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Abstract. A self-dual map G is said to be antipodally self-dual if the dual map G∗ is
antipodal embedded in S2 with respect to G. In this paper, we investigate necessary and/or
sufficient conditions for a map to be antipodally self-dual. In particular, we present a
combinatorial characterization for map G to be antipodally self-dual in terms of certain
involutive labelings. The latter lead us to obtain necessary conditions for a map to be
strongly involutive (a notion relevant for its connection with convex geometric problems).
We also investigate the relation of antipodally self-dual maps and the notion of antipodally
symmetric maps. It turns out that the latter is a very helpful tool to study questions
concerning the symmetry as well as the amphicheirality of links.

1. Introduction

Let G be a map, that is, a graph cellularly embedded in the sphere. Then G = (V,E, F )
has a natural geometric dual G∗ = (V ∗, E∗, F ∗) where each face in F correspond to a vertex
in V ∗ and two vertices in V ∗ are adjacent if the corresponding faces in G share an edge. A
map G is called self-dual if there is a bijection from V and F to V ∗ and F ∗ which reverses
inclusion.

Self-dual maps have been the subject of numerous investigations in different fronts : self-
dual polyhedra and ranks [3], isometries in S2 [8], eigenvalues of h-graphs [11], rigidity [7],
tilings [9], etc.

A self-dual map G is said to be antipodally self-dual if the dual map G∗ is antipodally
embedded with respect to G. In other words, the map G is antipodally self-dual if the
following holds for any x ∈ S2

1) if x ∈ V (G) then −x ∈ V (G∗) and

2) if x ∈ e ∈ E(G) then −x ∈ e∗ ∈ E(G∗), that is, e∗ is antipodally embedded in S2 with
respect to the embedding of e.

Antipodally self-dual maps are closely related with the notion of strongly involutive maps
(see beginning of Section 3.1) and thus relevant for their connection with convex geometric
problems as the well-known Vázsonyi’s problem on ball polyhedra (as reported in [2], see
also [10]), the chromatic number of distance graphs on the sphere [4] and Reuleaux polyhedra
[5]. As we will see, antipodally self-dual maps are also closely related with the notion of
antipodally symmetric maps. The latter turns out very useful to study questions concerning
the symmetry as well as the amphicheirality of links, see [6].
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The main goal of this paper is to investigate necessary and/or sufficient conditions for a
map to be antipodally self-dual.

The paper is organized as follows. In the next section, we give a brief overview of some
notions on self-dual maps needed for the rest of the paper. Given a map G, we recall three
special close related maps (medial graph med(G), square graph G� and vertex-face incidence
graph I(G)) that turn out to be very useful for our propose.

In Section 3, we first recall some classical results between isometries in S2 and maps.
We then present a result giving necessary conditions of an antipodally self-dual map G in
terms of symmetric cycles in I(G) (Theorem 1). Afterwards, we discuss the connection
between antipodally self-dual maps and strongly involutive maps and give a combinatorial
characterization for a mapG to be antipodally self-dual in terms of certain involutive labelings
of I(G)� (Theorem 2). As a consequence, we obtain necessary conditions for a map G to be
strongly involutive in terms of I(G)� (Corollary 2).

In Section 4, we characterize three different infinite families of antipodally self-dual maps
(Propositions 1, 2 and 3). We also present a more general construction (Theorem 3).

In Section 5, we study antipodally symmetric maps. Besides many properties, we show that
if G is an antipodally self-dual map then both med(G) and I(G) are antipodally symmetric
maps (Lemma 3).

2. Maps preliminaries

Let G be a planar graph. A map of G = (V,E, F ) is the image of an embedding of G into
S2 where the set of vertices are a collection of distinct points in S2 and the set of edges are
a collection of Jordan curves joining two points in V satisfying that α ∩ α′ is either empty
or a point in the endpoints for any pair of Jordan curves α and α′. Any embedding of the
topological realization of G into S2 partitions the 2-sphere into simply connected regions of
S2 \G called the faces F of the embedding.

Given a map G, we may construct the dual map G∗ = (V ∗, E∗, F ∗) by placing a vertex f ∗

in the interior of each face f of G, and for each edge e of M draw a dual edge e∗ connecting
the vertices f ∗1 and f ∗2 (corresponding to the two faces f1 and f2 sharing edge e) by crossing
e transversely. We denote by X(G,G∗) the set of intersection points of map G and map G∗.

