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ELASTIC-DEGENERATE STRING MATCHING VIA FAST MATRIX
MULTIPLICATION\ast 

GIULIA BERNARDINI\dagger , PAWE\L GAWRYCHOWSKI\ddagger , NADIA PISANTI\S ,

SOLON P. PISSIS\P , AND GIOVANNA ROSONE\S 

Abstract. An elastic-degenerate (ED) string is a sequence of n sets of strings of total length N
which was recently proposed to model a set of similar sequences. The ED string matching (EDSM)
problem is to find all occurrences of a pattern of length m in an ED text. The EDSM problem
has recently received some attention in the combinatorial pattern matching community, and an
\scrO (nm1.5

\surd 
logm+N)-time algorithm is known [Aoyama et al., CPM 2018]. The standard assumption

in the prior work on this question is that N is substantially larger than both n and m, and thus
we would like to have a linear dependency on the former. Under this assumption, the natural open
problem is whether we can decrease the 1.5 exponent in the time complexity, similarly as in the
related (but, to the best of our knowledge, not equivalent) word break problem [Backurs and Indyk,
FOCS 2016]. Our starting point is a conditional lower bound for the EDSM problem. We use the
popular combinatorial Boolean matrix multiplication (BMM) conjecture stating that there is no
truly subcubic combinatorial algorithm for BMM [Abboud and Williams, FOCS 2014]. By designing
an appropriate reduction, we show that a combinatorial algorithm solving the EDSM problem in
\scrO (nm1.5 - \epsilon +N) time, for any \epsilon > 0, refutes this conjecture. Our reduction should be understood as
an indication that decreasing the exponent requires fast matrix multiplication. String periodicity and
fast Fourier transform are two standard tools in string algorithms. Our main technical contribution is
that we successfully combine these tools with fast matrix multiplication to design a noncombinatorial
\~\scrO (nm\omega  - 1 +N)-time algorithm for EDSM, where \omega denotes the matrix multiplication exponent and
the \~\scrO (\cdot ) notation suppresses polylog factors. To the best of our knowledge, we are the first to combine
these tools. In particular, using the fact that \omega < 2.373 [Alman and Williams, SODA 2021; Le Gall,
ISSAC 2014; Williams, STOC 2012], we obtain an \scrO (nm1.373 + N)-time algorithm for EDSM. An
important building block in our solution that might find applications in other problems is a method
of selecting a small set of length-\ell substrings of the pattern, called anchors, so that any occurrence of
a string from an ED text set contains at least one but not too many (on average) such anchors inside.
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550 BERNARDINI ET AL.

1. Introduction. Boolean matrix multiplication (BMM) is one of the most fun-
damental computational problems. Apart from its theoretical interest, it has a wide
range of applications [34, 36, 44, 55, 64]. BMM is also the core combinatorial part of
integer matrix multiplication. In both problems, we are given two \scrN \times \scrN matrices, and
we are to compute \scrN 2 values. Integer matrix multiplication can be performed in truly
subcubic time, i.e., in \scrO (\scrN 3 - \epsilon ) operations over the field, for some \epsilon > 0. The fastest
known algorithms for this problem run in \scrO (\scrN 2.373) time [4, 51, 66]. These algorithms
are known as algebraic: They rely on the ring structure of matrices over the field.

There also exists a different family of algorithms for the BMM problem known as
combinatorial. Their focus is on unveiling the combinatorial structure in the Boolean
matrices to reduce redundant computations. A series of results [9, 11, 20] culminating
in an \^\scrO (\scrN 3/ log4 \scrN )-time algorithm [70, 71] (the \^\scrO (\cdot ) notation suppresses polyloglog
factors) has led to the popular combinatorial BMM conjecture stating that there is no
combinatorial algorithm for BMM working in time \scrO (\scrN 3 - \epsilon ) for any \epsilon >0 [2]. There
has been ample work on applying this conjecture to obtain BMM hardness results;
see, e.g., [2, 22, 40, 49, 50, 52, 60].

String matching is another fundamental problem, asking to find all fragments of
a string text of length n that match a string pattern of length m. This problem has
several linear-time solutions [28]. In many real-world applications, it is often the case
that letters at some positions are either unknown or uncertain. A way of representing
these positions is with a subset of the alphabet \Sigma . Such a representation is called
a degenerate string. A special case of a degenerate string is when at such unknown
or uncertain positions the only subset of the alphabet allowed is the whole alphabet.
These special degenerate strings are more commonly known as strings with wildcards.
The first efficient algorithm for a text and a pattern, where both may contain wild-
cards, was published by Fischer and Paterson in 1974 [35]. It has undergone several
improvements since then [25, 26, 43, 46]. The first efficient algorithm for a standard
text and a degenerate pattern, which may contain any nonempty subset of the alpha-
bet, was published by Abrahamson in 1987 [3], followed by several practically efficient
algorithms [41, 56, 69].

Degenerate letters are used in the IUPAC notation [45] to represent a position in a
DNA sequence that can have multiple possible alternatives. These are used to encode
the consensus of a population of sequences [5, 6, 37, 57, 63] in a multiple sequence
alignment (MSA). In the presence of insertions or deletions in the MSA, we may need
to consider alternative representations. Consider the following MSA of three closely
related sequences (on the left):

GCAACGGGTA--TT

GCAACGGGTATATT

GCACCTGG----TT

\~T =
\bigl\{ 
GCA

\bigr\} 
\cdot 
\biggl\{ 
A

C

\biggr\} 
\cdot 
\bigl\{ 
C
\bigr\} 
\cdot 
\biggl\{ 
G

T

\biggr\} 
\cdot 
\bigl\{ 
GG

\bigr\} 
\cdot 

\left\{   TA

TATA

\varepsilon 

\right\}   \cdot 
\bigl\{ 
TT

\bigr\} 
.

These sequences can be compacted into a single sequence \~T of sets of strings
(on the right) containing some deterministic and some nondeterministic segments. A
nondeterministic segment is a finite set of deterministic strings and may contain the
empty string \varepsilon corresponding to a deletion. The total number of segments is the
length of \~T , and the total number of letters is the size of \~T . We denote the length by
n = | \~T | and the size by N = | | \~T | | .

This representation has been defined in [42] by Iliopoulos, Kundu, and Pissis as
an elastic-degenerate (ED) string. Being a sequence of subsets of \Sigma \ast , it can be seen as
a generalization of a degenerate string. The natural problem that arises is finding all
matches of a deterministic pattern P in an ED text \~T . This is the elastic-degenerate
string matching (EDSM) problem. Since its introduction in 2017 [42], it has attracted
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EDSM VIA FAST MATRIX MULTIPLICATION 551

some attention in the combinatorial pattern matching community [58], and a series
of results have been published. The simple algorithm by Iliopoulos, Kundu, and
Pissis [42] for EDSM was first improved by Grossi et al. in the same year, who showed
that, for a pattern of lengthm, the EDSM problem can be solved online in\scrO (nm2+N)
time [39]; online means that it reads the text segment by segment and reports an
occurrence as soon as this is detected. This result was improved by Aoyama et al. [8],
who presented an \scrO (nm1.5

\surd 
logm + N)-time algorithm. An important feature of

these bounds is their linear dependency on N . A different branch of online algorithms
waiving the linear-dependency restriction exists [23, 24, 39, 59]. Moreover, the EDSM
problem has been considered under Hamming and edit distance [16]. Recent results
on founder block graphs [53] can also be casted on ED strings.

A question with a somewhat similar flavor is the word break problem. We are given
a dictionary \scrD , m = | | \scrD | | and a string S, n = | S| , and the question is whether we can
split S into fragments that appear in \scrD (the same element of \scrD can be used multiple
times). Backurs and Indyk [10] designed an \~\scrO (nm1/2 - 1/18 + m)-time algorithm for
this problem.1 Bringmann, Gr{\e}nlund, and Larsen [18] improved this to \~\scrO (nm1/3+m)
and showed that this is optimal for combinatorial algorithms by a reduction from k-
Clique. Their algorithm uses fast Fourier transform (FFT), and so it is not clear
whether it should be considered combinatorial. While this problem seems similar to
EDSM, there does not seem to be a direct reduction, and so their lower bound does
not immediately apply.

Our results. It is known that BMM and triangle detection (TD) in graphs either
both have truly subcubic combinatorial algorithms or none of them do [68]. Recall
also that the currently fastest algorithm with linear dependency on N for the EDSM
problem runs in \scrO (nm1.5

\surd 
logm+N) time [8]. In this paper, we prove the following

two theorems.

Theorem 1.1. If the EDSM problem can be solved in \scrO (nm1.5 - \epsilon + N) time,
for any \epsilon > 0, with a combinatorial algorithm, then there exists a truly subcubic
combinatorial algorithm for TD.

Arguably, the notion of combinatorial algorithms is not clearly defined, and The-
orem 1.1 should be understood as an indication that in order to achieve a better
complexity, one should use fast matrix multiplication. Indeed, there are examples
where a lower bound conditioned on BMM was helpful in constructing efficient al-
gorithms using fast matrix multiplication [1, 17, 21, 30, 54, 67, 72]. We successfully
design such a noncombinatorial algorithm by combining three ingredients: a string
periodicity argument, FFT, and fast matrix multiplication. While periodicity is the
usual tool in combinatorial pattern matching [29, 47, 48] and using FFT is also not
unusual (for example, it often shows up in approximate string matching [3, 7, 25, 38]),
to the best of our knowledge, we are the first to combine these with fast matrix mul-
tiplication. Specifically, we show the following result for the EDSM problem, where
\omega denotes the matrix multiplication exponent.

Theorem 1.2. The EDSM problem can be solved online in \~\scrO (nm\omega  - 1 +N) time.

In order to obtain a faster algorithm for the EDSM problem, we focus on the
active prefixes (AP) problem that lies at the heart of all current solutions [8, 39]. In
the AP problem, we are given a string P of length m and a set of arbitrary prefixes
P [1 . . i] of P , called active prefixes, stored in a bit vector U so that U [i] = 1 if P [1 . . i]

1The \~\scrO (\cdot ) notation suppresses polylog factors.
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552 BERNARDINI ET AL.

is active. We are further given a set \scrS of strings of total length N , and we are asked
to compute a bit vector V which stores the new set of active prefixes of P . A new
AP of P is a concatenation of P [1 . . i] (such that U [i] = 1) and some element of \scrS .

Using the algorithmic framework introduced in [39], EDSM is addressed by solving
an instance of the AP problem per each segment i of the ED text corresponding to set
\scrS of the AP problem. Hence, an \scrO (f(m)+Ni) solution for the AP problem (with Ni

being the size of a single segment of the ED text) implies an \scrO (nf(m) +N) solution
of EDSM, as f(m) is repeated n times and N =

\sum n
i=1 Ni. The algorithm of [8]

solves the AP problem in \scrO (m1.5
\surd 
logm+Ni) time leading to \scrO (nm1.5

\surd 
logm+N)

time for the EDSM problem. Our algorithm partitions the strings of each segment i
of the ED text into three types according to a periodicity criterion and then solves
a restricted instance of the AP problem for each of the types. In particular, we
solve the AP problem in \~\scrO (m\omega  - 1 +Ni) time leading to \~\scrO (nm\omega  - 1 +N) time for the
EDSM problem. Given this connection between the two problems and, in particular,
between their size parameter N , in the rest of the paper, we will denote with N also
the parameter Ni of the AP problem.

An important building block in our solution that might find applications in other
problems is a method of selecting a small set of length-\ell substrings of the pattern,
called anchors, so that any relevant occurrence of a string from an ED text set contains
at least one but not too many such anchors inside. This is obtained by rephrasing the
question in a graph-theoretical language and then generalizing the well-known fact
that an instance of the hitting set problem with m sets over [n], each of size at least
k, has a solution of size \scrO (n/k \cdot logm). While the idea of carefully selecting some
substrings of the same length is not new (for example, Kociumaka et al. [48] used it
to design a data structure for pattern matching queries on a string), our setting is
different, and hence so is the method of selecting these substrings.

