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SEMICLASSICAL LIMIT OF GROSS-PITAEVSKII EQUATION WITH
DIRICHLET BOUNDARY CONDITION

GUILONG GUI AND PING ZHANG

ABSTRACT. In this paper, we justify the semiclassical limit of Gross-Pitaevskii equation with
Dirichlet boundary condition on the 3-D upper space under the assumption that the leading
order terms to both initial amplitude and initial phase function are sufficiently small in some
high enough Sobolev norms. We remark that the main difficulty of the proof lies in the fact
that the boundary layer appears in the leading order terms of the amplitude functions and
the gradient of the phase functions to the WKB expansions of the solutions. In particular,
we partially solved the open question proposed in [6, 18] concerning the semiclassical limit
of Gross-Pitaevskii equation with Dirichlet boundary condition.
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1. INTRODUCTION

We consider here the semiclassical limit of Gross-Pitaevskii equation (GP equation for
short) with the Dirichlet boundary condition in the three-dimensional upper space ]R{i :

11 { ie 0 + S AVE — (|UF|2 — 1)@;5: 0, (t,x)eRy xR,
Uel,—o =1, V=9 = af exp <z?0) ,
where x = (y, z) € R% x R4, aj > 0 and ¢f are real-valued functions. We assume that
. m+2 o
ag =aily + ZO afy+ PRy with lim | RS gl geo-m-s =0,
>
@5 =l + D P+ Ry with [V RS gll -2 =0,
j=0

(1.2)

for some s( large enough. We also impose the following condition at infinity:

(1.3) Ue(t,x) — eé(“w“_%mm‘z) as |z| = 4o0.

In what follows, we assume that the constant vector u* = 0 for simplicity.
The motivation for us to study the problem (1.1) comes from many interesting issues
concerning a superfluid passing an obstacle (see for example [9, 12, 18]). Classical Madelung

transform introduces two real variables: a® > 0 and ¢° so that
£

(1.4) Ve =af exp(i(’p—).
€
By substituting (1.4) into (1.1) and separating the real and imaginary parts, we find

{ Opa® + V© - Va® + %aEAgpa =0, (t,x)e Ry X Ri,

1.5
(1.5) a® (Deg® + 3|Vl + (a°)* = 1) = %Aaa’
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with the initial-boundary conditions
(1.6)  al,=0=1, ¢l:.=0=0, a°* =1 as |z| 200 and a°|i=0 =af, ¢ |i=0 = ¥§-

We denote p° def (a®)? and p°u® def p*V°, which corresponds to the quantum density and
momentum respectively in quantum mechanics (see [14] for instance). This allows to rewrite

(1.5-1.6) as the following hydrodynamical system:

{ Op® + V- (p*uf) =0,
2

(O + - V) + V() = 575 (B,

(1.7)

with the initial-boundary conditions

(1) { Pl=o=1, ¢l.=o=0 and p° =1 as [z] = oo

p€’t20 = (a8)27 u€’t=0 = V(lpga

and the pressure law p(p°) = 1(p°)2.

The system (1.7) is called quantum compressible Euler system, and the right hand-side
of the u® equation in (1.7) is called quantum pressure. As £ approaches to 0, the quantum
pressure is formally negligible and the system (1.7-1.8) approaches to the classical compressible
Euler equation

Op+V-(pu)=0,
(1.9) { p(Ou+u-Vu)+Vp(p) =0,

with the initial-boundary conditions
+w . .
(1.10) /0 u-ndz=0, p—1 as |z > 00 and pl=g= (a}fo)z, uli=0 = Vpl-

The justification of the above formal limit has attracted the interests by many authors. In
the whole space case, Gérard [10] proved the limit with analytical initial data. Grenier [11]
solved the limit problem before the formation of singularity in the limit system with initial
data in Sobolev spaces. The main idea in [11] is to use the symmetrizer of the limit system
(1.9) to get H® energy estimates which are uniform in e for a singularly perturbed system.
Nevertheless this method does not work for the semiclassical limit of Schrodinger-Poisson
equations, as the resulting limit system is not a symmetric hyperbolic one. Motivated by
the work of Brenier [4], where the author proved the local-in time convergence of the scaled
Vlasov-Poisson equations to the incompressible Euler equations, the second author [20] used
the Wigner measure approach (see [16, 22]) to study the semiclassical limit of Schrédinger-
Poisson equation (see [21] for more general nonlinearity).

In order to solve the semiclassical limit of GP equation in the exterior domain with Neumann
boundary condition (which corresponds to the non-slip boundary condition « - n = 0 for the
limit system (1.9)), where we can not use Wigner transform, the authors [15] simplified the
modulated energy functional in [20, 21] and proved that

W2 —p—=0 in L%(]0,T[;L?) and elm (V°VPF) —pu =0 in Loo(]O’T[;Liloc)’

before the formation of singularity in the limit system. This idea has been used and extended
by the authors in [1, 19]. Interested readers may check [2, 6] for the so-called supercritical
geometric optics where they allow p’(0) = 0 for the pressure function in (1.9). One may also
check the books [5, 22] and references therein for more information in this context.

For the problem (1.1), by comparing (1.8) with (1.10), we find that the boundary condition
p°lz=0 = 1 in (1.8) does not match the boundary condition for p in (1.10) at the boundary
{z = 0}, where we do not have any restriction on p. This results in a strong boundary layer
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near the boundary {z = 0}. In fact, if we formally seek for WKB expansions ¥¢ = a® exp (z’ﬁ)

€
of the form

(1.11) { as(t,x) = 23l e (an(t,y, 2) + Aw(t,y, 2))

e (t,x) = 350 ek (pr(ty, 2) + it y, Z)),

we shall find below that &g = 0, and ag, ax, Ak, pr, Pr with k = 1,2,3, ... are non-trivial. In
this case, we have V u® = V2 ~ O(%) and Va® ~ O(%) In some sense, this phenomena has
some similarity with the strong boundary layer caused by vanishing viscosity of incompressible
Navier-Stokes system to Euler system (see [17]). Lately there are a lot of progresses on this
topic (see for instance [8, 13] and the references therein).

On the other hand, for the case of the semiclassical limit of GP equation with the Neumann
boundary condition in R3, that is, 9, U¢| ors =0, Chiron and Rousset [6] justified the validity

of the WKB expansions on some finite time interval [0, T]. We remark that in this case, the
boundary layer profiles Ag = &g = ®; = 0 in (1.11), which implies Vu® ~ O(1) and V a® ~
O(1). This weak boundary layer plays a key role in the study of the nonlinear stability to
the WKB expansions. Nevertheless, the semiclassical limit of nonlinear Schrédinger equation
with Dirichlet boundary condition was left open in [6, 18].

In this paper, we are going to answer this question proposed in [6, 18] under the condition
that both aiorjo — 1 and Vg are sufficiently small in some regular enough Sobolev space.

Let us end this introduction by some notations that will be used in all that follows.

For operators A, B, we denote [A; B] = AB — BA to be the commutator of A and B.
For a < b, we mean that there is a uniform constant C, which may be different on different
lines, such that a < Cb. We denote by ng flgdz the L2(]R§’r) inner product of f and g, and

LP(RY) by L% . Finally we shall always denote V,, by V}, and T def (O, V).

2. FORMAL ASYMPTOTIC ANALYSIS

2.1. Outer expansion.
Since the boundary layer is concentrated in the e— neighborhood of {z = 0}, we call

the domain O def { r = (y,2) : y € Rz > ¢ } the outer region, and the associ-

ated vertical variable z is called outer variable. We also denote the inner region by J def

{ r=(y,2): yeR, 0<z2z<¢ }, and call Z = Z the inner variable, which makes us to spec-
ify the so-called “inner limit process”.
In the outer region O, we formally seek the solution (a®, ¢°) of (1.5) with the form:

o0 o0
(21) as(th) = ngak(t7y7z) and cps(t,a:) = ngwk(uy?Z)'
k=0 k=0
By substituting (2.1) into (1.5), we get
[e.e] [e.e] 1
(2.2) > o+ > (Ve - Vag, + §ak1A‘Pk2) =0
k=0 k1,k2=0
and

o) o0
ag
Z MR Oppr, + Z ghithetls 2L (Voon, - Vo, + 2ap,ax,)

2
k1,k2=0 k1,k2,k3=0
(2.3) . |
- Z €kak = = Z €k+2Aak
5 .
k=0 k=0



Vanishing the coefficients to the zeroth order of € in (2.2) and (2.3) gives

(2 4) Orag + Vo - Vag + %CL()AQOQ =0, (t,x) e R,y x R3 ,
) 8t<,00+%\V<,00\2+(a(2)—1) =0,

where we used the fact that ag has a positive lower bound which will be justified in Section 4.
In view of (1.2) and (1.6), we implement the system (2.4) with the initial and boundary
conditions:

(2.5) agli=o0 = agjo, ©olt=0 = go}fo and ¢go|,=0=0, ay—1 as |z|— oc.
We shall prove the local well-posedness of the above problem with sufficiently smooth initial
data in Section 4.
Vanishing the coefficients of €' in (2.2) and (2.3) leads to the coupled system (a1, ¢1) :
Owa1 + Vag - V1 + Vo - Vag + %alAgpo + %aoAgol =0, (t,z) Ry xR,
(2.6) Ap1 + Vo - Vi + 2agar = 0,
a1li=0 = afy, Pili=0 = ¢io;
where (aifjo, gpif”o) is given by (1.2).
In general, by vanishing the coefficients of ¢¥*2 in (2.2) and (2.3) for k = 0,--- ,m, and
using (1.2), we find
Branro + Vag - Veopra + Voo - Vagps + 5840 + B Appis = fi
(2.7) Orpr+2 + Vo - Vopya + 2a0ak12 = ﬁ (Aax + g]f+1) )
Akt2]t=0 = A0 0s  Pr2lt=0 = OpLa 0
where the source terms (f{, , 9;: +1) are determined by

k+1

def 1
f;fl'i‘l = - Z (V(pkl : Vak+2—k1 + §ak1ACPk+2_k1),
k1=1
(2.8) o .
e k
gp = =Dk 0ok — > TI(VS% - Vipr, + 2ap,ax, ).
ki=1 ki1+ko+ks=k+2

0<k1, k2, k3<k+1

We shall implement the above systems with boundary conditions in Subsection 2.2.

2.2. Uniformly valid approximation. In all that follows, we shall always denote

(2.9) 7)) & (0,5,

With the outer solution (aj;, ¢;) for j = 0,1,2,... in hand, we shall use the Successive
Complementary Expansion Method (SCEM for short, see [7]) to seek a Uniformly Valid Ap-
proximate solutions (UVA for short) to (1.5). In order to do so, we take the following ansatz

at(t,x) = Z ¥ (ap(t, ) + [Ag]-(t,x)) and
(2.10) 0
() =3 (onlt ) + [@le(t.2)
k=0

We require that both Ag(t,y,Z) and ®(t,y,7Z) together with all of their derivatives are
rapidly vanishing as Z — +oo.
We denote g(t,y) the trace of ¢(t,y, z) on the boundary {z = 0}, that is,

_ def
(2.11) g(t,y) = g(t,y,z=0).
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Formally let us write that

ZJ—

(2.12) g(t,y, z Z ajg t,y).
By plugging the ansatz (2.10) into (1.5) and using (2.2), (2.3) and (2.12), we obtain

1
ZE Ot Ay + ) ; 0€k1+k2( Vi®g, - Vndg, + §Ak1 ALDy,)
1,R2

1
+ 6—2 (8Zq>klaZAk2 + —Ak16%<1>k2))

2.13 :

+ Z hthai 2 (V 0ok, - ViAr, + V@, - Vidlay, +
k17k27.7 0

Ap Py,

_92 agakl

+ %Af)ﬁ% + e (00 01, Oz Ak, + 02%1, 0 an,) + € a%q%) =0,
and
(o] o
> hthoti 22 (32%15@1@ + Ay Oidlon,) + D R (A, 0,0y,)
k1,k2,7=0 ‘7 k1,ka=0
o

00
Z]
_ ZEkAk + Z k1+k2+k3+J1+J2 % jz (83 aklvha] Dy - Vh(I)kg

k1,k2,k3,51,j2=0

A -
kl Vaﬂ(pkz V@ﬁ Pks + 38J1 akﬁ”aszk3 +e ajlakla] ¢k262¢k3 )

- :
- 6]1
(2.14) + Z k1+k2+k3+]1 i (Akl Va0 oy - Vin®yy + Zzakl Vih®r, - Vi ®p,+
k1,k2,k3,51=0

. B - B Fa
+ 36;1ak1Ak2Ak3 +é lAk18§1+1<,0k282<I>k3 +é 2%82@@82{)]%)

o
A _
+ Z €k1+k2+k3% (thbkz . Vh<1>k3 + 2Ak2Ak3 + € 262¢k262¢k3>
k1,k2,k3=0

1 o 1 <& :
=52 05 A+ 5 Y TP AAL with Ay =0 +07,.
k=0 k=0

The coefficients of 72 in (2.13) and (2.14) yields

(2.15) %(Ao @)% + 7 Dedz Ao = 0,
and

(2.16) %(Ao +10)|07P0]* =
respectively.

