ) ∨ 1), C1 = 2(C ∨ ||fm||C2
b
(Rd)) and C2 = 2LC(K)C(µ)||fm||C2

b
(Rd).

Let Y m,ζ
T := sup1≤j≤J E

[

supt∈[0,T ]

(〈

fm, µ
ζ,j
t

〉)]

. By construction, we always have Y m,ζ
T ≤ Y m−1,ζ

T ≤
Y 0,ζ
T . Due to the uniform boundedness of ||fm||C2

b
(Rd), we have that E

〈

Mfm,j
〉

T
= O( 1γ ), uniformly for each

1 ≤ j ≤ J and for all m based on Eq (7.9). Without loss of generality, let’s consider the subsequence where
m is divisible by R+ 1. Then Eq (7.17) gives

Y m,ζ
T ≤ Y m,ζ

0 + sup
1≤j≤J

E[ sup
t∈[0,T ]

|Mfm,j
t |] + C1

∫ T

0

Y
m−(R+1),ζ
t dt+ C2T (ε+ Cη),

≤ Y m,ζ
0 + 2 sup

1≤j≤J

√

E 〈Mfm,j〉T + C1

∫ T

0

Y
m−(R+1),ζ
t dt+ C2T (ε+ Cη)

( by Jensen’s inequality and Doob’s inequality )

≤ Y m,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη) + C1

∫ T

0

Y
m−(R+1),ζ
t dt

≤ Y m,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

+ C1

∫ T

0

(Y
m−(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη) + C1

∫ t

0

Y
m−2(R+1),ζ
t1 dt1)dt

= Y m,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)
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+ C1T

(

Y
m−(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

+ (C1)
2

∫ T

0

∫ t

0

Y
m−2(R+1),ζ
t1 dt1)dt

≤ Y m,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη) + C1T

(

Y
m−(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

+ (C1)
2

∫ T

0

∫ t

0

(Y
m−2(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη) + C1

∫ t1

0

Y
m−3(R+1),ζ
t2 dt2)dt1dt

= Y m,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη) + C1T

(

Y
m−(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

+
(C1T )

2

2!

(

Y
m−2(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

+ (C1)
3

∫ T

0

∫ t

0

∫ t1

0

Y
m−3(R+1),ζ
t2 dt2dt1dt

≤
m/(R+1)−1
∑

l=0

(C1T )
l

l!

(

Y
m−(R+1)l,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

+
(C1T )

m/(R+1)

(m/(R+ 1))!
Y 0,ζ
T

≤
⌊m/(2R+2)⌋
∑

l=0

(C1T )
l

l!

(

Y
m−(R+1)l,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

+

m/(R+1)−1
∑

l=⌊m/(2R+2)⌋+1

(C1T )
l

l!

(

Y
m−(R+1)l,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

+
(C1T )

m/(R+1)

(m/(R+ 1))!
Y 0,ζ
T

≤
(

Y
m−⌊m/2⌋−(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)





⌊m/(2R+2)⌋
∑

l=0

(C1T )
l

l!





+

(

Y 0,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)





∞
∑

l=⌊m/(2R+2)⌋+1

(C1T )
l

l!



+
(C1T )

m/(R+1)

(m/(R+ 1))!
Y 0,ζ
T

≤
(

Y
m−⌊m/2⌋−(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

eC1T

+

(

Y 0,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)





∞
∑

l=⌊m/(2R+2)⌋+1

(C1T )
l

l!



+
(C1T )

m/(R+1)

(m/(R+ 1))!
Y 0,ζ
T .

(7.18)

From Eq (7.18), we’re able to obtain

lim
m→∞

lim sup
ζ→0

sup
1≤j≤J

E

[

sup
t∈[0,T ]

(〈

fm, µ
ζ,j
t

〉)

]

≤ lim
m→∞

lim sup
ζ→0

[(

Y
m−⌊m/2⌋−(R+1),ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)

eC1T

+

(

Y 0,ζ
0 + C3

1√
γ
+ C2T (ε+ Cη)

)





∞
∑

l=⌊m/(2R+2)⌋+1

(C1T )
l

l!



+
(C1T )

m/(R+1)

(m/(R+ 1))!
Y 0,ζ
T





= C2Te
C1T ε+ lim

m→∞



Ỹ
m−⌊m/2⌋−(R+1)
0 eCT +

(

Ỹ 0
0 + C2Tε

)





∞
∑

l=⌊m/(2R+2)⌋+1

(CT )l

l!



+
(CT )m/(R+1)

(m/(R+ 1))!
Ỹ 0
T





( where we denote Ỹ l
t = lim sup

ζ→0
Y l,ζ
t )

= C2Te
C1T ε.

(7.19)
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Here, in the second last row of Eq (7.19), inside the squared bracket, the first term vanishes as

lim
m→∞

Ỹ
m−⌊m/2⌋−(R+1)
0 = lim

m→∞
lim sup

ζ→0
sup

1≤j≤J
E

[(〈

fm−⌊m/2⌋−(R+1), µ
ζ,j
0

〉)]

= sup
1≤j≤J

lim
m→∞

lim sup
ζ→0

E

[(〈

fm−⌊m/2⌋−(R+1), µ
ζ,j
0

〉)]

= sup
1≤j≤J

lim
m→∞

E

〈

fm−⌊m/2⌋−(R+1), ξ
j
0

〉

= 0.(7.20)

The exchange of limits and supremum is allowed as the supremum is taken over the finite set {1, · · · , J}. We
can get the third line of Eq (7.20) from the second line because of Assumption 5.4 that the initial distribution

µζ,j
0 converges weakly to ξj0, for all 1 ≤ j ≤ J . Finally, we obtain the limit as zero using Assumption 5.4

on the ξj0’s, i.e. that they are compactly supported. For the second term, Ỹ 0
0 , the initial concentration is

bounded, whereas
(

∑∞
l=⌊m/4⌋+1

(C̃T )l

l!

)

is the remainder of exponential function expansion, which will go

to 0 as m → ∞. For the last term, as Ỹ 0
T = lim supζ→0 sup1≤j≤J E

[

supt∈[0,T ]

(〈

1, µζ,j
t

〉)]

is bounded by

C(µ), the whole third term will vanish as m→ ∞.
Note, C1 and C2 do not depend on η, R or ε. This implies

lim
m→∞

lim sup
ζ→0

E

[

sup
t∈[0,T ]

(〈

fm, µ
ζ,j
t

〉)

]

is less than an arbitrary small number C2Te
C1T ε, i.e. the limit is zero, for all 1 ≤ j ≤ J . �

Let (ξ1t , ξ
2
t , · · · , ξJt ) denote the weak limit of a subsequence of (µζ,1

t , µζ,2
t , · · · , µζ,J

t ) in DM ′

F (R3d)([0, T ]) as

ζ → 0, where we abuse notation and let (µζ,1
t , µζ,2

t , · · · , µζ,J
t ) also denote the corresponding subsequence.

Then

Lemma 7.6. {ξjt }t∈[0,T ] is continuous process from [0, T ] to both M ′
F (R

d) and MF (R
d) for each j =

1, 2, · · · , J .
Proof. By construction, see for example the proof of Lemma 7.1 and in particular (7.11)-(7.12), we have that

sup
t∈[0,T ]

sup
f∈C2

0(R
n),||f ||L∞≤1

|
〈

f, µζ,j
t

〉

−
〈

f, µζ,j
t−

〉

| ≤ C

γ

holds for some constant C independent of γ. In addition, by Proposition 5.3 in Chapter 3 of [EK86], the
mapping ν 7→ supt∈[0,T ] | 〈f, νt〉 − 〈f, νt−〉 | is continuous on DM ′

F (Rd)([0, T ]) for each f ∈ C2
0 (R

d). Then, by

Theorem 10.2 in Chapter 3 of [EK86], we obtain as we take ζ → 0, that {ξjt }t∈[0,T ] is continuous process

from [0, T ] to M ′
F (R

n). Next, we’ll show that {ξjt }t∈[0,T ] ∈ DMF (Rd)([0, T ]), is a continuous process from

[0, T ] to MF (R
d). To this end, we need to be able to control what happens to the total mass of the measures

(see also [BMW12]).
Adapting the notations in Lemma 7.5, let’s define compactly supported functions fm,r = fm(1 − fr).

Notice that fm,r will converge monotonically to fm as r → ∞. Then

(7.21) E

(

sup
t∈[0,T ]

〈

fm,r, ξ
j
t

〉

)

= lim
ζ→0

E

(

sup
t∈[0,T ]

〈

fm,r, µ
ζ,j
t

〉

)

≤ lim inf
ζ→0

E

(

sup
t∈[0,T ]

〈

fm, µ
ζ,j
t

〉

)

<∞

by the continuity of the mapping ν 7→ supt∈[0,T ] 〈f, νt〉, giving the first equality, and monotonicity of fm,r ≤
fm, providing the second inequality.

From Eq (7.21), taking the limit r → ∞ first and using monotone convergence theorem, we’ll get

E

(

sup
t∈[0,T ]

〈

fm, ξ
j
t

〉

)

≤ lim inf
ζ→0

E

(

sup
t∈[0,T ]

〈

fm, µ
ζ,j
t

〉

)

<∞

which implies

(7.22) E

(

sup
t∈[0,T ]

〈

1, ξjt

〉

)

<∞.
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Using Lemma 7.5, it follows that

(7.23) lim
m→∞

E

(

sup
t∈[0,T ]

〈

fm, ξ
j
t

〉

)

= 0.