In addition to the conditional lower bound for the EDSM problem (Theorem 1.1),
we also exhibit a reduction from BMM to AP that leads to the following conditional
lower bound for AP.

Theorem 1.3. If the AP problem can be solved in \scrO (m1.5 - \epsilon +N) time, for any
\epsilon > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial
algorithm for the BMM problem.

We remark that Theorem 1.3 is also implied by Theorem 1.1, as described at the
end of section 4, but we believe that a direct reduction from BMM to AP serves as a
good starting point for the more complicated reduction from BMM to EDSM.

Road map. Section 2 provides the necessary definitions and notation as well
as the algorithmic toolbox used throughout the paper. In section 3, we prove our
lower bound result for the AP problem (Theorem 1.3). The lower bound result for
the EDSM problem is proved in section 4 (Theorem 1.1). In section 5, we present our
algorithm for EDSM (Theorem 1.2); this is the most technically involved part of the
paper.

2. Preliminaries. Let T = T [1]T [2] . . . T [n] be a string of length | T | = n over a
finite ordered alphabet \Sigma of size | \Sigma | = \sigma . For two positions i and j on T , we denote by
T [i . . j] = T [i] . . . T [j] the substring of T that starts at position i and ends at position
j (it is of length 0 if j < i). By \varepsilon , we denote the empty string of length 0. A prefix of T
is a substring of the form T [1 . . j], and a suffix of T is a substring of the form T [i . . n].
T r denotes the reverse of T , that is, T [n]T [n - 1] . . . T [1]. We say that a string X is
a power of a string Y if there exists an integer k > 1 such that X is expressed as k
consecutive concatenations of Y , denoted by X = Y k. A period of a string X is any

D
ow

nl
oa

de
d 

02
/0

8/
23

 to
 1

45
.1

08
.2

46
.1

95
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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integer p \in [1, | X| ] such that X[i] = X[i + p] for every i = 1, 2, . . . , | X|  - p, and the
period, denoted by per(X), is the smallest such p. We call a string X strongly periodic
if per(X) \leq | X| /4.

Lemma 2.1 ( [33]). If p and q are both periods of the same string X and addi-
tionally p+ q \leq | X| + 1, then gcd(p, q) is also a period of X.

A trie is a tree in which every edge is labeled with a single letter and every two
edges outgoing from the same node have different labels. The label of a node u in
such a tree T , denoted by \scrL (u), is defined as the concatenation of the labels of all
the edges on the path from the root of T to u. By replacing each path p consisting
of nodes with exactly one child by an edge labeled by the concatenation of the labels
of the edges of p, we obtain a compact trie. The nodes of the trie that are removed
after this transformation are called implicit, while the remaining ones are referred to
as explicit. The suffix tree of a string S is the compact trie representing all suffixes
of S\$, \$ /\in \Sigma , where instead of explicitly storing the label S[i . . j] of an edge, we
represent it by the pair (i, j).

A heavy path decomposition of a tree T is obtained by selecting, for every non-
leaf node u \in T , its child v such that the subtree rooted at v is the largest. This
decomposes the nodes of T into node-disjoint paths, with each such path p (called a
heavy path) starting at some node, called the head of p, and ending at a leaf. An
important property of such a decomposition is that the number of distinct heavy
paths above any leaf (that is, intersecting the path from a leaf to the root) is only
logarithmic in the size of T [62].

Let \~\Sigma denote the set of all finite nonempty subsets of \Sigma \ast . Previous works (cf. [8,
15, 39, 42, 59]) define \~\Sigma as the set of all finite nonempty subsets of \Sigma \ast excluding \{ \varepsilon \} ,
but we waive here the latter restriction, as it has no algorithmic implications. An
elastic-degenerate string \~T = \~T [1] . . . \~T [n], or ED string, over alphabet \Sigma is a string
over \~\Sigma ; i.e., an ED string is an element of \~\Sigma \ast , and hence each \~T [i] is a set of strings.

Let \~T denote an ED string of length n, i.e., | \~T | = n. We assume that for any
1 \leq i \leq n, the set \~T [i] \in \~\Sigma is implemented as an array and can be accessed by an
index, i.e., \~T [i] = \{ \~T [i][k] | k = 1, . . . , | \~T [i]| \} . For any \~\sigma \in \~\Sigma , | | \~\sigma | | denotes the total
length of all strings in \~\sigma , and for any ED string \~T , | | \~T | | denotes the total length of all

strings in all \~T [i]'s. We will denote Ni =
\sum | \~T [i]| 

k=1 | \~T [i][k]| the total length of all strings

in \~T [i] and N =
\sum n

i=1 | | \~T [i]| | the size of \~T . An ED string \~T can be thought of as a

compact representation of the set of strings \scrA ( \~T ), which is the Cartesian product of
all \~T [i]'s; that is, \scrA ( \~T ) = \~T [1] \times . . . \times \~T [n], where A \times B = \{ xy | x \in A, y \in B\} for
any sets of strings A and B.

For any ED string \~X and a pattern P , we say that P matches \~X if
1. | \~X| = 1 and P is a substring of some string in \~X[1] or
2. | \~X| > 1 and P = P1 . . . P| \~X| , where P1 is a suffix of some string in \~X[1], P| \~X| 

is a prefix of some string in \~X[| \~X| ], and Pi \in \~X[i] for all 1 < i < | \~X| .
We say that an occurrence of a string P ends at position j of an ED string \~T if

there exists i \leq j such that P matches \~T [i] . . . \~T [j]. We will refer to string P as the
pattern and to ED string \~T as the text. We define the main problem considered in
this paper.

Elastic-Degenerate String Matching (EDSM)
INPUT: A string P of length m and an ED string \~T of length n and size N \geq m.
OUTPUT: All positions in \~T where at least one occurrence of P ends.

D
ow

nl
oa

de
d 

02
/0

8/
23

 to
 1

45
.1

08
.2

46
.1

95
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

554 BERNARDINI ET AL.

Example 1. P = GTAT ends at positions 2, 6, and 7 of the following text \~T :

\~T =
\bigl\{ 
ATGTA

\bigr\} 
\cdot 
\biggl\{ 
A

T

\biggr\} 
\cdot 
\bigl\{ 
C
\bigr\} 
\cdot 
\biggl\{ 
G

T

\biggr\} 
\cdot 
\bigl\{ 
CG

\bigr\} 
\cdot 

\left\{   TA

TATA

\varepsilon 

\right\}   \cdot 
\biggl\{ 
TATGC

TTTTA

\biggr\} 
.

Whenever | \~T | = 1, the problem reduces to case 1 only (searching for P in all
strings of \~T [1]), which can be done in \scrO (N) time using any linear-time pattern-
matching algorithm. In the general case of | \~T | > 1, at a high level, previous online
solutions to EDSM consist of the following steps: (i) For each \~T [i], for each S \in \~T [i]
that is long enough, search for occurrences of the whole of P in S (this corresponds to
case 1 of the definition of a match of P given above). Then (case 2 of the definition of
a match of P , in which an occurrence of P spans over several sets of strings), (ii) find
the prefixes of P that match any suffix of some S \in \~T [i]. (iii) Try to extend at \~T [i]
every partial occurrence of P , which has started earlier in \~T , by solving an instance of
AP. (iv) If a full occurrence of P also ends at \~T [i], then output position i; otherwise,
store the prefixes of P extended at \~T [i], which will be further extended at \~T [i+ 1].

Aoyama et al. [8] obtained an online \scrO (nm1.5
\surd 
logm + N)-time algorithm by

identifying step (iii) as the bottleneck in this approach, observing that all other steps
can be implemented in \scrO (n+M) time, and designing an improved solution for step
(iii). We formally define the task that needs to be solved in step (iii) as the AP
problem.

Active Prefixes (AP)
INPUT: A string P of length m, a bit vector U of size m, a set \scrS of strings of
total length N .
OUTPUT: A bit vector V of size m with V [j] = 1 if and only if there exists
S \in \scrS and i \in [1,m], U [i] = 1 such that P [1 . . i] \cdot S = P [1 . . i+ | S| ] and j = i+ | S| .

In particular, given an ED text \~T = \~T [1] . . . \~T [n], one should consider an instance
of the AP problem per each \~T [i]. Hence, an \scrO (f(m) +Ni) solution for AP (Ni being
the size of \~T [i]) implies an \scrO (n \cdot f(m) +N) solution for EDSM, as f(m) is repeated
n times and N =

\sum n
i=1 Ni. We provide an example of the AP problem.

Example 2. Let P = ababbababab of length m = 11, U = 01000100000, and
\scrS = \{ \bfitvarepsilon , ab, abb, ba, baba\} . We have that V = 01011101010.

For our lower bound results, we rely on BMM and the following closely related
problem.

Boolean Matrix Multiplication (BMM)
INPUT: Two \scrN \times \scrN Boolean matrices A and B.
OUTPUT: \scrN \times \scrN Boolean matrix C, where C[i, j] =

\bigvee 
k

(A[i, k] \wedge B[k, j]).

Triangle Detection (TD)
INPUT: Three \scrN \times \scrN Boolean matrices A,B and C.
OUTPUT: Are there i, j, k such that A[i, j] = B[j, k] = C[k, i] = 1?

An algorithm is called truly subcubic if it runs in \scrO (\scrN 3 - \epsilon ) time for some \epsilon > 0.
TD and BMM either both have truly subcubic combinatorial algorithms or none of
them do [68].
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3. AP conditional lower bound. As a warm-up, in order to investigate the
hardness of the EDSM problem, we first show that an \scrO (m1.5 - \epsilon +N)-time solution to
the AP problem, which constitutes the core of the solutions proposed in [8, 39], would
imply a truly subcubic combinatorial algorithm for BMM. We recall that in the AP
problem, we are given a string P of length m and a set of prefixes P [1 . . i] of P , called
active prefixes, stored in a bit vector U (U [i] = 1 if and only if P [1 . . i] is active). We
are further given a set \scrS of strings of total length N , and we are asked to compute a bit
vector V storing the new set of active prefixes of P : a prefix of P that extends P [1 . . i]
(such that U [i] = 1) with some element of \scrS . Of course, we can solve BMM by working
over integers and using one of the fast matrix multiplication algorithms; plugging in
the best known bounds results in an \scrO (\scrN 2.373)-time algorithm [4]. However, such
an algorithm is not combinatorial ; i.e., it uses algebraic methods. In comparison,
the best known combinatorial algorithm for BMM works in \^\scrO (\scrN 3/ log4 \scrN ) time [71].
This leads to the following popular conjecture.

Conjecture 1 ( [2]). There is no combinatorial algorithm for the BMM problem
working in time \scrO (\scrN 3 - \epsilon ) for any \epsilon > 0.

Aoyama et al. [8] showed that the AP problem can be solved in\scrO (m1.5
\surd 
logm+N)

time for constant-sized alphabets. Together with some standard string-processing
techniques applied similarly as in [39], this is then used to solve the EDSM problem
by creating an instance of the AP problem for every set \~T [i] of \~T , i.e., with \scrS = \~T [i].

We argue that, unless Conjecture 1 is false, the AP problem cannot be solved in
time \scrO (m1.5 - \epsilon + N), for any \epsilon > 0, with a combinatorial algorithm (note that the
algorithm of Aoyama et al. [8] uses FFT, and so it is not completely clear whether it
should be considered to be combinatorial). We show this by a reduction from combi-
natorial BMM. Assume that, for the AP problem, we seek combinatorial algorithms
with the running time \scrO (m1.5 - \epsilon +N), i.e., with linear dependency on the total length
of the strings. We need to show that such an algorithm implies that the BMM prob-
lem can be solved in \scrO (\scrN 3 - \epsilon \prime ) time, for some \epsilon \prime > 0, with a combinatorial algorithm,
thus implying that Conjecture 1 is false.

Theorem 1.3. If the AP problem can be solved in \scrO (m1.5 - \epsilon +N) time, for any
\epsilon > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial
algorithm for the BMM problem.