We first assume that Ag + @g has a positive lower bound, which we shall justify in Section
5. Then due to ®y|z=oc = 0, we deduce from (2.16) that

(2.17) Bo(t,y, Z) = 0.
5



Similarly by virtue of (2.4) and (2.17), we find that the coefficients of e~ in (2.13) and of
eV in (2.14) give respectively

1 _
(2.18) §(Ao +@0) 051 + (07®1 + 0:00)0z Ao = 0,
and
1 —— G+A
(2.19) §a§A0 = (Ao + o) 01050 + 2 Rl (9791)% + A3 + 3ag A + 2ag Ao.

According to the boundary condition a®|,—o = 1 in (1.6), we have the matched condition
on the boundary {z = 0} that Ag(Z = 0) + ap(z = 0) = 1. So that we impose the following
boundary condition for Ay :

(220) A0|Z=0 =1- ao(t7 Y, 0)

Furthermore, we require that both Ay(¢,y, Z) and ®1(¢,y, Z) along with all of their derivatives
are rapidly vanishing as Z — +o0o. We shall present the unique solvability of the required
solution to the system (2.18-2.19) in Section 5.

Notice the boundary condition ¢®|,—9 = 0 in (1.6) and ¢g|,=0 = 0 in (2.5), we have the
following matched condition of ;1 on the boundary {z = 0}

(2.21) P1]:=0 = —P1(t,9,0).

We implement the system (2.6) with the Dirichlet boundary condition (2.21), and we shall
prove its unique solvability in Section 7.

Inductively, assuming that we already obtain (ao, o), (aj+1, @j+1) and (A, ®;41) with
0 <j<k<m-~—1, we get, by vanishing of the coefficients of €* in (2.13) and of **! in
(2.14), that

ap+ A . A
(2.22) 0 5 02D so + Oz A002Ppra + (021 + 0op0)0z A1 + k2+18%(1)1 = Fy,
and
1 .
2.35) 55%Ak+1 =(Ag +a0)(02P1 + 0.¢0) 07 Pp12
2.23

S 1
+ (3A(2) + 6ag Ay + 263 + 079109y + 5‘82@1’2)Ak+1 + G,

where the source terms (F}, G}) depend only on <8§a0, aﬁgoo) for £ < k+2, and <8§aj+1, 8§<pg+1>
and (A;,V®;yq) for 0 < j < kand 0 < £+ j < k+ 1, the explicit form of which will be
presented in the Appendix A.

Thanks to the matched boundary condition on {z = 0} for the outer and inner solutions,
we impose the following condition for Axq :

(224) Ak+1|Z=0 = _ak+1(t7y70)‘

We also require that both Ag11(t,y, Z) and ®pio(t,y, Z) together with all of their derivatives
are rapidly vanishing as Z — +oc.

Finally, with thus obtained ®j_ 9, according to the matched boundary condition on {z = 0}
for the outer and inner solutions, we implement the system (2.7) with the Dirichlet boundary
condition

(2.25) Prt2le=0 = —Pr12(t,y,0).

The unique solvability of the systems (2.22-2.23) and (2.7) with the boundary condition
(2.25) will be outlined in Section 7.
6



3. THE MAIN RESULT AND ITS SKETCH OF THE PROOF

We first observe from (2.4) that

1
Ouali—o == (51760 + (0 = 1)) i
(3.1) 1
in \2 i def
=1~ ()" ~ 5ol by

To guarantee the local existence of smooth solutions to (2.4-2.5), we need the following
compatibility conditions for the initial data:
(Ao): Let (g, t) € H® x H™! for 4 < 5o € N. We assume that the data satisfies

chpo(O,y,O) =0foryeR?and j=0,---,s0— 1.

Definition 3.1. Let s, T > 0, we define the functional space W} 1 ﬂg'io CI([0,T); HSI(R3)),
where [s] denotes the integer part of s and its norm is given by

def
(3.2) lp(t) ||WS—Z||83 )%, and ||w||w;=ts5%]uso<t>||ws.
E ’

We shall prove in Section 4 that

Proposition 3.1. Let 4 < sp € N and aiorjo —1 € Hoo™ L, gpiorjo € H?° which satisfies the
compatibility condition (Ay). We assume that

53) I~ 1 Vi) <
for some sufficiently small positive constant ¢, then there exists a positive constant C so that

for Tp d:ech_l, the system (2.4-2.5) has a unique solution (ag, ¢o) on [0, Ty, which satisfies
(3.4) I(a0 =1, drp0, Voo llyys0-1 < € | (a8’ = 1, Veoro) || gyso-1-
0

We remark that the main difficulty in the proof of Proposition 3.1 lies in the boundary
condition ¢g|,—o = 0 in (2.5) so that one can not apply the standard theory on symmetric
hyperbolic system to prove its local well-posedness. The new idea here is to reformulate (2.4-
2.5) to be an initial and boundary value problem of a nonlinear wave equation (4.4-4.6) (see
Section 4) under the smallness initial condition (3.3).

In order to solve the boundary layer equation, we recall the boundary layer profile space
from [6]:

Definition 3.2. Let s € R™ and 49 > 0 be a positive constant, we define w3, (Ri) as the
completion of {F(y, Z) € H*(RZ; H*(R})) } with || F| . (%) being finite, and
Y0

[s]
s s def j s—J
T =Ws,([0,T] xR}) = () /([0 T); W3,/ (RY)),

Y0,
§=0
where the norms are given by
def Z 1 al
F S == o a Z s d
|Fllws, = max Suﬂg(e 10ZF (- Z)ll = (rzy)  an
(3.5) def
|IGllws .. = max sup ||8JG()||W$O—]'.

0T 0<<[s] teo0, 1]

We shall prove in Section 5 that



Proposition 3.2. Under the assumptions of Proposition 3.1, the coupled equations (2.18-
3

2.19) with the boundary condition (2.20) has a unique solution (Ag, ®1) in WfOTTf, where Tj
is determined by Proposition 3.1. Furthermore, there holds

(3.6) (A0, @) (-5 < Cll(aglo = 1. Veto) | o1
Wl,T02
To solve the systems (2.6) and (2.7) for the inner expansions, we are going to solve first
a linear wave equation in Section 6. More precisely, let @y be determined by Proposition 3.1
and f € W;_l(Ri) for s < sp—1 and T < Ty, we are going to solve the following linear wave
equation
def 42 . 2
P(vo,D)p =0; ¢ —div (aOch) 4+ 2V g - VO
+div((Veo - Vo) Vo) + Vo - Vo + Apodyp = f,

together with the following initial and boundary conditions:

(3.7)

1
s+3

(3.8) o(t,y,0) = g(t,y) € Wy 2(R?) and  ¢li—o = ¢, drpli—o = ¢

The result about the unique solvability of the system (3.7-3.8) states as follows:
Theorem 3.1. Let (9033,903?) satisfy VQDEB,QDET € H*! and the compatibility condition:
N (p—9)(0,4,0) =0 fory € R and £ = 0,---,s — 1. Let f € Wj”l_l for some integer

s € [4, sg]. Then under the assumptions of Proposition 3.1, the system (3.7-3.8) has a unique
solution ¢ on [0, T, which satisfies

1@, Vo)l = C(Igll vy -~ IV llars—1 + 0 o=t + [1fllygrs1)-
T

(R

With (ag, o) being determined by Proposition 3.1 and (Ag, ®1) being determined by
Proposition 3.2, we are going to solve the system (2.6) with the boundary condition (2.21).
We first observe from (2.4) and (2.6) that

1
O(arag) + div (apa1 Vo) + 3 div (a2Vpy) = 0.

Then we get, by taking 0; to the ¢; equation of (2.6) and inserting the above equation to the
resulting one, that

. 1
921 — Ay + div((dppo + §’V<Po’2)v<,01) + 0 (Vo - Vir)
+ div(0rp1 Vo) + diV((V(,D() . V(,Dl)v(,ﬁ(]) = 0.

(3.9)

Noticing from (2.6) that

in def i

(3.10) Ovp1|,_g= —Veo - Veu|,_,—2a0a1|,_,= V‘P%)I,lo : Vsﬁilr,lo - 2‘lé)r,loal,o = ¢l
we complement the equation (3.9) with the boundary condition (2.21) and the initial data
(3.11) o1li=0 = @, Oupili=o = o

By applying Theorem 3.1, we shall prove in Section 7 that
Proposition 3.3. Let sg > 6 be an integer. Let aifjo, chifjo € H*0=3 which satisfy the com-
patibility condition: 9f (o1 + ®1)(0,4,0) = 0 for y € R?> and £ = 0,--- ,s9 — 3. Then under

the assumptions of Proposition 3.1, the system (2.6) with boundary condition (2.21) has a
unique solution (a1, 1) on [0, Tp] such that

(312) (a1, 001, Veor) |5 < O ([l (¥, Viei0) [ so-s + [ (@l = 1, Vetio) [ rso1)-

for Ty being determined by Proposition 3.1.



Let us turn to the solvability of the boundary layer problem (2.22-2.23) with the boundary
condition (2.24) for 0 < k < m. In fact, we shall prove in Section 7 that

Proposition 3.4. Let sg > 2k + 5 be an integer. Let aijf*O,VgDij{*o € g%~ %1 with j =
.,k + 1, which satisfy the compatibility conditions:

(Aps1): Of (p; + ®;) (0,y,0) =0 fory e R%, £ =0,--- ,s0—2j —land j=1,--- ,k+ 1.

Then under the assumptions of Proposition 3.1, the system (2.22-2.23) with the boundary

1
condition (2.24) has a unique solution (Ag+1, Pry2) in WSO 2(k+2)+2. Moreover, there holds
(3.13)
. k+1
H(Ak+1= (I)k+2)HWsof2(k+2)+% < C(”(abo 1 V‘P o)l o1 + Z I(a gOaV‘P] 20) || Frso—2i- 1)
1,7y j=1

Then along the same line to the proof of Proposition 3.3, we have

Proposition 3.5. Let so > 2k+7 be an integer. Let a}gn” 0 V(pian 0 € H#0=2k=5 which satisfy
the compatibility condition (Agy2). Then under the assumptions of Propositions 3.1 and 3.4,
the system (2.7) with boundary condition (2.25) has a unique solution (agi2,Pk+2) on [0, Tp]
such that

| (ar+2, Orprsas Veoria) Hw;oflﬂ(Hz) < C(H(%% —1,V50) 1 grso1
0

(3.14) .
+Z” JO’VCPJO ”HSO 25— 1>

for Ty being determined by Proposition 3.1.

Let (aj, ;) for j =0,--- ,m+ 2, and (A;,®;41) for j = 0,--- ,m + 1, be constructed in
the previous propositions. We denote

def i,em . . .
pam L pemoze with o™ = amt,e,m + [ab,e,m]67 (ps,m — (’Dmt,s,m + [(’Db,e,m]

(3.15) m+1 m+1 m+2 m+2

1nt E,m b,e,m __ j int,e,m __ j b,e,m __ j
= E eaj, a = E edA;, = E i, = E el d;,
=0 =0 j=1

58]

and
| def w2
(3.16) I(atly — 1, Veoro)llzsot + > 1@, Vi) 3021
j=1

Next let w and ¢ be real-valued functions, we are going to seek the true solution of (1.1)
with the form:

(3‘17) Pe — (aa,m + w)ei(“’ B
where (w, ¢) satisfy the boundary conditions:
W[,=0 =0, ¢|.=0 =0.

In view of (3.17), we write

(3.18) UE = O | et with o= w+ (@™ + w)(e@® — 1) wg + dwr.
9



It turns out that it is more convenient to handle the estimate of to than that of (w, ¢). As a
matter of fact, we shall derive in Section 9 that (wg,wr) verifies

£ (Bhwr + Syemn (wr)) + 5 Awy
R R S S )
(3.19) 4@m+smwmn——Amﬁ{q )+§%?ﬁww%$)m

_€m+1 e,m m RG(Q‘E( ))
wR|z=o = 0, wI|z=0 =0,

where & V=™, St(g ) = f Vg+ 2gV [y and Q(w), ry" and 7' are given respectively
by (9.9) and (9.11).

By crucially using the symmetric property of the operator S¢(g) (see Lemma 8.2) and the
special structure of the system (3.19) (especially that we can have the estimate of ||wg|| L2 ),

we shall prove in Section 9 the following proposition:

Proposition 3.6. Let m, N and so be integers so that m, N > 4 and so > 2m +9 + N. Let

gom = q5mez?""™ be the approximate solutions of (1.1) constructed in (3.15). Then under
the assumptions of Proposition 3.5, there exists a small enough positive constant g > 0 such

that for any € € (0,g¢), the system (1. 1) has a unique solution V¢ = (a=™ + tv)e’ i on
[0, Tp]. Moreover, for all t € [0,Ty] and T e (8t, V1), there holds
N-1

(3.20) > (Hfrﬂ'anig+ + [leT7v0]|2) S o™ 2.
j=0

The main result of this paper states as follows, the proof of which will be presented in
Section 9.

Theorem 3.2. Let m > 4 and sqg > 2m + 13 be integers. Let a*™, =™ and W™ be con-
structed in (3.15). Let aJO,Vgoij?O € H*0~2%~1 with j = 1,...,m + 2, which satisfy the com-
patibility conditions, Ay,+2. Then there exist sufficiently small positive constants ¢ and €
such that under the condition (3.3), for any ¢ € (0,e9), (1.1) has a unique solution V¢, which
satisfies

o) <cepem,
Loo(Wloo)

e

(3.21) He"

for the positive time Ty being determined by Proposition 3.1.

