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MULTISCALE ELLIPTIC PDE UPSCALING AND FUNCTION
APPROXIMATION VIA SUBSAMPLED DATA\ast 
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Abstract. There is an intimate connection between numerical upscaling of multiscale PDEs and
scattered data approximation of heterogeneous functions: the coarse variables selected for deriving
an upscaled equation (in the former) correspond to the sampled information used for approximation
(in the latter). As such, both problems can be thought of as recovering a target function based
on some coarse data that are either artificially chosen by an upscaling algorithm or determined by
some physical measurement process. The purpose of this paper is then to study, under such a setup
and for a specific elliptic problem, how the lengthscale of the coarse data, which we refer to as the
subsampled lengthscale, influences the accuracy of recovery, given limited computational budgets.
Our analysis and experiments identify that reducing the subsampling lengthscale may improve the
accuracy, implying a guiding criterion for coarse-graining or data acquisition in this computationally
constrained scenario, especially leading to direct insights for the implementation of the Gamblets
method in the numerical homogenization literature. Moreover, reducing the lengthscale to zero may
lead to a blow-up of approximation error if the target function does not have enough regularity,
suggesting the need for a stronger prior assumption on the target function to be approximated. We
introduce a singular weight function to deal with it, both theoretically and numerically. This work
sheds light on the interplay of the lengthscale of coarse data, the computational costs, the regularity
of the target function, and the accuracy of approximations and numerical simulations.

Key words. subsampled data, multiscale PDEs, numerical upscaling, function approximation,
exponential decay, localization
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1. Introduction.

1.1. Background and context. In this paper, we are interested in studying a
common approach for solving the following two categories of problems.

1.1.1. Problem 1: Numerical upscaling. The aim of this problem is to iden-
tify the coarse scale solution of a multiscale PDE via solving an upscaled equation
for coarse variables. As a prototypical example, in \Omega = [0, 1]d, consider the elliptic
equation for u \in H1

0 (\Omega ), f \in L2(\Omega ), and \scrL =  - \nabla \cdot (a\nabla \cdot ):

(1.1)

®
\scrL u = f in \Omega ,

u = 0 on \partial \Omega ,

where the rough coefficient a(x) satisfies 0 < amin \leq a(x) \leq amax < \infty for x \in \Omega .
Suppose we select the upscaled data of the solution: [u, \phi i], i \in I, where \phi i is some
measurement function that is often localized in space, I is an index set, and [\cdot , \cdot ]
denotes the standard L2 inner product. Then, the task is to derive an effective model
for these upscaled variables and use them to approximate the solution of the PDE.
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1.1.2. Problem 2: Scattered data approximation. This problem aims to
recover a function u (assume it has an underlying PDE model as (1.1)) based on
sampled data [u, \phi i], i \in I. Here we intentionally use the same notation for the
sampled data as that of the upscaled data in Problem 1 to make an explicit connection.
We will also often call [u, \phi i], i \in I the coarse data in both problems.

1.1.3. A common approach. Problem 1 is a standard task in multiscale PDE
computations, while Problem 2 has more of its background from data scientific inves-
tigations. Despite their different origins, there is an approach that solves and connects
the two---study of this method is the focus of the present paper.

To motivate the method, we start from Problem 1: a natural and ideal approach
for getting the coarse data is to multiply the equation with the set of basis functions,

span \{ \psi i\} i\in I = span \{ \scrL  - 1\phi i\} i\in I ,

so that [\psi i, f ], i \in I, after an integration by parts, matches the target [u, \phi i], i \in I.
Phrased in the language of Galerkin's method, \{ \psi i\} i\in I will constitute the test

space; furthermore, one needs to select a trial space V (with the same dimension) in
order to get the ultimate numerical approximation of u. As such, this viewpoint has
interpreted Problem 1 as a special case of Problem 2, of recovering u, from [u, \phi i], i \in I,
via choosing a space V . Often and conveniently, the trial space V = span \{ \psi i\} i\in I is
chosen to be the same as the test space. Under such a choice and after selecting a
suitable representative basis \{ \psi i\} i\in I of the linear space V so that [\psi i, \phi j ] = \delta ij , we
can write the final solution in a concise form:

(1.2) uideal :=
\sum 
i\in I

[u, \phi i]\psi i .

It is the ideal solution (here, ``ideal"" means that we have not accounted for the com-
putational cost yet) in this setting, both to numerical upscaling and scattered data
approximation. In practice, the basis function \psi i can have global support, and we
need a localization step for efficient computation.

As a special case in numerical upscaling, if we choose \phi i to be piecewise linear tent
functions, then we get the ideal localized orthogonal decomposition (LOD) method
[23]; if \phi i is set to be piecewise constant functions, then we obtain the Gamblet method
in [26]. In their contexts, localization of \{ \psi i\} i\in I is achieved via an exponential decay
property, and a provable accuracy guarantee has been established by controlling the
coarse-graining error of using uideal to approximate u and the localization error of
computing \{ \psi i\} i\in I , respectively.

1.1.4. Our goals. The purpose of this paper is twofold.
\bullet On the numerical upscaling side, we contribute a further discussion to this
family of upscaling methods, concentrating on the fundamental role of a sub-
sampled lengthscale (defined in the next subsection) in choosing \{ \phi i\} i\in I , with
its highly nontrivial consequence on the localization of \{ \psi i\} i\in I and the solu-
tion accuracy of u. We will get a novel trade-off between approximation and
localization regarding the subsampled scale.

\bullet On the function approximation side, the above recovery method takes ad-
vantage of the underlying physical model (1.1), combining the merits of data
and physics. In addition to contributing a detailed analysis of accuracy and
comparisons to numerical upscaling, we will pay close attention to the regime
where the subsampled lengthscale is small and approaches zero, in which
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H

h

0 1

1

\omega Hi

\omega h,Hi

Fig. 1. Illustration of subsampled data: H = 1/4, h = 1/10.

we provide some numerical evidence that exemplifies and extends our earlier
work on function approximation via subsampled data [5].

Our detailed contributions are outlined in subsection 1.4.

1.2. Subsampled lengthscales. We begin by introducing the concept of sub-
sampled data. For a demonstration of ideas, we work on the domain \Omega = [0, 1]d, and
it is decomposed uniformly into cubes with side length H; this becomes our coarse
grid. Let I be the index set of these cubes such that its cardinality | I| = 1/Hd. The

measurement function \phi h,Hi (we use superscripts now for notational convenience) for
each i \in I is set to be the (L1 normalized) indicator function of a cube with side length
0 < h \leq H, centered in the corresponding cube with side length H; see Figure 1 for
a two-dimensional (2D) example.1 For each i \in I, these two cubes are denoted by

\omega Hi and \omega h,Hi , respectively; we assume they are closed sets, i.e., their boundaries are
included. We will call H the coarse lengthscale, and h is the subsampled lengthscale.

The consideration of this subsampled lengthscale is natural from the perspective
of both function approximation and numerical upscaling. In the former scenario, the
measurement data of a field function in physics is often the macroscopic averaged
quantity, taking a similar form as [u, \phi h,Hi ] for some h \leq H. In the latter problem,
we have the freedom to choose the upscaled information of the multiscale PDEs,
so taking a free parameter h in the approach enables us to analyze the algorithm's
behavior more thoroughly. Later on, we will see that the parameter h has a nontrivial
influence on the subsequent localization and accuracy of the approximation.

Note that the choice of \omega Hi and \omega h,Hi being cubes here is for convenience of analysis
only; results in this paper will generalize easily to regular domains with other shapes.