Proof. Recall that in the BMM problem, the matrices are denoted by A and B.
In order to compute C=A\times B, we need to find, for every i, j = 1, . . . ,\scrN , an index k
such that A[i, k] = 1 and B[k, j] = 1. To this purpose, we split matrix A into blocks
of size \scrN \cdot L and B into blocks of size L\cdot L. This corresponds to considering values of
j and k in intervals of size L, and clearly there are \scrN /L such intervals. Matrix B is
thus split into (\scrN /L)2 blocks, giving rise to an equal number of instances of the AP
problem, each one corresponding to an interval of j and an interval of k. We will now
describe the instance corresponding to the (K,J)th block, where 1 \leq K,J \leq \scrN /L.

We build the string P of the AP problem, for any block, as a concatenation of
\scrN gadgets corresponding to i = 1, . . . ,\scrN , and we construct the bit vector U (K,J) of
the AP problem as a concatenation of \scrN bit vectors, one per gadget. Each gadget
consists of the same string aLbaL; we set to 1 the k\prime th bit of the ith gadget bit vector
if A[i, (K  - 1)L + k\prime ] = 1. The solution of the AP problem V (K,J) will allow us to
recover the solution of BMM, as we will ensure that the bit corresponding to the
j\prime th a in the second half of the gadget is set to 1 if and only if, for some k\prime \in [L],D
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A[i, (K  - 1)L+ k\prime ] = 1 and B[(K  - 1)L+ k\prime , (J  - 1)L+ j\prime ] = 1. In order to enforce
this, we will include the following strings in set \scrS (K,J):

aL - k\prime 
baj

\prime 
for every k\prime , j\prime \in [L] such that B[(K  - 1)L+ k\prime , (J  - 1)L+ j\prime ] = 1.

This guarantees that after solving the AP problem, we have the required property,
and thus, after solving all the instances, we have obtained matrix C=A\times B. Indeed,
consider values j, i.e., the index that runs on the columns of C, in intervals of size L.
By construction and by definition of BMM, the ith line of the Jth column interval of
C is obtained by taking the disjunction of the second half of the ith interval of each
(K,J)th bit vector for every K = 1, 2, . . . ,\scrN /L.

We have a total of (\scrN /L)2 instances. In each of them, the total length of all
strings is \scrO (L3), and the length of the input string P is (2L+1)\scrN = \scrO (L \cdot \scrN ). Using
our assumed algorithm for each instance, we obtain the following total time:

\scrO ((\scrN /L)2 \cdot (L3 + (\scrN \cdot L)1.5 - \epsilon )) = \scrO (\scrN 2 \cdot L+\scrN 3.5 - \epsilon /L0.5+\epsilon ).

If we set L = \scrN (1.5 - \epsilon )/(1.5+\epsilon ), then the total time becomes

\scrO (\scrN 2+(1.5 - \epsilon )/(1.5+\epsilon ) +\scrN 3.5 - \epsilon  - (0.5+\epsilon )(1.5 - \epsilon )/(1.5+\epsilon ))

= \scrO (\scrN 2+(1.5 - \epsilon )/(1.5+\epsilon ) +\scrN 2+(1.5 - \epsilon ) - (1.5 - \epsilon )(0.5+\epsilon )/(1.5+\epsilon ))

= \scrO (\scrN 2+(1.5 - \epsilon )/(1.5+\epsilon ) +\scrN 2+(1.5 - \epsilon )(1.5+\epsilon  - 0.5 - \epsilon )/(1.5+\epsilon ))

= \scrO (\scrN 2+(1.5 - \epsilon )/(1.5+\epsilon )).

Hence, we obtain a combinatorial BMM algorithm with complexity \scrO (\scrN 3 - \epsilon \prime ), where
\epsilon \prime = 1 - (1.5 - \epsilon )/(1.5 + \epsilon ) > 0.

Example 3. Consider the following instance of the BMM problem with \scrN = 6
and L = 3:

A B C\left[          

0 1 0
1 0 1
0 0 0

0 1 0
0 0 0
0 0 1

1 0 0
0 0 0
0 1 0

0 1 0
1 0 0
0 0 0

\right]          
\times 

\left[          

0 0 0
1 0 0
0 0 1

0 0 1
0 0 0
0 1 0

0 1 0
0 0 0
1 0 0

0 0 0
1 0 0
0 1 0

\right]          
=

\left[          

\bfone \bfzero \bfzero 
0 0 1
1 0 0

1 0 0
0 1 1
0 1 0

0 0 0
0 1 0
1 0 0

1 0 1
0 0 0
0 0 0

\right]          
.

From matrices A and B, we now show how the resulting matrix C can be found
by building and solving four instances of the AP problem constructed as follows. The
pattern is

P = aaabaaa \cdot aaabaaa \cdot aaabaaa \cdot aaabaaa \cdot aaabaaa \cdot aaabaaa,

where the six gadgets are separated by a \prime \cdot \prime to be highlighted. For the AP instances,
the vectors U (K,J) shown below are the input bit vectors, and the sets S(K,J) are
the input set of strings. For each instance, the bit vector V (K,J) shown below is the
output of the AP problem:
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.

As an example on how to obtain matrix C, consider the bold part of C above
(i.e., the first line of block (1, 1) of C). This is obtained by taking the disjunction of
the bold parts of V (1,1) and V (2,1).

4. EDSM conditional lower bound. Since the lower bound for the AP prob-
lem does not imply per se a lower bound for the whole EDSM problem, in this sec-
tion, we show a conditional lower bound for the EDSM problem. Specifically, we
perform a reduction from TD to show that, if the EDSM problem could be solved in
\scrO (nm1.5 - \epsilon + N) time, this would imply the existence of a truly subcubic algorithm
for TD. We show that TD can be reduced to the decision version of the EDSM prob-
lem: The goal is to detect whether there exists at least one occurrence of P in \~T . To
this aim, given three matrices A, B, C, we first decompose matrix B into blocks of
size \scrN /s\times \scrN /s, where s is a parameter to be determined later; the pattern P is ob-
tained by concatenating a number (namely, z = \scrN s2) of constituent parts Pi of length
\scrO (\scrN /s), each one built with five letters from disjoint subalphabets. The ED text \~T is
composed of three parts: The central part consists of three degenerate segments, the
first one encoding the 1s of matrix A, the second one those of matrix B, and the third
one those of matrix C. These segments are built in such a way that the concatenation
of strings of subsequent segments is of the same form as the pattern's building blocks.
This central part is then padded to the left and to the right with sets containing
appropriately chosen concatenations of substrings Pi of P , so that an occurrence of
the pattern in the text implies that one of its building blocks matches the central part
of the text, thus corresponding to a triangle. Formally, this can be stated as follows.

Theorem 1.1. If the EDSM problem can be solved in \scrO (nm1.5 - \epsilon + N) time,
for any \epsilon > 0, with a combinatorial algorithm, then there exists a truly subcubic
combinatorial algorithm for TD.
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Proof. Consider an instance of TD, where we are given three \scrN \times \scrN Boolean
matrices A,B,C, and the question is to check if there exist i, j, k such that A[i, j] =
B[j, k] = C[k, i] = 1. Let s be a parameter, to be determined later, that corresponds
to decomposing B into blocks of size (\scrN /s) \times (\scrN /s). We reduce to an instance of
EDSM over an alphabet \Sigma of size \scrO (\scrN ). Let us remark that, since we search for exact
occurrences of the pattern, it would also be possible to assume that the instance of
EDSM we reduce to is over a constant-sized (binary) alphabet. We could in fact
replace each letter of the \scrO (\scrN )-sized alphabet with its binary encoding, increasing
the length of the involved strings by only a logarithmic factor.

Pattern P . We construct P by concatenating, in some fixed order, the strings

P (i, x, y) = v(i)xa\scrN /sx\$ya\scrN /syv(i)

for every i = 1, 2, . . . ,\scrN and x, y = 1, 2, . . . , s, where a \in \Sigma 1, \$ \in \Sigma 2, x \in \Sigma 3, y \in \Sigma 4,
v(i) \in \Sigma 5, and \Sigma 1,\Sigma 2, . . . ,\Sigma 5, are disjoint subsets of \Sigma .

ED text \~T . The text \~T consists of three parts. Its middle part encodes all
the entries equal to 1 in matrices A, B, and C and consists of three string sets
\scrX =\scrX 1 \cdot \scrX 2 \cdot \scrX 3, where

1. \scrX 1 contains all strings of the form v(i)xaj , for some i \in [\scrN ], x \in [s], and
j \in [\scrN /s], such that A[i, (x - 1) \cdot (\scrN /s) + j] = 1;

2. \scrX 2 contains all strings of the form a\scrN /s - j x\$ya\scrN /s - k, for some x, y \in [s] and
j, k \in [\scrN /s], such that B[(x - 1) \cdot (\scrN /s) + j, (y  - 1) \cdot (\scrN /s) + k] = 1, i.e., if
the corresponding entry of B is 1;

3. \scrX 3 contains all strings of the form akyv(i), for some i \in [\scrN ], y \in [s], and
k \in [\scrN /s], such that C[(y  - 1) \cdot (\scrN /s) + k, i] = 1.

It is easy to see that | P (i, x, y)| = \scrO (\scrN /s). This implies the following:
1. The length of the pattern is m = \scrO (\scrN \cdot s2 \cdot \scrN /s) = \scrO (\scrN 2 \cdot s).
2. The total length of \scrX is | | \scrX | | = \scrO (\scrN \cdot s \cdot \scrN /s \cdot \scrN /s+ s2 \cdot (\scrN /s)2 \cdot \scrN /s+\scrN \cdot 

s \cdot \scrN /s \cdot \scrN /s) = \scrO (\scrN 3/s).
By the above construction, we obtain the following fact.

Fact 1. P (i, x, y) matches \scrX if and only if, for some j, k = 1, 2, . . . ,\scrN /s, we
have A[i, (x - 1) \cdot (\scrN /s) + j] = 1, B[(x - 1) \cdot (\scrN /s) + j, (y  - 1) \cdot (\scrN /s) + k] = 1, and
C[(y  - 1) \cdot (\scrN /s) + k, i] = 1.

Solving the TD problem thus reduces to taking the disjunction of all such con-
ditions. Let us write down all strings P (i, x, y) in some arbitrary but fixed order to
obtain P = P1P2 . . . Pz with z = \scrN s2 being a power of 2, where every Pt = P (i, x, y)
for some i, x, y. We aim to construct a small number of sets of strings that, when
considered as an ED text, match any prefix P1P2 . . . Pt of the pattern, 1 \leq t \leq z  - 1;
a similar construction can be carried on to obtain sets of strings that match any suffix
Pk . . . Pz - 1Pz, 2 \leq k \leq z. These sets will then be added to the left and to the right
of \scrX , respectively, to obtain the ED text \~T .

ED prefix. We construct log z sets of strings as follows. The first one con-
tains the empty string \varepsilon and P1P2 . . . Pz/2. The second one contains \varepsilon , P1P2 . . . Pz/4,
and Pz/2+1 . . . Pz/2+z/4. The third one contains \varepsilon , P1P2 . . . Pz/8, Pz/4+1 . . . Pz/4+z/8,
Pz/2+1 . . . Pz/2+z/8, and Pz/2+z/4+1 . . . Pz/2+z/4+z/8.

Formally, for every i = 1, 2, . . . , log z, the ith of such sets is

\~T p
i = \varepsilon \cup \{ Pj z

2i - 1 +1 . . . Pj z

2i - 1 + z

2i
| j = 0, 1, . . . , 2i - 1  - 1\} .

ED suffix. We similarly construct log z sets to be appended to \scrX :

\~T s
i = \varepsilon \cup \{ Pz - j z

2i - 1  - z

2i
+1 . . . Pz - j z

2i - 1
| j = 0, 1, . . . , 2i - 1  - 1\} .
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The total length of all the ED prefix and ED suffix strings is \scrO (log z \cdot \scrN 2 \cdot s) =
\scrO (\scrN 2 \cdot s \cdot log\scrN ). The whole ED text \~T is thus \~T = \~T p

1 \cdot \cdot \cdot \cdot \cdot \~T p
log z \cdot \scrX \cdot \~T s

log z \cdot \cdot \cdot \cdot \cdot \~T s
1 .