This gives that there exists subsequence of supt∈[0,T ]

〈

fm, ξ
j
t

〉

, m ≥ 0, such that supt∈[0,T ]

〈

fm, ξ
j
t

〉

→ 0

almost surely, {ξjt }t≤T is a tight sequence almost surely and {ξjt }t∈[0,T ] is in CM ′

F
(Rd)([0, T ]). Due to the

latter fact and due to (7.23), {ξjt }t∈[0,T ] is in CMF (Rd)([0, T ]) as well. �

Theorem 7.7 (Tightness). The measure-valued process {µζ,j
t }t∈[0,T ] is tight in DMF (Rd)[0, T ], for each

j = 1, 2, · · · , J .
Proof. Referring to Meleard and Roelly [MS93], to prove tightness in DMF (Rd)[0, T ], it suffices to prove
〈

1, µζ,j
t

〉

converges in law to
〈

1, ξjt

〉

inDR([0, T ]), where note that ξ
j
t is the limit point of µζ,j

t inDM ′

F (Rd)[0, T ],

which also lies in CMF (Rd)([0, T ]) by Lemma 7.6.
Let F be any globally Lipschitz continuous bounded function from R to R. Then

lim sup
ζ→0

|E[F (
〈

1, µζ,j
t

〉

)− F (
〈

1, ξjt

〉

)]|

≤ lim
m→∞

lim sup
ζ→0

|E[F (
〈

1, µζ,j
t

〉

)− F (
〈

1− fm, µ
ζ,j
t

〉

)]|+ lim
m→∞

lim sup
ζ→0

|E[F (
〈

1− fm, µ
ζ,j
t

〉

)− F (
〈

1− fm, ξ
j
t

〉

)]|

+ lim
m→∞

|E[F (
〈

1− fm, ξ
j
t

〉

)− F (
〈

1, ξjt

〉

)]|,
= 0,

(7.24)

where on the righthand side of Eq (7.24), the first and third term become 0 as a result of Lemma 7.5, while
the second term vanishes due to the continuity of the mapping ν 7→ supt∈[0,T ] 〈1− fm, νt〉 by noting that
1− fm is compactly supported. �

7.5. Uniqueness of Limiting Solution. We’ve established tightness of the measure-valued processes

{µζ,j
t }t∈[0,T ], for all 1 ≤ j ≤ J (See Theorem 7.7). We now show that the limiting measure is unique.
For a measurable complete metric space E, ν ∈MF (E), define the norm || · ||MF (E) on MF (E) as

||ν||MF (E) = sup
f∈L∞(E),||f ||L∞≤1

| 〈f, ν〉E |,

which is the variation norm of finite measures. Using density argument, one can show that this is equivalent
to (See step 4 of Theorem 3.2. of [BMW12])

||ν||MF (E) = sup
f∈C2

b
(E),||f ||L∞≤1

| 〈f, ν〉E |.

For our purpose, we’ll use test function f ∈ C2
b (E). The following two results then imply uniqueness:

Lemma 7.8. Let E = (Rd)n be a product space of Rd, n ≥ 1. Let µ1, · · · , µn ∈ MF (R
d), ν1, · · · , νn ∈

MF (R
d) and ⊗n

i=1µ
i, ⊗n

i=1ν
i be product measures on E. Then

|| ⊗n
i=1 µ

i −⊗n
i=1ν

i||MF (E) ≤
n
∑

i=1

(

||µi − νi||MF (Rd) ×Πi−1
j=1

〈

1, µj
〉

×Πn
j=i+1

〈

1, νj
〉)

.

Proof. For any f ∈ L∞(E), ||f ||L∞ ≤ 1, we have

|
〈

f,⊗n
i=1µ

i −⊗n
i=1ν

i
〉

E
| = |

〈

f,

n
∑

i=1

(

(⊗i−1
j=1µ

j)⊗ (µi − νi)⊗ (⊗n
j=i+1ν

j)
)

〉

E

|,

≤
n
∑

i=1

|
〈

f,
(

(⊗i−1
j=1µ

j)⊗ (µi − νi)⊗ (⊗n
j=i+1ν

j)
)〉

E
|,
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≤
n
∑

i=1

(

||µi − νi||MF (Rd) ×Πi−1
j=1

〈

1, µj
〉

×Πn
j=i+1

〈

1, νj
〉)

.(7.25)

The last inequality is due to the assumption that ||f ||L∞(E) ≤ 1 and using the definition of signed measure
norms.

Since Eq (7.25) is true for all f ∈ L∞(E), ||f ||L∞ ≤ 1, Lemma 7.8 is proved. �

Corollary 7.9. Let E = (Rd)n be a product space of Rd, n ≥ 1. Let µ1, · · · , µn ∈ MF (R
d), ν1, · · · , νn ∈

MF (R
d) and ⊗n

i=1µ
i, ⊗n

i=1ν
i be product measures on E. If there exists M > 0, such that |

〈

1, µi
〉

| ≤M and

|
〈

1, νi
〉

| ≤M for all 1 ≤ i ≤ n, then

|| ⊗n
i=1 µ

i −⊗n
i=1ν

i||MF (E) ≤Mn−1
n
∑

i=1

||µi − νi||MF (Rd).

Proof. This is a consequence of Lemma 7.8 using the fact that
〈

1, µi
〉

or
〈

1, νi
〉

are uniform bounded by
M . �

Lemma 7.10 (Uniqueness). The solution to (5.2) is unique in CMF (Rd)([0, T ]).

Proof. Suppose we have two different set of solutions to (5.2), {(ξ1t , ξ2t , · · · , ξJt )}t∈[0,T ] and {(ξ̄1t , ξ̄2t , · · · , ξ̄Jt )}t∈[0,T ],

with the same initial condition (ξ10 , ξ
2
0 , · · · , ξJ0 ) = (ξ̄10 , ξ̄

2
0 , · · · , ξ̄J0 ). In Eq (5.2), if we use a test function of

the form of ψt(x) ∈ C1,2
b (R+ × R

d), it becomes

〈

ψt, ξ
j
t

〉

=
〈

ψ0, ξ
j
0

〉

+

∫ t

0

〈

∂sψs + (Ljψs)(x), ξ
j
s(dx)

〉

ds

+

L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

ψs(y
(j)
r )



mℓ (y |x) dy −
αℓj
∑

r=1

ψs(x
(j)
r )



 λ(ℓ)[ξs](dx) ds.(7.26)

Let Pj,t, t ≥ 0, be the semigroup generated by Lj , j = 1, 2, · · · , J . Choose ψs(x) = Pj,t−sf(x), respectively
for each 1 ≤ j ≤ J , where f ∈ C2

b (R
d), ||f ||L∞ ≤ 1, then Eq (7.26) becomes

〈

f, ξjt

〉

=
〈

Pj,tf, ξ
j
0

〉

+

L
∑

ℓ=1

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!





∫

Y(ℓ)





βℓj
∑

r=1

Pℓ,t−sf(y
(j)
r )



mℓ (y |x) dy −
αℓj
∑

r=1

Pℓ,t−sf(x
(j)
r )





×Kℓ (x)λ
(ℓ)[ξs](dx) ds.(7.27)

From Eq (7.27), we obtain the following estimates for
〈

f, ξjt − ξ̄jt

〉

. By (7.22) we have that

M = 1 ∨ sup
{t∈[0,T ],j=1,2,··· ,J}

|
〈

1, ξjt

〉

| ∨ |
〈

1, ξ̄jt

〉

| <∞,

which then gives

|
〈

f, ξjt − ξ̄jt

〉

| ≤
L
∑

ℓ=1

∫ t

0

|
∫

X̃(ℓ)

1

α(ℓ)!





∫

Y(ℓ)





βℓj
∑

r=1

Pℓ,t−sf(y
(j)
r )



mℓ (y |x) dy −
αℓj
∑

r=1

Pℓ,t−sf(x
(j)
r )





×Kℓ (x)
(

λ(ℓ)[ξs](dx)− λ(ℓ)[ξ̄s](dx)
)

| ds,

≤ C(K)

L
∑

ℓ=1

αℓj + βℓj
α(ℓ)!

∫ t

0

||λ(ℓ)[ξs]− λ(ℓ)[ξ̄s]||MF (X(ℓ)) ds,

≤ C(K)

L
∑

ℓ=1

αℓj + βℓj
α(ℓ)!

∫ t

0

|| ⊗J
i=1 (⊗αℓi

r=1ξ
i
s)−⊗J

i=1(⊗αℓi

r=1ξ̄
i
s)||MF (X(ℓ)) ds,

≤ C(K)

L
∑

ℓ=1

αℓj + βℓj
α(ℓ)!

∫ t

0

M |α(ℓ)|−1
∑

i=1,··· ,J
αℓi||ξis − ξ̄is||MF (Rd) ds,(7.28)
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where the last inequality is due to Corollary 7.9 since
〈

1, ξis
〉

or
〈

1, ξ̄is
〉

are uniformly bounded by M for all
1 ≤ i ≤ J . In the second to the last equality of Eq (7.28), we have used the following estimates.

| 1

α(ℓ)!





∫

Y(ℓ)





βℓj
∑

r=1

Pℓ,t−sf(y
(j)
r )



mℓ (y |x) dy −
αℓj
∑

r=1

Pℓ,t−sf(x
(j)
r )



Kℓ (x) |

≤ | 1

α(ℓ)!





∫

Y(ℓ)





βℓj
∑

r=1

|Pℓ,t−sf(y
(j)
r )|



mℓ (y |x) dy +

αℓj
∑

r=1

|Pℓ,t−sf(x
(j)
r )|



Kℓ (x) |

≤ αℓj + βℓj
α(ℓ)!

C(K).

(here we use the fact that ||Ptf ||L∞ ≤ 1 and

∫

Y(ℓ)

mℓ (y |x) dy = 1)(7.29)

Based on Eq (7.28), we obtain

J
∑

j=1

||ξjt − ξ̄jt ||MF (Rd) ≤ C(K)

L
∑

ℓ=1

J
∑

j=1

αℓj + βℓj
α(ℓ)!

∫ t

0

M |α(ℓ)|−1
J
∑

i=1

αℓi||ξis − ξ̄is||MF (Rd) ds,

≤ C(K)LJ max
1≤ℓ≤L,1≤j≤J

{

αℓj + βℓj
α(ℓ)!