1.3. Basis functions and localization. Before outlining our main contribu-
tions (which are in the next subsection), we make precise here the definition of the ba-
sis functions and their localization. Per the discussion in subsection 1.1 and especially

1For illustration, the cube \omega h,H
i in the figure is centered in \omega H

i . However, the relative position
of the two cubes is not important in our analysis; see the proofs of Theorems 2.1 and 2.3. The key
is that the subsampled Poincar\'e inequality developed in [5] does not depend on the relative position
of the subdomain and the domain.
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the formula (1.2), the basis function \psi h,Hi (we add the superscripts for notational clar-
ity) is the solution of the variational problem

(1.3)
\psi h,Hi = argmin\psi \in H1

0 (\Omega ) \| \psi \| 2H1
a(\Omega )

subject to [\psi , \phi h,Hj ] = \delta i,j for j \in I ,

where we have used the notation \| \psi \| 2H1
a(\Omega ) :=

\int 
\Omega 
a| \nabla \psi | 2. This formulation is a

consequence of the two properties that are mentioned in subsection 1.1:

(I) span \{ \psi h,Hi \} i\in I = span \{ \scrL  - 1\phi h,Hi \} i\in I and (II) [\psi h,Hi , \phi h,Hj ] = \delta ij .

For ease of computation, in practice we will solve a localized version of (1.3) instead:

(1.4)
\psi h,H,li = argmin\psi \in H1

0 (N
l(\omega H

i )) \| \psi \| 2H1
a(N

l(\omega H
i ))

subject to [\psi , \phi h,Hj ] = \delta i,j for j \in I ,

where l \in \BbbN is called the oversampled layer. We have N0(\omega Hi ) = \omega Hi , and recursively,

(1.5) Nl(\omega Hi ) :=
\bigcup 

\{ \omega Hj , j \in I : \omega Hj \cap Nl - 1(\omega Hi ) \not = \emptyset \} .

Then, the level-l localized solution for Problem 2 is

(1.6) uloc,l :=
\sum 
i\in I

[u, \phi h,Hi ]\psi h,H,li .

By abuse of notation, we will equate uloc,\infty = uideal. The energy error and L2 error
of this localized solution are written as

(1.7)
eh,H,l1 (a, u) = \| u - uloc,l\| H1

a(\Omega ) ,

eh,H,l0 (a, u) = \| u - uloc,l\| L2(\Omega ) .

For Problem 1, we also get a solution \~uloc,l by using the localized basis functions
\{ \psi h,H,li \} i\in I and the Galerkin method. This solution is different from uloc,l in general,
unless l = \infty , i.e., in the ideal case. The corresponding energy error and L2 error of
\~uloc,l are denoted by \~eh,H,l1 (a, u) and \~eh,H,l0 (a, u).

We call uloc,l the recovery solution of Problem 2 and \~uloc,l the Galerkin solution of
Problem 1. The computation costs of the two solutions are different---the former only
requires solving the basis functions, while the latter also needs to solve an upscaled
equation. Their errors in the solution are called the recovery error and the Galerkin
error, respectively.

Under the above setup, our precise goal in this paper is to understand how the
recovery error and the Galerkin error depend on the following three factors:

1. the coarse scale H and subsampled lengthscale h;
2. the oversampled layer l (corresponded to the computational budget);
3. the regularity of function u (in function approximation, it is given as prior

information; in multiscale PDEs, it is influenced by the right-hand-side f).
Note that the regularity of a function is also intimately connected to the dimension
parameter d.
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192 YIFAN CHEN AND THOMAS Y. HOU

1.4. Our contributions. In the first part of this work, we consider the finite
regime of the subsampled lengthscale, i.e., h is a strictly positive number.

\bullet We provide numerical experiments and theoretical analysis of these recovery
and Galerkin errors. We show that for a fixed h/H, if l = O(log(1/H)), then
both energy errors are of O(H) and both L2 errors are of O(H2).

\bullet Further, we decompose the error into two parts: the approximation error of
the ideal solution and the localization error. We demonstrate that there is a
competition between the two. Roughly, reducing h worsens the former, while
improving the latter, for a fixed H and l. This leads to a novel trade-off that
was not investigated before---choosing an appropriate h can benefit the final
accuracy.

\bullet Moreover, there appears a fundamental difference between eh,H,l0 (a, u) and the
other three errors, when d \geq 2. For a fixed l and h/H, the former remains
bounded as H \rightarrow 0, while the other three blow up. We characterize this
phenomenon both theoretically and numerically.

In the second part of this work, we consider the small limit regime of h. When
d \geq 2, the error estimates in the first part blow up as h \rightarrow 0. To remedy this
issue in the context of scattered data approximation, we propose to use a singular
weight function in the algorithm. The weight function puts more importance on the
subsampled data and avoids the degeneracy, given the target function has improved
the regularity property around these data. Numerical experiments and theoretical
analysis are presented to offer a quantitative explanation of this phenomenon.

1.5. Related works. We review the related works below.

1.5.1. Numerical upscaling. There is a vast literature on numerical upscal-
ing of multiscale PDEs. For our context, i.e., elliptic PDEs with rough coefficients,
rigorous theoretical results include generalized finite element methods [1, 2], har-
monic coordinates [28], LOD [23, 15, 18, 10, 14, 22], Gamblets related approaches
[29, 30, 25, 26, 17, 27], and generalizations of multiscale finite element methods
[16, 8, 20, 12, 6, 7]. Among them, the ones most related to this paper are LOD
and Gamblets; the connection has been explained in subsection 1.1.3. Indeed, in
Gamblets [26, 27], the author has formulated the framework in the perspective of
optimal recovery, bridging numerical upscaling to game-theoretical approaches and
Gaussian process regressions for function recovery. This formulation connects our
Problem 1 and Problem 2 in subsection 1.1.

A main component in LOD and Gamblets is the localization problem---the ideal
multiscale basis functions need to be localized for efficient computation. In this paper,
our localization strategy, as outlined in subsection 1.3, follows from the one in [23, 26].

The main difference is that our measurement function \phi h,Hi contains a subsampled
lengthscale parameter, which makes the analysis more delicate. Moreover, in addition
to showing a trade-off between approximation errors and localization errors regarding
the oversampling parameter l, our setup allows us to discover another trade-off re-
garding the subsampled lengthscale h---a good choice of h can improve the algorithm
in [23, 26]. We also remark that the work [21] has considered a similar algorithm for
convection-dominated diffusion equations, where h is fixed to be the small scale grid
size, but the analysis there did not reveal the trade-off here.

1.5.2. Function approximation. Function approximation via scattered data
is a classical problem in numerical analysis (interpolation), statistics (nonparametric
regression), and machine learning (supervised learning). For the type of scattered
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data, the most frequently considered one is the pointwise data [33]. The subsampled
data introduce an additional small scale parameter h and are generalizations to point-
wise data. Our earlier work [5] performed some analysis on this aspect and provides
some theoretical foundation for this paper. The multiscale basis functions constructed
for the subsampled data allow us to capture the heterogeneous behaviors of the target
function.

The method in subsection 1.1.3 connects to the graph Laplacian approach in
semisupervised learning. In the machine learning literature, the degeneracy issue of
graph Laplacians has long been studied, and various approaches have been proposed
to remedy this issue. Among them, the one that is most related to this paper is the
weighted graph Laplacian method [31, 4], which puts more weights around the labeled
data to avoid degeneracy. The second part of this work presents some analysis for
this type of idea in the context of numerical analysis.

1.6. Organization. The rest of this paper is organized as follows. In section
2 we discuss the regime that 0 < h \leq H. We present numerical experiments and
theoretical analysis of these Galerkin errors in numerical upscaling and recovery errors
in function approximation. In section 3, we consider the regime h \rightarrow 0, a case that
degeneracy may occur. We use a singular weight function to deal with this issue both
numerically and theoretically. Section 4 contains all the proofs in this paper. We
summarize, discuss, and conclude this paper in section 5.

2. Finite regime of subsampled lengthscales. In this section, we study the
finite regime of h, i.e., 0 < h \leq H. We start with the ideal solution uideal, or
equivalently uloc,\infty , and then move to the localized solution uloc,l and \~uloc,l for finite l.
Experiments are presented first, followed with theoretical analysis. Special attention
is paid to the dependence of accuracy on the coarse scale H, subsampled lengthscale
h, and when in the localized case, the oversampling parameter l.