4. THE LOCAL WELL-POSEDNESS OF THE LIMIT SYSTEM (2.4-2.5)

In this section, we shall prove the local existence of smooth solutions to the initial-boundary
value problem of the limit system (2.4-2.5). Let us denote py def a. We rewrite (2.4-2.5) as
Bipo+V - (po Vo) =0, (t,z) €Ry x RE,
drpo + 5|Veol> + (po — 1) = 0,
©ol.=0 =0 and pp—1 as |z|— oo,
poli=o0 = (a%fo)27 @li—o = ¢i-

(4.1)

By substituting the equivalent form of the second equation in (4.1)

1
(4.2) po = —(Jepo + §|V900|2 —1)
10



into the first equation of (4.1), we obtain
(4.3) 970 + Vo - Vpo — V- (po V o) =0,

which can also be equivalently written as

. 1
(4.4) 0700 — Ao + Voo - Vo + div ((Drpo + §!V<Po!2)v¢>o) =0,
or
(4.5) 920 + Voo - Vo + 9ipo = 0.

Let cp}i‘l be given by (3.1). We implement the wave equation (4.4) with the initial-boundary
conditions:

(4.6) eoli=0 = ¥,  Orpoli—o = ¢y and g|.—o =0.

Before proceeding, let us first present the following product law in the space Wy, the proof
of which will be postponed in the Appendix B.

Lemma 4.1. Let 2 < s and Wy be given by Definition 3.1. Then for any f,g € W, one has
(4.7) I f9llws < Csll fllwzllgllws -

The main result of this section states as follows:

Theorem 4.1. Let 4 < sy € N and (90})‘}0, 90})‘711) € H*(R%) x H®~Y(R3) which satisfies the
compatibility condition (Ay). We assume that

(4.8) HVCP%)I,IOHHSO*l + ”SO%JI,HHHSW1 < co,

for some cq sufficiently small, then there exists a positive constant C so that for T' = Ccy L
(4.4-4.6) has a unique solution ¢q on [0,T], which satisfies

(4.9) 1@ep0, Vipo)llyyz0-1 < C (V50 lrrs0-1 + [l reo-1)-

Proof. 1t is well-known that the existence of solutions to a nonlinear partial differential equa-
tion can be obtained by first constructing the appropriate approximate solutions, and then
performing uniform estimates for such approximate solutions, and finally applying a com-
pactness argument. For simplicity, here we just present the a priori estimates for sufficiently
smooth solutions of (4.4-4.6) on [0,T*[ with 7% being the maximal time of existence.

In what follows, we shall separate the proof into the following steps:
Step 1. H.  estimate

Due to 9;¢|.,—o = 0, by taking the L? inner product of (4.3) with 9,y and using integration
by parts, we get

d

at /[RS (19e00]* + polVipo|?) da = /RS (800 Vo) — 2(Vgo - Vo) dspo) de,
+ +

from which and (4.2), we infer

d 2 2 2 2
- <
(410) 7 Ri(’at(po‘ + po|Vol?) dx N(”({ZM,OOHL?F + |’V¢O|’Li)

x (107 ¢ollze + (1 + Vol ) [ VOrpol| L2e) -

Step 2. HZ, estimate

Recall that T def (O, V). Applying T to (4.3) gives

(4.11) 02T wo— V- (poVT o) + Vo - VO T o + Voipo - VTwo — V- (TpoVipo) = 0.
11



Due to 9;T¢|.—o = 0, by taking the L? inner product of (4.11) with 9,7 g and using inte-
gration by parts, one has

1d 1
5 /3 (10T pol” + po [V Tip0[*) da — /3 Bipo| VT ol dx
RS RY
(112 + [ (Vo0 VaTen)aTeodn+ [ (Voun- VTo0) AT oda
RS R
+ , TpoVeo Vo Tegdr =0.
RS

According to (4.2), it is easy to observe that

/3
RJr

= —/R (V(,Oo . VT(,O())(V(,O() . VatT(po) dx

(Vo - VO To)0 T o dx + , Tro Vo - VoiTeode
RJr

3
1d
= —§a/ (Vo - VTo)? do + / (Vo - VT o) (Vorpo - VT o) da.
RY R%

Plugging the above estimate into (4.12) and using the equation (4.5) yields

d

T /RS (19:Twol® + pol VT 0l* — Voo - VT o?) da
+

= /3 (0epo| VT @ol* — 2(V 0o - VT 0) (0T o + Vipo - VT pg)) da,
R

+
which together with (4.2) ensures that

1d
(4.13) 2 dt 2 2 2
S (197 wollpee + (1 + “Vwo“Ljo)“vat(PO“Lf)(HatTSOOHLi + HVTSOOHLi)-

Step 3. High-order tangential derivatives estimate
Let ¢ € N, by applying the operator 7¢ (with T = (8, Vi) and T* = 971 V2 for oy +|as| =
¢ eN) to (4.11), we find

(4.14) BT g — V- (poVT ™ 0) + Vo - VO T oo — V- (T poVipo) = g

with

/Rs (|8t7900|2 + p0|VT<,00|2 — Vo - VT(,D0|2) dx
+

9 ¥V ([T o)V T o) — [T Vipo] - VO Tipo

— T (VT Vo) + V- ([T Vol T po).-

Noticing that 9; 7T pg|.—o = 0, by taking the L? inner product of (4.14) with 8,7y and
using integration by parts, one has

1d 1
—— | (10T 00l* + po| VT o |?) da — —/ Opo| VT po|? d
2dt Ri 2 R?jr
(4.15) — /3 Ao, T o2 dae — \ T (Vo - VT 00)|(Vo - VO, T pg) da
RS RY

= / 90 |0, T ipg .
R}
12



By using integration by parts, one has
— | TH(Veo- VT0) (Voo - VOT  p0) da
R+
1d

—— = | Vo VT o do + / ((cho VT 00)(Vepo - VT o)
2dt Ri Ri

n <V([Tf; Vool - VT o) - Vo + [T Vo] - VTQDOAQDO) atT“lgoo) da.

Plugging the above equality into (4.15) yields
1d

27t Jas (10T ol + po | VT o |* = [Vepo - VT H oo |?) dae = Ry,
3

(4.16)

with

defl
Ry 265/3 3t/70’V7-Z+1<Po’2d35+/3 Aol 0 T po|? do
RY R3

- [ (T FT ) (Taig0- 9T 1)
3

+ <gg — V([TZ; Vol - VTeo) - Vo — [TZ; Vol - VTC,D(]A(,D()) atT“lgoo) dz,
from which, we infer
%] S(l0kpoll e + HVcﬁoHLfHvatwollvf)HVT(HSOOHzLi + HAonLfHatT“l@onLi
+{[(9e = V([T Vo] - VT o) - Voo — [T Vepo] - VT 00 Agq) HLgr||8tT£+1900”Li'

Recall that for s € N, [l¢o(t)||3s = > 5=0 187 o (t)|| ge—i- Then by virtue of (4.2), and the
Sobolev embedding theorem: H?(R3 ) < L>(R3 ), we deduce that

(4.17) 10epollLee + Vol IVO:pollLee S (1+ Vol ) 19k pollws-
Next for 4 < s € N, we claim that
(4.18) 1f gl < el arz,
and
s—2
(4.19) Y IVATES Az S IF lwsrllgllws—-
=1

Indeed, it follows from Sobolev embedding theorem that
gl =Ifgllz + 1995 lcz + £ Vgl

<(Ifllzz + 1912 lgllzs + 175 1990z S 1FOlmllg(e) 2.

which yields (4.18).
By applying (4.18), we find
-1
IV (7% Al S NT 7 Tiglm
i=0
-1 ‘ '
SO NT T a2 T gl + 1T F gl
i=1
-1
SY M llwe-se2llglwees + 1f lwess gl a2,
i=1
13



which leads to (4.19).
Notice that
[T Vool - Vi Tpo = V- ([T Veooldi Tepo) — [T Apold T o,
we get, by applying (4.19) and Lemma 4.1, that

so—2

Z lgell 2 < (I9eeollwso-1+11Vepollwso—1 + Vol o-1)

< ([10eT ollwso-2 + VT wollwrso-2)-
Along the same line, one has

so—2

ZH V([T Vol - VT0) - Vipo + [T Vool - VTe0A%0) | 2

5 HVCPOHL?fHVSOOHWswlHVTCPOHWS(ﬂ + {17 Vo] - VT ol s Aol 1

S IVeoll a2 [V eollwso—+ [V T gollwrso -2
This together with (4.17) ensures that

so—2

Rl S0 Tollfyso-2 + IVT @0l s
(4.20) ;::1! | S(19:Tolly s + |l 550—2)

x ([10ollwsot + IVeollwso-t + IVeollfyreo—1)-
Inserting the estimate (4.20) into (4.16) leads to

802

D i (0T 4 VTl = Vo OT )
=1

SUI8eollwso—1 + [Veollwso-1 + IVeolfyeo-1) (10 T@ol5s0-2 + VT @0l yeo-2)-
Let us define three energy functionals of (g as

(4.21)

def
Es(t) S 10p0(®)|[3ys-1 + V00 (t) s
s—1
def s 0 9 .
(422) ES,tan(t) %(HatT (100( )||L2 ]RS + ||VT (’DO(t)HLZ(Ri))’

s—1
def
Eqan(t) = Z/RS (10:T 0o (t)* + po | VT 0 (1) = [Vipo - VT 0l*) dx
—o /R

Then by summing up the estimates, (4.10), (4.13) and (4.21), we achieve

d 3
(1.23) Ean(t) < C(L+ B (1) EA(1).
For § > 0 being sufficiently small, which will be determined later on, we define
(4.24) Ty & sup{ t<T*: Ey(t) <o }

Then for ¢t < T}, we observe from (4.2) that there exits a positive constant Cy such that

(425) Co_lEso,tan(t) S Eso,tan(t) S COEso,tan(t)a

provided that ¢ is sufficiently small in (4.24).
Step 4. Full energy estimates
Let Es(t), Estan(t) be given by (4.22). We claim that

(4.26) Eo(t) < CoEpgan(t) for t<T} and (=2,--- s,
14



provided that ¢ is sufficiently small in (4.24).
When ¢ = 2, we have

(“20)  B() < |dwoldn + 102¢0lZ; +I19Vnel3; + 108012 + [Valls

Yet in view of (4.4), we have

(4.28) d300 = 0fpo — Ao + Vg - Vo + div (9o + %’VCPOIZ)VCPO),
which implies that
105 ¢0ll 2 <[07woll2 + [Anpollz + C(IIVollZe V200l 12
+ (IVeollzse + [Apoll L3 )IIVreoll 2 )
<O((1+ 19 002) B unl®) + V0l 22|30 2)-

So that as long as 0 is sufficiently small in (4.24), we obtain

1
105 oll 2 < CE3 o (1).
Inserting the above estimate into (4.27) gives rise to
E2(t) < CE2,tan(t)'

This proves (4.26) for ¢ = 2.
Now we assume that (4.26) holds for ¢ = k, we are going to prove that (4.26) holds for
£ =k+ 1< sy. We first notice by the definition that

k
By () Z (107 00 ()I37—s + VD 00 (t)I374—s ) -
7=0
e When j = k.
We observe from (4.22) that
Hafﬂﬁﬁo(t)H%i + HvafSDO(t)H%i < Ek41 tan(t)-

e When j =%k — 1.
It follows from (4.22) that

16 poll7 = Hafﬁﬁo\\%i + Hvafﬁﬁo\\%i < Ejt1,tan(t)-
Whereas notice that
IV~ 00 (t) 71 :Hvaf_lﬁﬁo(t)ﬂii + ”Vzaf_lsﬁo(t)”ii
<[00 ®)[lfyir + IVVROF 00 ()72 + 1050 2o ()7 -
We deduce from (4.28) that
16305 gollz2 < 19F  gollzz + 1 An0E ol 2 + 105~ (Vp0 - Vrgo) 2
+ [0 div((@po + 519002 Vo) | 2.
Yet for j € [0,k — 2], it follows from the law of product, Lemma 4.1, that

1871 (Vo - Vo) | x> <[ Vo - Vol

<CIVeollwr-1[[VBrpollwe-1,
15
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and
: 1 1
|07+ div ((Dupo + §|V900|2)V900) | sz <||(Grp0 + §|V900|2)V900HWk

<C(l13e0llwr + IV oll5:) [V ol lww-

(4.30)

Therefore, we obtain
1 1
16308l < € (Bl )+ 1+ ¥ 0l Vols B (1))

VOF 1 oo(t)|| 1 shares the same estimate.
t P H
As a result, it comes out

0ol + 1905 o) 3 < C(Biran(®) + (1 + V0l IV 00l ey (1))

e When k£ — 5 > 2.
We have

i+1 i+1 i+1
16} SDOsz—j =0} 900||§{k7j71 + (V28! 900”?{#3'72
i+1 i+1
§||8t900||€vk71 + vahang SDOsz—j—z + ||8§6§+ SDOH%k—j—%
By virtue of (4.28), we find
1830] ol prr—i—2 < 10720l 32 + 18] Anol gra—i—2

: o 1
+ HGZ—H(V(PO . Vat(PO)”kajfZ + Hafﬂ le((atSDO + §‘V<,00‘2)V(,00) HHk7j727
which together with (4.29) and (4.30) ensures that

(431) 187 ol gx—s <N10ollwn—1 + IV Va0 T ol s + 1187 0| s
. - A
+ (1077 Anol| gr—i— + C(1+IVeollwe)IVeollwr B2, (¢).