M |α(ℓ)|−1αℓj

}∫ t

0

J
∑

i=1

||ξis − ξ̄is||MF (Rd) ds,

Applying Gronwall’s inequality, we get
∑J

j=1 ||ξ
j
t − ξ̄jt ||MF (Rd) = 0 for all t ∈ [0, T ], which proves the

uniqueness of solution, concluding the proof of the lemma. �
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A γ dependency of reaction kernels

In this section we demonstrate one way in which the claimed γ scaling given in Assumption 4.8 arises
for bimolecular reactions. We ignore the zeroth order case as our main result, Theorem 5.5, does not allow
for such reactions. In the first order case the reaction rate kernel, Kγ(x), is usually interpreted as an
internal property of molecules, giving the probability per time an individual reactant particle can undergo
the reaction. As such, it would not be expected to depend on γ. In contrast, the reaction rate kernel for a
bimolecular reaction is often calibrated to agree with a known well-mixed reaction rate constant in the limit
that the system is forced to be well-mixed (i.e. the limit that particle diffusivities are taken to be infinite),
which ultimately gives rise to the γ dependence.

Consider an isolated system containing only two particles that can undergo a bimolecular annihilation
reaction of the form A+B → ∅. Assume we are considering the reaction within a bounded domain Ω ⊂ R

d

with hypervolume |Ω|. In modeling chemical reaction systems, one is often given a spatially-homogeneous,
well-mixed, macroscopic reaction rate, Kwm, with units of (molar concentration)1−α(time)−1 for a reaction
of order α. The corresponding reaction rate used in a spatially-homogeneous well-mixed stochastic chemical
kinetics model is then K̄ = (γ |Ω|)1−αKwm, with units of (time)−1. For our second order reaction K̄ gives the
probability per time for the pair of A and B molecules to react and annihilate in the well-mixed stochastic
model.

Consider the PBSRD model’s dynamics until the two reactants annihilate. Let p(x,y, t) denote the
probability density the particle positions are x and y respectively at time t, and no reaction has yet occurred.
Then

∂p

∂t
(x,y, t) = (DA∆x +DB∆y)p(x,y, t)−Kγ(x,y)p(x,y, t), x ∈ Ω, y ∈ Ω, t > 0,

with reflecting no-flux boundary conditions for x or y in ∂Ω. In the formal well-mixed limit that the particle

diffusivities are taken to be infinite, we expect that p(x,y, t) = p(t). Letting P (t) = p(t) |Ω|2 denote the
30



probability the reaction has not yet occurred, we then have

dP

dt
= −

(

1

|Ω|2
∫

Ω2

Kγ(x,y)dx dy

)

P (t).

To match the well-mixed stochastic model we would then require that

1

|Ω|2
∫

Ω2

Kγ(x,y)dx dy = K̄ =
Kwm

γ |Ω| .

If we assume that Kγ(x,y) = γβK(x,y), then we immediately obtain the scaling given in Assumption 4.8,
i.e. β = −1.

More concretely, consider the widely used Doi interaction Kγ(x,y) = λ1[0,ε](|x− y|) [D76a, D76b]. We
find that

λ =
Kwm |Ω|
γ |R ∩Ω2| ,

where R = {(x,y) ∈ R
2d| |x− y| ≤ ε}. As Ω → R

d we formally expect

λ→ Kwm

γ |Bε|
,

where |Bε| denotes the hypervolume of the ball of radius ε. This demonstrates that the scaling of Assump-
tion 4.8 persists in freespace.

B Mass Control Lemmas for Different Cases of Reactions

The goal of this section is to prove the following key estimate.

Lemma B.1. Recall the definition (7.14) of the functions fm. For the ℓ-th reaction, 1 ≤ ℓ ≤ L, let η be
sufficiently small, ε > 0 and R ∈ N as in Assumption 4.7. Then, the following estimates hold for m large
enough,

E[ sup
t∈[0,T ]

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mη
ℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds]

≤ 2C(K)(C(µ) ∨ 1) sup
1≤i≤J

E[ sup
t∈[0,T ]

∫ t

0

〈

fm−1−R(x), µ
ζ,i
s−(dx)

〉

ds] + 2C(K)C(µ)||fm||C2
b
(Rd)T (Cη + ε) .

To do so we first prove some intermediate results and the proof of Lemma B.1 will then follow at the end
of this section.

Lemma B.2. For any η ≥ 0 small enough, L̃ + 1 ≤ ℓ ≤ L, y ∈ Y
(ℓ), x ∈ X

(ℓ), and f ∈ C2
b (Y

(ℓ)), there
exists a constant C such that

∣

∣

∣

∣

∫

Y(ℓ)

f(y) (mη
ℓ (y |x)−mℓ(y |x)) dy

∣

∣

∣

∣

≤ C||f ||C2
b
(Y(ℓ))η,

given Definition 4.1 on the choice of positive mollifier and Assumptions 4.3 - 4.7 on the placement densities.

Proof. This is essentially a result from the definition of mollifiers. We’ll discuss this estimate for each of
the following different cases of reactions. The upper bound is always some constant of the order of η times
||f ||C1

b
(Y(ℓ)).

Case 1: Reaction of the form Si → Sj .
Plugging in the definitions of mη

ℓ (y |x) and mℓ(y |x) from Assumption 4.3, we will get

|
∫

Y(ℓ)

f(y) (mη
ℓ (y |x)−mℓ(y |x)) dy| = |

∫

Rd

f(y)Gη(y − x) dy − f(x)|

= |
∫

Rd

(f(y)− f(x))Gη(y − x) dy|

≤ |
∫

B(x,η)

|f(y)− f(x)|Gη(y − x) dy|
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≤ |
∫

B(x,η)

||f ||C1
b
(Rd)η ×Gη(y − x) dy|

≤ ||f ||C1
b
(Rd)η.

Case 2: Reaction of the form Si → Sj + Sk.
Plugging in the definitions of mη

ℓ (y |x) and mℓ(y |x) from Assumption 4.6, we will get

|
∫

Y(ℓ)

f(y) (mη
ℓ (y |x)−mℓ(y |x)) dy|

= |
I
∑

i=1

pi ×
[∫

R2d

f(y1, y2)ρ(|y1 − y2|)Gη (x− (αiy1 + (1 − αi)y2)) dy1 dy2

−
∫

R2d

f(y1, y2)ρ(|y1 − y2|)δ (x− (αiy1 + (1− αi)y2)) dy1 dy2

]

| (Let w = y1 − y2)

= |
I
∑

i=1

pi ×
[∫

R2d

f(w + y2, y2)ρ(|w|)Gη (x− αiw − y2)) dw dy2

−
∫

R2d

f(w + y2, y2)ρ(|w|)δ (x− αiw − y2)) dw dy2

]

|

= |
I
∑

i=1

pi ×
[∫

Rd

ρ(|w|)
(∫

Rd

(f(w + y2, y2)− f(w + x− αiw, x− αiw))Gη (x− αiw − y2) dy2

)

dw

]

≤ |
I
∑

i=1

pi ×
[

∫

Rd

ρ(|w|)
(

∫

B(x−αiw,η)

|f(w + y2, y2)− f(w + x− αiw, x − αiw)| ×Gη (x− αiw − y2) dy2

)

dw

]

≤ |
I
∑

i=1

pi ×
[

∫

Rd

ρ(|w|)
(

∫

B(x−αiw,η)

||f ||C1(R2d)η ×Gη (x− αiw − y2) dy2

)

dw

]

≤ ||f ||C1(R2d)η ( by noting that

∫

Rd

ρ(|w|) dw = 1 in Assumption 4.7 .

Case 3: Reaction of the form Si + Sk → Sj .
Plugging in the definitions of mη

ℓ (y |x) and mℓ(y |x) from Assumption 4.4, we will get

|
∫

Y(ℓ)

f(y) (mη
ℓ (y |x)−mℓ(y |x)) dy|

= |
I
∑

i=1

pi ×
[∫

Rd

f(y)Gη (y − (αix1 + (1− αi)x2)) dy − f(αix1 + (1− αi)x2)

]

|

= |
I
∑

i=1

pi ×
∫

Rd

(f(y)− f(αix1 + (1− αi)x2))Gη (y − (αix1 + (1− αi)x2)) dy|

≤ |
I
∑

i=1

pi ×
∫

B(αix1+(1−αi)x2,η)

|f(y)− f(αix1 + (1− αi)x2)|Gη (y − (αix1 + (1 − αi)x2)) dy|

≤ |
I
∑

i=1

pi ×
∫

B(αix1+(1−αi)x2,η)

||f ||C1
b
(Rd)η ×Gη (y − (αix1 + (1 − αi)x2)) dy|

≤ ||f ||C1
b
(Rd)η

Case 4: Reaction of the form Si + Sk → Sj + Sr.
Plugging in the definitions of mη

ℓ (y |x) and mℓ(y |x) from Assumption 4.5, we will get

|
∫

Y(ℓ)

f(y) (mη
ℓ (y |x)−mℓ(y |x)) dy|

= |p×
[∫

R2d

f(y1, y2)Gη(y1 − x1)Gη(y2 − x2) dy1 dy2 − f(x1, x2)

]
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+ (1− p)×
[∫

R2d

f(y1, y2)Gη(y2 − x1)Gη(y1 − x2) dy1 dy2 − f(x2, x1)

]

|

= |p×
∫

R2d

(f(y1, y2)− f(x1, x2))Gη(y1 − x1)Gη(y2 − x2) dy1 dy2

+ (1− p)×
∫

R2d

(f(y1, y2)− f(x2, x1))Gη(y2 − x1)Gη(y1 − x2) dy1 dy2|

≤ |p×
∫

B((x1,x2),
√
2η)

|f(y1, y2)− f(x1, x2)|Gη(y1 − x1)Gη(y2 − x2) dy1 dy2

+ (1− p)×
∫

B((x2,x1),
√
2η)

|f(y1, y2)− f(x2, x1)|Gη(y2 − x1)Gη(y1 − x2) dy1 dy2|

≤ |p×
∫

B((x1,x2),
√
2η)

||f ||C1
b
(R2d) ×

√
2η ×Gη(y1 − x1)Gη(y2 − x2) dy1 dy2

+ (1− p)×
∫

B((x2,x1),
√
2η)

||f ||C1
b
(R2d) ×

√
2η ×Gη(y2 − x1)Gη(y1 − x2) dy1 dy2|

≤
√
2||f ||C1

b
(R2d)η.