2.1. Experiments: Ideal solution. In this subsection, we perform a numerical
study of the effect of h in eh,H,\infty 1 (a, u) and eh,H,\infty 0 (a, u) for d = 1 and 2, respectively.

In this ideal case, the recovery solution and Galerkin solution are the same, and in
our computation, we directly solve a PDE to get these solutions. Theoretical analysis
of these numerical results is given in subsection 2.2.

2.1.1. One-dimensional example. We consider the domain \Omega = [0, 1]. The
rough coefficient a(x) is a sample drawn from the random field

(2.1) \xi = 1 + 0.5\times sin

\Biggl( 
100\sum 
k=1

\eta k cos(kx) + \zeta k sin(kx)

\Biggr) 
,

where \eta k, \zeta k, 1 \leq k \leq 100, are independent and identically distributed random vari-
ables uniformly distributed in [ - 0.5, 0.5]; see the upper left of Figure 2 for a single re-
alization. The right-hand-side f is drawn from the Gaussian process\scrN (0, ( - \Delta ) - 0.5 - \delta )
for \delta = 10 - 2, which guarantees f \in Ht(\Omega ) for any t < \delta but not t \geq \delta ; see the upper
right of Figure 2 for a single realization of this process. Note that this setup of f
ensures that it is roughly an element in L2(\Omega ) and has no apparent higher regularity.
This is important because we do not want f to be too regular to influence the results,
as our focus is on f \in L2(\Omega ).

In the lower part of Figure 2, we output the energy errors and L2 errors of the ideal
solution, eh,H,\infty 1 (a, u) and eh,H,\infty 0 (a, u), for H = 2 - 2, 2 - 3, . . . , 2 - 7 and the subsampled
ratio h/H = 1, 1/2, 1/4, 1/8. The grid size we use to discretize the operator is set to
be 2 - 11. These two figures lead to the following observations:
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Fig. 2. 1D example, ideal solution. Upper left: a(x); upper right: f(x); lower left: energy
error; lower right: L2 error.

\bullet For the ideal solution, the energy error decays linearly with respect to the
coarse scale H, while the L2 error decays quadratically.

\bullet Decreasing h leads to a decrease of accuracy.
In the next subsection, we move to a 2D example to further confirm these observations.

2.1.2. Two-dimensional example. We consider \Omega = [0, 1]2. The coefficient
a(x) is chosen as

(2.2)

a(x) =
1

6

Å
1.1 + sin (2\pi x1/\epsilon 1)

1.1 + sin (2\pi x2/\epsilon 1)
+

1.1 + sin (2\pi x2/\epsilon 2)

1.1 + cos (2\pi x1/\epsilon 2)
+

1.1 + cos (2\pi x1/\epsilon 3)

1.1 + sin (2\pi x2/\epsilon 3)

+
1.1 + sin (2\pi x2/\epsilon 4)

1.1 + cos (2\pi x1/\epsilon 4)
+

1.1 + cos (2\pi x1/\epsilon 5)

1.1 + sin (2\pi x2/\epsilon 5)
+ sin

\bigl( 
4x21x

2
2

\bigr) 
+ 1

ã
,

where \epsilon 1 = 1/5, \epsilon 2 = 1/13, \epsilon 3 = 1/17, \epsilon 4 = 1/31, \epsilon 5 = 1/65. For the right-hand side,
we sample two independent one-dimensional processes in the last subsection, denoted
by f1(x1) and f2(x2), and we set f(x) = f1(x1)f2(x2). This guarantees f \in Ht(\Omega )
for any t < \delta but not t \geq \delta in two dimensions.

In the upper part of Figure 3, we output a(x) and a single realization of f(x).

The lower part depicts eh,H,\infty 1 (a, u) and eh,H,\infty 0 (a, u) for H = 2 - 2, 2 - 3, . . . , 2 - 6 and
the subsampled ratio h/H = 1, 3/4, 1/2, 1/4. The grid size we use to discretize the
operator is set to be 2 - 8. These two figures yield the same conclusions as those in
the one-dimensional case.

2.2. Analysis: Ideal solution. In this subsection, we move to the theoretical
analysis of the ideal solution, to better understand the above empirical observations.
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Fig. 3. 2D example, ideal solution. Upper left: a(x); upper right: f(x); lower left: energy
error; lower right: L2 error.

For this purpose, we use our earlier results in function approximation via sub-
sampled data [5]. Especially, Theorem 3.3 in [5] implies the following result.

Theorem 2.1. For the ideal solution, it holds that

eh,H,\infty 1 (a, u) \leq 1
\surd 
amin

C1(d)H\rho 2,d

Å
H

h

ã
\| \scrL u\| L2(\Omega ) ;(2.3)

eh,H,\infty 0 (a, u) \leq 1

amin
C1(d)

2H2

Å
\rho 2,d

Å
H

h

ãã2
\| \scrL u\| L2(\Omega ) ,(2.4)

where C1(d) is a constant that depends on the dimension d only, and for p, d \geq 1, the
function \rho p,d : \BbbR + \rightarrow \BbbR + is defined as

(2.5) \rho p,d(t) =

\left\{       
1, d < p,

(log(1 + t))
d - 1
d , d = p,

t
d - p
p , d > p .

In Theorem 2.1, we get the upper bound of eh,H,\infty 1 (a, u) and eh,H,\infty 0 (a, u). The
dependence of this upper bound on h is determined by the function \rho 2,d. Note that it
is a nondecreasing function, so as h decreases, for a fixed H, the ratio H/h increases,
and the upper bound will also increase. One exception is when d = 1, the upper
bound remains constant when h changes, and it is still finite even when h approaches
0. This phenomenon is in sharp contrast with the case d \geq 2, where as h \rightarrow 0, the
upper bound blows up to infinity.
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The above theoretical implications match what we have observed in the
experiments---reducing h leads to a decrease of accuracy, in both d = 1 and d = 2;
moreover, the deterioration of accuracy is more severe in d = 2 than d = 1.

Therefore, if one is adopting the ideal solution, without considering computational
costs, then we would recommend choosing h = H, which achieves the best of both
worlds with a theoretical guarantee and practical performance.

Remark 2.2. Applying the above recommendation (h = H) is straightforward
in the context of numerical upscaling---we can choose the suitable upscaled coarse
variables. Nevertheless, for scattered data approximation, the data acquisition step
also matters. Our analysis suggests that for the sake of accuracy (in the case there is
no burden of computational costs), it could be a good idea to make the lengthscale of
the coarse data larger; this provides guidance for data collection in such a scenario.

2.3. Experiments: Localized solution. Solving the ideal solution can be
computationally expensive due to the global optimization problem (1.3). This is also
why we stop at H = 2 - 6 and do not decrease H further in the previous 2D experi-
ments. For better practical algorithms, in this subsection, we move to the localized
solution. We start with the numerical experiments for one and two dimensions, fol-
lowed by theoretical analysis. In these experiments, we use the same functions a(x)
and f(x) as in the ideal case.

In the localized scenario, the Galerkin solution in numerical upscaling and the
recovery solution in scattered data approximation are different. Thus, we will compute
them separately and compare the results. More precisely, for the Galerkin solution, we
use the localized basis functions in the Galerkin framework to solve the PDE; for the
recovery solution, it is simpler---once the basis functions are computed, we readily get
the recovery solution by using the available subsampled data and the formula (1.6).
For both cases, the ground truth solution u is given as a solution to a PDE.

2.3.1. One-dimensional example. We consider the 1D model in subsection
2.1.1. We compute the Galerkin errors \~eh,H,l1 (a, u) and \~eh,H,l0 (a, u) and the recovery

errors eh,H,l1 (a, u) and eh,H,l0 (a, u) for H = 2 - 2, 2 - 3, . . . , 2 - 7, h/H = 1, 1/2, 1/4, 1/8,
and l = 2, 4. The grid size we use to discretize the operator is set to be 2 - 11.