Two maps G1 = (V1, E1, F1) and G2 = (V2, E2, F2) of the same graph are isomorphic if
there is an isomorphism φ : (V1, E1, F1) → (V2, E2, F2) preserving incidences. We say that
a map G = (V,E, F ) is a self-dual map if the maps G = (V,E, F ) and G∗ = (V ∗, E∗, F ∗)
are isomorphic, that is, there is an isomorphism φ : (V,E, F ) → (F ∗, E∗, V ∗) preserving
incidences.

Given maps G = (V,E, F ) and G∗ = (V ∗, E∗, F ∗) we define the following auxiliaries maps.

- The squares graph of G is the map G� obtained by the simultaneous drawing of G ∪G∗
with all the edges split at the intersection points of an edge e with its dual edge e∗. We thus
have that every face of G� is a square formed by half-edges of G and G∗.

For each square face in G�, we define two types of diagonals: the intersecting diagonal
which is the edge joining the intersections points and the incidence diagonal which is the
edge joining a vertex in V (G) to a vertex in V (G∗).
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- The vertex-face incidence graph is the map I(G) having as vertices V ∪ V ∗ and as edges
are all the incidence diagonals of G�.

- The medial of G is the map med(G) having as vertices the set of intersections points of
E ∩ E∗ and as edges the set of all the intersecting diagonals of G�.

Figure 1. A map and its dual, the squares graph, the vertex-face incidence
graph and the medial.

Throughout the paper, we will represent the vertices of G with black circles, the vertices
of G∗ with white circles and the intersection points with white squares and the vertices of
the medial with transparent squares.

Notice that I(G) and med(G) are dual from each other for any map G. Hence, we can
construct the squares graph of the vertex-face incidence graph which it turns out to be very
useful for our propose.

Figure 2. (Right) I(G) (straight edges and black and vertices in white cir-
cles) and med(G) (dashed edges and vertices in transparent squares) (Left)
Graph I(G)�.
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3. antipodally self-dual maps

We recall that Aut(G) is the group formed by the set of all automorphism of G (i.e.,
the set of isomorphisms of G into itself). We will denote by Iso(G) the set of all duality
isomorphisms of G into G∗. We notice that Iso(G) is not a group since the composition of
any two of them is an automorphism.

Let us suppose that G = (V,E, F ) is a self-dual map so that there is a bijection φ :
(V,E, F ) → (F ∗, E∗, V ∗). Following φ with the correspondence ∗ gives a permutation on
V ∪E ∪F which preserve incidences but reverses dimension of the elements. The collection
of all such permutations or self-dualities generate a group Dual(G) = Aut(G) ∪ Iso(G) in
which the automorphisms Aut(G) are contained as a subgroup of index 2.

It is known [8, Lemma 1] that for a given map G there is an homeomorphism ρ of S2 to
itself such that for every σ ∈ Aut(G) we have that ρσ ∈ Isom(S2) where Isom(S2) is the
group of isometries of the 2-sphere. In other words, any planar graph G can be drawn on
the 2-sphere such that any automorphism of G act as an isometry of the sphere. This was
extended in [8] by showing that given any self-dual graph G there are maps G and G∗ so
that Dual(G) is realized as a group of spherical isometries.

From now on, we will denote by Ĝ = ρ(G) and σ̂ = ρσ for a certain homeomorphism ρ
satisfying the above property.

A self-dual map G is antipodally self-dual if −Ĝ = Ĝ∗ where −G is the map consisting of
the set of points {−x ∈ S2 | x ∈ G}.

Let us present a result giving necessary combinatorial conditions for a map to be an-
tipodally self-dual. By a symmetric cycle C of a planar graph G we mean there is an
automorphism σ(G) such that σ(C) = C and σ(int(C)) = ext(C), that is, the induced
graph in the interior of C is isomorphic to the induced graph in the exterior of C.

Theorem 1. Let G be antipodally self-dual. Then, I(G) always admit at least one symmetric
cycle. Moreover, all symmetric cycles in I(G) are of length 2n with n ≥ 1 odd.

We will prove Theorem 1 at the end of Section 5 where the notion of antipodally symmetric
is discussed (and needed for the proof).