In the case when k& — j > 3, we have
IVV0] ol r-i-2 =1V V8] ol rrs-s + V2 V00] ol ss
<lepollwrr + IVVEY ol s + 103Vn0] ool n——s.-
Yet it follows from (4.28) that
103V 0! ol prisi—s < IV 00|l gru-s-s + 107 Vol rii-a
IV (Vo - Vo) lgics-s + [ Va0 v (@uo + 51 00)V400) | o
from which and (4.29), (4.30), we infer
105 V0] ol i3 <IIVud 0ol prr-sa + 1077 Voo -
+C(1+ I¥0lws) IVollws By ()
Inserting the above estimate into (4.31) gives rise to
107 poll s <2000l + 118 poll pri—s-2 + 0] Angpoll prr—s-2
+ IVVRd ol s-i-s + V0] ol s
100l s + C(1L+ [ V0l [T 0ollws By (1)
By finite steps of iteration and using the inductive assumption for £ = k, we deduce that
(4.32) 107 ol ks < ChBrit san(t) + C (1 + Vol ) V03 Erra (£)-

The same estimate holds for ||V&? oo (t)]] g -
16



Therefore we conclude that
Epa1(t) < Ok Brsvan(®) + (L4 [Vol3a) Vo0 31 B (1))

Then in view of (4.24), as long as ¢ is small enough, we deduce (4.26) for £ = k + 1.
Now we are in a position to complete the proof of Theorem 4.1.
Thanks to (4.23) and (4.26), we obtain for ¢ < T} that

d
dt
where we used (4.25) in the last step. Applying Gronwall’s inequality gives rise to

Eso,tan(t) S Cso\/gEsotan(t) S CSOCO\/SES(),taH(t)?

( ) Eso,tan(t) SEso,tan(O) exXp (CSOCO\/St>
4.33
éCOEso,tan(O) €xp (CSOCO\/St) .

On the other hand, we deduce from (4.4) and (4.8) that

By an(0) < Cso (V8oL rs0-1 + 0671 | r50-1)? < Cio 3,

which together with (4.33) ensures that

(4.34) Eqptan(t) < CoCoyfexp (CoyCoVat)  for ¢ <TY.

Let us denote T % min(T 7, (CoCs, \/3)_1). If we assume by a contradict argument that
Tt < (CoCyy V)7L, then for t < T = Tt, we deduce from (4.34) that

Eso ,tan (t) < C(0 Cso 6(2)67

from which, and (4.26), we infer
(4.35) Eyo(t) < Csy Esgtan(t) < CsyCoEsg tan(t) < C3C2 ecd.

2

Then as long as we take the positive ¢ to be so small that C§C2 e cf = %, we find

]
Eso (t) < 5
This contradicts with the definition of 77 given by (4.24). This in turn shows that 77 >

(CoCsyVE) ™t = (V2e C3C co)_l. This together with (4.35) completes the proof of Theorem
4.1. (]

for t <T =1T7.

Remark 4.1. We remark that it is crucial to apply T* to (4.11), and then perform the energy
estimate for the equation (4.14). Otherwise, let £ € N, by applying the operator T to (4.3),
we find

(4.36) BT 00— V- (poVT 00) + T (Vo - Vorpo) =V - ([T po] Vo).

Due to 0, T po|.—0 = 0, by taking the L? inner product of (4.36) with 0,T*wy and using

integration by parts, we find

1d 1

St | ((8: T 00)? + po| VT @ol?*) da = 3 /3 Orpo| VT po* da
R R

(4.37) " "

-/, T (Vo - VOupo) |0 T o da +/3 V- ([T po] Vo) [0 T o da.
R3 RS
17



It is easy to observe that

1
- TV o - Vo) |0, T o dx =3 /3 Apo(0; T p0)? da
R+

=
- /3 [T Vo] V0o 0y T o da.
R+

Plugging the above equality into (4.37) and summing up the resulting inequalities for £ varying
from 1 to sg — 1 yields

so—1

d
> a/g (IT 0rp0* + po| VT 0]?) dax
/=1 Ry

so—1

4 {
< 3 (100l 19T 0ll2z + [ Agollas 10T w013
/=1

+ (75 Vol Vargo) Lz + 11V - ((T% p0]V'00) 1.2 )10 ol 2 ).

Applying (4.19) gives

(4.38)

so—1

DoV ([T po]Veo)ll L2 Sllpo = Llwso [ Veoollwso-1
=1

S(18eollwso + 1V ollfys0 ) IV o llwrso-1
which make us impossible to close the estimate in (4.38).
Now let us present the proof of Proposition 3.1.

Proof of Proposition 3.1. We first deduce from (3.1) and (3.3) that (4.8) holds as long as ¢ is
small enough in (3.3). Then it follows from Theorem 4.1 that (4.4-4.6) has a unique solution
@o on [0, Tp] with Ty = Ccy* which satisfies (4.9) when we take co = ¢ in (4.8). Moreover, we
deduce from (4.2) and Theorem 4.1 that

1 _
1 —po = Oppo + §|V900|2 € Wp Y
and

po(t,x) —1—0 as |z|] > o0 and

(4.39) 1 : :
11 = p0)llyz0-1 < G (1 V001 B (8) < Cgll iy — 1, Vi) 1701
0 0

Let us define ag def v/Po- Then we deduce from (4.39) that

1
ao(t,x)—lzL%O as |r| - oo and

Vo + 1

1 = a0)llyy20-1 < Coll(aglo = 1, Veeio)llpreo--
0

It is easy to observe that thus obtained (ag, o) is indeed the unique solution of (2.4-2.5).
Moreover there holds (3.4). This completes the proof of Proposition 3.1. O

5. SOLVABILITY OF THE BOUNDARY LAYER EQUATIONS (2.18-2.19)

The goal of this section is to prove the existence of smooth solutions to the boundary layer
equations (2.18-2.19), namely the proof of Proposition 3.2.
18



Proof of Proposition 3.2. Once again, we shall only present the a priori estimates. In view of
(2.18), we write

%(Ao +a0)02(02®1 + 0200) + 0z (Ao + @) (02®1 + D09) = 0.
Multiplying the above equation by Ag + ag yields
97 ((Ao +@0)* (021 + 0.00)) =0,
which together with the boundary conditions Ag|z=100 = 0 = 92P1|z=+ ensures that
(5.1) (Ag +T0)* (07D + 0.0,) = (@0)*D.00-
On the other hand, we deduce from (2.19) that

1 1 _
58%140 25(140 + 60)(OZ<I>1 + 62900)2

1 .
- §(Ao +@0)(D200)* + Ao(Ao + @) (Ag + 2a).

Inserting (5.1) into the above equation leads to

}(aof(5;@ﬁ2@4o+i%)_3——%(EZQOF(AO—kEO)+nA0@404—5@(A0—%260)

1
(m>§@%:2

Let us denote

— dAq
(53) Ag d:ef Ag+ay and qp d:ef d—ZO

Then under the assumption that Ag + @y > 0, (which we shall justify below), one has
8% Ao = 4007 o,
and it follows from (5.2) that

ldgg 1, ym— 073 L1 o— o = =2
ZdTAO’ = §(a0)4(3z900)2A0 - 5(5z900)2140 +Ao(Ao” — (@0)?),
0
from which, we infer
=2 ,—2 4 —2
(5.4) a5 = —(@0)*(D=0)? A0~ — (9200)*A0” + Ao —2(a0)*A0” + Cu(t,y).

Thanks to the conditions %|Z:+Oo = Ap|z=100 = 0, one gets
0= —(@0)"(@=0)* (@) — (2(@0)* + (9:0)*) (@0)” + (@0)" + C1(t, y),
which gives
Ci(t,y) = (@)* (@) +2(0:0)%) -
By inserting the above equality into (5.4) and multiplying the resulting equality by %2, we
find

—~\ 2
—~ dA —~6 g\ 4
(Aod—ZO> =Ay — (2(60)2 + (82900)2)140

+ (@0)2((@)? + 2(0)2) Ao — (@) (Tapy)?,
that is
—~ 92\ 2
(5.5) i (d;ZO ) — (A = (@))* (40 — @290)°)-
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Notice that according to Proposition 3.1, we have

(@)” — (Tzp)” 2

as long as c is small enough in (3.3).
Let us denote

=~ =

(5.6) ho & (@) — (@90)?)

D=

1 def (2
> 3 and By = <A0 —(5z900)2>

—~9 .
in case of Ay — (0,¢)? > 0, which we shall justify later on.
By virtue of (5.5) and (5.6), we write

1 ng ? 2 2\2 2
Z(d—Z> = (B — hg) " Bs,

that is,
(5.7) 7 +(Bg — hg),
from which, we infer
Bo — ho +9hZ
= Co(t 0z,
BO + h(] 2( 7y)e
Since By — hg is rapidly decaying to zero as Z — +00, we have
Bo — ho —2hoZ
= Co(t 0
Bo T I 5(t,y)e ;
which gives
1+ Cy(t,y)e 20?
(5.8) By = hy it G2t v)e

= Colt, y)eZ
While according to the boundary condition (2.20), one has

Bj|z=0 = (Ao + @) |z=0 — (02129)" = 1 — (Bz00)*,
which together with (5.8) ensures that

— 1+ Ca(t,y)
1—(0,09)% = hg———F2%.
(9:0) Ol—Cg(t,y)

As a result, it comes out

1 — (0.00)% — ho

1- (62900)2 + ho
1 — (ap)?

(V1= (@zp0)2 + ho)*

from which, Proposition 3.1 and trace theorem, we deduce that

5.9 Co(- < C|(aly — 1, Vi) || gso—1 < Ce.
(5.9) | 2()”W;87%(R2)_ ”(ao,o ‘P0,0)HHO 1> 0¢

Whereas it follows from (5.6) and (5.8) that

C2 (tv y) =

1+ 026—2h0Z)2

(Ao +a0)* = (-0)* = iy (W

20
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which implies that
5 1
Ao — —an + (@0)2(1 + C2e=102) 4 205 (h2 — (Dapy)?)e2h07 \ 2
’ ’ (1 — Cy(t,y)e2hoZ)2

etz (o (@20 + CRe 7)1 20 (1 — @ogp)P)e 27y 1Y
— 4Cyh2e2ho <a0+( TG ety )

_3
This together with (5.6) and (5.9) in particular shows that Ay € WlsoTOQ, and there exists
some positive constant ¢; such that

(5.10) ”A()HWso% < CH(aiOrfO -1, Vgpgfo)HHsOfl and Ag+ag > c; > 0.
1,Ty

Then we rigorously justify that By > 0 for Z € RT as long as c is small enough in (3.3).
With such Ay, in view of (5.1), we write

dz®1 = (Ao + ao) 2(@0)?=p — O=¢0,
P1|z—400 = 0.

It is easy to observe from the above equation that

> Ao(Ao + 250)
®(Z) = -0, — 2 dZ.
1(2) o / (Ag +1p)?
which together with (5.10) shows that
(5.11) 121 .o-3 < Cli(agi — 1, Vgio) | Freo-1-
Wl,T02
This ends the proof of Proposition 3.2. O

6. THE EXISTENCE OF SOLUTIONS TO A LINEAR WAVE EQUATION

The goal of this section is to present the proof of Theorem 3.1. Let x(7) € C°(R) with
Xx(7) =1 in a neighborhood of 0. We denote

(6.1) Gd:efx(z(1+\Dhy2)%)g(t,.) and =+ G.

Then one has G € Wi (R?), and ¢ verifies

P(¢o, D)p = —P(p9, D)G + f &

(62) (10|Z=0 = 07
in def ip in def in
<Z5‘t:0 =¥o G’t:O = <Z5o , and 0t90\t:o =¥1— 8tG‘t:0 = <Z51 .

And the proof of Theorem 3.1 is reduced to the following one:

F e Wi (@)

Theorem 6.1. Let T < Ty and 4 < be an integer. Let F € Wffl and (¢, ¢i0) satisfy
Vo, ¢t € H*™! and the compatibility condition that d{¢(0,y,0) = 0 for £ = 0,--- ,5 — 1.
Then under the assumptions of Proposition 3.1, (6.2) has a unique solution ¢ on [0, T], which
satisfies

(6.3) 1020, Vo) [lyya-1 < C(HQHWS% T (V5" &) lzrs—1 + [F llyys-1)-
T

(R?
In what follows, we shall always denote E(¢), Fstan(¢), and E&tan(qﬁ) to be the energy
functionals determined by (4.22).