In Figure 4, the oversampling parameter l = 2. The upper part depicts the energy
and L2 errors of the Galerkin solution, while the lower part corresponds to that of
the recovery solution. From the figure, we observe the following facts:

\bullet Due to localization, the error line of h/H = 1, 1/2, 1/4 finally turns up as
we make H very small, deviating from what we have observed in the ideal
solution. This implies the localization error matters a lot.

\bullet Among the four choices, the case h/H = 1/8 that corresponds to the smallest
h behaves the best for small H. It appears that decreasing h may suppress
the localization error to a certain extent.

\bullet The L2 error of the recovery solution is more stable and accurate compared
to the Galerkin solution, when H is small. Especially, there is no obvious
blow-up as H becomes small.

Next, we increase the oversampling parameter to l = 4 and output the same set of
observables in Figure 5. Now, only the case h/H = 1 leads to a turning up of the error
line, while the other three cases lead to similar error lines as the ideal solution. The
best choice among the four becomes h/H = 1/2. Thus, as l increases, the localized
solution is approaching the ideal one, and choosing a larger h would be good.
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Localized (l=2): Galerkin method

h/H=1
h/H=1/2
h/H=1/4
h/H=1/8
O(H)

10-2 10-1

H

10-6

10-5

10-4

10-3

10-2

10-1

L2  e
rr

or

Localized (l=2): Galerkin method

h/H=1
h/H=1/2
h/H=1/4
h/H=1/8

O(H2)

10-2 10-1

H

10-3

10-2

10-1

100

E
ne

rg
y 

er
ro

r

Localized (l=2): scattered data approx
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Fig. 4. 1D example, localized solution l = 2. Upper left: \~eh,H,l
1 (a, u); upper right: \~eh,H,l

0 (a, u);

lower left: eh,H,l
1 (a, u); lower right: eh,H,l

0 (a, u).

2.3.2. Two-dimensional example. In this subsection, we move to a 2D exam-
ple that corresponds to the the ideal case in subsection 2.1.2. As before, we compute
the Galerkin errors \~eh,H,l1 (a, u) and \~eh,H,l0 (a, u) and the recovery errors eh,H,l1 (a, u) and

eh,H,l0 (a, u) for H = 2 - 2, 2 - 3, . . . , 2 - 8, h/H = 1, 3/4, 1/2, 1/4, and l = 2, 4. The grid
size we use to discretize the operator is set to be 2 - 10.

We start with l = 2, in Figure 6. Our observations are as follows:
\bullet All the error lines deviate from the desired O(H) or O(H2) line to some

extent, and among the four choices, the ratio h/H = 1/2 performs the best
when H is small.

\bullet Compared to the 1D example, the localization errors in 2D are larger, since
the deviation from the desired O(H) or O(H2) line is more apparent.

\bullet The error line exhibits a turning up behavior even for very small h/H = 1/4.
That means in the 2D case, small h can also lead to large overall errors. This
observation indeed matches our theory for the ideal solution, as \rho 2,d(H/h) in
Theorem 2.1 will blow up as h\rightarrow 0, when d = 2.

\bullet When H is small, the L2 error of the recovery solution in the scattered data
approximation is more accurate than the Galerkin solution in numerical up-
scaling. This phenomenon has also been observed in the 1D example.

Then, we increase the oversampling parameter to l = 4. The results are output
in Figure 7. We observe a better accuracy and more stable behavior of the error
lines compared to l = 2. Now the best among the four ratios becomes h/H = 3/4.
Moreover, the relative behaviors of the three cases h/H = 3/4, 1/2, 1/4 are very
similar to that in the ideal solution, indicating that when l = 4, the localization error
may be small compared to the approximation error of the ideal solution.
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Fig. 5. 1D example, localized solution l = 4. Upper left: \~eh,H,l
1 (a, u); upper right: \~eh,H,l

0 (a, u);

lower left: eh,H,l
1 (a, u); lower right: eh,H,l

0 (a, u).

2.4. Analysis: Localized solution. In this subsection, we provide some the-
oretical analysis for the localized solution. To begin with, we summarize the main
observations in the numerical experiments that we want to understand more deeply
in our theoretical study.

1. The error lines of the localized solution, eh,H,l1 (a, u), \~eh,H,l1 (a, u), and also

\~eh,H,l0 (a, u), turn up when H is small, if l is fixed.
2. The localization error appears to become smaller as h decreases---for the

overall error of the localized solution, there seems to be a competition between
the approximation error of the ideal solution (which increases as h decreases)
and the localization error (which decreases as h decreases). The strength of
the competition depends on the oversampling parameter l.

3. The L2 error of the recovery solution is smaller compared to that of the
Galerkin solution, i.e., \~eh,H,l0 (a, u) appears to be larger than eh,H,l0 (a, u), and
for the latter, it does not blow up as H becomes small.

We will provide a reasonable theoretical explanation of these observations. First, we
introduce several useful notations.

2.4.1. Notations. For any function v \in H1
0 (\Omega ), we write

(2.6) \sansP h,H,lv =
\sum 
i\in I

[v, \phi h,Hi ]\psi h,H,li .

Moreover, we use the convention \sansP h,Hv =
\sum 
i\in I [v, \phi h,Hi ]\psi h,Hi . These definitions

lead to the relation \sansP h,H,l\psi h,Hi = \psi h,H,li , which connects the ideal and localized basis
functions.
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Fig. 6. 2D example, localized solution l = 2. Upper left: \~eh,H,l
1 (a, u); upper right: \~eh,H,l

0 (a, u);

lower left: eh,H,l
1 (a, u); lower right: eh,H,l

0 (a, u).

Since we are mainly interested in how the error depends on h,H, l, and u, we use
A \lesssim B (resp., A \gtrsim B) to denote the condition A \leq CB (resp., A \geq CB) for some
constant C independent of h,H, l, and u. If we have both A \lesssim B and A \gtrsim B, then
we will write A \simeq B. We use \langle \cdot , \cdot \rangle a to denote the a-weighted inner product in H1

0 (\Omega ),
i.e., \langle u, v\rangle a :=

\int 
\Omega 
a\nabla u \cdot \nabla v.

2.4.2. Analysis. To analyze the error of localized solutions, we first use the
triangle inequality:

(2.7)

eh,H,l1 (a, u) = \| u - \sansP h,H,lu\| H1
a(\Omega )

\leq \| u - \sansP h,Hu\| H1
a(\Omega ) + \| \sansP h,Hu - \sansP h,H,lu\| H1

a(\Omega )

\lesssim H\rho 2,d(
H

h
)\| \scrL u\| L2(\Omega ) + \| \sansP h,Hu - \sansP h,H,lu\| H1

a(\Omega ) ,

where in the last inequality, we have used the estimate for the ideal solution. The
second part \| \sansP h,Hu  - \sansP h,H,lu\| H1

a(\Omega ) is the localization error. Our main goal is to
estimate this part of error. For this purpose, we have Theorem 2.3 below.

Theorem 2.3. The following results hold:
1. (Inverse estimate) For any v \in span \{ \psi h,Hi \} i\in I and in each \omega h,Hj , j \in I, we

have the estimate

\| \nabla \cdot (a\nabla v)\| L2(\omega h,H
j ) \leq 

\surd 
amaxC2(d)

h
\| v\| H1

a(\omega 
h,H
j ) ,

where C2(d) is a constant that depends on d only.