Remark 1. An antipodally self-dual map G induces an involutive self-dual isomorphism
σ : V (G) −→ V ∗(G). The converse is not necessarily true, there are self-dual graphs not
admitting an antipodally self-dual map. For instance, the graph G′ illustrated in Figure 3 is
self-dual but it is not antipodally self-dual. Indeed, it can be easily checked that I(G′) admits
a symmetric cycle of length 8 (implying that G′ is not antipodally self-dual, by Theorem 1),
see Figure 3.
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Figure 3. (Left) a self-dual map G′ (the isomorphism σ is given by σ(a) =
A, σ(b) = B, σ(c) = C, etc.) not admitting a strongly involutive dual-
isomorphism (Right) I(G′) admitting a symmetric cycle of length 8 (bold
edges).

3.1. Strongly involutive maps and involutive labelings. Let G be a self-dual graph
with duality isomorphism σ : G −→ G∗. We say that G is strongly involutive if the following
conditions are satisfied:

a) for each pair of vertices u, v ∈ V (G), u ∈ σ(v) if and only if v ∈ σ(u) and

b) for every vertex v ∈ V (G), we have that v 6∈ σ(v).

We notice that a) is equivalent to say that σ2 = id.

The above conditions are the combinatorial counterpart (in the 3-dimensional case) of a
more general geometric object called strong self-dual polytopes, first introduced by Lovász
in [4]. Antipodally self-dual maps are closely related with strongly involutive isomorphism.
Indeed, in [1, Theorem 9], it was proved that if G is strongly involutive then G is antipodally
self-dual. As we will see below, the latter is a straight forward consequence of Theorem 2
(see Corollary 2).

Let G = (V,E, F ) be a map and let X+ = {x1, . . . , xm} and X− = {x1, . . . , xm} be two
sets with 1 ≤ m ≤ |V | and the property xi = xi. Let P(X+ ∪X−) be the set of subsets of
X+ ∪ X−. An involutive labeling of G is a function Λ : V → P(X+ ∪ X−) satisfying the
following properties:

(i) |Λ(v)| = 1, 2 for every v ∈ V .
(ii) If |Λ(v)| = 2 then Λ(v) = {xi, xi} for some 1 ≤ i ≤ m. In this case, we say that v is

a fixed vertex of Λ and we write xi = xi (instead of {xi, xi}).
(iii) Λ(u) ∩ Λ(v) 6= ∅ if and only if u = v.
(iv) {Λ−1(xi),Λ

−1(xj)} ∈ E if and only if {Λ−1(xi),Λ
−1(xj)} ∈ E where

Λ−1(xi) := {v ∈ V | xi ∈ Λ(v)}.
Let G� = (V �, E�, F�) be the square graph associated to a map G = (V,E, F ). Recall

that V � = VV ∪ VE ∪ VF where VV are the vertices of G, VE are the vertices on the edges of
G and VF are the vertices of G∗ (one for each face of G).
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Remark 2. An involutive labeling of I(G)� naturally induces an automorphism of I(G)

σΛ : V ∪ V ∗ → V ∪ V ∗
v 7→ u

where Λ(u) = Λ(v) (the adjacency preserving property of σΛ is obtained from (ii)).

a) If vertex v was assigned labels k and k̄ (and thus k = k̄) then it will be a fixed vertex
under σΛ.

b) σ2
Λ = Id.

c) σΛ corresponds to an involutive duality isomorphism σ : G → G∗ if and only if the
labels of the black vertices are the opposite to those of the white vertices in I�(G).

Remark 3. Let G be a self-dual map. We have that G is strongly involutive if and only if
I(G) admits an involutive labeling without edges which extremes are labeled by k and k̄.

3.2. Characterizing antipodally self-dual maps. We are interested in giving necessary
and sufficient combinatorial conditions for a map to be antipodally self-dual.

Remark 4. We have that any σ ∈ Aut(G) naturally induces σ� ∈ Aut(G�) with σ� pre-
serving incidences, that is, if vV ∈ VV is adjacent to vE ∈ VE (resp. vE ∈ VE is adjacent to
vF ∈ VF ) then σ�(vV ) is adjacent to σ�(vE) (resp. σ�(vE) is adjacent to σ�(vF )) and where
VV , VE and VF are mapped to VV , VE and VF respectively. We finally notice that there might
exist γ ∈ Aut(G�) not necessarily arising from an automorphism of G.

Lemma 1. Let H be a map and let σ ∈ Aut(H). Then, σ̂ has a fixed point in S2 if and only
if σ� has a fixed vertex in H�.

Proof. Let x ∈ S2. A point x corresponds to a vertex on H�, say x�, which lies properly on
either V,E or F . If σ̂(x) = x then σ�(x�) = x�.