We next show how a solution of such instance of EDSM corresponds to the solution
of TD.

Lemma 4.1. The pattern P occurs in the ED text \~T if and only if there exist i, j, k
such that A[i, j] = B[j, k] = C[k, i] = 1.

Proof. By Fact 1, if such i, j, k exist, then Pt matches \scrX for some t \in \{ 1, . . . , z\} .
Then, by construction of the sets \~T p

i and \~T s
i , the prefix P1 . . . Pt - 1 matches the ED

prefix (this can be proved by induction), and similarly the suffix Pt+1 . . . Pz matches
the ED suffix, so the whole P matches \~T , and so P occurs therein. In the other
direction, assume that there is an occurrence of the pattern P in \~T . Because the
letter $ appears only in the center of every Pi and in the strings from \scrX 2 and it can be
verified that in any string from \~T p

1 \cdot \cdot \cdot \cdot \cdot \~T p
log z or \~T s

log z \cdot \cdot \cdot \cdot \cdot \~T s
1 there are fewer than z

such letters, it must be the case that for some Pt, its $ is aligned with a $ from some
X2 \in \scrX 2. But then by the subalphabets being disjoint, we must have X1X2X3 = Pt

for some X1 \in \scrX 1, X2 \in \scrX 2, X3 \in \scrX 3, and by Fact 1, there exists a triangle.

Note that for the EDSM problem, we have m = \scrN 2 \cdot s, n = 1+2log z, and N =
| | \scrX | | +\scrO (\scrN 2\cdot s\cdot log\scrN ). Thus, if we had a solution running in \scrO (log z \cdot m1.5 - \epsilon + | | \scrX | | +
\scrN 2 \cdot s \cdot log\scrN ) =\scrO (log\scrN \cdot (\scrN 2 \cdot s)1.5 - \epsilon + \scrN 3/s) time, for some \epsilon > 0, by choosing
a sufficiently small \alpha > 0 and setting s = \scrN \alpha , we would obtain, for some \delta > 0, an
\scrO (\scrN 3 - \delta )-time algorithm for TD. This ends the proof of Theorem 1.1.

In order to show that AP cannot be solved in time \scrO (m1.5 - \epsilon +N) with a combi-
natorial algorithm unless there is a truly subcubic combinatorial algorithm for BMM
(Theorem 1.3), in section 3, we have exhibited a fully detailed reduction from BMM
to the AP problem. However, now that we have proved a lower bound for EDSM,
we remark that Theorem 1.1 also implies Theorem 1.3. Indeed, assuming that the
AP problem can be solved in \scrO (m1.5 - \epsilon +N) time, then by calling the AP problem n
times (as described in section 2 under the definition of the EDSM problem), we could
solve the EDSM problem in \scrO (nm1.5 - \epsilon + N) time. At that point, we could apply
Theorem 1.1 and obtain a truly subcubic combinatorial algorithm for BMM.

5. An \~\bfscrO (\bfitn \bfitm \bfitomega  - \bfone + \bfitN )-time algorithm for EDSM. Our goal is to design
a noncombinatorial \~\scrO (nm\omega  - 1 +N)-time algorithm for EDSM, which in turn can be
achieved with a noncombinatorial \~\scrO (m\omega  - 1 +N)-time algorithm for the AP problem,
which is the bottleneck of EDSM (cf. [39]).

We reduce AP to a logarithmic number of restricted instances of the same problem
based on the length of the strings in \scrS . We start by giving a lemma that we will use
to process naively the strings of length up to a constant c, to be determined later, in
\scrO (m logm+N) time.

Lemma 5.1. For any integer t, all strings in \scrS of length at most t can be processed
in \scrO (m logm+mt+N) time.

Proof. We first construct the suffix tree ST of P in \scrO (m logm) time [65]. Let us
remark that we are spending \scrO (m logm) time and not just \scrO (m) so as to avoid any
assumptions on the size of the alphabet. For every explicit node u \in ST , we construct
a perfect hash function mapping the first letter on every edge outgoing from u to the
corresponding edge. This takes \scrO (m logm) total time [61] and allows us to navigate
in ST in constant time per letter. For every S \in \scrS , find and mark its corresponding
(implicit or explicit) node of ST . This takes \scrO (N) time overall. For every possible
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length t\prime \leq t, scan P with a window of length t\prime while maintaining its corresponding
(implicit or implicit) node of ST . To move the window to the right, we first follow
the suffix link of the current node (if the node is implicit, we follow the suffix link
of its nearest explicit ancestor and then descend to find the node corresponding to
the truncated window) and then follow the appropriate edge. This takes \scrO (mt) total
time by standard amortization based on counting the number of explicit ancestors of
the current node. If the current window P [i . . (i + t\prime  - 1)] corresponds to a marked
node of ST and additionally U [i - 1] = 1, we set V [i+ t\prime  - 1] = 1.

We build the restricted instances of the AP problem by considering only strings in
\scrS k \subseteq \scrS of length in [(19/18)k, (19/18)k+1) for each integer k ranging from \lceil log c

log(19/18)\rceil 
to \lfloor logm

log(19/18)\rfloor . These sets form a partition of the set of all strings in \scrS of lengths up

to m; longer strings are not needed when solving the AP problem.
For each integer k from \lceil log c

log(19/18)\rceil to \lfloor logm
log(19/18)\rfloor , let \ell be an integer such that

the length of every string in \scrS k belongs to [9/8 \cdot \ell , 5/4 \cdot \ell ). Note that such an integer
always exists for an appropriate choice of the integer constant c. In fact, it must hold
that

9

8
\cdot \ell \leq 

\biggl( 
19

18

\biggr) k

<

\biggl( 
19

18

\biggr) k+1

\leq 5

4
\cdot \ell \Leftarrow \Rightarrow 4

5
\cdot 
\biggl( 
19

18

\biggr) k+1

\leq \ell \leq 8

9
\cdot 
\biggl( 
19

18

\biggr) k

.

To ensure that there exists an integer \ell satisfying such conditions, we require that

4

5
\cdot 
\biggl( 
19

18

\biggr) k+1

+ 1 \leq 8

9
\cdot 
\biggl( 
19

18

\biggr) k

\Leftarrow \Rightarrow 45

2
\leq 

\biggl( 
19

18

\biggr) k

.

The last equation holds for k \geq 58, implying that we will process naively the strings

of length up to c = 23, and each \scrS k, for k ranging from 58 to
\Bigl\lfloor 

logm
log(19/18)

\Bigr\rfloor 
, will be

processed separately as described in the next paragraph.

Remark 5.2. The length of every string in \scrS belonging to [9/8 \cdot \ell , 5/4 \cdot \ell ) implies
that every string in \scrS contains at most \ell /4 length-\ell substrings (and at least 1 + \ell /8
of them).

Denoting by Nk the total size of strings in \scrS k, we have that, if we solve every
such instance of AP in \scrO (Nk+f(m)) time, then we can solve the original instance of
AP in \scrO (N + f(m) logm) time by taking the disjunction of the results. Switching to
\~\scrO notation that disregards polylog factors, it thus suffices to solve each such instance
of the AP problem in \~\scrO (N +m\omega  - 1) time.

We further partition the strings in \scrS k into three types, compute the corresponding
bit vector V for each type separately, and, finally, take the disjunction of the resulting
bit vectors V to obtain the answer for each restricted instance.

Partitioning \scrS k. Keeping in mind that from now on (until section 5.4) we
address the AP problem assuming that \scrS only contains strings of length in [9/8 \cdot 
\ell , 5/4 \cdot \ell ) and thus is in fact \scrS k, to lighten the notation, we now switch back to denote
it simply with \scrS and similarly write N to denote the total length of all strings given
as the input to the AP problem. The three types of strings are as follows:
Type 1: Strings S \in \scrS such that every length-\ell substring of S is not strongly peri-

odic.
Type 2: Strings S \in \scrS containing at least one length-\ell substring that is not strongly

periodic and at least one length-\ell substring that is strongly periodic.
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Type 3: Strings S \in \scrS such that every length-\ell substring of S is strongly periodic
(in Lemma 5.3, we show that in this case per(S) \leq \ell /4).

These three types are evidently a partition of \scrS . We start with showing that, in
fact, strings of Type 3 are exactly strings with period at most \ell /4. It is straightfor-
ward to verify that strings with period at most \ell /4 are such that all their length-\ell 
substrings have period at most \ell /4; the following lemma addresses the other (less
obvious) direction.

Lemma 5.3. Let S be a string. If per(S[j . . j + \ell  - 1]) \leq \ell /4 for every j, then
per(S) \leq \ell /4.

Proof. We first show that, for any string W and letters a, b, if per(aW ) \leq | aW | /4
and per(Wb) \leq | Wb| /4, then per(aW ) = per(Wb). This follows from Lemma 2.1:
Since per(aW ) and per(Wb) are both periods of W and (1 + | W | )/4 \leq | W | /2, we
have that d = gcd(per(aW ),per(Wb)) is a period of W . Assuming by contradiction
that per(aW ) \not = per(Wb), it must be that either d < per(aW ) or d < per(Wb); by
symmetry, it is enough to consider the former possibility, and we claim that then d is a
period of aW . Indeed, a = W [per(aW )] (observe that since per(aW ) \leq (1+ | W | )/4 \leq 
| W | /2, in particular per(aW ) < | W | ) and W [i] = W [i+d] for any i = 1, 2, . . . , | W |  - d,
so by per(aW ) being a multiple of d, we obtain that a = W [per(aW )] = W [d], which is
a contradiction because, by definition of per(aW ), we have that d < per(aW ) cannot
be a period of aW .

If per(S[j . . j+\ell  - 1]) \leq \ell /4 for every j, then by the above reasoning, the periods of
all substrings S[j . . j+\ell  - 1] are all equal to the same p \leq \ell /4. But then S[i] = S[i+p]
for every i, so per(S) \leq \ell /4.

Before proceeding with the algorithm, we show that, for each string S \in \scrS , we
can determine its type in \scrO (| S| ) time.

Lemma 5.4. Given a string S, we can determine its type in \scrO (| S| ) time.

Proof. It is well known that per(T ) can be computed in \scrO (| T | ) time for any string
T (cf. [28]). We partition S into blocks T\alpha = S[\alpha \lfloor \ell /2\rfloor . . (\alpha +1)\lfloor \ell /2\rfloor  - 1] of size \lfloor \ell /2\rfloor 
and compute per(T\alpha ) for every \alpha in \scrO (| S| ) total time. Observe that every substring
S[i . . i+ \ell  - 1] contains at least one whole block inside.

If per(T\alpha ) > \ell /4, then the period of any substring S[i . . i+ \ell  - 1] that contains T\alpha 

is also larger than \ell /4. Consequently, if per(T\alpha ) > \ell /4 for every \alpha , then we declare S
to be of Type 1.

Consider any \alpha such that p = per(T\alpha ) \leq \ell /4. If the period p\prime of a substring
S\prime = S[i . . i+ \ell  - 1] that contains T\alpha is at most \ell /4, then in fact it must be equal to
p because p\prime \geq p, and so, by Lemma 2.1 applied on T\alpha , p

\prime must be a multiple of p,
and, by repeatedly applying S\prime [j] = S\prime [j+p\prime ] and T\alpha [j] = T\alpha [j+p] and using the fact
that T\alpha occurs inside S\prime , we conclude that in fact S\prime [j] = S\prime [j+ p] for any j, and thus
p\prime = p. This allows us to check whether there exists a substring S\prime = S[i . . i+ \ell  - 1]
that contains T\alpha such that per(S\prime ) \leq \ell /4 by computing, in \scrO (\ell ) time, how far the
period p extends to the left and to the right of T\alpha in T\alpha  - 1T\alpha T\alpha +1 (if either T\alpha  - 1 or
T\alpha +1 do not exist, then we do not extend the period in the corresponding direction).
There exists such a substring S\prime if and only if the length of the extended substring
with period p is at least \ell . Therefore, for every \alpha , we can check in \scrO (\ell ) time if there
exists a length-\ell substring S\prime containing T\alpha with per(S\prime ) \leq \ell /4. By repeating this
procedure for every \alpha , we can distinguish between S of Type 2 and S of Type 3 in
\scrO (| S| ) total time.
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Since we have shown how to efficiently partition the strings of S into the three
types, in what follows, we present our solution of the AP problem for each type of
strings separately.