Let us separate the proof of Theorem 6.1 into the following lemmas:
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Lemma 6.1. Let ¢ be a smooth enough solution of (6.2) on [0,T]. Then for t < T, one has
d
(6.4) /R L ((20)* + ol VoI* = (Vo - V9)?) da < O (1+ Ea(po)) Er((t)) + | FIIZ; -
+

Proof. By taking L? inner product of the ¢ equation of (6.2) with 0;¢ and using integration
by parts, one has

1d
2dt R3 ((8t¢)2 + PO|V¢|2 — (Vo - v¢)2) da

6.5 = /]R ) (%@m!%?—(v@o.w)(vaﬁoo-w»+<vateoo-w>at¢+m¢) da

+

<C (1 + 107 ¢o0llLee + (1 + HVﬁpoHLf)HV@@oHLf> (Hattﬁ\\%i + HV¢H%3) + HF\\%i,
from which, and (4.22), we deduce (6.4). O

Lemma 6.2 (High-order tangential derivatives estimates). Let ¢ be a smooth enough solution
of (6.2) on [0,T]. Then for t <T, one has

d ~
(6.6) 7 Patan(0(t)) S (14 Esa(po(t))) Es(a(t)) + Z ||T£FHL2 -
/=0
Proof. Let £ < s — 1 be an integer. By applying the operator 7¢ (with 7 = (9;, V) and
Tt =001Vp? for aq + |as| = £ € N) to the ¢ equation in (6.2), we find

where
[T P(¢o, D)]¢ = — div([T*; po] V) + 2[T* Vo] - VO
3
+ ) div([T Okpo Vol Okd) + [T Vgl Vo + [T, Apoldrd.
k=1

Due to 0;T¢}|.—o = 0, by taking the L? inner product of (6.7) with 9,7%¢, we deduce from
(6.5) that

d
| (@0 + 0o VT O ~ (Voo - VT'0)?) da
dt Ri

68 < (lawolles + IV pollz Va0l ) IVT 112

+ (1990l 19T 652 + IET% Ploo, DYollzz + T4 Flly2 ) 19T 6l 2

It follows from (4.19) that

Z 1div([T% pol Vo)l 2 < llo — Liw= IV llws-1,

s—1

>l div([T* OkpoVeoldke) 2 < IV eolliys IV llws-1.
(=1
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For s > 4, we get, by applying Lemma 4.1, that
s—1

DT Vol - Vagdlire S IVeollws—1 V@l
/=1
s—1

DT Vol Vo2 S IVkpollws—1 [V llws—2,
=1
s—1

DT Aoldrglra S IAgollws—1[10:llws—-
/=1

This gives rise to

1

s—1 1 1 1
DT Pleo, Dglle S EEps(po(d)(L + EL (wo(8) EZ (6(1))-
/=1

Inserting the above estimate into (6.8) gives (6.6). This completes the proof of the lemma. [

Lemma 6.3 (Full energy estimates). Let ¢ be a smooth enough solution of (6.2) on [0,T].
Then for t < T, one has
d ~

(6.9) 7 Botan(6(1) S (14 Eos1(00(t)) Bs tan($(1)) + [ F [y

Proof. Let Eg(¢), Estan(¢), and Es,tan(qﬁ) be determined by (4.22). Along the same line to
the proof of (4.26), we claim that

(6.10)  Ei((t) < Co(Braan(d(0) + [F(1)[3a) for t<T amd £=2, 5.

In what follows, we just outline the proof.
We first observe from (6.2) that

(po — (D30)2)02p =02 — polAngd — Vpo - Vb + 2V g - Vrd + (Vepo - V) Agp

3
(6.11) + Apodsd + Y (V00 - V)00 + (Vipo - 95 Vi) a0

j=1
+ (Vo - ViVé) Vo + VOrpo - Vo — F,

from which, we infer

B3 (6(1)) S B an(0(0)) + E£ (o0(0)) (1 + EF (o0(0))) B3 (6(1)) + | F .
This together with (3.4) ensures that
(6.12) Ey(6(1)) $ Ezan((t)) + | FIIZ: -

This proves (6.10) for ¢ = 2.

Now we assume that (6.10) holds for ¢ = k, we are going to prove that (6.10) holds for
¢ =k +1<s. We first notice that

k
. .
Er1(6(8)) < D (107 01—y + VO] S(0)[170-)-
j=0

e When j = k.

We observe from (4.22) that

0EF (1)1 + I90EG)25 < Bipn an(6(0).
e When j =k — 1.
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It follows from (4.22) that
10FolEn = 195 ¢l7z + IV @llT2 < Bt gan(6(2))-
Whereas notice that
IV~ o)z =IIVor " e(t)lI72 + IV o(1)lI7:
S0 llys + IVVOF S(0)II72 + 10305 $(0)I17 -
Similar to the proofs of (4.29) and (4.30), we deduce from (6.11) that

10308101112 < C (B can(90) + (1 By (20() By (0(0) By (8(1))) + 105 FIR

IVOF~1¢(t)| g1 shares the same estimate.
As a result, it comes out
1 1

1080l + 1190 ™ 6(0) [ < C (B 4 (6(8)) + By (0o () EZ 1 (6(1)) + 107 125

e When k — j > 2.
We have

||8g+1¢”?{k—j :\|6f+1¢||§1k,j,1 + \|V26{“¢||qu,j,2
§Hat¢||%/kal + ||VVh6f+1¢||qu,j,2 + ‘|a32,8tj+1¢”?{k—j—2-
By virtue of (6.11), we find
1020 Bl 52 S 1073l gis—2 + 1Oullwi-s + IV V0 s

+ 107 Aol grs—2 + (1 + B2 (00 (0) EZ 1 (0o (0) EZ o (6()) + 18] F | s

The same estimate holds for [|# ™ ¢|| yu—;.
In the case when k — j > 3, we have

VY8 0552 =NV VRO bl Fpsms + (V2 V00 Bl
<106l es + VTR0 03 + 108V 6
Yet it follows from (6.11) and Lemma 4.1 that
105 0] " 6ll ri—s—s SIVRO] PGl priims + 107 V|| priss
1 1 1 1
+ (L4 B2 (po(0)) By (po(0) B (6(1) + [IVad! T Fl gess.
Inserting the above estimate into (6.13) gives rise to
107 @ll s <O llwrr + 18] > ll s + 10] ™ Al a2
vv2aj+1 ) \v4 8j+3 ) 8j+1v3 .
+ VYR llgr-i-3 + [[Vd "l gr—s-s + |00 Vidll r-i-s
1 1 1
+ O+ ER, (po(1) BR (o)) R (8(8) + [1F e
By finite steps of iteration and using the inductive assumption for £ = k, we deduce that
™ 1 1 1
18] ll s < Cr(EZ 4an(@®) + [ Fllws—) + CEZ (wo(t) B, (8(2))-

The same estimate holds for |[V& ¢(t)|| gr—;.
Therefore, by virtue of (3.4), we conclude that

Ek+1(t) < Ck (Ek+1,tan(¢(t)) + HFH%/Vk*l)

This proves (6.10) for ¢ = k + 1. By combining (6.6) with (6.10), we achieve (6.9). This
completes the proof of Lemma 6.3. O
24




Proof of Theorem 6.1. By applying Gronwall’s inequality to (6.9) and using (6.10), we deduce
(6.3). This completes the proof of Theorem 6.1. O

7. THE EXISTENCE OF SOLUTIONS TO THE OTHER ASYMPTOTIC EQUATIONS

Let us first present the proof of Proposition 3.3.
Proof of Proposition 3.3. It follows from (2.21) and Proposition 3.2 that
_3
@1]z=0 = —P1]z=0 € W;g 2(R?).

Then we deduce from Theorem 3.1 that the wave equation (3.9) with boundary condition
(2.21) and initial condition (3.11) has a unique solution ¢; on [0, Tp]. Furthermore, we have

H(aﬂplaVﬁﬁl)HW;p*3 <C(|[(Vero: ¢io,) | preo-a + H(I)l‘ZZOHWSO*%)
0 T

<C([[(a¥o Vo)l oo + [[(atio: Vieiio) [l z700-1)-
Note from the ¢; equation of (2.6) that

1
ay = o (Orp1 + Vo - Vi),
ao

from which, (7.1) and Lemma 4.1, we deduce (3.12). This completes the proof of the propo-
sition. O

Next let us present the proof of Proposition 3.4.
Proof of Proposition 3.4. Inductively, we assume that we already have
_ —1-2(j+1
(a0 — 1, Vo) € W™, (aj41,Vepjpn) € W2 720D ang

s0—2(j+1)+2
(47, ®j11) € Wy, SR

(7.2)
for j=0,---,k,

we consider the boundary layer problem (2.22-2.23) with boundary condition (2.24). We first
get, by inserting (5.1) into (2.23), that

—o——
ag0-q

07® + G
Ao + o 7 Pp12 k

_— 1
+ (3143 + 6agAgy + 253 + 82@182(,00 + §|8Z¢1|2)Ak+1-

1
55%Ak+1 =
(7.3)

Here according to (7.2) and (A.2) in the Appendix A, Gj, € Wls(lf]g, where and in what follows,
we always denote

1
S0,k d:ef so—2(k+2)+ 5
Whereas by multiplying (2.22) by (Ap + @p), we find

1 _
552((140 +0)* 0z Pri2) + (Ao +a0) (021 + D200)02 A1
1
+ §Ak+1(A() + ﬁo)a%q)l = (Ao + ao) Fx,

where F}, € Wf%{; according to (7.2) and (A.1l) in the Appendix A,
Then we deduce from (2.18) that

1 _
532((140 +@0)%07Ppt2) + (Ao + o) (0281 + D200)072 At

— Ap41(02%1 + 0.400)02 A0 = (Ag + o) F..
2



By virtue of (5.1), we write

1 2 _von— (0zArs1 App10zA0N\ _
282((A0 +00)* 0z Phr2) + (@0) 5z<Po(A0 0 (Ao +50)2) = (Ao +ap) Fi,

that is,
(7.4) 8Z<1(A0 +0)°07®p 12 + (@0)*D=0 i1 > = (Ao +ao) Fy.
2 Ap + g
Integrating (7.4) over [Z, oo[ gives rise to
. 2 /OO _ /
: Dpyo = —2(ap)?0. A E,dZ'.
(7 5) 8Z k+2 ((10) ¥o (AO +EO)3 + (AO +EO)2 P ( 0 +a0) k

Plugging (7.5) into (7.3) leads to
(7.6) 0% Aps1 = gAps1 + Gh,
Here and in all that follows, we always denote

def

S a0)*(0.¢0)?
g S 643 +12a9Ag + 4a3 + 207910,y + |07 > — 4180 (9=¢0)"

Ao+ o)t

- R (A +ap)
=~ def an0z — S0,k

A A

Recalling the notation from (2.11) that axy1(y) = ar+1(y,0), we reduce the resolution of
the problem (2.22), (2.23) and (2.24) to the following system

0% A1 = 9Ak+1 + G,

2(ap)20. 0, _
(7.8) 07Pppo = =25 EL N 2 [2(Ag + @) By dZ,
Aptilz=0 = —Gk+1, Akt+1]2=1400 =0, Pri2|z=4c00 =0.

Let’s now handle the system (7.8). In order to do it, let gk+1 def Api1 + e 3%a,,1. Then
Ap.yq verifies

(7.9) q%gkﬂ =9 gk+1~+ ék —(9+g) e ag,
Aptilz=0=0, Apqi1]z=400 = 0.

By applying the operator 7* (recalling that T = (0;, Vy,)) with £ € [0, [So,k]] to the equation

(7.9), and then taking the L? inner product of the resulting equation with —e?Z ngk_i_l, we
have

HGZT”@zZHlHZ - ZHEZTZZkHHii T /Rs T (g Are)|e* T Apsr dy dZ
+

- / , THGr — (9 + g) e 32ap1) 22 T Ay dy dZ.
R+
Notice that

_/3 T g Aps1)| €T Ay dy dZ = _/
R+

gle? T AP dy dz
RY

- /RS e” [TZ§9] Zk+1|€ZTZZk+1 dy dZ,
+
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we infer
T 0cAnll}y + [ (@ =215 T AP dy a2
+
<[|e?[T* 8] Arsallzz [T A 2 + € (IGhlyp 0
+ He_2z7dz(‘_lk+1)HL?F + He_zzTZ(gakH)HL?Jr) HGZngkJrlHLi‘

Whereas it follows from (3.4), (3.13) and (7.7) that g —2 > 2 — [|[g — 4[|, > 3 as long as c is
small enough in (3.3). So that we obtain

~ -~ ~ 2
HeZTZE?ZAkHHii + HGZTZAkHH%i < 1?17, 9] Ak+1HL3
HGRIZ sop + lle”? T ars)l72 + lle 2T (gars1) 72 -
1,Ty + +

We deduce from trace theorem and the proof of Lemma 4.1 that

Zirt. o A
I#07s8] Auralia S 1Tl i), B Al o
o= T (@)l oy < Nl g0, el eoe3

o WTO

Therefore, we obtain
~ 5 ~
1e# T 07 Aksallz2 + S€” T Al
T+ 4 T
<<a—1,V 2 i+ [(Ag, @1)? )eA s
<(|Iao 900)||WT8 1+ (Ao I)HWfOT; | k+1HL2((W Oou)h

(2 2 2
G rop + N o (1 (a0 = 1, ¥200) fzo-1 + (A0, @I, 3).