Conversely, let v ∈ V � = {VV ∪ VE ∪ VF} such that σ�(v) = v. We have three cases.

Case 1) v ∈ VV . Then, the point v ∈ S2 is such that σ̂(v) = v.

Case 2) v ∈ VE. Suppose v lies properly on an edge e. We know that the isometry σ̂
maps e into itself. Since e is topologically equivalent to B1 then σ̂ is a continuous function
sending B1 to itself. Therefore, by the Brouwer fixed-point theorem there is x ∈ e such that
σ̂(x) = x.

Case 3) v ∈ VF . Suppose v lies properly on a face f . We proceed as in the Case 2. The
isometry σ̂ maps f into itself. Since f is topologically equivalent to B2 then σ̂ is a continuous
function sending B2 to itself. Therefore, by the Brouwer fixed-point theorem there is x ∈ f
such that σ̂(x) = x. �

Theorem 2. Let G = (V,E, F ) be a self-dual map. Then, G is antipodally self-dual if and
only if I(G)� admits an involutive labeling without fixed vertices.

Proof. Suppose that G is antipodally self-dual. Therefore, there is Ĝ isomorphic to G such

that −Ĝ = Ĝ∗. Let a : x 7→ −x be the antipodal mapping of S2. We have that a naturally

induces the automorphisms aI ∈ Aut(I(Ĝ)) and a� ∈ Aut(I(Ĝ)�) . Furthermore, since a is
the antipodal mapping then

• a2
I = Id (implying that I(G)� admits an involutive labeling on its vertices) and
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• aI has no fixed points of S2. Therefore, by Lemma 1, a� has no fixed vertices and
thus the above involutive labeling of I(G)� has no fixed vertices.

We finally notice that an involutive labeling of I(Ĝ)� is also an involutive labeling of I(G)�.

Conversely, suppose that I(G)� admits an involutive labeling without fixed vertices. By
Lemma 1, σ̂(I(G)) has not a fixed point in S2. Now, there are three sphere isometries such
that σ2 = Id : rotation of π degree, reflexion on a hyperplane and the antipodal function.
Among them, it is the antipodal function the only without fixed points. Moreover, since
σ : G → G∗ then σ sends vertices of G to vertices of G∗. Therefore, G is antipodally
self-dual. �

For the involutive labelings of squares graphs,, we shall use integers (and their opposites)
for vertices of type VV , letters (and their opposites) for vertices of type VF and greek letters
(and their opposites) for vertices of type VE. On one hand Figure 4 illustrates a self-dual
map G and I(G)� together with an involutive labeling without fixed vertices. Therefore, as a
consequence of Theorem 2, G is antipodally self-dual. On the other hand, Figure 5 illustrates
an involutive labeling of the 4-wheel W4 with I(W4)� admitting two fixed vertices. In fact,
it can be checked that any involutive labeling of I(W4)� admits at least one fixed vertex
since W4 is not antipodally self-dual (see Proposition 1).

Figure 4. (Left) A self-dual map G (straight edges and black vertices) and
G∗ (dashed edges and white vertices). It can easily be checked that G do not
admit a strongly involutive isomorphism. (Right) An involutive labeling of
I(G)� without fixed vertices.
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Figure 5. (Left) The self-dual map W4 with its dual. (Right) I�(W4) to-
gether with an involutive labelling with two fixed vertices de type VE: γ = γ̄
and ε = ε̄ (bold squares).

Corollary 1. Let G be a self-dual map. If there is a black vertex of I(G) connected to each
white vertex of I(G) by an odd number of edges then G is not antipodally self-dual.

Proof. Let v be such a black vertex. Since v is connected to all the white vertices then for
any involutive labeling Λ of I(G)� there is an edge in I(G) with ends labeled with k and
k. By Remark 2, the automorphism σΛ(G) maps an edge with ends labeled {k, k} to an
edge with ends labeled {k, k}. Since, by hypothesis, there is an odd number of edges then
there must be an edge mapped to itself which correspond to a fixed vertex in V (I(G)�).
Therefore, by Theorem 2, G is not antipodally self-dual. �

Figure 6 illustrates a graph in which I(G) has a vertex in V (G) adjacent to each vertex
of G∗ by an odd number of edges (and thus, by Corollary 1, G is not antipodally self-dual).