5.1. Type 1 strings. In this section, we show how to solve a restricted instance
of the AP problem where every string S \in \scrS is of Type 1, that is, each of its length-\ell 
substrings is not strongly periodic, and furthermore | S| \in [9/8 \cdot \ell , 5/4 \cdot \ell ) for some
\ell \leq m. Observe that all (and hence at most \ell /4 by Remark 5.2) length-\ell substrings of
any S \in \scrS must be distinct, as otherwise we would be able to find two occurrences of
a length-\ell substring at distance at most \ell /4 in S, making the period of the substring
at most \ell /4 and contradicting the assumption that S is of Type 1.

We start with constructing the suffix tree ST of P (our pattern in the EDSM
problem) and storing, for every node, the first letters on its outgoing edges in a static
dictionary with constant access time. Then, for every S \in \scrS , we check in \scrO (| S| ) time
using ST if it occurs in P , and, if not, we disregard it from further consideration.
Therefore, from now on, we assume that all strings S and thus all their length-\ell 
substrings occur in P . We will select a set of length-\ell substrings of P , called the
anchors, each represented by one of its occurrences in P , such that

1. the total number of occurrences of all anchors in P is \scrO (m/\ell \cdot logm);
2. for every S \in \scrS , at least one of its length-\ell substrings is an anchor;
3. the total number of occurrences of all anchors in strings S \in \scrS is \scrO (| \scrS | \cdot logm).

We formalize this using the following auxiliary problem, which is a strengthening of a
well-known Hitting Set problem, which, given a collection of m sets over [n], each of
size at least k, asks to choose a subset of [n] of size \scrO (n/k \cdot logm) that nontrivially
intersects every set.

Node Selection (NS)
INPUT: A bipartite graph G = (U, V,E) with deg(u) \in (d, 2d] for every u \in U
and weight w(v) for every v \in V , where W =

\sum 
v\in V w(v).

OUTPUT: A set V \prime \subseteq V of total weight \scrO (W/d\cdot log | U | ) such that N [u]\cap V \prime \not = \emptyset 
for every node u \in U and

\sum 
u\in U | N [u] \cap V \prime | = \scrO (| U | log | U | ).

We reduce the problem of finding anchors to an instance of the NS problem by
building a bipartite graph G in which the nodes in U correspond to strings S \in \scrS ,
the nodes in V correspond to distinct length-\ell substrings of P , and there is an edge
(u, v) if the length-\ell string corresponding to v occurs in the string S corresponding
to u. Using suffix links, we can find the node of the suffix tree corresponding to
every length-\ell substring of S in \scrO (| S| ) total time, so the whole construction takes
\scrO (m logm+

\sum 
S\in \scrS | S| ) = \scrO (m logm+N) time. The size of G is \scrO (m+N), and the

degree of every node in U belongs to (\ell /8, \ell /4]. We set the weight of a node v \in V to
be its number of occurrences in P and solve the obtained instance of the NS problem
to obtain the set of anchors. We remark that, because each string S \in \scrS can be
assumed to be a substring of P and we do not need to keep duplicate strings in \scrS ,
we have log | U | = \Theta (logm), and the three required properties indeed hold assuming
that we have found a solution. However, it is not immediately clear that an instance
of the NS problem always has a solution. We show that indeed it does and that it
can be found in linear time.

Lemma 5.5. A solution to an instance of the NS problem always exists and can
be found in linear time in the size of G.D
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Proof. We first show a solution that uses the probabilistic method and leads us
to an efficient Las Vegas algorithm; we will then derandomize the solution using the
method of conditional expectations.

We independently choose each node of V with probability p to obtain the set V \prime 

of selected nodes. The expected total weight of V \prime is
\sum 

v\in V p \cdot w(v) = p \cdot W , so by
Markov's inequality, it exceeds 4p \cdot W with probability at most 1/4. For every node
u \in U , the probability that N [u] does not intersect V \prime is at most (1  - p)d \leq e - pd.
Finally, \BbbE [

\sum 
u\in U | N [u]\cap V \prime | ] \leq | U | \cdot 2pd, so by Markov's inequality,

\sum 
u\in U | N [u]\cap V \prime | 

exceeds | U | \cdot 8pd with probability at most 1/4. We set p = ln(4| U | )/d (observe that
if p > 1, then we can select all nodes in V ). By union bound, the probability that V \prime 

is not a valid solution is at most 3/4, so indeed a valid solution exists. Furthermore,
this reasoning gives us an efficient Las Vegas algorithm that chooses V \prime randomly
as described above and then verifies if it constitutes a valid solution. Each iteration
takes linear time in the size of G, and the expected number of required iterations is
constant.

To derandomize the above procedure, we apply the method of conditional expec-
tations. Let X1, X2, . . . be the binary random variables corresponding to the nodes
of V . Recall that in the above proof, we set Xi = 1 with probability p. Now we
will choose the values of X1, X2, . . . one by one. Define a function f(X1, X2, . . .) that
bounds the probability that X1, X2, . . . corresponds to a valid solution as follows:

f(X1, X2, . . .) =

\sum 
v Xv \cdot w(v)

4W/d \cdot ln(4| U | )
+

\sum 
u\in U

\prod 
v\in N [u]

(1 - Xv) +

\sum 
u\in U

\sum 
v\in N [u] Xv

8| U | ln(4| U | )
.

As explained above, we have \BbbE [f(X1, X2, . . .)] = 3/4. Assume that we have already
fixed the values X1 = x1, . . . , Xi = xi. Then there must be a choice of Xi+1 = xi+1

that does not increase the expected value of f(X1, X2, . . .) conditioned on the already
chosen values. We want to compare the two quantities

\BbbE [f(X1, X2, . . .) | X1 = x1, . . . , Xi = xi, Xi+1 = 0],

\BbbE [f(X1, X2, . . .) | X1 = x1, . . . , Xi = xi, Xi+1 = 1]

and choose xi+1 corresponding to the smaller one. Canceling out the shared terms,
we need to compare the expected values of

0 +
\sum 

u\in N [i+1]

\prod 
v\in N [u]

(1 - Xv) + 0 and

w(i+ 1)

4W/d \cdot ln(4| U | )
+ 0 +

deg(i+ 1)

8| U | ln(4| U | )
.

The second quantity can be computed in constant time. We claim that (ignoring the
issue of numerical precision) the first quantity can be computed in time \scrO (deg(i+1))
after a linear-time preprocessing as follows. In the preprocessing, we compute and
store E[i] = (1 - p)i, for every i = 0, 1, . . . , | V | in \scrO (| V | ) total time. Then, during the
computation, we maintain, for every u \in U , the number c[u] of v \in N [u], for which
we still need to choose the value Xe, and a single bit b[u] denoting whether for some
v \in N [u] \cap \{ 1, . . . , i\} we already have xv = 1. This information can be updated in
\scrO (deg(i+1)) time after selecting xi+1. Now to compute the first quantity, we iterate
over u \in N [i + 1], and if b[u] = 0, then we add E[c[u]] to the result. Finally, we
claim that it is enough to implement all calculations with precision of \Theta (log | V | ) bits.
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This is because such precision allows us to calculate both quantities with relative
accuracy 1/(8| V | ), so the expected value of f(X1, X2, . . .) might increase by a factor
of (1+1/(4| V | )) in every step, which is at most (1+1/(4| V | ))| V | \leq e1/4 overall. This
still guarantees that the final value is at most 3/4 \cdot e1/4 < 1, so we obtain a valid
solution.

In the rest of this section, we explain how to compute the bit vector V from
the bit vector U---and thus solve the AP problem---after having obtained a set \scrA of
anchors. For any S\in \scrS , since S contains an occurrence of at least one anchor H\in \scrA ,
say, S[j . .(j+ | H|  - 1)]=H, any occurrence of S in P can be generated by choosing
some occurrence of H in P , say, P [i . . (i + | H|  - 1)] = H, and then checking that
S[1 . . (j - 1)] = P [(i - j+1) . . (i - 1)] and S[(j+| H| ) . . | S| ] = P [(i+| H| ) . . (i+| S|  - j)].
In other words, S[1 . . (j - 1)] should be a suffix of P [1 . . (i - 1)], and S[(j+ | H| ) . . | S| ]
should be a prefix of P [(i+| H| ) . . | P | ]. In such case, we say that the occurrence of S in
P is generated by H. By the properties of \scrA , any occurrence of S \in \scrS is generated by
occS \geq 1 occurrences of anchors, where

\sum 
S\in \scrS occS = \scrO (| \scrS | logm). For every H\in \scrA ,

we create a separate data structure D(H) responsible for setting V [i + | S|  - 1] = 1
when U [i - 1]=1 and P [i . .(i+| S|  - 1)]=S is generated by H. We now first describe
what information is used to initialize each D(H) and how this is later processed to
update V .

Initialization. D(H) consists of two compact tries T (H) and T r(H). For every
occurrence of H in P , denoted by P [i . . (i+ | H|  - 1)] = H, T (H) should contain a leaf
corresponding to P [(i+ | H| ) . . | P | ]\$, and T r(H) should contain a leaf corresponding
to (P [1 . . (i - 1)])r\$, both decorated with position i. Additionally, D(H) stores a list
L(H) of pairs of nodes (u, v), where u \in T r(H) and v \in T (H) (both nodes might be
implicit or explicit). Each such pair corresponds to an occurrence of H in a string
S \in \scrS , S[j . . (j + | H|  - 1)] = H, where u is the node of T r(H) corresponding to
(S[1 . . (j  - 1)])r\$ and v is the node of T (H) corresponding to S[(j + | H| + 1) . . | S| ]\$.
We claim that D(H), for all H, can be constructed in \scrO (m logm+N) total time.

We first construct the suffix tree ST of P\$ and the suffix tree ST r of P r\$ (again in
\scrO (m logm) time not to make assumptions on the alphabet). We augment both trees
with data for answering both weighted ancestor (WA) and lowest common ancestor
(LCA) queries, which are defined as follows. For a rooted tree T on n nodes with
an integer weight \scrD (v) assigned to every node u such that the weight of the root is
zero and \scrD (u) < \scrD (v) if u is the parent of v, we say that a node v is a weighted
ancestor of a node v at depth \ell , denoted by WAT (u, \ell ), if v is the highest ancestor
of u with weight at least \ell . Such queries can be answered in \scrO (log n) time after an
\scrO (n) preprocessing [32]. For a rooted tree T , LCAT (u, v) is the lowest node that is an
ancestor of both u and v. Such queries can be answered in \scrO (1) time after an \scrO (n)
preprocessing [12]. Recall that every anchor H is represented by one of its occurrences
in P . Using WA queries, we can access in \scrO (logm) time the nodes corresponding to H
and Hr, respectively, and extract a lexicographically sorted list of suffixes following an
occurrence of H in P\$ and a lexicographically sorted list of reversed prefixes preceding
an occurrence of H in P r\$ in time proportional to the number of such occurrences.
Then, by iterating over the lexicographically sorted list of suffixes and using LCA
queries on ST , we can build T (H) in time proportional to the length of the list, and
similarly, we can build T r(H). To construct L(H), we start by computing, for every
S \in \scrS and j = 1, . . . , | S| , the node of ST r corresponding to (S[1 . . j])r and the node
of ST corresponding to S([(j + 1) . . | S| ] (the nodes might possibly be implicit). This
takes only \scrO (| S| ) time by using suffix links. We also find, for every length-\ell substring
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H

T r(H) T (H)

i

i

v
u

Fig. 1. An occurrence of S starting at position i in P is generated by H: (u, v) corresponds to
S[j . . (j + | H|  - 1)] = H, and i appears in the subtree of T r(H) rooted at u as well as in the subtree
of T (H) rooted at v.