D
ow

nl
oa

de
d 

07
/2

8/
22

 to
 1

31
.2

15
.7

0.
17

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

200 YIFAN CHEN AND THOMAS Y. HOU

10-2 10-1

H

10-4

10-3

10-2

E
ne

rg
y 

er
ro

r
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Fig. 7. 2D example, localized solution l = 4. Upper left: \~eh,H,l
1 (a, u); upper right: \~eh,H,l

0 (a, u);

lower left: eh,H,l
1 (a, u); lower right: eh,H,l

0 (a, u).

2. (Exponential decay) For each i \in I and k \in \BbbN , we have

(2.8) \| \psi h,Hi \| 2H1
a(\Omega \setminus Nk(\omega H

i )) \leq (\beta (h,H))
k \| \psi h,Hi \| 2H1

a(\Omega ),

where

(2.9) \beta (h,H) =
C0(d)

»
amax

amin

\bigl( 
C1(d)\rho 2,d(

H
h ) + C1(d)C2(d)

h
H

\bigr) 
C0(d)

»
amax

amin

\bigl( 
C1(d)\rho 2,d(

H
h ) + C1(d)C2(d)

h
H

\bigr) 
+ 1

.

Here, C0(d) is a universal constant dependent on d, C1(d) is the constant in
Theorem 2.1, while C2(d) is the constant in the inverse estimate.

3. (Norm estimate) Suppose for each i \in I, \phi h,Hi is L1 normalized in the sense

that \| \phi h,Hi \| L1(\omega h,H
i ) = 1; then the following estimate holds:

(2.10) \| \psi h,Hi \| H1
a(\Omega ) \lesssim 

1

\rho 2,d(
H
h )
Hd/2 - 1 .

4. (Localization error per basis function) For each i \in I, it holds that

(2.11)

\| \psi h,Hi  - \psi h,H,li \| H1
a(\Omega )

\lesssim Hd/2 - 1 min

®
(\beta (h,H))

l/2
,

1

\rho 2,d(
H
h )

´
.
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5. (Overall localization error) The following error estimate holds:
(2.12)
\| \sansP h,Hu - \sansP h,H,lu\| H1

a(\Omega )

\lesssim min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\times min

®
ld/2

H
,

1

Hd/2+1\rho 2,d(
H
h )

´
\| u\| L\infty (\Omega ) .

6. (Overall recovery error) Suppose d \leq 3. For the energy recovery error, we
have
(2.13)

eh,H,l1 (a, u) \lesssim 
Å
H\rho 2,d

Å
H

h

ã
+min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\times min

®
ld/2

H
,

1

Hd/2+1\rho 2,d(
H
h )

´ã
\| \scrL u\| L2(\Omega ),

and for the L2 recovery error, we have
(2.14)

eh,H,l0 (a, u) \lesssim 

ÇÅ
H\rho 2,d

Å
H

h

ãã2
+min

ß
1, H\rho 2,d

Å
H

h

ã™
\times min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\times min

®
ld/2

H
,

1

Hd/2+1\rho 2,d(
H
h )

ǻ
\| \scrL u\| L2(\Omega ) .

7. (Overall Galerkin error) Suppose d \leq 3. The energy Galerkin error is upper

bounded by the energy recovery error: \~eh,H,l1 (a, u) \leq eh,H,l1 (a, u). For the L2

Galerkin error, we have
(2.15)

\~eh,H,l0 (a, u) \lesssim 

\Biggl( 
H\rho 2,d

Å
H

h

ã
+min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\times min

®
ld/2

H
,

1

Hd/2+1\rho 2,d(
H
h )

´\Biggr) 2

\| \scrL u\| L2(\Omega ) .

2.4.3. Implications. Before we move to the proof part, let us first discuss the
implications of this theorem. We focus on the localization error in the final estimates.

\bullet Fix an l and the ratio H/h. Due to (2.13) and (2.15), the localization error

parts in eh,H,l1 (a, u), \~eh,H,l1 (a, u), and \~eh,H,l0 (a, u) will blow up as H goes to

0. In contrast, due to (2.14), the localization error in eh,H,l0 (a, u) remains
bounded in this limit. Indeed, it is bounded by

H\rho 2,d

Å
H

h

ã
\times (\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
\times ld/2

H
\| \scrL u\| L2(\Omega )

\leq ld/2 (\beta (h,H))
l/2
Å
\rho 2,d

Å
H

h

ãã2
\| \scrL u\| L2(\Omega ) ,

which does not blow up as H \rightarrow 0. This reveals a different behavior of
eh,H,l0 (a, u) compared to the other three errors, which have been observed in
our experiments. Our analysis explains this phenomenon.
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\bullet For eh,H,l1 (a, u), our analysis shows that there is a competition between the
approximation error of the ideal solution, H\rho 2,d(

H
h ) (we omit \| \scrL u\| L2(\Omega ) for

simplicity), and the localization error

min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\times min

®
ld/2

H
,

1

Hd/2+1\rho 2,d(
H
h )

´
.

Fix an H and l. When d \geq 2, since limh\rightarrow 0 \rho 2,d(
H
h ) = \infty , we have that

as h \rightarrow 0, the approximation error goes to infinity, while the localization
error goes to zero. When d = 1, both parts of the errors remain bounded as
h \rightarrow 0, and thus the competition is less pronounced; this matches what we
have observed in our 1D experiments---the effect of reducing h is not as large
as in our 2D example.
The existence of competition implies that in general, there should be a value of
h that leads to the best error for the fixed H and l. Because the localization
error decreases as l increases, this optimal value would also increase for a
larger l, as observed in our experiments.
The above phenomenon also applies to other errors, i.e., the recover L2 error
eh,H,l0 (a, u) and the Galerkin errors \~eh,H,l1 (a, u) and \~eh,H,l0 (a, u).

\bullet If we fix H/h, and want to have an overall error of O(H) (for energy error)
or O(H2) (for the L2 error), then our estimates show that

l = O

Å
logH

log \beta (h,H)

ã
suffices for this goal. Note that \beta (h,H) can be treated as a constant (less
than 1) whenH/h is fixed, so generally l = O(log(1/H)) is enough. Moreover,
our experiments demonstrate that we could do much better in practice---a
constant value of l = 2 or 4 behaves well for a wide range of H and h.

The three points above explain the questions that we raised at the beginning of
subsection 2.4.

Remark 2.4. Though the presence of ``min"" in many places of our estimates com-
plicates the formula, they play critical roles in the above explanations, since we need
to choose the correct term inside the ``min"" to get the desired conclusion.

Remark 2.5. In Theorem 2.3, the basis function \psi h,Hi has an exponential decay
property; see (2.8). The localization error should heavily depend on the decay rate, so
obtaining a tight bound of this rate is important here. In our analysis, we get the rate
\beta (h,H), which contains a term \rho 2,d(H/h) that increases as h decreases (when d \geq 2),
and a term h/H that decreases while h decreases. The two mixed components may
suggest a nonmonotone behavior of the decay rate. Moreover, when h \rightarrow 0, we get
\beta (h,H) \rightarrow 1, so the decay appears to deteriorate eventually for small h. On the other

hand, it seems intuitive that once h is small, the measurement region \omega h,Hi becomes
more localized, and then the decay shall be amplified. To understand this problem
better, we conduct a numerical experiment as follows. For the coefficient a(x) in

(2.2) and H = 2 - 5, we compute the relative localization error
\| \psi h,H

i  - \psi h,H,l
i \| 2

H1
a(\Omega )

\| \psi h,H
i \| 2

H1
a(\Omega )

for

h = 2 - 5, 2 - 6, . . . , 2 - 10 and l = 0, 1, 2, . . . , 5. The index i is selected so that \omega Hi is
centered in the domain \Omega . The result is shown in Figure 8.

From the figure, we observe that there is indeed a nonmonotone behavior with
respect to h in the relative localization error. Among these choices of h and l, we only
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Fig. 8. Relative localization error per basis function.

see a monotone tendency for l = 0. For other l, the value h that leads to the minimal
relative localization error increases as l increases. For the a(x) and H considered,
we can see h/H = 1/2, 1/4 lead to small errors in general, which also explains that
this choice of h works quite well in our previous experiments. Overall, the above
investigation suggests that our bound on the exponential decay and localization error
can reasonably predict the behavior in practice. The decay is truly subtle regarding
the small parameter h.