Figure 6. (Left) A self-dual map G with its dual. (Right) I(G) with a black
vertex joined to each white vertex by an odd number of edges (in bold).
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Corollary 2. Let G be a self-dual map. If G is strongly involutive then G is antipodally
self-dual.

Proof. We shall show that I(G)� admits an involutive labeling without fixed vertices. The
result then follows by Theorem 2.

Let σ : G −→ G∗ be a duality isomorphism. We thus have that σ does not fix vertices.
Recall that if G is strongly involutive then σ verifies

a) for each pair of vertices u, v ∈ V (G), u ∈ σ(v) if and only if v ∈ σ(u) and

b) for every vertex v ∈ V (G), we have that v 6∈ σ(v).
As remarked above, a) is equivalent to say that σ2 = id. We clearly have that σ does not

fix vertices since it maps vertices of G to vertices of G∗. The latter implies that σI does not
fix vertices in I(G) and thus neither σ� in I(G)�.

Now, by combining conditions (a) and (b) we obtain that u 6∈ σ(u) for every vertex u in
G∗. The latter implies that I(G) does not admit an edge with extremes labeled with k and
k̄ and so σ� does not fix vertices of type VE (i.e., arising from edges of I(G)) in I(G)�.

We finally claim that σ� does not fix vertices of type VF (i.e., arising from faces of I(G))
in I(G)�. We proceed by contradiction, suppose that σ� fixes a vertex uf arising from a
face f of I(G). Let f be the face in I(G) corresponding to σ(uf ). Recall that all the faces
in I(G) are squares, suppose that f = {w, x, y, z} with w, y ∈ V (G) and x, z ∈ V (G∗) and
f ′ = {w′, x′, y′, z′} with w′, y′ ∈ V (G) and x′, z′ ∈ V (G∗).

Since σ� fixes uf then σ(uf ) = uf but this happen only if {σ(w), σ(y)} = {w′, y′)} and
{σ(x), σ(z)} = {x′, z′)}. The latter implies the existence of an edge with extremes labeled k
and k̄, which is not possible. �

We notice that the converse of Corollary 2 is not necessarily true. Indeed, there might be
a non strongly involutive map G with I(G)� admitting an involutive labeling without fixed
vertices (and thus G antipodally self-dual, by Theorem 2), see Figure 4.

4. Infinite families

We give below some infinite families having antipodally self-dual maps. For, it is given an
appropriate strongly involutive duality-isomorphism. We will present a result giving sufficient
and necessary conditions for a map to be antipodally self-dual in Section 3.2 (Theorem 2)
which can also be used to verify that the below families are antipodally self-dual. The latter
is based on involutive isometries in S2 without fixed points.

4.1. The wheel. Let n ≥ 3 be an integer. The n-wheel, denoted by Wn, is the graph
consisting of an n-cycle with a center joined to each vertex of the cycle.

Proposition 1. The n-wheel is antipodally self-dual if and only if n ≥ 3 is odd.

Proof. It can be easily checked that Wn admits a strongly involutive duality-isomorphism for
any odd integer n ≥ 3, see Figure 7. Moreover, if n is even then I(Wn) admits a symmetric
cycle of length 2k with k even, see Figure 8. Thus, by Theorem 1, Wn is not antipodally
self-dual. �
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Figure 7. 3-wheel and 5-wheel together with a strongly involutive duality-
isomorphism given by σ(k) = k̄.

Figure 8. I(W4) admitting a symmetric cycle (bold edges) of length 8.

Figure 20 (a) shows that W3 admits a antipodally self-dual map. One can easily mimic
this embedding for any odd integer n ≥ 3. Figure 9 illustrates the case n = 5.

1

1

2 3

456

23

4 5 6

Figure 9. A antipodally self-dual map of W5 (straight edges and black ver-
tices) and its dual (dashed edges and white vertices). Antipodal vertices are
given by k and k̄
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4.2. The n-ear. Let n ≥ 3 be an integer. The n-ear, denoted by En is the graph consisting
of a n-cycle with an ear added on each edge and a center is joined to each ear, see Figure 10

Proposition 2. The n-ear is antipodally self-dual if and only if n ≥ 4 is even.

Proof. It can be easily checked that En admits a strongly involutive duality-isomorphism for
any even integer n ≥ 4, see Figure 10. Moreover, if n is odd then I(En) admits a symmetric
cycle of length 2k with k even, see Figure 11. Thus, by Theorem 1, Wn is not antipodally
self-dual. �
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Figure 10. The 4-ear and 6-ear graphs together with strongly involutive
duality-isomorphisms given by σ(k) = k̄.