S[j . . (j+ \ell  - 1)] of S, an anchor H \in \scrA such that S[j . . (j+ \ell  - 1)] = H, if any exists.
This can be done by finding the nodes (implicit or explicit) of ST that correspond to
the anchors and then scanning over all length-\ell substrings while maintaining the node
of ST corresponding to the current substring using suffix links in \scrO (| S| ) total time.
After having determined that S[j . . (j+ \ell  - 1)] = H, we retrieve the previously found
nodes u of ST r and v of ST corresponding to (S[1 . . (j  - 1)])r and S[(j + \ell ) . . | S| ],
respectively. Then we look up the node u\prime \in T r(H) corresponding to u and the node
v\prime \in T (H) corresponding to v, and if they both exist, we add (u, v) to L(H). This
lookup can be implemented in \scrO (logm) time by binary searching over the leaves of
the compact tries. By construction, we have the following property, also illustrated
in Figure 1.

Fact 2. A string S \in \scrS starts at position i - j+1 in P if and only if, for some
anchor H \in \scrA , L(H) contains a pair (u, v) corresponding to S[j . . (j+| H|  - 1)] =H
such that the subtree of T r(H) rooted at u and that of T (H) rooted at v contain a leaf
decorated with i.

Note that the overall size of all lists L(H), when summed up over all H \in \scrA , is\sum 
S\in \scrS occS = \scrO (| \scrS | logm), and since each S is of length at least \ell , this is \scrO (N/\ell \cdot 

logm).
Processing. The goal of processing D(H) is to efficiently process all occurrences

generated by H. As a preliminary step, we decompose T r(H) and T (H) into heavy
paths. Then, for every pair of leaves u \in T r(H) and v \in T (H) decorated by the same
i, we consider all heavy paths above u and v. Let p = u1  - u2  - . . . be a heavy path
above u in T r(H) and q = v1  - v2  - . . . be a heavy path above v in T (H), where
u1 is the head of p and v1 is the head of q, respectively. Further, choose the largest
x such that u is in the subtree rooted at ux and the largest y such that v is in the
subtree rooted at vy (this is well defined by the choice of p and q, as u is in the subtree
rooted at u1 and v is in the subtree rooted at v1). We add (i, | \scrL (ux)| , | \scrL (vy)| ) to an
auxiliary list associated with the pair of heavy paths (p, q), where \scrL (u) denotes the
concatenation of the edge labels on the path from the root to node u. In the rest of
the processing, we work with each such list separately. Notice that the overall size
of all auxiliary lists, when summed up over all H \in \scrA , is \scrO (m/\ell \cdot log3 m) because
there are at most log2 m pairs of heavy paths above u and v decorated by the same i
and the total number of leaves in all trees T r(H) and T (H) is bounded by the total
number of occurrences of all anchors in P , which is \scrO (m/\ell \cdot logm). By Fact 2, there
is an occurrence of a string \scrS generated by H and starting at position i - j+1 in P if
and only if L(H) contains a pair (u, v) corresponding to S[j . . (j+ | H|  - 1)] = H such
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H

T r(H) T (H)

i i
vu

ux vy

Fig. 2. An occurrence of S starting at position i in P corresponds to a triple (i,\scrL (ux),\scrL (vy))
on some auxiliary list.

that, denoting by p the heavy path containing u in T r(H) and by q the heavy path
containing v in T (H), the auxiliary list associated with (p, q) contains a triple (i, x, y)
such that x \geq | \scrL (u)| and y \geq | \scrL (v)| . This is illustrated in Figure 2. Henceforth,
we focus on the problem of processing a single auxiliary list associated with (p, q),
together with a list of pairs (u, v), such that u belongs to p and v belongs to q.

Processing an auxiliary list can be interpreted geometrically as follows: For every
(i, x, y), we create a red point (x, y), and for every (u, v), we create a blue point
(| \scrL (u)| , | \scrL (v)| ). Then each occurrence of S \in \scrS generated by H corresponds to
a pair of points (p1, p2) such that p1 is red, p2 is blue, and p1 dominates p2. We
further reduce this to a collection of simpler instances in which all red points already
dominate all blue points. This can be done with a divide-and-conquer procedure
which is essentially equivalent to constructing a 2D range tree [13]: We first apply a
divide-and-conquer that splits the current set of points along the median x coordinate,
and inside each obtained subproblem consisting of the left and the right part, we apply
another divide-and-conquer that splits the current set of points along the median y
coordinate. The total number of points in all obtained instances increases by a factor
of \scrO (log2 m), making the total number of red points in all instances \scrO (m/\ell \cdot log5 m),
while the total number of blue points is \scrO (N/\ell \cdot log3 m). There is an occurrence of
a string S \in \scrS generated by H and starting at position i  - j + 1 in P if and only if
some simpler instance contains a red point created for some (i, x, y) and a blue point
created for some (u, v) corresponding to S[j . . (j + | H|  - 1)] = H. In the following,
we focus on processing a single simpler instance.

To process a simpler instance, we need to check if U [i  - j] = 1 for a red point
created for some (i, x, y) and a blue point created for some (u, v) corresponding to
S[j . . (j + | H|  - 1)] = H and, if so, set V [i  - j + | S| ] = 1. This has a natural
interpretation as an instance of BMM: We create a \lceil 5/4 \cdot \ell \rceil \times \lceil 5/4 \cdot \ell \rceil matrix M
such that M [| S|  - j, \lceil 5/4 \cdot \ell \rceil + 1 - j] = 1 if and only if there is a blue point created
for some (u, v) corresponding to S[j . . (j + | H|  - 1)] = H; then, for every red point
created for some (i, x, y), we construct a bit vector Ui = U [(i - \lceil 5/4 \cdot \ell \rceil ) . . (i - 1)] (if
i < \lceil 5/4 \cdot \ell \rceil , we pad Ui with 0s to make its length always equal to \lceil 5/4 \cdot \ell \rceil ), calculate
Vi = M \times Ui, and finally set V [i+ j] = 1 whenever Vi[j] = 1 (and i+ j \leq m).

Lemma 5.6. Vi[k] = 1 if and only if there is a blue point created for some (u, v)
corresponding to S[j . . (j + | H|  - 1)] = H such that U [i - j] = 1 and k = | S|  - j.

Proof. By definition of Vi = M \times Ui, we have that Vi[k] = 1 if and only if
M [k, t] = 1 for some t such that Ui[t] = 1. By definition of Ui, we have that Ui[t] = 1
if and only if U [i  - \lceil 5/4 \cdot \ell \rceil + t  - 1] = 1, and hence the previous condition can be
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rewritten as M [k, t] = 1 and U [i - \lceil 5/4 \cdot \ell \rceil +t - 1] = 1 or, equivalently, by substituting
j = \lceil 5/4 \cdot \ell \rceil +1 - t, M [k, \lceil 5/4 \cdot \ell \rceil +1 - j] = 1, and U [i - j] = 1. By definition of M ,
we have that M [k, \lceil 5/4 \cdot \ell \rceil +1 - j] = 1 if and only if there is a blue point created for
some (u, v) corresponding to S[j . . (j + | H|  - 1)] = H with k = | S|  - j, which proves
the lemma.

The total length of all vectors Ui and Vi is \scrO (m log5 m), so we can afford to
extract the appropriate fragment of U and then update the corresponding fragment
of V . The bottleneck is computing the matrix-vector product Vi = M \times Ui. Since the
total number of 1s in all matrices M is bounded by the total number of blue points,
a naive method would take \scrO (N/\ell \cdot log3 m) time; we overcome this by processing
together all multiplications concerning the same matrix M , thus amortizing the costs.
Let Ui1 , Ui2 , . . . , Uis be all bit vectors that need to be multiplied with M , and let z
a parameter to be determined later. We distinguish between two cases: (i) If s < z,
then we compute the products naively by iterating over all 1s in M , and the total
computation time, when summed up over all such matrices M , is \scrO (N/\ell \cdot log3 m \cdot z);
(ii) if s \geq z, then we partition the bit vectors into \lceil s/z\rceil \leq s/z + 1 groups of z
(padding the last group with bit vectors containing all 0s), and, for every group, we
create a single matrix whose columns contain all the bit vectors belonging to the
group. Thus, we reduce the problem of computing all matrix-vector products M \times Ui

to that of computing \scrO (s/z) matrix-matrix products of the form M \times M \prime , where M \prime 

is an \lceil 5/4 \cdot \ell \rceil \times z matrix. Even if M \prime is not necessarily a square matrix, we can still
apply the fast matrix multiplication algorithm to compute M\times M \prime using the standard
trick of decomposing the matrices into square blocks.

Lemma 5.7. If two \scrN \times \scrN matrices can be multiplied in \scrO (\scrN \omega ) time, then, for
any \scrN \geq \scrN \prime , an \scrN \times \scrN and an \scrN \times \scrN \prime matrix can be multiplied in \scrO ((\scrN /\scrN \prime )2\scrN \prime \omega )
time.

Proof. We partition both matrices into blocks of size \scrN \prime \times \scrN \prime . There are (\scrN /\scrN \prime )2

such blocks in the first matrix and \scrN /\scrN \prime in the second matrix. Then, to compute
the product, we multiply each block from the first matrix by the appropriate block in
the second matrix in \scrO (\scrN \prime \omega ) time, resulting in the claimed complexity.

By applying Lemma 5.7, we can compute M \times M \prime in \scrO (\ell 2z\omega  - 2) time (as long
as we later verify that 5/4 \cdot \ell \geq z), so all products M \times Ui can be computed in
\scrO (\ell 2z\omega  - 2 \cdot (s/z+1)) time. Note that this case can occur only \scrO (m/(\ell \cdot z)\cdot log5 m) times
because all values of s sum up to \scrO (m/\ell \cdot log5 m). This makes the total computation
time, when summed up over all such matrices M , \scrO (\ell 2z\omega  - 2 \cdot m/(\ell \cdot z) \cdot log5 m) =
\scrO (\ell z\omega  - 3 \cdot m log5 m). We can now prove our final result for strings of Type 1.

Theorem 5.8. An instance of the AP problem where all strings are of Type 1 can
be solved in \~\scrO (m\omega  - 1 +N) time.

Proof. The total time complexity is first \scrO (m + N) to construct the graph G,
then \scrO (m logm + N) to solve its corresponding instances of the NodeSelection
problem and obtain the set of anchors H. The time to initialize all structures D(H)
is \scrO (m logm + N). For every D(H), we obtain in \scrO (m/\ell \cdot log5 m + N/\ell \cdot log3 m)
time a number of simpler instances and then construct the corresponding Boolean
matrices M and bit vectors Ui in additional \scrO (m log5 m) time. Note that some M
might be sparse, so we need to represent them as a list of 1s. Then, summing up over
all matrices M and both cases, we spend \scrO (N/\ell \cdot log3 m \cdot z + \ell z\omega  - 3 \cdot m log5 m) time.
We would like to assume that \ell \geq log3 m so that we can set z = \ell / log3 m. This is
indeed possible because for any t, we can switch to a more naive approach to process
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568 BERNARDINI ET AL.

all strings of length at most t in \scrO (m logm+mt+N) time as described in Lemma 5.1.
After applying it with t = log3 m in \scrO (m log3 m+N) time, we can set z = \ell / log3 m
(so that indeed 5/4 \cdot \ell \geq z as required in case s \geq z), and the overall time complexity

for all matrices M and both cases becomes \scrO (N + \ell \omega  - 2 \cdot m log5+3(3 - \omega ) m). Taking

the initialization into account, we obtain \scrO (m log5 m+ \ell \omega  - 2 \cdot m log5+3(3 - \omega ) m+N) =
\~\scrO (m\omega  - 1 +N) total time.

5.2. Type 2 strings. In this section, we show how to solve a restricted instance
of the AP problem where every string S \in \scrS is of Type 2; that is, S contains a length-\ell 
substring that is not strongly periodic as well as a length-\ell substring that is strongly
periodic, and furthermore | S| \in [9/8 \cdot \ell , 5/4 \cdot \ell ) for some \ell \leq m.