Wit

In view of (3.4) and (3.13), we get, by summing the above inequality for ¢ from 0 to [s ],
that

lle 62Ak+1||2 [50 W T ||€ZAk+1|| [50 g0 S ||GkH2 0.5 + Hak+1H éom
L3 (Wr, " LI (Wr, " n 1Ty
which in particular implies that
7.10 eZAk12 R S ék2s + ak12s .
(7.10) I Bail? i, S 1GI + oo

In general by apply 82 for k < [so ] and performing the above energy estimate, we achieve

(7.11) ||Ak+1H2 :()Tk ~ HGkH2 SOk + ||ak+1H 5Ok

0 To

With the above estimate, we deduce from the second equation of (7.8) that

(712 19l S NG s+ Il
>0

Thanks to the definitions ofﬁ;ﬁ_l, ék, and Fy, Gy, in Appendix A, we deduce (3.13). This ends
the proof of Proposition 3.4. O

Finally let us present the proof of Proposition 3.5.
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Proof of Proposition 3.5. We first observe from the ¢y o equation of (2.7) that

1
Ouprr2| o= = Voo - Vprial,_g—2a0ant2|,_o+ 2a0 (Aar +gf11) |12

(7.13) =— Voo - V‘Pikn+2,o - zag,loa}anrlO + o (Aa}cnﬁ + 9541 11—0)

2ag
Lo, e W with 5o Psg—1-2(k+2) > 2,
we are going to inductively solve the linear equations (2.7) with the initial-boundary conditions

(7.14) Priol:=0 = —Priolz—0,  Prezli=o = Pihoo and  Orppyali—o = Pita-

In fact, according to the first equation in (2.4) and (2.7), we write

. 1 a
Oy (agay2) + div(agay2Veo) + 3 div(poVer+2) = ao fryi1-

By taking 0, to the the ¢ky1 equation of (2.7) and inserting the above equation into the
resulting one, we obtain

O rr2 — div(poVepri2) + 0(Vepo - Vipria)
(7.15) + div(@tgkarngDo) + div((Veo - Ver) Vo)

1
= —2a0 fi + 815( (Aay, + ng)) + div(E (Aay + ng)Vgoo) def Fiio.

Note that Fj9 belongs to WTO’k according to the definitions of fj,, and 95 41 in (2.8). Then
we deduce from Theorem 3.1 that the system (7.15) with the boundary condition (2.25) has
a unique solution 1o so that

(7.16)
H(atcpk+2av90k+2)”wio,k <C(|[(Vertao eia) | gror + H‘Pk+2!Z:oHW;o,k + ”Fk+2”W;:O,k)
0 0

k42
C(”(abr,lo—LVSO M 501 +ZH ]0=V<P]o lrs0-25-1)-

With @19 thus obtained, it follows from the a9 equatlon of (2.7) and Lemma 4.1 that
1

! 50,k
2aq <2a0 (Aay, +g7.1) — Oeprra — Vo - V(’Dk+2) e Wik,

ag4+2 =

in case 50 > 2. Moreover, there holds

k+2
Mawellyzox < € (lI6afs — 1, Vel Mliro-s + 3o Tl ).
0

This completes the proof of (3.14). O

8. SOME TECHNICAL LEMMAS
Let (™™, om%em)) and (aP*™, ©pP#™)) be determined by (3.15), we denote

5m,T d:ef H(aint,a,m —1, at(pint,a,m’ vwint,a,m)H?/V;072m75 + H(ab,a,m’ (pb,a,m)Hivs()iQmi%’
(8.1) LT

em def def

em. def 1
umE NG Si(9) = f Vet 59V f, TE (0 Vi),

Then thanks to Propositions 3.1-3.5, we have

(8.2) Em,r < C &,
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for & being given by (3.16).

Lemma 8.1. Let sg > 2m + 9 be an integer and a®™ be defined by (3.15). Let f and g be
smooth enough functions satisfying the homogeneous boundary conditions f|,—g = g|.—o = 0.
Then one has

2 < gz o|| Aa=™ < g3
83 @I, e fodal SEFIeflm leglm and | SIS € eI,
+

if j € 10,80 — 2m 9], we also have

1
z|/ T] am Fode| < E llefllan lleglmr,

(8.4)

Aaam ‘

asm

€H[TJ

1 Iz "
N ZHT flln
k=0

Proof. In view of (3.15), a®™ = a'""&™ 4 [ab’avm]g, we write

Aags™ A int,e,m A b,e,m 82 b,e,m
62/ @ fgd:nzez/ a + [Ana ]Efgdzn+/ Qfgdm.
R3. R% R a°

aém a&m

Note that f|.,—o = 0, Hardy’s inequality ensures that Hz_lfHH(Ri) < CHaZfHL?(R?jr)’ so that

we infer
Aaint,e,m + [Ahab,e,m] Aaint,e,m + [Ahab,s,m]
2 3 e
[ s Fode| < | - 1l gl
1
S& lle f”Li ”EQHLia
and

292 bem
[ B g = | [ PR oy e an

aem
Z2a%ab,a,m . »
5“?\\@”“ Fllez le="gllsz
Z282ab7a’m )
< |[ZEE et e ualis < 6 uaazfuLQ+ leoglz,
Z202ab> So—2m—

where we used the fact that HazsimHLoo < 52 due to 9%aP=m € Wi,
to the first inequality of (8.3).
Along the same line, we observe that

. This leads

e e ey e
(8.5) gL abem *
e e flliz + Hief( L

+

Whereas it follows from inequality, ||z~ f|| L2®s) < Clo-fll L2(R2)» that we

[a%ab,am]e f Z@%ab & m ( .
g,m 2 egm €z f) 2
a~ LJr a* L
Z0%abem

3

~

1
-1 2
[ le=7 s S E5le0- Nz

afm

which together with (8.5) ensures the second inequality of (8.3).
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The inequalities of (8.4) can be proved along the same line, we omit the details here. This
completes the proof of Lemma 8.1. O

Lemma 8.2. Let f and g be smooth enough functions which satisfy the homogenous boundary
condition f|.—o = g|.=o = 0. Then one has

/RS Susm(f) g dw = —/RS Susm(g) fde, /RS Suer(f) fdz =0,

J

Moreover, for j € [0, s9 — 2m — 6], there holds

(8.6) J
(Suem (9)01f = Sueon(£)g) di = = /R , Sueml)fda = /R , Sanen(0) f do

3
+

1 . 1 o
BT Srsuem (P2 SEXNflm and ([T7: Sueml (Dl < EF S IT S .

Proof. The first two equalities in (8.6) can be obtained by using integration by parts. Whereas
observing that

[, (Sen@)0nf ~Siem (1) 09) o

d 3 eg,m
:—/ Suem(g) f dx —/ dlv(u ’ fatg) —/ Souem (9) f dx.
dt Ri Ri Ri

Then the second equation in (8.6) follows from the homogeneous boundary condition of f.
Next we just prove the first inequality of (8.7) for the case j = 0. We observe that

3 — 1 i t,e, 1 b7 3 -1 b7 s
lf V- usm”L2+ —Hf(dlvum M [divyp u”®™] + e [0zu 6"”]E)HLQ+
Sl div ™=y £ vy,
+ 27t fllze 12 8zu>™ e

S (™5™ gz + Jub=m
Lo

. b,e,m
o)) 10 17 05

3 .
L (HyY)
As a result, we achieve
1S (Pllzz SIeE™ -V Fllpz +1£ 7 w12

Sl (=™ e + ™™gz + a5+ 112 gue™|
Lgo(

Lo (H2) H

)

ol

1
SEG S s

which leads to the first inequality of (8.7) for j = 0.
The second inequality of (8.7) follows from the first one. This ends the proof of Lemma
8.2. U

Lemma 8.3. Let (21,23) be smooth enough solution to the following system:

£(0h + Suem ()2 + AUy = (% Lo — €m+2ﬁ1>9l2 — &M 2hy + f1 = fo,
(8.8) (0 + Suem (1)) Az — %Aﬂl +2(a®™)2A; = —x1 A1 + ™ xe — g1 — 99,

Ai|=0 =0, Ap|,—0 =0.
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Then if sy — 2m — 10 > 0, one has

d (&2 2 m 1
LTIN[0 ft o Snetn

L1
2Ri

b [ (02020~ £a012) d S (14 Il + 0 ) e (2, 2) [y
R

+
+ (1+ Ixallze + 100l I l7: + 16 1 e o g2, F2)l72

+ IV (f1, gl)HQLi + 52(m+1)(H(X2=€712)”2Li + ”(@Xzﬂﬁﬁ”%i)-

((52 Aas™

E asm

- Em+2h1>m% - 2€m+2h2§2[2 - 2€m+1X2§2[1) dx}
(8.9)

Proof. We first get, by taking the L? inner product of the 2; equation of (8.8) with —8;2s,
that

g2 d
e / (021 + Suem (1)) 0o d + = 2|V U2

R3 4 dt +
(8.10) N

)

While by substituting the s equation of (8.8) into — fRi f10:25 dz, one has

2 ae,m

2 e,m
(E Aa — €m+2h1> ng 8t9l2 dr — / (f1 — €m+2712 — fQ) agglg dx.

3 3
+ RY

—/ flathdx:E/ V f1- V2 dx
R3. 2 Jr

3
+

+e ! / f1 (e8uem (As) + (2(a™™)? + x1)M — ™ xa + g1 + go) da.
R

3
+

By inserting the above equality into (8.10) and using integrating by parts, we obtain

d {i”vgb”ii +1/RS ((iAaavm _am+2ﬁ1) Q[% — 9em 2, 52[2) dm}
+

dt \ 4 2 2 qgem

_g/R

3

8.11 *
(8.11) +1/
2 Ri

+ 6_1 / f1 (€Sus,m (ng) + (2((1677”)2 + X1)Ql1 — €m+1X2 +g1 + 92) dx.
R

3
+

Oy + Syerm (A1) 0o dz — | fo Qo dr = —™T2 | O4ho Us dx
3
R+

3
R+

e Aa®™ 9 €
at(g i hl)m2dx+§/RS+ Y fi - V2 da

On the other hand, we get, by taking the L? inner product of the 5 equation of (8.8) with
021, that

.

(8.12) +

-,

e? d 2 d emy2 4 1 2
(8th2 + Sus,m(glg)) 8tgl1 dx + ZEHV Qll”Li + % /]Rir (((1 ) + 5){1)9[1 dx

(€m+1X2 — g1 — 92)&2[1 dr + /3 (2 ae,mata&m + 8tX1)Q@ dz.
RJr
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By using the 2A; equation of (8.8), we write

g _
—/ G102 de = —= Vg VA dr —¢ 1/ g1 (f1 — fo) dx
R3 2 Jgr3 3

i - =

g2 Aas™
+ g™t /RS g1 ho dx + e’ /Rs (65“6 () - ( 2 a&m 6m+2h1)2{2> o
+

By inserting the above equality into (8.12) and using integrating by parts, we find

d m 1 m
=L e, + 4 / (@ + 5x1)2 — " xot) da
+ E/ (8th2 + Syem (ng)) 02y dx + / g2 Oy dx = —gmtl / Orxo 21 dx
(8.13) R R R

+ / (2 a®M0ia®" + 8txl)2l% dx — % Vg VA da +em ! / g1 hig dx
Ry

R% R%
g2 Aa®™

2 a®m

+€_1/R 91(f2—f1+68u6m(9[1) (

+

— ) )2, ) da.

Thanks to (8.6), we get, by summing up (8.11) and (8.13), that

d (e 1 €2 Aas™m
—{—H(V 2y, V%)H%i + —/ <<— - €m+2ﬁ1) A2 — 2™ 2y Ql2> dx
R}

dt L4 2 2 asm
1
(8.14) + /3 ((a=™)? + 5)(1)?2@ — €™M0y + Syem (e2A2) 2y )dm}
R+
+/ (92 021 — f20iR2) dx = *R,
RS
where
i et (Sopusm (eA2) A1 + (2a5™0pa™™ + yx1) A7) dz
Rt
1 2 Aagém™
+ —/ (5= — e ) Wda — e / (Orx21 + £ihy Ao) der
2 RS 2 a&m R‘i
+ % /3 (V fl . Vgll — Vgl . VQLQ) dx + 5_1 /3 (fl Sus,m (EQ[Q) + g1 Sus,m (Eml)) dz
RS R}

e2 Aa®=™

+et /RS (fl (2(a®™)* + x1)2M — ¢ (5 peT €m+2h1>912
3

+figa+ a1 fo— ™" (fixa — eqn 712)) dx.

Notice that sg — 2m > 10, we get, by applying Lemmas 8.1 and 8.2, that

1
\/3 Sopuem (eU2) W dz| < [|Spuem (e%2) 2 120 ll2 < EF leallm 1] L2

=7 ( )2 da| 5 € el
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and

1
e e (f1 Suem (eU2) + g1 Suem (e201)) der| < E7 e [(f1, g1)ll 2 le(a, L)l

S, 0 el S ol |5 S, S 8l el
and
‘ i (2a5™0a™™ + Oyx1) A3 da| S (€0 + H@Xl”Lf)”Q@H%i,
0 de| < €™ 00 | eal 22
am+1|/RS (Oex2M1 + edpha A) dex| S €™ Bz, Dehiz)l| 2 [1(A1, ea)ll 2
:
and
| /R (™R 4 x) o] S e E o+ ) Il 126 2
et / s da] < €™ 2 1ol 2
RJr
) [ (= Fixe o) dal < (1iloe Il + ellonlliy relzz)
:
and

e
SI [ (94 V = Vgr V) da] ST 51V g0)12 (T, Ta) 13,
R+

[ ot fo)dal S (1Alsz Noalzs + lonlse felss).
)

By substituting the above inequalities into (8.14), we obtain (8.9). This completes the proof
of Lemma 8.3. O

9. VALIDITY OF THE WKB EXPANSION
The goal of this section is to present the proof of Theorem 3.2.
Proposition 9.1. Let U»™ be given by (3.15). Then one has
(9.1) =0 =1, ¢""|:=0=0
and

def

(9.2) cP(wem) Lo, pom 1 = A\If‘”” PO (g2 1) = RO

where R®™ is of the form:

(9.3) RS = — gt gem (E Rintm 4 [Rfl”m]g) + jemt? (E Rfo’lt’m + [Rf;’m]a).