�

Lemma B.3. If the ℓ-th reaction is a reaction of the form Si → Sj, then
(B.1)
∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds ≤ C(K)

∫ t

0

〈

fm(x), µζ,i
s−(dx)

〉

ds

Proof. By plugging in the specific form of the reaction rate and placement density as in Assumption 4.3, we
have

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds

=

∫ t

0

∫

Rd

Kℓ(x)

(∫

Rd

fm(y)δx(y) dy

)

µζ,i
s−(dx) ds

=

∫ t

0

∫

Rd

Kℓ(x)fm(x)µζ,i
s−(dx) ds

≤ C(K)

∫ t

0

〈

fm(x), µζ,i
s−(dx)

〉

ds.

�

Lemma B.4. If the ℓ-th reaction is a reaction of the form Si → Sj + Sk, where i and k could be j, then for
the choice of ε ≥ 0 and R ∈ N in Assumption 4.7, we have for m large enough,

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds

≤ 2C(K)

∫ t

0

〈

fm−1−R(x), µ
ζ,i
s−(dx)

〉

ds+ 2C(K)||fm||C2
b
(Rd)C(µ)tε.

Proof. Let ε ≥ 0 and R ∈ N be such that Assumption 4.7 is satisfied. By plugging in the specific form of
the reaction rate and placement density as in Assumption 4.6, we have

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds

≤
∫ t

0

∫

Rd

Kℓ(x)

(∫

R2d

(fm(y) + fm(z))mℓ(y, z |x) dy dz
)

µζ,i
s−(dx) ds
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=

∫ t

0

∫

Rd

Kℓ(x)

(

∫

R2d

(fm(y) + fm(z)) ρ(|y − z|)
I
∑

i=1

piδ(x− (αiy + (1 − αi)z)) dy dz

)

µζ,i
s−(dx) ds

≤ C(K)

∫ t

0

〈(

∫

|y−z|≤R

(fm(y) + fm(z)) ρ(|y − z|)
I
∑

i=1

piδ(x− (αiy + (1− αi)z)) dy dz

)

, µζ,i
s−(dx)

〉

ds.

+ C(K)

∫ t

0

〈(

∫

|y−z|>R

(fm(y) + fm(z)) ρ(|y − z|)
I
∑

i=1

piδ(x− (αiy + (1 − αi)z)) dy dz

)

, µζ,i
s−(dx)

〉

ds.

≤ C(K)

∫ t

0

〈(

∫

|y−z|≤R

2fm−1−R(x)ρ(|y − z|)
I
∑

i=1

piδ(x− (αiy + (1− αi)z))dy dz

)

, µζ,i
s−(dx)

〉

ds.

+ 2C(K)||fm||C2
b
(Rd)

∫ t

0

〈

I
∑

i=1

pi

(

∫

|η|>R

∫

z∈Rd

ρ(|η|)δ(x − αiη − z) dz dη

)

, µζ,i
s−(dx)

〉

ds.

≤ 2C(K)

∫ t

0

〈

fm−1−R(x)

(

∫

|y−z|≤R

mℓ(y, z |x)dy dz
)

, µζ,i
s−(dx)

〉

ds.

+ C(K)||fm||C2
b
(Rd)

∫ t

0

〈

I
∑

i=1

pi

(

∫

|η|>R

ρ(|η|) dη
)

, µζ,i
s−(dx)

〉

ds.

≤ 2C(K)

∫ t

0

〈

fm−1−R(x), µ
ζ,i
s−(dx)

〉

ds+ 2C(K)||fm||C2
b
(Rd)C(µ)tε.

�

Lemma B.5. If the ℓ-th reaction is a reaction of the form Si + Sk → Sj, then

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds

≤ C(K)C(µ)

∫ t

0

(〈

fm−1(x), µ
ζ,i
s−(dx)

〉

+
〈

fm−1(y), µ
ζ,k
s− (dy)

〉)

ds.

Proof. By plugging in the specific form of the reaction rate and placement density as in Assumption 4.4, we
have

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds

≤
∫ t

0

〈〈

Kℓ(x, y)

(∫

Rd

fm(z)mℓ(z |x, y)dz
)

, µζ,i
s−(dx)

〉

, µζ,k
s− (dy)

〉

ds.

≤ C(K)

∫ t

0

〈〈(

∫

Rd

fm(z)

I
∑

i=1

piδαix+(1−αi)y(z)dz

)

, µζ,i
s−(dx)

〉

, µζ,k
s− (dy)

〉

ds.

≤ C(K)

∫ t

0

〈〈

I
∑

i=1

pi(fm−1(x) + fm−1(y)), µ
ζ,i
s−(dx)

〉

, µζ,k
s− (dy)

〉

ds.

≤ C(K)C(µ)

∫ t

0

(〈

fm−1(x), µ
ζ,i
s−(dx)

〉

+
〈

fm−1(y), µ
ζ,k
s− (dy)

〉)

ds.

�

Lemma B.6. If the ℓ-th reaction is a reaction of the form Si + Sk → Sj + Sr, where i, k, r could be j, then

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds
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≤ C(K)C(µ)

∫ t

0

(〈

fm(x), µζ,i
s−(dx)

〉

+
〈

fm(y), µζ,k
s− (dy)

〉)

ds.

Proof. By plugging in the specific form of the reaction rate and placement density as in Assumption 4.5, we
have

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds

≤
∫ t

0

〈〈

Kℓ(x, y)

(∫

R2d

(fm(z) + fm(w))mℓ(z, w |x, y)dz dw
)

, µζ,i
s−(dx)

〉

, µζ,k
s− (dy)

〉

ds

≤ C(K)

∫ t

0

〈〈(∫

R2d

(fm(z) + fm(w))
(

p× δ(x,y) ((z, w)) + (1− p)× δ(x,y) ((w, z))
)

dz dw

)

, µζ,i
s−(dx)

〉

, µζ,k
s− (dy)

〉

ds

≤ C(K)

∫ t

0

〈〈

(fm(x) + fm(y)) , µζ,i
s−(dx)

〉

, µζ,k
s− (dy)

〉

ds.

≤ C(K)C(µ)

∫ t

0

(〈

fm(x), µζ,i
s−(dx)

〉

+
〈

fm(y), µζ,k
s− (dy)

〉)

ds.

�

Now we are in position to give the proof of Lemma B.1.

Proof of Lemma B.1. We have that

E[ sup
t∈[0,T ]

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mη
ℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds]

= E[ sup
t∈[0,T ]

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds]

+ E[ sup
t∈[0,T ]

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



 (mη
ℓ (y |x)−mℓ (y |x)) dy



 λ(ℓ)[µζ
s−](dx) ds]

≤ E[ sup
t∈[0,T ]

∫ t

0

∫

X̃(ℓ)

1

α(ℓ)!
Kℓ (x)





∫

Y(ℓ)





βℓj
∑

r=1

fm(y(j)r )



mℓ (y |x) dy



 λ(ℓ)[µζ
s−](dx) ds]

+ 2C(K)C(µ)||fm||C2
b
(Rd)CηT (by Lemma B.2)

≤ 2C(K)(C(µ) ∨ 1) sup
1≤i≤J

E[ sup
t∈[0,T ]

∫ t

0

〈

fm−1−R(x), µ
ζ,i
s−(dx)

〉

ds]

+ 2C(K)||fm||C2
b
(Rd)C(µ)Tε+ 2C(K)C(µ)||fm||C2

b
(Rd)CηT (by Lemma B.3 - B.6)

= 2C(K)(C(µ) ∨ 1) sup
1≤i≤J

E[ sup
t∈[0,T ]

∫ t

0

〈

fm−1−R(x), µ
ζ,i
s−(dx)

〉

ds] + 2C(K)C(µ)||fm||C2
b
(Rd)T (Cη + ε) ,

concluding the proof of the lemma. �

C Proofs of Propositions 6.5 and 6.6.

Let us recall the forward equation (6.2). For both proofs of Propositions 6.5 and 6.6 we need to define an
appropriate L2 space. In particular, define an appropriate L2 (Fock) space, F , with inner product for two

functions, G1 = {g(a,b,c)1 (qa, qb, qc)}∞a,b,c=0 and G2 = {g(a,b,c)2 (qa, qb, qc)}∞a,b,c=0, as

(C.1) (G1,G2)F =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

g
(a,b,c)
1 (qa, qb, qc)g

(a,b,c)
2 (qa, qb, qc) dqa dqb dqc,

35



we can interpret T ∗ = L+R+ +R− as the adjoint of the generator, T , for the process

(QA(t)(t),QB(t)(t),QC(t)(t), A(t), B(t), C(t)).

Formally, we find

(T G)a,b,c (q
a, qb, qc) = (LG)a,b,c (q

a, qb, qc)

+
a
∑

l=1

b
∑

m=1

(∫

Rd

mη
1

(

z|qa
l , q

b
m

)

Kγ
1 (q

a
l , q

b
m)g(a−1,b−1,c+1)(qa \ qa

l , q
b \ qb

m, q
c ∪ z)dz

− Kγ
1

(

qa
l , q

b
m

)

g(a,b,c)(qa, qb, qc)
)

+
c
∑

n=1

(∫

R2d

mη
2 (x,y|qc

n)K
γ
2 (q

c
n)g

(a+1,b+1,c−1)(qa ∪ x, qb ∪ y, qc \ qc
n, t)dxdy

− Kγ
2 (q

c
n)g

(a,b,c)(qa, qb, qc)
)

(C.2)

Note that here L∗ = L.
Next we present the proofs of the two propositions.