Similarly as in section 5.1, we select a set of anchors. In this case, instead of the
NodeSelection problem, we need to exploit periodicity. We call a string T \ell -periodic
if | T | \geq \ell and per(T ) \leq \ell /4. We consider all maximal \ell -periodic substrings of S, that
is, \ell -periodic substrings S[i . . j], such that either i = 1 or per(S[(i  - 1) . . j]) > \ell /4
and j = | S| or per(S[i . . (j + 1)]) > \ell /4. We know that S contains at least one such
substring (because there exists a length-\ell substring that is strongly periodic) and
that the whole S is not such a substring (because otherwise S would be of Type 3).
Further, two maximal \ell -periodic substrings cannot overlap too much, as formalized
in the following lemma.

Lemma 5.9. Any two distinct maximal \ell -periodic substrings of the same string S
overlap by less than \ell /2 letters.

Proof. Assume (by contradiction) the opposite; then we have two distinct \ell -
periodic substrings S[i . . j] and S[i\prime . . j\prime ] such that i < i\prime \leq j < j\prime and j - i\prime +1 \geq \ell /2.
Then both p = per(S[i . . j]) and p\prime = per(S[i\prime . . j\prime ]) are periods of S[i\prime . . j], and hence,
by Lemma 2.1, we have that gcd(p, p\prime ) is a period of S[i\prime . . j]. If p \not = p\prime , then, because
S[i\prime . . j] contains an occurrence of both S[i . . (i + p  - 1)] and S[i\prime . . (i\prime + p\prime  - 1)], we
obtain that one of these two substrings is a power of a shorter string, thus contradict-
ing the definition of p or p\prime . So p = p\prime , but then p \leq \ell /4 is actually a period of the
whole S[i . . j\prime ], meaning that S[i . . j] and S[i\prime . . j\prime ] are not maximal, a contradiction.

By Lemma 5.9, every S \in \scrS contains exactly one maximal \ell -periodic substring,
and by the same argument, P contains \scrO (m/\ell ) such substrings. The set of anchors
will be generated by considering the unique maximal \ell -periodic substring of every
S \in \scrS , so we first need to show how to efficiently generate such substrings.

Lemma 5.10. Given a string S of length at most 5/4 \cdot \ell , we can generate its
(unique) maximal \ell -periodic substring in \scrO (| S| ) time.

Proof. We start with observing that any length-\ell substring of S must contain
S[(\lfloor \ell /2\rfloor + 1) . . \ell ] inside. Consequently, we can proceed similarly as in the proof of
Lemma 5.4. We compute p = per(S[(\lfloor \ell /2\rfloor + 1) . . \ell ]) in \scrO (| S| ) time. If p > \ell /4,
then S does not contain any \ell -periodic substrings. Otherwise, we compute in \scrO (| S| )
time how far the period p extends to the left and to the right; that is, we compute
the smallest i \leq \lfloor \ell /2\rfloor + 1 such that S[k] = S[k + p] for every k = i, i + 1, . . . , \lfloor \ell /2\rfloor 
and the largest j \geq \ell such that S[k] = S[k  - p] for every k = \ell + 1, \ell + 2, . . . , j. If
j - i+1 \geq \ell , then S[i . . j] is a maximal \ell -periodic substring of S, and, as shown earlier
by Lemma 5.9, S cannot contain any other maximal \ell -periodic substrings. We return
S[i . . j] as the (unique) maximal \ell -periodic substring of S.

For every S \in \scrS , we apply Lemma 5.10 on S to find its (unique) maximal
\ell -periodic substring S[i . . j] in \scrO (| S| ) time. If i > 1, then we designate S[(i - 1) . . (i - 
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1+ \ell )] as an anchor, and similarly, if j < | S| , then we designate S[(j+1 - \ell ) . . (j+1)]
as an anchor. Observe that because S is of Type 2 (and not of Type 3), either i > 1
or j < | S| , so for every S \in \scrS , we designate at least one if its length-(\ell +1) substrings
as an anchor. As in section 5.1, we represent each anchor by one of its occurrences in
P and so need to find its corresponding node in the suffix tree of P (if any). This can
be done in \scrO (| S| ) time, so \scrO (N) overall. During this process, we might designate the
same string as an anchor multiple times, but we can easily remove the possible du-
plicates to obtain the set \scrA of anchors in the end. Then we generate the occurrences
of all anchors in P by accessing their corresponding nodes in the suffix tree of P and
iterating over all leaves in their subtrees. We claim that the total number of all these
occurrences is only \scrO (m/\ell ). This follows from the following characterization.

Lemma 5.11. If P [x . . (x+ \ell )] is an occurrence of an anchor, then either P [(x+
1) . . y] is a maximal \ell -periodic substring of P for some y \geq x+ \ell or P [x\prime . . (x+ \ell  - 1)]
is a maximal \ell -periodic substring of P for some x\prime \leq x.

Proof. By symmetry, it is enough to consider an anchor H created because of a
maximal \ell -periodic substring S[i . . j] such that i > 1 when we add S[(i - 1) . . (i - 1+\ell )]
to \scrA . Thus, per(H[2 . . | H| ]) \leq \ell /4, and if P [x . . (x+\ell )] = H, then per(P [(x+1) . . (x+
\ell )]) \leq \ell /4, making P [(x+1) . . (x+\ell )] a substring of some maximal \ell -periodic substring
of P [(x\prime +1) . . y], where x\prime \leq x and y \geq x+\ell . If x\prime < x, then per(H) \leq \ell /4. But then
H = S[(i  - 1) . . (i  - 1 + \ell )] can be extended to some maximal \ell -periodic substring
S[i\prime . . j\prime ] such that i\prime \leq i  - 1 and j\prime \geq i  - 1 + \ell . The overlap between S[i . . j] and
S[i\prime . . j\prime ] is at least \ell , so by Lemma 5.9, i = i\prime and j = j\prime , which is a contradiction.
Consequently, x\prime = x, and we obtain the lemma.

By Lemma 5.11, the number of occurrences of all anchors in P is at most two
per each maximal \ell -periodic substring, so \scrO (m/\ell ) in total. We thus obtain a set of
length-(\ell + 1) anchors with the following properties:

1. The total number of occurrences of all anchors in P is \scrO (m/\ell ).
2. For every S \in \scrS , at least one of its length-(\ell + 1) substrings is an anchor.
3. For every S \in \scrS , at most two of its length-(\ell + 1) substrings are anchors.

These properties are even stronger than what we had used in section 5.1 (except that
now we are working with length-(\ell +1) substrings, which is irrelevant), so we can now
prove our final result also for strings of Type 2.

Theorem 5.12. An instance of the AP problem where all strings are of Type 2
can be solved in \~\scrO (m\omega  - 1 +N) time.

5.3. Type 3 strings. In this section, we show how to solve a restricted instance
of the AP problem where every string S \in \scrS is of Type 3, and furthermore | S| \in 
[9/8 \cdot \ell , 5/4 \cdot \ell ) for some \ell \leq m. Recall that strings S \in \scrS are such that every length-\ell 
substring of S is strongly periodic, and by Lemma 5.3, in this case, per(S) \leq \ell /4.
An occurrence of such S in P must be contained in a maximal \ell -periodic substring
of P . Recall that a string T is called \ell -periodic if | T | \geq \ell and per(T ) \leq \ell /4. For an
\ell -periodic string T , let its root, denoted by root(T ), be the lexicographically smallest
cyclic shift of T [1 . .per(T )]. Because per(T ) \leq \ell /4 and | T | \geq \ell by definition, there are
at least four repetitions of the period in T , so we can write T = R[i . . | R| ]R\alpha R[1 . . j],
where R = root(T ) for some i, j \in [1, | R| ] and \alpha \geq 2. It is well known that root(T )
can be computed in \scrO (| T | ) time [31].

Example 4. Let T = babababab and \ell = 8. We have | T | = 9 \geq \ell = 8 and
per(T ) = 2 \leq \ell /4 = 2, so T is \ell -periodic. We have root(T ) = R = ab, and T can be
written as T = b \cdot (ab)3 \cdot ab for i = 2 and j = 2.
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We will now make a partition of Type 3 strings based on their roots. We start
with extracting all maximal \ell -periodic substrings of P by proceeding similarly as in
the proof of Lemma 5.10 and then compute the root of every such substring in \scrO (m)
total time. In more detail, we partition P into blocks of length \ell /2 and compute the
period of each such block. Any maximal \ell -periodic substring of P needs to contain
at least one such block inside. Therefore, for each block with period at most \ell /, we
can compute how far its period extends to the left and to the right and output the
corresponding substring if it is long enough. The only difficulty is that we should not
extend the period beyond the preceding block. Two maximal \ell -periodic substrings
cannot overlap by more than \ell /2 letters; hence, their total length is \scrO (m), and we can
compute the root of each such substring in \scrO (m) total time. We also extract the root
of every S \in \scrS in \scrO (N) total time. We then partition maximal \ell -periodic substrings
of P and strings S \in \scrS into groups that have the same root. In the remaining part,
we describe how to process each such group corresponding to root R in which all
maximal \ell -periodic substrings of P have total length m\prime and the strings S \in \scrS have
total length N \prime .

Recall that the bit vector U stores the active prefixes input to the AP problem
and that the bit vector V encodes the new active prefixes we aim to compute. For
every maximal \ell -periodic substring of P with root R, we extract the corresponding
fragment of the bit vector U and need to update the corresponding fragment of the bit
vector V . To make the description less cluttered, we assume that each such substring
of P is a power of R, that is, R\alpha for some \alpha \geq 4. This can be assumed without loss
of generality, as it can be ensured by appropriately padding the extracted fragment of
U and then truncating the results while increasing the total length of all considered
substrings of P by at most half of their length. In the description below, for simplicity
of presentation, U and V denote these padded fragments of the original U and V .
When computing V from U , we use two different methods for processing the elements
S = R[i . . | R| ]R\beta R[1 . . j] of \scrS depending on their length: either \beta \geq t (large \beta ) or
\beta < t (small \beta ) for some parameter t to be chosen later. In both cases, we rely on
the observation that S = R[i . . | R| ]R\beta R[1 . . j] occurs R\alpha at positions i + \gamma \cdot | R| for
\gamma = 0, . . . , \alpha  - \beta  - 2. This follows from R being the root and \beta \geq 1.

Large \beta . We proceed in phases corresponding to \beta = t, . . . , \alpha . In each single
phase, we consider all strings S \in \scrS with S = R[i . . | R| ]R\beta R[1 . . j] for some i
and j. Let C(\beta ) be the set of the corresponding pairs (i, j), and observe that\sum 

\beta | C(\beta )| \cdot | R\beta | \leq N \prime . This is because the length of R\beta is not greater than that

of S = R[i . . | R| ]R\beta R[1 . . j], there are | C(\beta )| distinct strings of the latter form in \scrS ,
and the total length of all S \in \scrS is N \prime . The total number of occurrences of a string
S = R[i . . | R| ]R\beta R[1 . . j] in R\alpha is bounded by \scrO (\alpha ), and all such occurrences can be
generated in time proportional to their number. Thus, for every (i, j) \in C(\beta ), we can
generate all occurrences of the corresponding string and appropriately update V in
\scrO (\alpha \cdot | C(\beta )| ) total time.

Small \beta . We start by giving a technical lemma on the complexity of multiplying
two r \times r matrices whose cells are polynomials of degree up to d.

Lemma 5.13. If two r \times r matrices over \BbbZ can be multiplied in \scrO (r\omega ) time, then
two r\times r matrices over \BbbZ [x] with degrees up to d can be multiplied in \scrO (r\omega d+r2d log d)
time.