Remark 2.6. Our current result does not provide explicit clues on how to choose
h according to l and H to achieve the best accuracy. Nonetheless, our experiments
have shown that usually h/H = 3/4 or 1/2 behaves well, across a wide range of
H = 2 - 8, 2 - 7, . . . , 2 - 2 and l = 2, 4, in the 2D problems. Providing more guidance on
this aspect, either numerically or theoretically, is left as future work.

2.4.4. Proof strategy. The results in Theorem 2.3 are presented progressively.
Our proofs will start from the first and move forward one by one to the seventh. We
summarize the main ideas below, together with their connections to existing results
in the literature. The detailed proof is in subsection 4.1.

1. The inverse estimate is obtained due to a scaling argument---that is why we
have the subsampled scale h here. (Subsection 4.1.1)

2. Based on the inverse estimate and the subsampled Poincar\'e inequality (see
Proposition 2.5 in [5]), we can establish the exponential decay property via a
Caccioppoli type of argument. The logical line of our proof here is similar to
that of the original LOD method (Lemma 3.4 in [23]) and Gamblets (Theorem
3.9 in [26]), while now we need to be careful to make every estimate adaptive
to the small scale parameter h. (Subsection 4.1.2)

3. For the norm estimate, we construct critical examples whose energy norm
leads to a desired upper bound. The critical example here is similar to the one
we used before to prove the optimality of the subsampled Poincar\'e inequality
(see Proposition 2.6 in [5]). This type of profile has also been studied in the
context of semisupervised learning; see Theorem 2 in [24]. (Subsection 4.1.3)
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4. The localization error per basis function is established by combining the ex-
ponential decay estimate and the norm estimate. Our results contain two
parts inside the ``min"" operation. The idea of proving the first part is similar
to that of Lemma 3.4 in [23]. The second part is a direct application of the
norm estimate. Both parts are important. The first part captures the ex-
ponential decay property, while the second part captures the behavior with
respect to small h---when d \geq 2, this estimate implies the localization error
per basis function vanishes as h goes to 0. (Subsection 4.1.4)

5. To move from the localization error per basis function to the overall localiza-
tion error, we also proceed in two directions. The first one follows the idea of
proving Lemma 3.5 in [23], leading to an upper bound of O(ld/2/H), which
remains bounded as h \rightarrow 0. On the other hand, we can use a simple tri-
angle inequality, which yields an estimate of O

\bigl( 
1/
\bigl( 
Hd/2+1\rho 2,d(

H
h )
\bigr) \bigr) 
, which

is worse in the power of H than the first one, but can capture the limit as
h \rightarrow 0, i.e., it vanishes as h \rightarrow 0. The combination of the two leads to the
final estimate (Subsection 4.1.5)

6. It is straightforward to go from overall localization error to the energy recov-
ery error by a triangle inequality. For the L2 recovery error, we can bound
it through the energy error in two ways, with or without using the subsam-
pled Poincar\'e inequality. This leads to a further ``min"" operation in the final
estimate. (Subsection 4.1.6)

7. The energy Galerkin error is upper bounded by the energy recover error
according to the Galerkin orthogonality. The L2 Galerkin error is obtained
by the standard Aubin--Nitsche trick. (Subsection 4.1.7)

3. Small limit regime of subsampled lengthscales. In the last section, we
have made a detailed study of the recovery error and Galerkin error with respect to
h,H, and l. We observe that there is a deterioration of accuracy as h becomes small,
especially for d \geq 2---the benefit of small localization errors by a very small h is
overwhelmed by the curse of induced large approximation errors. Due to this reason,
in our experiments, we choose the ratio h/H to be not too small---we select h/H \geq 1/8
in one dimension and h/H \geq 1/4 in two dimensions. Our theoretical analysis also
collaborates with these observations, as the function \rho 2,d(H/h) that appears in the
error estimate will blow up as h/H \rightarrow 0 for d \geq 2.

Therefore, we are advised not to use a very small h. While this is a practical
suggestion in the problem of numerical upscaling, since we have the freedom of choos-
ing the upscaled variables and thus can avoid this pathological phenomenon, in the
problem of scattered data approximation, we may not have such flexibility due to the
prevalent physical constraints for data measurements. As we often encounter recov-
ery problems in high dimensions with scattered data that possibly have a very small
lengthscale, e.g., pointwise data, it is natural to ask that whether we could get an
accurate recovery even in the h\rightarrow 0 regime. The analysis above implies that this goal
is not achievable in general for the model problem we have considered. Thus, we need
to put stronger assumptions on the function u to be approximated.

Since the degeneracy of accuracy for d \geq 2 can be partially attributed to the
low regularity of the target function u, that is, when d \geq 2, functions in H1(\Omega )
may not have a well-defined pointwise value (according to the Sobolev embedding
theorem [11]), a natural idea is to assume u to be more regular. There has been some
work in which u is assumed to be in W k,2(\Omega ) for some larger k [34]; this assumption
ensures the continuity of the function. Alternatively, one can assume u \in W 1,p(\Omega )
and increase p---when p > d, the degeneracy issue disappears; see [9, 32, 19, 3].
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The above assumptions of better regularity on u, via increasing either k or p,
require to modify the recovery algorithm substantially---in the former, the basis func-
tions are obtained by replacing the H1

a(\Omega ) norm in (1.3) by a high order norm, similar
to the polyharmonic splines and their rough version [30]; in the latter, the recovery
function is obtained by minimizing the W 1,p(\Omega ) norm subject to the observed data.

Here, to stick to the formulation (1.3) and thus the main theme of this paper,
we consider improving the regularity via choosing a singular weight function a(x).
Naturally, in order to make the recovery nondegenerate regarding a vanishing h, we
need to put more importance on the coarse data of a small lengthscale h. Thus,
we could assume the function is ``nearly flat"" around the data location by using a
singular a(x) such that

\int 
\Omega 
a| \nabla u| 2 < \infty ---this guarantees the information content of

coarse data even for very small h. We will make this intuition more quantitative in
this section.

3.1. Numerical experiment. As before, we start with a numerical experiment.
We choose d = 2 and \Omega = [0, 1]2. The ground truth function u is depicted in the upper
left of Figure 9. The coarse scale H = 2 - 2, and suppose for now we collect subsampled
data with lengthscale h = H/2 = 2 - 3; the grid size hg is set to be 2 - 7. In the upper
right of Figure 9, we plot the ideal recovery solution by using a(x) = 1, the subsampled

data [u, \phi h,Hi ], i \in I, and the ideal basis functions \{ \psi h,Hi \} i\in I . We observe that to a
certain extent, the recovery solution can capture the large scale property of u.

Then, we decrease the subsampled lengthscale---we choose h = 2 - 4 \cdot H = 2 - 6.
The recovery solution obtained by solving (1.3) with a(x) = 1 is in the lower left

Fig. 9. Upper left: u(x); upper right: recovery solution, h/H = 1/2 and a(x) = 1; lower
left: recovery solution, h/H = 1/24 and a(x) = 1; lower right: recovery solution, h/H = 1/24 and
a(x) = W (x).
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206 YIFAN CHEN AND THOMAS Y. HOU

Fig. 10. Left: figure of W (x); right: contour of W (x).

of Figure 9. The degeneracy issue becomes apparent---there are many spikes in the
recovery solution, and the locations of these spikes are the data positions. This
confirms our understanding that a small h leads to a degenerate recovery.

Now, we define a weight function as follows. For each local patch \omega Hi , i \in I,

its center is denoted by xi \in \omega Hi . We write XH =
\bigcup I
i=1\{ xHi \} and \sansd (x,XH) is the

Euclidean distance from x to the set XH . The weight function is defined as

(3.1) W (x) =

Å
H

\sansd (x,XH)

ã
log2
Å
1 +

H

\sansd (x,XH)

ã
.