Proof of Proposition 6.5. For simplicity of notation, without loss of generality, we will show the equivalence

for the evolution of E[ϕ
(〈

f, νζt

〉

P̂

)

]. The same procedure follows for the more general multi-dimensional

case E[ϕ
(〈

f1, ν
ζ
t

〉

P̂
,
〈

f2, ν
ζ
t

〉

P̂
, · · · ,

〈

fM , ν
ζ
t

〉

P̂

)

]. By the definition of νζt and adopting the notation of this

section,

E[ϕ
(〈

f, νζt

〉

P̂

)

] = E[ϕ





A(t)
∑

i=1

f(Q
A(t)
i (t), S1) +

B(t)
∑

j=1

f(Q
B(t)
j (t), S2) +

C(t)
∑

k=1

f(Q
C(t)
k (t), S3)



]

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

ϕ





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)





× p(a,b,c)(qa, qb, qc, t) dqa dqb dqc,

= (G, P (t))F ,(C.3)

where we define g(a,b,c)(qa, qb, qc) = ϕ
(

∑a
i=1 f(q

a
i , S1) +

∑b
j=1 f(q

b
j , S2) +

∑c
k=1 f(q

c
k, S3)

)

. For such a

form of g(a,b,c)(qa, qb, qc), plugging into Eq (C.2), we have

(T G)a,b,c (q
a, qb, qc) =

(

D1

a
∑

l=1

∆qa
l
+D2

b
∑

m=1

∆qb
m
+D3

c
∑

n=1

∆qc
n

)

ϕ





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)





+

a
∑

l=1

b
∑

m=1

(∫

Rd

[

g(a−1,b−1,c+1)(qa \ qa
l , q

b \ qb
m, q

c ∪ z) − g(a,b,c)(qa, qb, qc)
]

×mη
1

(

z|qa
l , q

b
m

)

×Kγ
1 (q

a
l , q

b
m)dz

)

+

c
∑

n=1

(∫

R2d

[

g(a+1,b+1,c−1)(qa ∪ x, qb ∪ y, qc \ qc
n, t)− g(a,b,c)(qa, qb, qc)

]

×mη
2 (x,y|qc

n)×Kγ
2 (q

c
n)dxdy)

= D1

a
∑

i=1

ϕ′′





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)



 |∇qa
i
f1(q

a
i )|2

+D1

a
∑

i=1

ϕ′





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)



∆qa
i
f1(q

a
i )
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+D2

b
∑

j=1

ϕ′′





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)



 |∇qb
j
f2(q

b
j)|2

+D2

b
∑

j=1

ϕ′





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)



∆qb
j
f2(q

b
j)

+D3

c
∑

k=1

ϕ′′





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)



 |∇qc
k
f3(q

c
k)|2

+D3

c
∑

k=1

ϕ′





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)



∆qc
k
f3(q

c
k)

+

a
∑

l=1

b
∑

m=1





∫

Rd



ϕ





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)− f(qa

l , S1)− f(qb
m, S2) + f(z, S3)





−ϕ





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)







×mη
1

(

z|qa
l , q

b
m

)

×Kγ
1 (q

a
l , q

b
m)dz





+

c
∑

n=1





∫

R2d



ϕ





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3) + f(x, S1) + f(y, S2)− f(qc

n, S3)





−ϕ





a
∑

i=1

f(qa
i , S1) +

b
∑

j=1

f(qb
j , S2) +

c
∑

k=1

f(qc
k, S3)







×mη
2 (x,y|qc

n)×Kγ
2 (q

c
n)dxdy





(C.4)

Rewriting E[ϕ
(〈

f, νζt

〉

P̂

)

] in Eq (C.3) as an integral equation, we obtain

E[ϕ
(〈

f, νζt

〉

P̂

)

] = (G, P (t))F = (G, P (0))F +

∫ t

0

∂s (G, P (s))F ds

= E[ϕ
(〈

f, νζ0

〉

P̂

)

] +

∫ t

0

(G, ∂sP (s))F ds

= E[ϕ
(〈

f, νζ0

〉

P̂

)

] +

∫ t

0

(G, T ∗P (s))F ds (by Eq (6.2))

= E[ϕ
(〈

f, νζ0

〉

P̂

)

] +

∫ t

0

(T G, P (s))F ds

= E[ϕ
(〈

f, νζ0

〉

P̂

)

]

+ E[

∫ t

0

ϕ′ (〈f, νζs
〉

P̂

)

×



D1

A(s)
∑

i=1

∆Qi
f(Q

A(s)
i (s), S1) +D2

B(s)
∑

j=1

∆Qj
f(Q

B(s)
j (s), S2)

+ D3

C(s)
∑

k=1

∆Qk
f(Q

C(s)
k (s), S3)



+ ϕ′′ (〈f, νζs
〉

P̂

)

×



D1

A(s)
∑

i=1

|∇Qi
f(Q

A(s)
i (s), S1)|2

+ D2

B(s)
∑

j=1

|∇Qj
f(Q

B(s)
j (s), S2)|2 +D3

C(s)
∑

k=1

|∇Qk
f(Q

C(s)
k (s), S3)|2



 ds]
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+ E[

∫ t

0

A(s)
∑

l=1

B(s)
∑

m=1

(∫

Rd

Kγ
1 (Q

A(s)
l (s),QB(s)

m (s))mη
1

(

z|QA(s)
l (s),QB(s)

m (s)
)

×
(

ϕ
(

〈

f, νζs
〉

P̂
− f(Q

A(s)
l (s), S1)− f(QB(s)

m (s), S2) + f(z, S3)
)

− ϕ
(〈

f, νζs
〉

P̂

)

)

dz
)

ds]

+ E[

∫ t

0

C(s)
∑

n=1

(∫

R2d

Kγ
2 (Q

C(s)
n (s))mη

2

(

x,y|QC(s)
n (s)

)

×
(

ϕ
(

〈

f, νζs
〉

P̂
+ f(x, S1) + f(y, S2)− f(QC(s)

n (s), S3)
)

− ϕ
(〈

f, νζs
〉

P̂

)

)

dxdy
)

ds].(C.5)

From the measure-valued formulation in Eq (5.6), we obtain the following integral equation for E[ϕ
(〈

f, νζ
)

t

〉

P̂
]

by applying Itô’s formula on Eq (5.6),

E[ϕ
(〈

f, νζt

〉

P̂

)

] = E[ϕ
(〈

f, νζ0

〉

P̂

)

] + E[

∫ t

0

ϕ′ (〈f, νζs
〉

P̂

)

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2

(

Hi(νζs−)
)

ds]

+
1

2
E[

∫ t

0

ϕ′′ (〈f, νζs
〉

P̂

)

〈1,νζ
s−〉P̂
∑

i=1

(√
2Di

∂f

∂Q

(

Hi(νζs−)
)

)2

ds]

+ E[

∫ t

0

∫

(N\{0})2

∫

Rd

∫

R2
+

ϕ
(

〈

f, νζs
〉

P̂
+
(

−f(Hi
Q(ν

ζ,1
s− ), S1)− f(Hj

Q(ν
ζ,2
s− ), S2) + f(z, S3)

)

×1{i≤〈1,νζ,1
s− 〉} × 1{j≤〈1,νζ,2

s− 〉} × 1{θ1≤Kγ
1 (Hi

Q
(νζ,1

s− ), Hj

Q
(νζ,2

s− ))} × 1{θ2≤mη
1(z|Hi

Q
(νζ,1

s− ),Hj

Q
(νζ,2

s− ))}

)

− ϕ
(〈

f, νζs
〉

P̂

)

dN1(s, i, j, z, θ1, θ2)]

+ E[

∫ t

0

∫

N\{0}

∫

R2d

∫

R2
+

ϕ
(

〈

f, νζs
〉

P̂
+
(

f(x, S1) + f(y, S2)− f(Hk
Q(ν

ζ,3
s− ), S3)

)

×1{k≤〈1,νζ,3
s− 〉} × 1{θ1≤Kγ

2 (Hk
Q(νζ,3

s− ))} × 1{θ2≤mη
2(x,y|Hk

Q(νζ,3
s− ))}

)

− ϕ
(〈

f, νζs
〉

P̂

)

dN2(s, k, x, y, θ1, θ2)]

= E[ϕ
(〈

f, νζ0

〉

P̂

)

] + E[

∫ t

0

ϕ′ (〈f, νζs
〉

P̂

)

〈1,νζ
s−〉P̂
∑

i=1

Di ∂
2f

∂Q2

(

Hi(νζs−)
)

ds]

+ E[

∫ t

0

ϕ′′ (〈f, νζs
〉

P̂

)

〈1,νζ
s−〉P̂
∑

i=1

Di

(

∂f

∂Q

(

Hi(νζs−)
)

)2

ds]

+ E[

∫ t

0

〈1,νζ,1
s− 〉
∑

i=1

〈1,νζ,2
s− 〉
∑

j=1

∫

Rd

Kγ
1 (H

i
Q(ν

ζ,1
s− ), Hj

Q(ν
ζ,2
s− ))×mη

1(z|Hi
Q(ν

ζ,1
s− ), Hj

Q(ν
ζ,2
s− ))

×
[

ϕ
(

〈

f, νζs
〉

P̂
+
(

−f(Hi
Q(ν

ζ,1
s− ), S1)− f(Hj

Q(ν
ζ,2
s− ), S2) + f(z, S3)

))

− ϕ
(〈

f, νζs
〉

P̂

)

]

dz ds]

+ E[

∫ t

0

〈1,νζ,3
s− 〉
∑

k=1

∫

R2d

Kγ
2 (H

k
Q(ν

ζ,3
s− ))×mη

2(x, y|Hk
Q(ν

ζ,3
s− ))

×
[

ϕ
(

〈

f, νζs
〉

P̂
+
(

f(x, S1) + f(y, S2)− f(Hk
Q(ν

ζ,3
s− ), S3)

))

− ϕ
(〈

f, νζs
〉

P̂

)

]

dx dy ds].(C.6)

We observe that the integral equation for E[ϕ
(〈

f, νζ
)

t

〉

P̂
] is the same when derived from the forward

equation (C.5) and from the measure-valued formulation (C.6). �

Proof of Proposition 6.6. We use the forward Kolmogorov equation to prove the proposition. We are inter-
ested in finding an equation for the average concentration field for A, B and C molecules, i.e. E[A(x, t)],
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E[B(y, t)] and E[C(z, t)] from forward equation. This is defined by

E[A(x, t)] = E[

A(t)
∑

i=1

δ
(

Q
A(t)
i (t)− x

)

]

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

a
∑

i=1

∫

R(a+b+c)d

δ(qa
i − x) p(a,b,c)(qa, qb, qc, t) dqa dqb dqc

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

p(a,b,c)(qa−1 ∪ x, qb, qc, t) dqa−1 dqb dqc.