Moreover, there holds

(9.4) H(sznt’m’ Rglt,m)HWsofz(mw) + H(RS’m, Rgm)H co-2(m+3)+1 < &.
Ty Wl,To
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Proof. Let a®™ and ¢=™ be given by (3.15). Then we observe from the computations presented
in Section 2 that

1
8ta€,m 4 V((ps,m _ Em+2(,0m+2) - Vasm™m 4 §ae,mA((ps,m _ €m+2(‘0m+2)

— €m+2 (Rilnt,m + 5_1[R2’m]a)7
1 g2 Aas™
8t(90€,m _ €m+2<,0m+2) + §|v((’0€,m _ €m+2(,0m+2)|2 + (ae,m)2 1 5 —

= "2 (RIV™ + e [RY™).),

int int b b .
where R, Ry™™, Ry and Ry™ satisfy

(95) H(R;nt,m’ Rglt7m)HWSO,2(m+3) + H(Rgvm7 RBm)H s0—2m+3)+3 5 &.
Ty Wl,To

The above equations can also be written as
1
atas,m + V(’De,m S Vasm + §a€,mA(p€,m

1 .
= gmt2 (Vgom+2 -Va®>" + §a€’mA(’pm+2 R 6_1[R2’m]5),

1
8t(’05,m + §|V906’m|2 + (aa,m)2 1=
1 i - m
= &2 (Qpmsz + S VG Viomrz — ™2 Vipmaal?) + BRI 4+ 7 [RE™. ),
from which, (9.5) and (8.2), we infer

1 .
8taa,m + V(,DE’m . Vasm + §aa,mA(pa,m — €m+2 (Rilnt,m + E_l[RB’m]E),

1 e2 Aas™
9,05™ + ~ |V c,m |2 &mMy2 _ 1 _ 2
oo SV () -1 - S S
where RX™™ RV RE™ and RY™ satisfy (9.3).
On the other hand, it is easy to observe that

(9.6)

— et (R g AR

. 2
GP(T*™) = R¥™e=¥""  with R*™ = (—a®™R} + %Aaavm) +ie R},

where
1
RZL — at(pa,m + _’v(pa,m‘2 + (’aa,m’2 _ 1)7
2
(9.7 1
Rgv, — ataa,m + v(pa,m S Vas™ + §a6’mA(,DE’m,
which along with (9.6) implies (9.3). This ends the proof of Proposition 9.1. O

Let us now turn to the proof of Proposition 3.6.

Proof of Proposition 3.6. Once again we shall only present the a priori estimates. Let w and
¢ be real-valued functions, we are going to seek the true solution of (1.1) with the form (3.17).
In view of (1.2), (w, ¢) satisfies the following initial condition

wli=o = ™ (am 120 + Riag):  dlizo = ™R, with lim | (R0, VRS 0)]| fyeg—2m—5 = O-
We shall divide the proof of Proposition 3.6 into the following steps:

Step 1. The derivation of the error equation
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Substituting (3.18) into (1.1) yields

1 2
ie(Opro + (u™™ - V) + §mV cuS™) + %Am — 2wy (a®™)?
= R — R®™ + Q° (),

(9.8)

where R} and R®™ are defined in (9.7) and (9.3), and

(9 9) Qa(m) d:EBf (aa,m + m) (|aa,m + m|2 _ |aa,m|2) _ 2wR(aa,m)2
= a®"™(wf + wi) + v (w§ + wf +2a>™ wg).

Notice that wgr = w cos ¢ + a®™(cos ¢ — 1), wr = (a®™ + w) sin ¢, we have the following
initial boundary condition for (wg,wy) :

WR|>,=0 =0, wi|,=0 =0,

wRli=0 = 5m+2( am+2,0 + g 0) cos ( mHRfo,o)
+a®>™(0) (cos (€m+2R;0) — 1) def W o,
def ¢

wili=o = (a®™(0) + "™ *?(a am 00+ Rig)) sin (€m+2RfO7O) = wig.

(9.10)

Then by taking separating the imaginary and real parts of (9.8), we derive the system (3.19)
for (wg,wr) with

(9.11) rg C e R 4 [RE™), and S e R 4[RO,

Step 2. The estimate of ||e(wr, wi)||Lge(m)
In view of (8.6) and (3.19), we get, by using L? energy estimate, that

1d 2 2 A m+2_m
231 Jos (lewi]” + |ewr|?) dz = » (2( m)2 +§as—m+€ r@>wR|€w1dx
+ +

(9.12) +/RS (g™ a®mr — ReQ* (w)) [ewy d

+

2 AaE™m
+/RS <(€_ a —|—5m+2r$) wi + ImQ* (1) — ™2y m>|€wRd$‘

2 ae,m

If s — 2m > 9, we deduce from (8.2) and (9.4) that

2 Ags™m
‘ ( 2+ 3(157 + €m+27‘m) wR |ewr dﬂj‘

Aaem

(uamuL el + 1| Jemllzy lewilog

S HwRHLi + HEwIHL37

and

‘ . ( m+1 a My m ReQe( ))|€’w[dl“

< (M 0 s [ 2+ 1Re@ ()] 12 ) llewnll 2

< (€€ + |ReQ% () 12 ) lewrl 2 ,
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2 e,m
|/R <(€— Aa + 5m+2r$) wy + ImQ° (o) — ™2y m) |€wR d:p!

2 asm

3
+
ﬁ gm
<(€H =
~ 2

+2 +3
2+ e e el + 1o Qg + <l ) ol

1 1
< (&5 llewrll 2 + lle Im@® (w)l| 2 + ™ 2EF ) |wr 2 -
By inserting the above inequalities into (9.12), we get
d
(913)  Lle(wn, w3y < wnzwnlZs + [ReQ ()2 + e @ (w) 2, -+,

On the other hand, by applying Lemma 8.3 with iy = he = i, fi = ImQ*(w), fo =0,
X1 = %Acgzm +emt2p o X2 =a""rg, g1 = Re@*®(w) and g, = 0, we achieve

d~
(9.14) € SE e ([Q7(w)[3y + eV (W) ).

where

def
¢ S T2E) + |le(wr, wg)|[7: + ||wR||i2 and

~ defC,0 62m+25 + _H V wr, Vwg) HL2 / Syzm (ewr) |wg dz
(9.15) 1 2 Aaé™m
- . m+2,.m 2
+2/Ri<2( my?2 4 5 e +e rw)wRdaz

1 62 Aas™ m—+2,.m 2 m+2,.m m—+1 s Mypm
+§ 5 gem —¢ Ty wi — 2¢ rSDwI—Ze Ty WR ) dz.
R3 a=

Step 3. High-order tangential derivatives estimates
The main result states as follow, the proof of which will be postponed after the proof of
Proposition 3.6.

Lemma 9.1. Let sg > 2m + 9+ N be an integer, we denote

N-1
def o, . .
e 2, 4 3 ([Thun2s + T (wr, wi)l)  and
=0
En :eCN€2m+250 + Z K with
=0
, d_ef gl j e,m\2|7j 2
By e (v T, VT w2 + [ (@R wn da
(9.16) R%

1 e2 Aas™
+ §/RS <E gem +€m+2 m)(’T] w1’2 + ’T] wR\ )
+

. 1 .
- /3 (em T2 + §R3t71,j)|7‘]w1 dx
R+

, . 1 .
+ /RS (Suem (eT7 wr) — ™77 (™)) + §R3t727]~) |77 wg dz,
+
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where
2 Agé™

def [T Sus,m](E 'wR) |:Tj e

Rat717.] -

m+2, m

(9.17) s

def . m € m m
Ry, 2 = [T7; Suem](ewr) + [TJ§ 2(a” )2+§ — te +2T¢}WR
Then we have
d~ N-1
(018) Gy <Oy 7 S (IT Q)7 + 11V T (w7 )-
7=0

Step 4. Estimates of nonlinear terms

Lemma 9.2. Let N > 4 and so > 2m + 6 + N be integers. Then one has
(019) & Z (IT9Q°(m) 32 + 9 TPQ(m)]13:) < = en (1 + < 2ex) €.

The proof of this lemma will be postponed below.
Next, we claim that

(9.20) @N ~ Epn, l.e. Cl_léN < EN < Ci1€n

for some positive constant C1.
We first get, by a similar the proof of (9.27) and (9.29), that
j—1
|/ (Ro, 2,4 T? wr — R, 1,77 wi) dz| <50 177 e wil 2 > e T (wr, wi)ll
k=0
1 J
+ 21T wrllz Y (le T will i + 17 willy2 )-
k=0
Whereas it follows from Lemmas 8.1 and 8.2 that
€2 Aaf ) )
| ( a + €m+2r$> (177 wi|* + |77 wg?) da

aam

1 . 1 .
< (602 e ) e T2 (wrwn) [ s < &3 [|e T (woms won)|[,
and

| Sus m (6T wr)| T wg da| < 52 €T will g || T7 wrllz2

and
. : . . 1 . .
z—:m“‘/ (eT7r T wr — T2 (™) | T wr) dx‘ < 5026m+1(H€T] wil|z2 + | T wR||L2+).
RS
1
Finally, by virtue of (8.2), we have [[a®™ — 1| < &7, from which and (9.16), we deduce

that
. 1
By >4 (He(VTJ wr, VT w1)||L2 + |77 wR||L2>
— &2 (e (T9 wn, TV wn) | + |77 wrj2) — &,
This ensures (9.20) as long as ¢ in (3.3) and € are small enough and Cy in (9.16) satisfies

Cy>CH+1.
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Now we are in a position to complete the proof of Proposition 3.6. Indeed by inserting
(9.19) into (9.18), we find

(9.21) %EN <C(ey+e®En(l+e2€n) En).

Let Ty be determined by Proposition 3.1 and N > 4, we define

(9.22) Ty ©enp{T € (0, T), €n(t) < €22 ¥ te0,T))

for some positive constant € to be determined later on. We are going to prove that T5 = T
provided that ¢ in (3.3) and ¢ are sufficiently small.

1
Indeed for m > 4 and ¢ < <4¢50> 2(7%3), one has

1
e 8N () < €™ 0 < 1 Vtel0,T5],
from which, (9.20) and (9.21), we infer
d ~ -
(9.23) —Ey <20 €y < 20018,

Thanks to (9.10), we get, by applying Gronwall’s inequality to (9.23), that
(9.24) En(t) < C2CNTo g2 42 i < T,
Then by taking ¢ = 2CC1e?¢“170 in (9.22), we deduce from (9.20) that

~ 1
En(t) < Cren(t) < 5@5052’”” vt < Ty.

This contradicts with (9.22), and this in turn shows that T3 = Tp, moreover, there holds
(3.20). This completes the proof of Proposition 3.6. O

Proposition 3.6 has been proved provided that we present the proof of Lemmas 9.1 and 9.2.
Proof of Lemma 9.1. By applying 77 with j € {1,2,..., N —1 } to (3.19), we find

6(8t + Sus M( ))(T] ’lUR) + ﬁA (T] wl)
- (22%!? +em m>T]wI — eMPETIrT 4 TIImQ* (W) — Ry, 1.5,

(9.25) (0 + Susm (4)) (T wr) — —2 A(T7wR) + (2(@5””) + %Aa‘;fmm + €m+2r$) T wr
:Em+17-j( e,m m) TjRer( ) Rat,2,j7

T7wgr|z=0 =0, TIwi|,—9 =0,

with Ry, 1 ; and Rp, 2 ; being given by (9.17).
Notice that

\

d

/3 (R3t72,j|7‘j8t WR — R3t717j|7‘j8tw1) dx == /3 (Rat,27j|7‘j WR — Rat,17j|7‘j wI) dx
B2 B2

o /3 (at R3t72,j|Tj wr — O R8t71,j|Tj w[) dx
Ry

Then for Ej given by (9.16), we get, by applying Lemma 8.3, that

d . . .
%Ej(t) — /3 (8t Ramz,j 7-] WR — 8t R&g,l,j 7-] ’u)[) dx
R
©O-26) <802 1 |l (wr, wr) 3 + 177 w3

+ 1 (Rangs Boua )+ 2(IT9Q7(0) 25 + 1€V T9Q7 ()22 ).
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Observing that

O[T7:8u) f =0T Su(f) = Su(T?0ef) — Sou(T7 f)
=[0T7; 8ul f = So,u(T7 ),
and
O[T g)f =0T (9f) = gT'0f — g T'f = [0T739)f = D9 T f.
In view of (9.17), we write

2 e,m
e* Aa® 19
5 g +e™ r?]wR
2 e,m
, e* Aa®
— Sopuem (T wr) — O <2(a‘€’m)2 + =

2 aa,m

It follows from Lemmas 8.1 and 8.2 that for sg —2m — 9 > j + 1,

atRatQ] [@T Sus,m] (ewr) + [at']‘j; 2(aa7m)2 +

+ Em+2r$> T7wg.