Proof. Let A and B be two r \times r matrices over \BbbZ [x] with degrees up to d. We
reduce the product A \times B = C to (2d + 1) products of r \times r matrices over \BbbZ as
follows. We evaluate the polynomials of each matrix in the complex (2d + 1)th
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roots of unity: Let Ai and Bi be the matrices obtained by evaluating the polyno-
mials of A and B in the ith such root, respectively. We then perform the 2d + 1
products A1 \times B1, . . . , A2d+1 \times B2d+1 to obtain matrices C1, . . . , C2d+1: The 2d + 1
values C1[i, j], . . . , C2d+1[i, j] are finally interpolated to obtain the coefficient rep-
resentation of C[i, j], for each i, j = 1, . . . , r, in \scrO (d log d) time for each polyno-
mial [27]. Since we perform 2d + 1 products of matrices in \BbbZ r\times r and evaluate and
interpolate r2 polynomials of degree up to 2d + 1, the overall time complexity is
2d\scrO (r\omega ) + r2\scrO (d log d) = \scrO (r\omega d+ r2d log d).

Unlike in the large \beta case, we process \beta = 2, . . . , t  - 1 simultaneously as follows
when t \geq 3.

We construct three-dimensional Boolean tables: M with dimensions | R| \times | R| \times t
and M \prime with dimensions \lceil \alpha /t\rceil \times | R| \times t. We set M [i, j, \beta +1] = 1 if and only if (i, j) \in 
C(\beta ). M can be constructed in time proportional to its size by first precomputing
a lexicographically sorted list of triples (\beta , i, j) corresponding to S \in \scrS such that
S = R[i . . | R| ]R\beta R[1 . . j]. The lists corresponding to different roots are constructed
in \scrO (N \prime ) total time, and we sort them together with radix sort to avoid paying \scrO (m)
per each root. Then we construct M by considering the prefix of the list consisting of
all triples with sufficiently small first coordinates. Next, we set M \prime [k, i, \gamma + 1] = 1 if
and only if U [((k - 1)t+\gamma )| R| +i - 1] = 1. Finally, we interpret M \prime and M as matrices
over \BbbZ [x] with degrees up to t - 1 and compute their product M \prime \prime = M \prime \times M . That is,

we think that M \prime [k, i] =
\sum t - 1

\gamma =0 M
\prime [k, i, \gamma + 1]x\gamma and M [i, j] =

\sum t - 1
\beta =0 M [i, j, \beta + 1]x\beta 

and compute M \prime \prime [k, j] =
\sum | R| 

i=1 M
\prime [k, i] \cdot M [i, j] for every k = 1, . . . , \lceil \alpha /t\rceil and j = 1,

. . . , | R| (this will be eventually implemented with Lemma 5.13). Note that each
M \prime \prime [k, j] is a polynomial with degree up to 2(t  - 1). We claim that this allows us
to recover the updates to V by setting V [((k  - 1)t + q + 1)| R| + j] = 1 whenever xq

appears with nonzero coefficient in the polynomial at M \prime \prime [k, j] for all k = 1, . . . , \lceil \alpha /t\rceil ,
j = 1, . . . , | R| , and q = 0, . . . , 2(t  - 1). Equivalently, we set V [((k  - 1)t + \gamma + \beta +
1)| R| + j] = 1 whenever M \prime [k, i, \gamma + 1] = 1 and M [i, j, \beta + 1] = 1 for all k = 1,
. . . , \lceil \alpha /t\rceil , i, j = 1, . . . , | R| , and \gamma , \beta = 0, . . . , t  - 1. This can be rewritten as setting
V [((k  - 1)t + \gamma + \beta + 1)| R| + j] = 1 whenever U [((k  - 1)t + \gamma )| R| + i  - 1] = 1,
and there exists S \in \scrS such that S = R[i . . | R| ]R\beta R[1 . . j] for all k = 1, . . . , \lceil \alpha /t\rceil ,
j = 1, . . . , | R| , and \gamma , \beta = 0, . . . , t - 1, which is indeed correct, as any x \in \{ 0, . . . , \alpha  - 1\} 
can be written as x = (k  - 1)t+ \gamma for k \in \{ 1, . . . , \lceil \alpha /t\rceil \} and \gamma \in \{ 0, . . . , t - 1\} .

We are now in a position to prove the following result for Type 3 strings.

Theorem 5.14. An instance of the AP problem where all strings are of Type 3
can be solved in \~\scrO (m\omega  - 1 +N) time.

Proof. Recall that we consider strings S of Type 3 with root R and substrings
of P with root R together. We first analyze the time to process a single group
containing a number of substrings of P of total length m\prime and a number of strings
S \in \scrS of total length N \prime . Let us denote by R\alpha h the hth considered substring of
P and by th the value of t used to distinguish between small and large value of \beta 
when processing this substring. We partition all substrings into logm levels, with the
kth level Gk containing h such that \alpha h \in [2k, 2k+1). We define \=\alpha k =

\sum 
h\in Gk

\alpha k and

choose th = min(2k+1, \lceil \=\alpha k/| R| \cdot logm\rceil ) for every h \in Gk.
For each level k, h \in Gk, and \beta = th, . . . , \alpha h, we use the first method and spend

\scrO (\alpha h \cdot | C(\beta )| ) time, where C(\beta ) is the set of (i, j) for this specific \beta . This needs to
be done only when th \leq \alpha h, that is, th = \lceil \=\alpha k/| R| \cdot logm\rceil . The overall time used for
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all applications of the first method is thus at most\sum 
k

\sum 
h\in Gk

\scrO (\alpha h \cdot 
\sum 
\beta \geq th

| C(\beta )| ) = \scrO (
\sum 
k

\sum 
h\in Gk

\alpha h/| Rth | 
\sum 
\beta \geq th

| C(\beta )| \cdot | Rth | )

= \scrO (
\sum 
k

\sum 
h\in Gk

ah/(| R| \cdot th)
\sum 
\beta \geq th

| C(\beta )| \cdot | R\beta | )

= \scrO (
\sum 
k

\=ak/(| R| \cdot \=\alpha k/| R| \cdot logm) \cdot N \prime ) = \scrO (N \prime ),

using the fact that
\sum 

\beta | C(\beta )| \cdot | R\beta | \leq N \prime and there are logm values of k.
For each level k and h \in Gk, we process together all \beta = 2, . . . , th  - 1 using

the second method. This requires multiplying two matrices of polynomials of degree
up to th  - 1. We observe that the second matrix is in fact the same for all h \in 
Gk, and so we denote the first matrix by M \prime 

h and the second by simply M and
think that the degree of each polynomial in M \prime 

h and M is strictly upper bounded
by dk = min(2k+1, \lceil \=\alpha k/| R| \cdot logm\rceil ). M \prime 

h is of size \lceil \alpha h/dk\rceil \times | R| , while M is of
size | R| \times | R| . Instead of computing each product M \prime 

h \times M separately, we vertically
concatenate all matrices M \prime 

h to obtain a single matrix M \prime . The number of rows in
M \prime is r =

\sum 
h\in Gk

\lceil \alpha h/dk\rceil . Next, we compute M \prime \times M with \lceil r/| R| \rceil invocations of

Lemma 5.13. We separately analyze the overall time complexity for dk = 2k+1 and
dk = \lceil \=\alpha k/| R| \cdot logm\rceil .
dk = \lceil \=\alpha k/| R| \cdot logm\rceil : Using \alpha h \geq 2k \geq dk/2, we bound r as

r =
\sum 
h\in Gk

\lceil \alpha h/dk\rceil \leq 
\sum 
h\in Gk

(\alpha h + dk)/dk \leq 
\sum 
h\in Gk

(\alpha h + 2\alpha h)/dk

\leq 3
\sum 
h\in Gk

\alpha h/(\=\alpha k/| R| \cdot logm) = 3| R| / logm \leq | R| 

for sufficiently large m. Thus, one invocation suffices and takes time

\scrO (| R| \omega dk + | R| 2dk log dk) = \scrO (| R| \omega  - 1\=\alpha k log
2 m)

using dk \geq 3 and dk \leq 2m.
dk = 2k+1: Because \alpha h \in [2k, 2k+1) for each h \in Gk, we have r = | Gk| \leq \=\alpha k/2

k.
The number of invocations is thus at most \lceil \=\alpha k/(2

k \cdot | R| )\rceil \leq \=\alpha k/(2
k \cdot | R| )+1.

The total time used by all these invocations is

(\=\alpha k/(2
k \cdot | R| ) + 1)\scrO (| R| \omega 2k+1 + | R| 22k+1(k + 1))

= \scrO (| R| \omega  - 1\=\alpha k logm+ | R| \omega 2k+1 logm)

using 2k+1 \leq 2m. Next, because 2k+1 \leq \lceil \=\alpha k/| R| \cdot logm\rceil and 2k+1 \geq 2, we
have 2k+1 \leq 2\=\alpha k/| R| \cdot logm, so the total time can be further bounded by

\scrO (| R| \omega  - 1\=\alpha k logm+ | R| \omega 2k+1 logm)

= \scrO (| R| \omega  - 1\=\alpha k logm+ | R| \omega (\=\alpha k/| R| \cdot logm) logm)

= \scrO (| R| \omega  - 1\=\alpha k log
2 m).

Hence, in both cases, the time used by all multiplications is \scrO (| R| \omega  - 1\=\alpha k log
2 m).

Using
\sum 

k \=\alpha k = m\prime /| R| and | R| \leq m\prime , when summed over all logm levels k, this
is in fact \scrO ((m\prime )\omega  - 1 log2 m). We remark that the matrix M can be built in time
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proportional to its size assuming \scrO (N \prime ) preprocessing, while the matrix M \prime can be
built in time proportional to its size by just scanning over the corresponding fragment
of U .

Finally, summing possibly many groups corresponding to different roots R, be-
cause all values of N \prime sum up to N and all values of m\prime sum up to \scrO (m), by convexity
of x\omega  - 1, we obtain that the overall time complexity including the preprocessing is
\~\scrO (m\omega  - 1 +N).

5.4. Wrapping up. In sections 5.1--5.3, we design three \~\scrO (m\omega  - 1 + N)-time
algorithms for an instance of the AP problem where all strings are of Types 1, 2, and
3, respectively. Summing up over all values of k and all the types, we thus obtain
Theorem 1.2. In every case, the complexity is actually \~\scrO (nm\omega  - 1)+\scrO (N), so using the
fact that \omega < 2.373 [51, 66], we can hide the polylog factors and obtain the following
corollary.

Corollary 5.15. The EDSM problem can be solved online in \scrO (nm1.373 + N)
time.

6. Final remarks. Our contribution in this paper is twofold. First, we designed
an appropriate reduction showing that a combinatorial algorithm solving the EDSM
problem in \scrO (nm1.5 - \epsilon + N) time, for any \epsilon > 0, refutes the well-known BMM con-
jecture. Second, we designed a noncombinatorial \~\scrO (nm\omega  - 1 +N) -time algorithm to
attack the same problem. By using the fact that \omega < 2.373, our algorithm runs in
\scrO (nm1.373 +N) time, thus circumventing the combinatorial conditional lower bound
for the EDSM problem. Let us point out that if \omega = 2, then our algorithm for the
AP problem is time optimal up to polylog factors, as any algorithm needs to read
the input. As for the EDSM problem, such an argument only shows a lower bound
of \Omega (N). However, at the same time, we can show that there is no \scrO ((nm)1 - \epsilon )-time
algorithm, assuming the strong exponential time hypothesis (SETH) [19], by the fol-
lowing argument. By prepending and appending a unique letter to both the ED text
and the pattern, we can reduce checking membership for a regular expression of type
\cdot | \cdot , as defined by Backurs and Indyk [10]. Combining this with their reduction from
SETH, we immediately obtain the claimed conditional lower bound for the EDSM
problem.

We finally remark that if we use the simple cubic-time matrix multiplication
algorithm in our solution, then the total time complexity becomes \~\scrO (nm\omega  - 1 +N) =
\~\scrO (nm2 + N). At the same time, the solution by Aoyama et al. [8], which also does
not use fast matrix multiplication, runs in time \scrO (nm1.5 + N). It is thus plausible
that one could obtain an \~\scrO (nm\omega /2 +N)-time algorithm for the EDSM problem. We
leave this question open for future work.
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