Similarly, for molecule B and C, we have

E[B(y, t)] =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! (b− 1)! c!

∫

R(a+b−1+c)d

p(a,b,c)(qa, qb−1 ∪ y, qc, t) dqa dqb−1 dqc.

E[C(z, t)] =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! (c− 1)!

∫

R(a+b+c−1)d

p(a,b,c)(qa, qb, qc−1 ∪ z, t) dqa dqb dqc−1.

In deriving this equation we will need to use the correlation in the A and B fields, given by

E[A(x, t)B(y, t)] = E[

A(t)
∑

i=1

B(t)
∑

j=1

δ
(

Q
A(t)
i (t)− x

)

δ
(

Q
B(t)
j (t)− y

)

]

=
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b!c!

a
∑

i=1

b
∑

j=1

∫

R(a+b)d

δ(qa
i − x)δ(qb

j − y) p(a,b,c)(qa, qb, qc, t) dqa dqb dqc

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! (b− 1)!c!

∫

R(a+b+c−2)d

p(a,b,c)(qa−1 ∪ x, qb−1 ∪ y, qc, t) dqa−1 dqb−1 dqc.

Using these definitions, and assuming the probability densities vanish at infinity, we find that

∂tE[A(x, t)] =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

(

(L+R+ +R−)P
)

a,b,c
(qa−1 ∪ x, qb, qc, t) dqa−1 dqb dqc.

= (I) + (II) + (III),

where

(I) =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

(LP )a,b,c (q
a−1 ∪ x, qb, qc, t) dqa−1 dqb dqc

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

[(

D1

a−1
∑

l=1

∆qa
l
+D2

b
∑

m=1

∆qb
m
+D3

c
∑

n=1

∆qc
n

)

p(a,b,c)(qa−1 ∪ x, qb, qc, t)

+D1∆xp
(a,b,c)(qa−1 ∪ x, qb, qc, t)

]

dqa−1 dqb dqc

= D1∆xE[A(x, t)]

where on the second to last line, the first term becomes zero due to integration by parts and the fact that
probability density vanishes at infinity (recall that by Theorem 6.4 p ∈ C([0,∞);H2(X))). Similarly,

(II) =
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

(

R+P
)

a,b,c
(qa−1 ∪ x, qb, qc, t) dqa−1 dqb dqc.

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

−
b
∑

m=1

Kγ
1

(

x, qb
m

)

p(a,b,c)(qa−1 ∪ x, qb, qc, t) dqa−1 dqb dqc.

+

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

{

−
a−1
∑

l=1

b
∑

m=1

Kγ
1

(

qa
l , q

b
m

)

p(a,b,c)(qa−1 ∪ x, qb, qc, t)
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+
c
∑

n=1

[∫

R2d

m1(q
c
n|ξ,η)Kγ

1 (ξ,η)p
(a+1,b+1,c−1)(qa−1 ∪ x ∪ ξ, qb ∪ η, qc \ qc

n, t)dξdη

]

}

dqa−1 dqb dqc.

= −
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a+b+c−2)d

[

b×
∫

Rd

Kγ
1 (x,y) p(a,b,c)(qa−1 ∪ x, qb−1 ∪ y, qc, t) dy

]

dqa−1 dqb−1 dqc.

+

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

{

−
∫

R(a−1+b+c)d

a−1
∑

l=1

b
∑

m=1

Kγ
1

(

qa
l , q

b
m

)

p(a,b,c)(qa−1 ∪ x, qb, qc, t)dqa−1 dqb dqc

+

∫

R(a+b+c)d

∫

Rd

c

a(b+ 1)

a
∑

l=1

b+1
∑

m=1

m1(z|qa
l , q

b
m)Kγ

1 (q
a
l , q

b
m)×

p(a+1,b+1,c−1)(qa ∪ x, qb+1, qc−1, t) dz dqa dqb+1 dqc−1
}

= −
∫

Rd

Kγ
1 (x,y)E[A(x, t)B(y, t)] dy

−
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

a−1
∑

l=1

b
∑

m=1

Kγ
1

(

qa
l , q

b
m

)

p(a,b,c)(qa−1 ∪ x, qb, qc, t)dqa−1 dqb dqc

+

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! (b+ 1)! (c− 1)!

∫

R(a+b+c)d

a
∑

l=1

b+1
∑

m=1

Kγ
1 (q

a
l , q

b
m)p(a+1,b+1,c−1)(qa ∪ x, qb+1, qc−1, t) dqa dqb+1 dqc−1

= −
∫

Rd

Kγ
1 (x,y)E[A(x, t)B(y, t)] dy.

In the third equality of (II), we exchanged the orders of integrals and sums using that

∫

Rbd

b
∑

m=1

Kγ
1

(

x, qb
m

)

p(a,b,c)(qa−1 ∪ x, qb, qc, t) dqb

=

b
∑

m=1

∫

Rbd

Kγ
1

(

x, qb
m

)

p(a,b,c)(qa−1 ∪ x, (qb \ qb
m) ∪ qb

m, q
c, t) dqb

m d(qb \ qb
m)

=

b
∑

m=1

∫

Rbd

Kγ
1 (x,y) p(a,b,c)(qa−1 ∪ x, qb−1 ∪ y, qc, t) dy dqb−1

(Here we replace qb
m by y and qb \ qb

m by qb−1 due to that particles of the same type are indistinguishable)

= b×
∫

Rbd

Kγ
1 (x,y) p(a,b,c)(qa−1 ∪ x, qb−1 ∪ y, qc, t) dy dqb−1.

Similar ideas also apply to the third term and to deriving (III). In the second to last equality of (II), we
used that

∫

Rd m1(z|x,y)dz = 1 and the second and third term cancel by shifting indexes. Similarly

(III) =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

(

R−P
)

a,b,c
(qa−1 ∪ x, qb, qc, t) dqa−1 dqb dqc

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a−1+b+c)d

{

−
c
∑

n=1

Kγ
2 (q

c
n)p

(a,b,c)(qa−1 ∪ x, qb, qc, t)

+

b
∑

m=1

[∫

Rd

m2

(

x, qb
m|z

)

Kγ
2 (z)p

(a−1,b−1,c+1)
(

qa−1 \ qa−1
l ∪ x, qb \ qb

m, q
c ∪ z, t

)

dz

]

+

b
∑

m=1

a−1
∑

l=1

[∫

Rd

m2

(

qa−1
l , qb

m|z
)

Kγ
2 (z)p

(a−1,b−1,c+1)
(

qa−1 \ qa−1
l ∪ x, qb \ qb

m, q
c ∪ z, t

)

dz

]

}

dqa−1 dqb dqc

= −
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

∫

R(a+b+c−2)d

c

∫

Rd

Kγ
2 (z)p

(a,b,c)(qa−1 ∪ x, qb, qc−1 ∪ z, t) dz dqa−1 dqb dqc−1
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+

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! c!

{∫

R(a+b+c−2)d

b

[∫

R2d

m2 (x,y|z)Kγ
2 (z)p

(a−1,b−1,c+1)
(

qa−1, qb−1, qc ∪ z, t
)

dydz

]

dqa−1 dqb−1 dqc +

∫

R(a+b+c−3)d

(a− 1)b

×
[∫

R3d

m2 (ξ,η|z)Kγ
2 (z)p

(a−1,b−1,c+1)
(

qa−2 ∪ x, qb−1, qc ∪ z, t
)

dξ dη dz

]

dqa−2 dqb−1 dqc

}

= −
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 1)! b! (c− 1)!

∫

R(a+b+c−2)d

∫

Rd

Kγ
2 (z)p

(a,b,c)(qa−1 ∪ x, qb, qc−1 ∪ z, t) dz dqa−1 dqb dqc−1

+
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

[∫

R2d

m2 (x,y|z)Kγ
2 (z)p

(a,b,c+1)
(

qa, qbqc ∪ z, t
)

dydz

]

dqa dqb dqc

+

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

(a− 2)! (b− 1)! c!

∫

R(a+b+c−3)d

[∫

Rd

Kγ
2 (z) p(a−1,b−1,c+1)

(

qa−2 ∪ x, qb−1, qc ∪ z, t
)

dz

]

dqa−2 dqb−1 dqc

=

∫

Rd

[∫

Rd

m2 (x,y|z)Kγ
2 (z)dy

]

E[C(z, t)]dz.

In (III), we used that
∫

R2d m2(x,y|z)dx dy = 1. In the second to last line, the first and third term cancel
by shifting indexes.

In summary, the average concentration of species A satisfies

∂tE[A(x, t)] = D1∆xE[A(x, t)] −
∫

Rd

Kζ
1 (x,y)E[A(x, t)B(y, t)] dy

+

∫

Rd

[∫

Rd

m2 (x,y|z)Kζ
2 (z)dy

]

E[C(z, t)]dz.

Following similar arguments, one can derive equations for the average concentration of each species, given
by (6.6) as claimed. This concludes the proof of the Proposition.