Figure 11. I(3-ear) admitting a symmetric cycle (bold edges) of length 12.

The map E4 given in Figure 12 shows that 4-ear graph is antipodally self-dual. One can
easily mimic this embedding for any even integer n ≥ 4.
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Figure 12. A antipodally self-dual map of E4 (black vertices) and its dual
(white vertices). Antipodal vertices are given by k and k̄.

4.3. The (n, `)-pancake. Let n ≥ 3 and l ≥ 1 be integers. The (n, `)-pancake, denoted by
P `
n, is the graph consisting of ` cycles {v1

1, . . . , v
1
n}, . . . , {v`1, . . . , v`n}, a vertex v0

i and edges
{vj−1

i , vji } for each j = 1, . . . , n and all i, see Figure 13.

Proposition 3. The (n, `)-pancake is antipodally self-dual if and only if n ≥ 3 is odd for all
` ≥ 1.

Proof. It can be easily checked that (n, `)-pancake admits a strongly involutive duality-
isomorphism for all integers n ≥ 3, ` ≥ 1 with n odd, see Figure 13. Moreover, if n is even
then I((n, `)pancake) admits a symmetric cycle of length 2k with k even, see Figure 14.
Thus, by Theorem 1, (n, `)-pancake is not antipodally self-dual. �
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Figure 13. P 2
3 and P 3

5 together with a strongly involutive duality-
isomorphism given by σ(k) = k̄.

Figure 14. I(P 2
4 ) admitting a symmetric cycle (bold edges) of length 8.

The map of P 2
5 given in Figure 15 shows that (3, 2)-pancake is self-dual antipodal. One

can easily mimic this embedding for any odd integer n ≥ 3 and any ` ≥ 1.
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Figure 15. A antipodally self-dual map of P 2
5 (black vertices) and its dual

(white vertices). Antipodal vertices are given by k and k̄.

4.4. Adhesion construction. Let us give a way to construct infinite families of antipodally
self-dual graphs. The latter is based on a procedure to construct self-dual graphs called the
adhesion, given in [7]. Let G be a planar connected graph and let G∗ be its geometric dual.
Let x (resp. x∗) be the vertex corresponding to the exterior face of G∗ (resp. exterior face
of G∗∗ = G). We define the graph G �G∗ obtained by identifying x and x∗, see Figure 16.

Figure 16. (Left) Draw of G and its dual. (Right) The adhesion of G.

Lemma 2. [7] Let G be a planar connected graph. Then, the graph G �G∗ is self-dual.

Proof. H = G �G∗ is clearly self-dual since H∗ = (G �G∗)∗ = G∗ �G = G �G∗. �

Notice that in the construction of G �G∗ the couple x and x∗ cannot be replaced by any
pair of vertices since we may end up with a not self-dual graph, see Figure 17.
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Figure 17. A glueing of G and G∗ by another pair of vertices which leads to
a map which is clearly not self-dual.

Theorem 3. Let G be a planar connected graph. Then, G �G∗ is antipodally self-dual.

Proof. By Lemma 2 H = G �G∗ is self-dual. Let us show that H admits an antipodal map.
Let x (resp. x∗) be the vertex corresponding to the exterior face of G∗ (resp. exterior face of
G = G∗∗). We first draw G and its dual within a circle C such that x and x∗ are antipodal
points on C and no other edge or vertex (of G or G∗) lie on C, see Figure 18.

Figure 18. Embedding of G and G∗ inside circle C with vertex b diametri-
cally opposed to vertex b∗.

We shall construct two embeddings (one in the Northern hemisphere and the other in the
Southern one) that will be glued together giving the desired antipodally self-dual embedding
of H. For, we consider C as the equator of S2 and project our drawing perpendicularly to the
Northern hemisphere of S2. We then take the antipodal of the latter embedding, obtaining
and embedding in the Southern hemisphere.

We finally glue together both embeddings along the equator (x and x∗ are the only vertices
that are identified twice on the equator). By construction, this is an antipodal map of H,
see Figure 19. �
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Figure 19. (a) Embedding of the draws of G and G∗ in the Northern hemi-
sphere (b) Antipodal embedding of the draw of the Northern hemisphere (c)
Antipodal embedding of H = G �G∗ (bold edges) and H∗ (dashed edges).