It is singular at the center of our subsampled data; see Figure 10. In the lower right
of Figure 9, we we construct the recovery solution by solving (1.3) with a(x) =W (x).
To avoid numerical instability in the experiment, we use a regularized version of the
singular weight as follows:

(3.2) W (x;hg) =

Å
H

max\{ hg, \sansd (x,XH)\} 

ã
log2
Å
1 +

H

max\{ hg, \sansd (x,XH)\} 

ã
,

where hg is the grid size. From the figure, we observe that the recovery solution ap-
pears much better than the one based on a(x) = 1. It captures most of the large scale
behaviors. Moreover, it is visually smoother---due to the singular weight function, the
impact of the subsampled data does propagate to other points in the domain.

Remark 3.1. The idea of function recovery based on a weight function that puts
more importance around the data regions has been used in semisupervised learning
and image processing [31], through using a weighted graph Laplacian. Recently, the
work [4] proposed a properly weighted Laplacian that attains a well-defined continuous
limit. Our earlier work [5] also discussed a similar weighted discovery. In the next
subsection, we will provide some theoretical analysis of this recovery based on results
in [5], assuming u(x) belongs to a weighted function space.

3.2. Analysis: Weighted inequality. For simplicity, in dimension d \geq 2, we
consider the following class of weight functions:

(3.3) W\gamma ,H(x) =

Å
H

\sansd (x,XH)

ãd - 2+\gamma 

,

where \gamma > 0. Indeed, the additional log term in (3.1) only makes the problem easier,
since it makes the function blow up even faster.
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We use the same notation as in subsection 2.4.1. Then, we have the following
theorem.

Theorem 3.2. Let d \geq 2 and \gamma > 0. Fix an H, and we choose a(x) = W\gamma ,H(x).
Then the following results hold:

1. If \| u\| H1
a(\Omega ) <\infty , then the L2 error of the ideal solution satisfies

(3.4) eh,H,\infty 0 (a, u) \lesssim C(\gamma )H\| u\| H1
a(\Omega ) .

2. If  - \nabla \cdot (a\nabla u) = f \in L2(\Omega ), then the energy error of the ideal solution satisfies

(3.5) eh,H,\infty 1 (a, u) \lesssim C(\gamma )H\| f\| L2(\Omega ) ,

and the L2 error satisfies

(3.6) eh,H,\infty 0 (a, u) \lesssim C(\gamma )H2\| f\| L2(\Omega ) .

Here, C(\gamma ) represents a positive constant that depends on \gamma only and can vary its
value from place to place.

The proof is deferred to subsection 4.2. We observe from the theorem that the
upper bound of the accuracy is independent of the subsampled scale h, which implies
that it is still valid in the small h limit. This is in sharp contrast with the estimates
in Theorem 2.1, where the upper bound blows up as h \rightarrow 0. The key here is the use
of a singular weight function that puts more importance on the subsampled data.

We also use a numerical experiment to demonstrate this theorem. We choose
d = 2, \Omega = [0, 1]2, and H = 2 - 2. The parameter \gamma = 1. We use the mechanism in
subsection 2.1.2 to generate a right-hand side f \in L2(\Omega ), and u solves

 - \nabla \cdot (W\gamma ,H\nabla u) = f .

The grid size is set to be 2 - 8. We choose h = 2 - 3, 2 - 4, . . . , 2 - 7. For each h, we collect
the data [u, \phi h,Hi ], i \in I, and compute the ideal recovery solutions by solving (1.3)
with a(x) = 1 and a(x) = W\gamma ,H(x), respectively. We output the H1

0 (\Omega ) and L2(\Omega )
error of these recovery solutions in Figure 11.

From this figure, we observe that the recovery errors using a(x) = 1 will increase
as h decrease, while those using a(x) =W\gamma ,H(x) lead to a flattened curve with respect
to h. This matches our theoretical predictions. Since in this example the dimension
d = 2, the blow-up rate predicted by Theorem 2.1 is only logarithmic, so even though
h is very small, the overall accuracy is still not too bad.
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Fig. 11. The H1
0 (\Omega ) and L2(\Omega ) errors for different h, using constant a(x) or singular weighted

a(x). Left: H1
0 (\Omega ) error; right: L2(\Omega ) error.
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4. Proofs. This section provides all the proofs in this paper.

4.1. Proof of Theorem 2.3. There are seven subresults in this theorem. We
prove them one by one.

4.1.1. Inverse estimate. In the domain \omega h,Hj , we have \nabla \cdot (a\nabla v) = ci\phi 
h,H
i for

some ci \in \BbbR . Let v = v1 + v2 such that

\nabla \cdot (a\nabla v1) = \nabla \cdot (a\nabla v) = ci\phi 
h,H
i in \omega h,Hj , v1| \partial \omega h,H

j
= 0 ,

and for the second part,

\nabla \cdot (a\nabla v2) = 0 in \omega h,Hj , v2| \partial \omega h,H
j

= v| \partial \omega h,H
j

.

We have the orthogonality
\int 
\omega h,H

j
a\nabla v1 \cdot \nabla v2 = 0. Thus, it holds that

(4.1) \| v\| H1
a(\omega 

h,H
j ) \geq \| v1\| H1

a(\omega 
h,H
j ) .

For v1, we use the elliptic estimate:

\| v1\| H1
a(\omega 

h,H
j ) \geq 

1
\surd 
amax

\| \nabla \cdot (a\nabla v1)\| H - 1(\omega h,H
j ) =

1
\surd 
amax

\| cj\phi h,Hj \| H - 1(\omega h,H
j ) .

By a scaling argument, we obtain

\| \phi h,Hj \| L2(\omega h,H
j ) \leq 

C2(d)

h
\| \phi h,Hj \| H - 1(\omega h,H

j )

for a constant C2(d) dependent on d. Then, it follows that
(4.2)

\| v1\| H1
a(\omega 

h,H
j ) \geq 

h
\surd 
amaxC2(d)

\| cj\phi h,Hj \| L2(\omega h,H
j ) =

h
\surd 
amaxC2(d)

\| \nabla \cdot (a\nabla v)\| L2(\omega h,H
j ) .

Combining (4.1) and (4.2), we arrive at the desired result:

\| \nabla \cdot (a\nabla v)\| L2(\omega h,H
j ) \leq 

\surd 
amaxC2(d)

h
\| v\| H1

a(\omega 
h,H
j ) .

4.1.2. Exponential decay. Fix i \in I. For ease of notation, we will write \psi h,Hi
by \psi , and Nk(\omega Hi ) by Sk in this proof.

First, we choose a cut-off function \eta with value 0 in Sk and value 1 in Sck+1 such
that it satisfies \eta \geq 0 and \| \nabla \eta \| \infty \leq C0(d)/H for some universal constant C0(d)
dependent on d. An example of \eta could be

\eta (x) =
dist(x, Sk)

dist(x, Sk) + dist(x, Sck+1)
.

Then, we obtain the relation

(4.3) \| \psi \| 2H1
a(\Omega \setminus Sk+1)

=

\int 
\Omega \setminus Sk+1

\nabla \psi \cdot a\nabla \psi \leq 
\int 
\Omega 

\eta \nabla \psi \cdot a\nabla \psi .
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Using some algebra, we have

\eta \nabla \psi \cdot a\nabla \psi = \nabla (\eta \psi ) \cdot a\nabla \psi  - (\nabla \eta ) \cdot a\psi \nabla \psi 
= \nabla \cdot (\eta \psi a\nabla \psi ) - \eta \psi \nabla \cdot (a\nabla \psi ) - (\nabla \eta ) \cdot a\psi \nabla \psi .