�

D Proof of Theorem 6.4

Proof of Theorem 6.4. Due to the linearity of the equation, the proof of existence and uniqueness is standard
here, so we only present a sketch of the argument for completeness.

Notice that the operator L defined in (6.3) generates a contractive analytic semigroup on F , denoted by
{etL}t≥0. Now, since by Lemma D.1, R+,R− are Lipschitz continuous, existence of a unique local mild
solution to (6.2), P ∈ C([0, t0);F ) follows by the standard Picard-Lindelöf theorem for equations with values
in Banach spaces if the initial condition satisfies P0 ∈ F .

Next we establish global existence of a unique mild solution. The boundedness of the linear operators
R+,R− by Lemma D.1, together with the contraction property of the semigroup t 7→ etL, implies that

‖P (t)‖F ≤ ‖P0‖F + C

∫ t

0

‖P (s)‖F ds(D.1)

and a subsequent Gronwall lemma yields the bound ‖P (t)‖F ≤ ‖P0‖F eCt. This bound allows us, by choosing
t0 small enough, to extend the solution from the interval [0, t0) to the interval [0,∞). Hence, a unique global
mild solution P ∈ C([0,∞);F ) exists.

We actually have stronger regularity for the solution, P (t). This is a direct consequence of the contraction
and regularization properties of the semigroup {etL}t≥0. Indeed, since P (t) is in L2(X), Lemma D.1 gives
that R+(P ) and R−(P ) are both in L2(X). If, in addition, the initial condition P0 ∈ H1(X), then the mild
form of the solution together with standard parabolic estimates (see estimates 3.1 in Chapter I.V, Section 3
of [LSU68]), gives that P ∈ C([0,∞);H2(X)).
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Note, P (t) can be viewed as a probability density. Indeed, we have that if P0 ≥ 0, P (t) is, by Lemma D.3,
always non-negative for all t ≥ 0. Second, if P0 satisfies the normalization condition,

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

[

1

a! b! c!

∫

Rda

∫

Rdb

∫

Rdc

p
(a,b,c)
0

(

qa, qb, qc
)

dqc dqb dqa

]

= 1,

then the same normalization condition holds for P (t), t ≥ 0,

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

[

1

a! b! c!

∫

Rda

∫

Rdb

∫

Rdc

p(a,b,c)
(

qa, qb, qc, t
)

dqc dqb dqa

]

= 1,

by Lemma D.2. This concludes the proof of the theorem. �

Lemma D.1. We have that the operators R+ and R− are bounded linear, Lipschitz continuous operators
on F . Namely, for G = {g(a,b,c)(qa, qb, qc)}∞a,b,c=0 ∈ F ,

‖R+(G)‖F ≤ C‖G‖F ,
‖R−(G)‖F ≤ C‖G‖F ,

‖R+(G1)−R+(G2)‖F ≤ C‖G1 −G2‖F ,
‖R−(G1)−R−(G2)‖F ≤ C‖G1 −G2‖F .(D.2)

Proof. We’ll only show the first two estimates hold. The Lipschitz conditions on R+ and R− follow directly
from R+ and R− being bounded and linear. Assume that the initial number of particles are a0, b0 and
c0 for species A, B and C respectively. We then have that the following upper bounds hold for all times
0 ≤ a ≤ a0 + c0 := amax, 0 ≤ b ≤ b0 + c0 := bmax and 0 ≤ c ≤ a0 ∧ b0 + c0 := cmax.

By definition of the norm on Fock Space and the definition of R+, we have that

‖R+(G)‖2F =
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

(

R+P
)

a,b,c
(qa, qb, qc)

)2

dqa dqb dqc,

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

−
(

a
∑

l=1

b
∑

m=1

Kγ
1

(

qa
l , q

b
m

)

)

g(a,b,c)(qa, qb, qc, t)

+

c
∑

n=1

[∫

R2d

m1(q
c
n|x,y)Kγ

1 (x,y) g(a+1,b+1,c−1)(qa ∪ x, qb ∪ y, qc \ qc
n, t)dxdy

]

)2

dqa dqb dqc,

≤
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

amaxbmaxC(K)g(a,b,c)(qa, qb, qc, t)
)2

dqa dqb dqc

+

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

c
∑

n=1

[∫

R2d

m1(q
c
n|x,y)Kγ

1 (x,y)

× g(a+1,b+1,c−1)(qa ∪ x, qb ∪ y, qc \ qc
n, t)dxdy

])2

dqa dqb dqc.(D.3)

Without loss of generality, let us assume 0 < αi ≤ 1 in Assumption 4.4. Now denote C1 = (amaxbmaxC(K))2 <
∞, and substitute the specific form of

m1(q
c
n|x,y) =

I
∑

i=1

pi × δ (qc
n − (αix+ (1− αi)y))

into (D.3). We obtain

‖R+(G)‖2F ≤ C1‖G‖2F +
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

c
∑

n=1

[

∫

R2d

I
∑

i=1

pi ×Kγ
1 (x,y)

× δ (qc
n − (αix+ (1 − αi)y))× g(a+1,b+1,c−1)(qa ∪ x, qb ∪ y, qc \ qc

n, t)dxdy
])2

dqa dqb dqc.
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≤ C1‖G‖2F +

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

c
∑

n=1

[

∫

Rd

I
∑

i=1

pi ×Kγ
1

(

1

αi
(qc

n − (1− αi)y) ,y

)

× g(a+1,b+1,c−1)(qa ∪ 1

αi
(qc

n − (1− αi)y) , q
b ∪ y, qc \ qc

n, t)dy

])2

dqa dqb dqc.

≤ C1‖G‖2F +
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c−1)d

c
I
∑

i=1

p2i

c
∑

n=1

∫

Rd

([∫

Rd

Kγ
1

(

1

αi
(qc

n − (1− αi)y) ,y

)

× g(a+1,b+1,c−1)(qa ∪ 1

αi
(qc

n − (1− αi)y) , q
b ∪ y, qc \ qc

n, t)dy

]2

dqc
n

)

dqa dqb dqc \ qc
n.

≤ C1‖G‖2F +

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! (c− 1)!

∫

R(a+b+c−1)d

I
∑

i=1

p2i

c
∑

n=1

∫

Rd

(

∫

Rd

K̃γ
1

(

| 1
αi

(qc
n − (1 − αi)y)− y|

)2

dy

)

×
(

∫

Rd

∣

∣

∣

∣

g(a+1,b+1,c−1)

(

qa ∪ 1

αi
(qc

n − (1− αi)y) , q
b ∪ y, qc \ qc

n, t

)∣

∣

∣

∣

2

dy

)

dqc
n dq

a dqb dqc \ qc
n.

≤ C1‖G‖2F +

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! (c− 1)!

∫

R(a+b+c−1)d

I
∑

i=1

p2i

(∫

Rd

αiK̃
γ
1 (|z|)2 dz

)

×
c
∑

n=1

∫

Rd

(

∫

Rd

∣

∣

∣

∣

g(a+1,b+1,c−1)

(

qa ∪ 1

αi
(qc

n − (1− αi)y) , q
b ∪ y, qc \ qc

n, t

)∣

∣

∣

∣

2

dy

)

dqc
n dq

a dqb dqc \ qc
n.

≤ C1‖G‖2F +

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! (c− 1)!

∫

R(a+b+c−1)d

I
∑

i=1

p2i

(∫

Rd

αiK̃
γ
1 (|z|)2 dz

)

×
c
∑

n=1

∫

Rd

(

∫

Rd

∣

∣

∣

∣

g(a+1,b+1,c−1)

(

qa ∪ 1

αi
(qc

n − (1− αi)y) , q
b ∪ y, qc \ qc

n, t

)∣

∣

∣

∣

2

dqc
n

)

dy dqa dqb dqc \ qc
n.

≤ C1‖G‖2F +

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! (c− 1)!

∫

R(a+b+c−1)d

I
∑

i=1

p2i

(∫

Rd

αiK̃
γ
1 (|z|)2 dz

)

×
c
∑

n=1

αi

∫

Rd

(
∫

Rd

∣

∣

∣g(a+1,b+1,c−1)
(

qa ∪ x, qb ∪ y, qc \ qc
n, t
)

∣

∣

∣

2

dx

)

dy dqa dqb dqc \ qc
n.

≤ C1‖G‖2F +

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

Iabc

(a+ 1)! (b+ 1)! (c− 1)!

(∫

Rd

K̃γ
1 (|z|)2 dz

)

×
∫

R(a+b+c+1)d

(

∣

∣

∣g(a+1,b+1,c−1)
(

qa+1, qb+1, qc−1, t
)

∣

∣

∣

2
)

dqa+1 dqb+1 dqc−1.

≤ C1‖G‖2F + C2‖G‖2F = (C1 + C2)‖G‖2F ,
(D.4)

where C2 = I × amaxbmaxcmax

(

∫

Rd K̃
γ
1 (|z|)2 dz

)

<∞ by Assumption 6.2.

Similarly, by definition of the norm on Fock Space and the definition of R−, we have that

‖R−(G)‖2F =

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

(

R−G
)

a,b,c
(qa, qb, qc)

)2

dqa dqb dqc,

=
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

−
(

c
∑

n=1

Kγ
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)

g(a,b,c)(qa, qb, qc, t)

+

a
∑

l=1

b
∑
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[∫
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m2

(
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l , q

b
m|z

)
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2 (z)g
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(
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m, q

c ∪ z, t
)

dz

]

)2

dqa dqb dqc,
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≤
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1

a! b! c!