J
. 1 .
(9.27) |/ O Roya| T wrede| € €2 (1T ewill + [T w2 ) 179 wrllyz
R k=0

Along the same line, we write

def i
025) OiRo, 15 = [0 T7; Suem ] (e wr) — satus m (eT7wg)
9.28
) A e,m Agém
— %[&T @ ]w1—|— 8t( @ >T]w1+am lat [T] ] wi.
Notice that
[T Syem](ewr) = € Z C]’?Sﬂus,m (TP Fg).
k=1
In view of (8.6), we write
Jj+1
/3 [T Syem] (€ wr)|T7 wy do —EZC / Srrgerm (T Fwg) [T7 wy da
R k=1
j+1

= — Z C / STkus m (57"7 w[) |TJ+1 k'UJR dflf

from which and (8.7), we infer

J
. . 1 .
|77 Syem | (e wr)[T7 wr dar| S EG N|ET? wil| g Y 1T wr | 2
RY k=0

The same estimate holds for fRi So,usm (sTj wR) |77 w; da.
While applying Lemma 8.1 yields

Aat?m Aat?m

| R (__[atT] ——Juwr + &f( )T]wl)‘TJwIdx]

J
1 .
SEG T will g Y leT wi .
k=0
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And it follows from (9.4) and (9.11) that

m+2‘ at w1|T’ wr d:z:|
RB

Sem Z(HTkatrZ”ETj_kwIHLi + (| THrg eT7~*Opwr| g2 ) T wil 2
k=1

J 1 . . .
Semy & (le T/ will e + eT?~*Opwrl g2 ) T will 2 -

As a result, thanks to (9.28), we conclude
: 1 : J . .
(9.29) \/3 0s Ro, 15T wrde| < EF e T7 will g > (IT wrllg2 + [T cwrlp).
R k=0

Finally, it follows from Lemmas 8.1 and 8.2 that

j—1
(9.30) 1Ra14llc2 + 1Ra 20z S Y (1T wrllzs + | T e(wr, wi)| )
k=0

By inserting the estimates (9.27), (9.29) and (9.30) into (9.26) gives rise to
d J
—Bj(t) €™+ ) (T (wrs wn) |7 + | T wrll?
(9.31) dt’ kzzo( at 2)
+e (1T Q7 (w)|[7 + eV T7Q*(w)|[72 )

Summing up (9.14) and (9.31) for j from 1 to N —1 leads to (9.18). This completes the proof
of Lemma 9.1. 0

Proof of Lemma 9.2. Let’s estimate the nonlinear terms in (9.18). Indeed in view of (9.9), we
have

(0.32) ReQ® () = 3a”w} + a*™wi + wi + wg wi,
' ImQ* () = wywh + w} + 2™ wy wg.
Recalling the Sobolev embedding and the classical interpolation inequality that
||f||igo(L}21) N 6‘1HfHL3H€8zf||L2, HfH%?,(LﬁO) Sz 1+ Vﬁ)fHLg,
and

1o SHF N zee o2 11l o a2y

(9-33) 3 3 2\ £/ 3 2\ £113
SNz 1A E I+ VR A I+ Vi) £l

As a result, it comes out

lwrlZe + I Twrlie S € (T wrlTw g2y S e €mpr,

(9.34) .

1T wrlZa(0e) S €2y 1T Vurlfz o) S e 2 €t
and

lorlfee + 1 Twilfe Se2 € 1T will] w2y S € 2€jmeh1,
(9.35) ek

HTéwIH%%(LﬁO) S e %€, ‘|T€V1UIH%3(LEO) Se €3
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It follows from (9.34) and (9.35) that for j < N —1,

(1-2)+
j 4 2 74 2
179 @RI S 3 179wl [T wm g
k=0

(9.36) + ([l wR”ii + |77 wR”%i) (”wRH%f + ”TwRH%gf)
(1-2)+
gs—1< 3 € e+ @@) <eled if N >4
=0
Along the same line, we have
179 )2, + 177 (w3 < =%,
177 (wf, wi, wiwg, wiwg)|7, < €}
Then by virtue of (8.2), for so —2m > j + 7, we have
j N-1
j j—0 ¢, 212 ~1 2 —1g2
1T @ mad)lZs S 31T B T2 S Y €y S el
(=0 k=0

Similarly, we have
177 (0= wrwr) 72 + 177 (=™ ui)|[7, < e "€

Therefore, we conclude that

N-1
937) e S (ITR(Q ()2 + [T Im(Q (w)[2) S 0%+ %€,

J=0

On the other hand, we observe that
J
j Moy 2 j—4 ;mi2 4 2112
179 V(@ mud)|2: < ;% 179747 6= 3 [ 7o) 2
(9.38) (|77 @™ | T (wr VwR)H%i)

J J
_ 4
2SI R + 0 IT wn V)2

£=0
Yet notice that
(€=2)+
”Tﬁ (vawR)H%i S Z ”Té_k wRH%go(Lﬁ)”Tkva”%g(LEO)
k=0

— 4 2
+ HTK 1wRH%go(Lﬁ)HvaRH%g(LEO) +IT wRHigo(L}?l)vaRHLg(LEO)a

which together with (9.34) and (9.35) ensures that

(t—=2)4

(9.39) 17 (wr VwR)H;+ S ) € +e P 1€ Sete
k=0

By inserting (9.36) and (9.39) into (9.38) gives rise to

|77V (a&™ 2)”L2 <e3¢% for j< N -1
a1



Exactly along the same line, we achieve
1TV V(@M wgwn) |7 + 1T V(e w7, S0k,
1TV (wh, wi, wiwr, wrw?)|7z < (e7'€n)* €y,

As a result, it comes out

N-1
e (IT7VReQ (w)lI72 + 77 VImQ ()72 ) £ e &% + ¢k
j=0
Along with (9.37), we obtain (9.19). This completes the proof of Lemma 9.2. O

Now we are in a position to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. In order to get the second order full derivatives of (wg,wr), we may
make use of the system (9.25) for j = 0,1, 2. In fact, according to the wg equation of (9.25),
we get

2[|A (77 wr) |2 SlOTT wrlzz + llSusm (T wr)ll gz + 177/ 1m(Q" ()12
H( 2Aaam

aam

m+27{§> TJ‘wIHL2+ + ™| T 2 + HRat,l,jH%i.

Thanks to (8.2), (9.30) and (9.37), we get, by applying Lemmas 8.1 and 8.2, that
€2HA (77 wr) HLi <el|oyT? wRﬂLz+ +e18 (1 +e72%&))

N J
&5 ™+ S (T wmllge + | T wr, wn)| )
=0

from which and Proposition 3.6, we infer
1
Sla (7 Mo 12y S €6
7=0

The same estimate holds for A (Tj wR), and then

(9.40) ZHMJ (s w1 e sy SEGEm.
7=0

While it follows from Proposition 3.6 that
3 . 1
(9.41) Z ||T](1UR,WI)HL%<(>)(H1) S &
§=0

Let us now turn to estimate ||to]|y1,« for w given by (3.18). We first deduce from (9.34)
and (9.35) that

1 1
(9.42) [l < [lwrllze + lwillLe < Ce?€F < CEFe™ 1.
On the other hand, we deduce from (9.33) that
2 2 2
IV fllzee = IVh fllzee +110: fllzee

SIVH Al L+ V2) Vil + 10:f 1l (L + V3) 0: £l
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which along with the fact that
10.£ i S 19 £llzz + 1V 8: 2 + 102112
Sl + 1Ve £l + 1A flle + HvﬁfHLi'
ensures that
IV AUz S UVl I+ V) Vi Flla + (1 + 190 fls + 1A fllzz + 1V Fllz2)
< (1L + V) fllm + [IVa(1 + VE) fllm + [|A(L+ V3) fllzz + IVR(1+ V3) Fllzz)
3 2
<SIT fIB + Y IAT 712
§=0 §=0
Therefore, we obtain from (9.40) and (9.41) that for any t € [0, Tp]
Vo () || e < HV’wR( Mzee + [[Vwr(t )HLOO
< C( ZIIT wr, wi) | g1 +ZIIAT wr,; wi)|2)

7=0 7=0
1

< Cgzem™

This together with (9.42) ensures (3.21). This ends the proof of Theorem 3.2.

APPENDIX A. THE SOURCE TERMS Fj, IN (2.22) AND Gy, IN (2.23)

Indeed we observe from (2.13) that

et k41 k41
e
Fy = — 0 Ay — ZFIZ - ZF2£ - ZFZSZ - ZF4£+ > B
l1+02=k—1
(A1)
= Y Fenmi— Y. Fawi— Y, B
li+-La+5=k l1+la+j=k+1 l1+-Llo+j=k+2
2<5<k 2<j<k+1 2<5<k+2
where

def. A -
Fry SV® - Vi Ap o+ %(Ahfbk—z + Api—r) + Vypr - VAi_o + Vi@ - Viar—g
Z 8 ag

ayg
+ EZAhq)k—Z + Z (02007 Ag—g + 02P102a5_) 7 ®h,

def def 1
Foy = 079007 A119-0, F4 = (Ae+az)3z‘1>k+2 ¢

and

def —d.ap11
Fy = 00007 Ak +1—0 + 07zP0z0541—¢ + Zia%

def,, ——— =  0O.a Ay o—
Fs o0, = Z(Vy0-00, - VinAey + Via®s, - Vi0ag, + 261 APy, + %Aazs%)

72 -
+ 5 (930,02 Ag, + 074, 03ay,),
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and

defZ <

—— —— A~
Fo 1005 = V& or - Ve, + Vi@, - Vidlag, + Z2 L ARy, + 71A5§9%>,

o def Z7 0lay
({)JJFI‘WlaZAfz"'aZ(I)fl&7 a€2)7 Fg, 00,5 = 7 2

defZ (

2
Fr 05 = 07y, .

Whereas we observe from (2.14) that

j k
def Z) .
G =< Z 7(8@@61@@52 + Aglatag(pgz) + ZAZath)k—l—l—Z

O+La+j=k+1 7 (=0
0<,<k
ZJl+J2 v
1
+ > ST (8 ag, V0¥ e, - Vhfbea)
L1 +Llo+-Ll3+j1+j2=k+1
Z91+32 1 . . . .
+ Z ﬁAfl (§V(9;1 (1052 : Vagchfg + 3821 a@gagza@g,)
1+l 403451 +j2=k+1 Ji-g2:
0/ <k
ZJ1+J2 T B
+ Z T (82" ap, 02 04,074, )
(A2)  4lattstjitia=k+2
1<l3<k+1
VA _ VA a; ay
1
+ > — A, (VuOigr, - Vade,) + > 5 Vale Vil
O+l +l3+j=k+1 7’ l1+lo+L3+j=k+1
0<6, <k
7} = A
+ > — 30%ag, Ag, Agy + > — A0 02 0,02y,
O +Llo+ls+j=k+1 7 O +lo+es+j=k+2 7"
0<4y £2<k 0<l1 <k, 1<l3<k+1

VA 82@ 1
+ Z — 4l 8Z<I>428Z<I>43 — §AhAk_1.

. gt 2
Uy +lo+l3+j=k+3
1<l +-3<k+1

APPENDIX B. THE PROOF OF LEMMA 4.1

Proof of Lemma 4 1. We split the proof of (4.7) into the following cases:
e When k£ < s — 5. In this case, s — k > 3, so that H*~ k(]R?’) is an algebra. As a result, it
comes out

19F (£9) (O 15—+ <ZH@Z 107 g ()| s

<Z||8t ()l s+ 105 g(O) 15

k
SO MO llwere-slg@®llws-e S 1L @)llws lg(E)llws.
=0
e When k = [s] — 1 > s — 2. We first observe that
(B.1) HngHT S e llgllez V7 €[0,2).
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The proof of the above inequality can be obtained by first extend the function to the whole

space and then using the law of product in the classical Sobolev space (see [3]). We skip the
details here.

When [s] > 3, we get, by applying (B.1), that

1051 (£ ) ()| proa—1o NW LG resi-t + [ F @)D

+Zuaf 03" g(0) | gger-rs

9O grs+1-19

<Hasl YO grerimallg @)z + 1 F @ 2105 g ()] gos1-ta
+Z||af Ol 105 g0 | oo

[s]—2
SIF@w gz + 1 Ollm2lla@llws + > 1F @) llwes 19 llws-e

(=1
SIF@lwsllg@)llws-

The case for [s] = 2 can be proved along the same line.

e When k = [s]. We first recall the following law of product in Sobolev space from [3]

(B2) 1F9llsy4sp—3 < ClFllm=tliglms= if 51,52 €]0,3/2[.

In the case when s — [s] € ]0, 1], we get, by applying (B.2), that

19l -t S W9l 3 S MF e gl
Then applying the above inequality and (B.1) yields

[s]—1

108 (£ 9) )| ot SIOF L ()90 | ot + L () g (8] o sJ+Z||5€ YO g () gemro

SHOP PO ggeial9(8) |12z + ||f<t>quHaﬂg@)uﬂsﬂs}

[s]—1

+ Z 10¢ £ )L 105 g ()|

[s]—1
SIFOlwslg@)llzz + 1 Ollzllg@llws + D 1F O lwers lg@)llws—en
/=1
SIS @)l lg ()

In the case when s — [s] € ]%, 1[ we get, by applying (B.2), that

1ot SN ooy SUED iaia Il
Applying the above inequality gives rise to

M\H

[s]—1

s]— s]—¢
Zuaf (O g gt S lats o3 107 901

Hsf[s]+%
s] 1

<Z (RG] Iy [170] —
IOl -
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By summing up the above estimates, we obtain (4.7). This completes the proof of Lemma
4.1. O
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