Question 1. Let H be a antipodally self-dual graph with a cut-vertex. Is it true that H =
G �G∗ where G is a planar connected graph and G∗ its geometric dual ?

5. antipodally symmetric maps

A map G is said to be antipodally symmetric if −Ĝ = Ĝ where −G is the map consisting
of points {−x ∈ S2 | x ∈ G}.

Remark 5. (a) med(G) = med(G∗).

(b) If G is self-dual then |V (med(G))| is even. Indeed, by Euler’s formula we have
|V (G)| + |F (G)| = 2 + |E(G)| where F (G) denote the set of faces of G. Since G is
self-dual then |V (G)| = |V (G∗)| = |F (G)| and thus 2|V (G)| = 2 + |E(G)| implying that
|E(G)| = |V (med(G))| is even.
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Lemma 3. Let G be an antipodally self-dual map. Then, med(G) and I(G) are antipodally
symmetric.

Proof. We first show that med(G) is self-dual. For, let us consider a antipodally self-dual
map G, that is, the dual map G∗ is antipodally embedded with respect to the map G. The
latter induces a map G� in which square faces of G� are partitioned into pairs that are
antipodally embedded in S2. Indeed, let F = {e1, e2, e

∗
1, e
∗
2} be a face of G� where e1, e2

(resp. e∗1, e
∗
2) are the two half-edge induced by e ∈ E(G) (resp. induced by e∗ ∈ E(G∗)).

Since G is antipodally self-dual then there is an edge f ∗ ∈ G∗ (resp. an edge f ∈ G) which
is antipodally embedded to e ∈ G (resp. to e∗ ∈ G∗). We thus have that the corresponding
half-edges f ∗1 , f

∗
2 (resp. f1, f2) are also antipodally embedded with respect to e1, e2 (resp. to

e∗1, e
∗
2). Obtaining an other face F ∗ = {f1, f2, f

∗
1 , f

∗
2} which is antipodally embedded with

respect to F .

We thus have that the intersecting diagonals corresponding to faces F and F ∗ can also
be antipodally embedded. The results follows by recalling that med(G) is given by all the
intersecting diagonals of G�, see Figure 20.

(a) (b)

Figure 20. (a) Embedding of K4 (black vertices and straight edges), its dual
(white vertices and dashed edges) and the vertices of the medial graph (little
squares vertices) (b) K4 (dashed edges) and its medial graph (in bold dashed
edges) with two antipodal faces (in bold).

For I(G), the proof goes in the same way as above but, this time, by considering the
incidence diagonals instead of the intersecting diagonals. �

We end this section by proving Theorem 1.

Proof of Theorem 1. Let G be a antipodally self-dual map. Let m̂ed(G) be the drawing
of med(G) where all the automorphisms are isometries and let E be the equator of S2.

Suppose that E does not contain any vertex of m̂ed(G); Then, E passes from a face f

of m̂ed(G) to another face f ′ that shares and edge with f . Since med(G)∗ = I(G) the pair
faces {f, f ′} corresponds to a pair of adjacent vertices {v, v′} in V (I(G)). Thus, the sequence
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of faces (f1, . . . , fn = f1) intersected by E (with the order induced by E) corresponds to a
cycle C in I(G). Let int(C) (resp. ext(G)) be the subgraph of I(G) corresponding to the

faces of m̂ed(G) lying on the northern (resp. southern) hemisphere. By Lemma 3, med(G) is

antipodally symmetric so the northern faces and the southern faces of m̂ed(G) are antipodally
drawn. Thus, int(C) is map isomorphic to ext(C) and thus C is a symmetric cycle of I(G).

Now, let us suppose that E passes through a vertex of med(G). Since the set of vertices of
med(G) is finite there exists a point x ∈ E such that x and −x are not vertices of med(G).
Let Eα be the the rotation of E of angle α on the line passing through x and −x. Let

β = min
α>0
{Eα contains a vertex of m̂ed(G)}.

Then, Eβ/2 is a great circle of S2 which does not contain any vertex of m̂ed(G). By taking
Eβ/2 as equator we can apply the above arguments to show that there exists a symmetric
cycle of I(G).

Finally, if C is a symmetric cycle of I(G) then we can draw Î(G) with C being the equator

of S2. Since G is antipodally self-dual, a black vertex v of Î(G) is antipodal to a white vertex
−v. Thus, the length of C must be 2n with n ≥ 1 odd. �
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