∫

R(a+b+c)d

(

cmaxC(K)g(a,b,c)(qa, qb, qc, t)
)2

dqa dqb dqc

+
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∞
∑

b=0

∞
∑
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1
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∫
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(

a
∑
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Rd
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(
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)
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2 (z)
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(

qa \ qa
l , q

b \ qb
m, q

c ∪ z, t
)
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])2

dqa dqb dqc.(D.5)

Now denote C3 = (cmaxC(K))
2
<∞, and substitute the specific form of

m2

(

qa
l , q

b
m|z

)

= ρ(|qa
l − qb

m|)
I
∑

i=1

pi × δ
(

z − (αiq
a
i + (1 − αi)q

b
m)
)

,

into (D.5). We obtain

‖R−(G)‖2F ≤ C3‖G‖2F +
∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

1
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∫

R(a+b+c)d
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)
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(
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)
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])2

dqa dqb dqc.

≤ C3‖G‖2F +
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≤ C3‖G‖2F +

∞
∑
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1
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)
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≤ C3‖G‖2F +

∞
∑
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b
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∣
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≤ C3‖G‖2F +
∞
∑

a=0

∞
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∞
∑
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C(K)2ab

(a− 1)! (b− 1)! c!
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(
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∣
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qa−1, qb−1, qc ∪ (αiw + y), t
)

∣

∣

∣

2
)
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≤ C3‖G‖2F +

∞
∑
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∞
∑
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∞
∑
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∣
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∣
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∣
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)

dz dqa−1 dqb−1 dqc.

(where z = αiw + y)

≤ C3‖G‖2F + C4‖G‖2F = (C3 + C4)‖G‖2F ,
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(D.6)

where C4 = I × C(K)2amaxbmax(cmax + 1)
(∫

Rd ρ(|w|)2 dw
)

<∞ by Assumption 6.3. �

Lemma D.2. Assume that the solution P ∈ C([0,∞);H2(X)) to (6.2) exists and is unique. If the normal-
ization condition holds for the initial condition P0, i.e. that

∞
∑

a=0

∞
∑

b=0

∞
∑
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[
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∫

Rda

∫

Rdb
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p
(a,b,c)
0

(
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)

dqc dqb dqa

]

= 1,

then we have that the normalization condition holds for P (t) for all t ≥ 0, i.e. that

(D.7)
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]

= 1.

Proof. By assumption, we have that the normalization condition holds for the initial condition. Furthermore,
we have

∂
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.

Note, in the last equality the first term is zero using the divergence theorem and that P ∈ C([0,∞);H2(X)).
The second term is
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+

∫

Rd(a+b+c+1)

c

(a+ 1)(b+ 1)

a+1
∑

l=1

b+1
∑

m=1

Kγ
1

(

qa+1
l , qb+1

m

)

p(a+1,b+1,c−1)(qa+1, qb+1, qc−1, t) dqc−1 dqb+1, dqa+1

]

=

∞
∑

a=0

∞
∑

b=0

∞
∑

c=0

[

1

a! b! c!

∫

Rd(a+b+c)

−
(

a
∑

l=1

b
∑

m=1

Kγ
1

(

qa
l , q

b
m

)

)

p(a,b,c)(qa, qb, qc, t) dqc dqb dqa
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+
1

(a+ 1)! (b+ 1)! (c− 1)!

∫

Rd(a+b+c+1)

a+1
∑

l=1

b+1
∑

m=1

Kγ
1

(

qa+1
l , qb+1

m

)

p(a+1,b+1,c−1)(qa+1, qb+1, qc−1, t) dqc−1 dqb+1, dqa+1

]

= 0,

by using the symmetry of p(a,b,c) with respect to permutations of the ordering of particle positions for particles
of the same type. A similar calculation shows that the third term is zero. Thus, the time derivative of the
left-hand-side (D.7) is always zero. Combining with the normalization condition for the initial condition, we
have that (D.7) is true for all t ≥ 0. �

Lemma D.3. Assuming there exists a unique solution P ∈ C([0,∞);H2(X)) and P0 ≥ 0, the solution
components p(a,b,c)

(

qa, qb, qc, t
)

are always non-negative for all t ≥ 0.

Proof. First, we consider g(a,b,c)
(

qa, qb, qc, t
)

satisfying the following decoupled linear PDEs with initial

condition g(a,b,c)
(

qa, qb, qc, 0
)

= p
(a,b,c)
0

(

qa, qb, qc
)

≥ 0,

(D.8)
∂

∂t
g(a,b,c)(qa, qb, qc, t) = (L+R+

1 +R−
1 )g

(a,b,c)(qa, qb, qc.t),

where we define

R+
1 g

(a,b,c)(qa, qb, qc.t) = −
(

a
∑

l=1

b
∑

m=1

Kγ
1

(

qa
l , q

b
m

)

)

g(a,b,c)(qa, qb, qc, t)

and

R−
1 g

(a,b,c)(qa, qb, qc.t) = −
(

c
∑

n=1

Kγ
2 (q

c
n)

)

g(a,b,c)(qa, qb, qc, t).

Since 0 ≤ Kγ
1 ≤ C(K) and 0 ≤ Kγ

2 ≤ C(K), we can then obtain via a comparison argument for semilinear

equations that the solution to Eq (D.8), g(a,b,c)
(

qa, qb, qc, t
)

≥ 0.
Let us further define

R+
2 g

(a,b,c)(qa, qb, qc.t) =

c
∑

n=1

[∫

R2d

m1(q
c
n|x,y)Kγ

1 (x,y) g(a+1,b+1,c−1)(qa ∪ x, qb ∪ y, qc \ qc
n, t)dxdy

]

,

and

R−
2 g

(a,b,c)(qa, qb, qc.t) =
a
∑

l=1

b
∑

m=1

[∫

Rd

m2

(

qa
l , q

b
m|z

)

Kγ
2 (z)g

(a−1,b−1,c+1)
(

qa \ qa
l , q

b \ qb
m, q

c ∪ z, t
)

dz

]

.

We then set R+ = R+
1 +R+

2 and R− = R−
1 +R−

2 . Due to the positive mapping property of the operators

R+
2 and R−

2 , we shall have for the function g(a,b,c)
(

qa, qb, qc, t
)

that

∂

∂t
g(a,b,c)(qa, qb, qc, t) ≤ (L+R+ +R−)g(a,b,c)(qa, qb, qc.t).

Hence, again utilizing the comparison principle for semilinear PDEs, we obtain that

0 ≤ g(a,b,c)(qa, qb, qc, t) ≤ p(a,b,c)(qa, qb, qc, t),

i.e. the non-negativity of our solution, concluding the proof. �

E Placement density integrals in (5.3)

In this appendix we expand out the formal notation used for the inner integrand in the integrals

I =

∫

x̃∈X(ℓ)

Kℓ(x̃)

(
∫

y∈Y(ℓ)

δx(y
(j)
r )mℓ(y | x̃) dy

)

(

ΠJ
k=1Π

αℓk

s=1ρk(x̃
(k)
s , t)

)

dx̃

for several choices of the placement density, mℓ.
For a first order reaction of the form Si → Sj , by Assumption 4.3 we have

mℓ(y|x) = δ(x− y),
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so that in the equation for ρj(x, t), I becomes

I =

∫

Rd

Kℓ(x̃)

(∫

Rd

δ(x − y)δ(y − x̃) dy

)

ρi(x̃, t) dx̃

=

∫

Rd

Kℓ(x̃)δ(x − x̃)ρi(x̃, t) dx̃

= Kℓ(x)ρi(x, t).

The first order reaction term that appears in (5.5) is of this form.
For a second order bimolecular reaction of the form Si + Sk → Sj , by Assumption 4.4 we have

mℓ(z |x, y) =
N
∑

n=1

pn × δ (z − (αnx+ (1 − αn)y)) ,

so that in the equation for ρj(x, t), I becomes

I =

∫

R2d

Kℓ(x̃1, x̃2)

(

∫

Rd

δ(x− y)

(

N
∑

n=1

pn × δ (y − (αnx̃1 + (1− αn)x̃2))

)

dy

)

ρi(x̃1, t)ρk(x̃2, t) dx̃1 dx̃2

=

∫

R2d

Kℓ(x̃1, x̃2)

(

N
∑

n=1

pn × δ (x− (αnx̃1 + (1− αn)x̃2))

)

ρi(x̃1, t)ρk(x̃2, t) dx̃1 dx̃2

=

∫

R2d

Kℓ(x̃1, x̃2)mℓ(x|x̃1, x̃2)ρi(x̃1, t)ρk(x̃2, t) dx̃1 dx̃2.

The second order reaction term that appears in the equation for ρ3(x, t) in (5.7) is of this form. Note, I
can be further simplified to eliminate any δ-function terms, giving

I =
N
∑

n=1

pn
αd
n

∫

Rd

Kℓ

(

1

αn
(x− (1 − αn)x̃2), x̃2

)

ρi

(

1

αn
(x− (1− αn)x̃2), t

)

ρk(x̃2, t) dx̃2.

Finally, for a two-product reaction of the form Si → Sj + Sk, by Assumption 4.6 we have

mℓ(x, y | z) = ρ(|x− y|)
N
∑

n=1

pn × δ (z − (αnx+ (1 − αn)y)) ,

so that in the equation for Sj , I becomes

I =

∫

Rd

Kℓ(x̃)

(

∫

R2d

δ(x− y1)

(

ρ(|y1 − y2|)
N
∑

n=1

pn × δ (x̃− (αny1 + (1 − αn)y2))

)

dy1dy2

)

ρi(x̃, t) dx̃

=

∫

Rd

Kℓ(x̃)

(

∫

Rd

(

ρ(|x − y2|)
N
∑

n=1

pn × δ (x̃− (αnx+ (1− αn)y2))

)

dy2

)

ρi(x̃, t) dx̃

=

∫

Rd

Kℓ(x̃)

(∫

Rd

m(x, y2|x̃)dy2
)

ρi(x̃, t) dx̃.

The first order reaction term that appears in the equation for ρ1(x, t) in (5.7) is of this form. Note, I can
be further simplified to eliminate any δ-function terms, giving

I =
N
∑

n=1

pn
(1− αn)d

∫

Rd

Kℓ(x̃) ρ

(

x− x̃

1− αn

)

ρi(x̃, t) dx̃.
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