Integrating the above formula in \Omega and applying the divergence theorem yields

(4.4)

\int 
\Omega 

\eta \nabla \psi \cdot a\nabla \psi \leq 
\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

 - \eta \psi \nabla \cdot (a\nabla \psi )
\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int 

\Omega 

(\nabla \eta ) \cdot \psi a\nabla \psi 
\bigm| \bigm| \bigm| \bigm| .

For the first term in (4.4), we have

(4.5)

\int 
\Omega 

 - \eta \psi \nabla \cdot (a\nabla \psi ) (a)
=

\sum 
\omega H

j \subset Sk+1\setminus Sk

\int 
\omega H

j

 - \eta \psi \nabla \cdot (a\nabla \psi )

(b)
=

\sum 
\omega H

j \subset Sk+1\setminus Sk

\int 
\omega h,H

j

 - \eta \psi \nabla \cdot (a\nabla \psi )

(c)
=

\sum 
\omega H

j \subset Sk+1\setminus Sk

\int 
\omega h,H

j

 - (\eta  - \eta (xj))\psi \nabla \cdot (a\nabla \psi )

(d)

\leq 
\sum 

\omega H
j \subset Sk+1\setminus Sk

C0(d)h

H
\| \psi \| L2(\omega h,H

j )\| \nabla \cdot (a\nabla \psi )\| L2(\omega h,H
j ) ,

where
\bullet in (a), we have used the fact that \eta is supported in \Omega \setminus Sk; moreover, in

\Omega \setminus Sk+1, \eta = 1 and \nabla \cdot (a\nabla \psi ) =
\sum 
j cj\phi 

h,H
j for some cj \in \BbbR , and we have

relied on the property
\int 
\omega H

j
\phi h,Hj \psi = 0 for \omega Hj \in \Omega \setminus Sk+1;

\bullet in (b), we have used the fact that \phi h,Hj is supported in \omega h,Hj ;

\bullet in (c), we have relied on the fact
\int 
\omega h,H

j
\phi h,Hj \psi = 0 for \omega h,Hj \in \Omega \setminus Sk so we can

subtract \eta by the constant \eta (xj) for xj being the center of \omega h,Hj ;
\bullet in (d) we have used the gradient bound on \eta and the Cauchy--Schwarz in-

equality.
For the term \| \nabla \cdot (a\nabla \psi )\| L2(\omega h,H

j ), we apply the inverse estimate established earlier,

which leads to

(4.5) \leq C0(d)h

H

\surd 
amaxC2(d)

h

\sum 
\omega H

j \subset Sk+1\setminus Sk

\| \psi \| L2(\omega h,H
j )\| \psi \| H1

a(\omega 
h,H
j )

(e)

\leq C0(d)h

H

\surd 
amaxC2(d)C1(d)

\sum 
\omega H

j \subset Sk+1\setminus Sk

\| \nabla \psi \| L2(\omega h,H
j )\| \psi \| H1

a(\omega 
h,H
j )

(f)

\leq 
C0(d)C1(d)C2(d)h

\surd 
amax

H
\| \nabla \psi \| L2(Sk+1\setminus Sk)\| \psi \| H1

a(Sk+1\setminus Sk)

\leq C0(d)C1(d)C2(d)h

H

…
amax

amin
\| \psi \| 2H1

a(Sk+1\cap Sc
k)
,

where in (e), we have used the Poincar\'e inequality, based on the fact
\int 
\omega h,H

j
\psi \phi h,Hj = 0.

The constant in the Poincar\'e inequality can be chosen the same as the one in Theorem
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210 YIFAN CHEN AND THOMAS Y. HOU

2.1, i.e., C1(d); for details see Proposition 2.5 and Theorem 3.3 in [5]. Step (f) is by
the Cauchy--Schwarz inequality.

For the second term in (4.4), we have\int 
\Omega 

(\nabla \eta ) \cdot \psi a\nabla \psi =

\int 
Sk+1\setminus Sk

(\nabla \eta ) \cdot \psi a\nabla \psi 

=
\sum 

\omega H
j \subset Sk+1\setminus Sk

\int 
\omega H

j

(\nabla \eta ) \cdot \psi a\nabla \psi 

\leq 
C0(d)

\surd 
amax

H

\sum 
\omega H

j \subset Sk+1\setminus Sk

\| \psi \| L2(\omega H
j )\| \psi \| H1

a(\omega 
H
j )

(g)

\leq 
C0(d)

\surd 
amax

H

\sum 
\omega H

j \subset Sk+1\setminus Sk

H\rho 2,d

Å
H

h

ã
C1(d)\| \nabla \psi \| L2(\omega H

j )\| \psi \| H1
a(\omega 

H
j )

\leq C0(d)C1(d)\rho 2,d

Å
H

h

ã…
amax

amin
\| \psi \| 2H1

a(Sk+1\setminus Sk)
,

where in step (g), we have used the subsampled Poincar\'e inequality (Proposition 2.5

in [5]) and the fact
\int 
\omega H

j
\phi h,Hj \psi = 0.

Combining the estimates of the two terms and (4.3), we get

\| \psi \| 2H1
a(\Omega \setminus Sk+1)

\leq C0(d)

Å
C1(d)\rho 2,d

Å
H

h

ã
+ C1(d)C2(d)

h

H

ã…
amax

amin
\| \psi \| 2H1

a(Sk+1\setminus Sk)
.

Writing \| \psi \| 2H1
a(Sk+1\setminus Sk)

= \| \psi \| 2H1
a(\Omega \setminus Sk)

 - \| \psi \| 2H1
a(\Omega \setminus Sk+1)

, we then arrive at

\| \psi \| 2H1
a(\Omega \setminus Sk+1)

\leq \beta (h,H)\| \psi \| 2H1
a(\Omega \setminus Sk)

\leq \cdot \cdot \cdot \leq (\beta (h,H))
k+1 \| \psi \| 2H1

a(\Omega ) ,

where

\beta (h,H) =
C0(d)

»
amax

amin

\bigl( 
C1(d)\rho 2,d(

H
h ) + C1(d)C2(d)

h
H

\bigr) 
C0(d)

»
amax

amin

\bigl( 
C1(d)\rho 2,d(

H
h ) + C1(d)C2(d)

h
H

\bigr) 
+ 1

.

4.1.3. Norm estimate. Let us recall the definition of \psi h,Hi and \psi h,H,li for l = 0:

(4.6)
\psi h,Hi = argmin\psi \in H1

0 (\Omega ) \| \psi \| 2H1
a(\Omega )

subject to [\psi , \phi h,Hj ] = \delta i,j for j \in I,

(4.7)
\psi h,H,0i = argmin\psi \in H1

0 (\omega 
H
i ) \| \psi \| 2H1

a(\omega 
H
i )

subject to [\psi , \phi h,Hi ] = 1 .

Clearly, \| \psi h,Hi \| H1
a(\Omega ) \leq \| \psi h,H,0i \| H1

a(\omega 
H
i ) so it suffices to estimate the latter. Without

loss of generality, we can assume \omega Hi is centered at 0, so that \omega h,Hi = [ - h/2, h/2]d
and \omega Hi = [ - H/2, H/2]d.

First, we choose v \in H1
0 (\omega 

H
i ) to be a cut-off function that equals 1 in [ - H/4, H/4]d

and equals 0 outside \omega Hi . Moreover, v \geq 0 and \| \nabla v\| \infty \lesssim 1/H. Then, we have

[v, \phi h,Hi ] =
1

hd

\int 
[ - h/2,h/2]d

v \simeq 1
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and

\| v\| 2H1
a(\omega 

H
i ) \lesssim 

\int 
\omega H

i

| \nabla v| 2 \lesssim Hd \cdot 1

H2
\lesssim Hd - 2 .

Define w = v/[v, \phi h,Hi ]; then w satisfies the constraint in (4.7), and \| w\| H1
a(\omega 

H
i ) \lesssim 

Hd/2 - 1, which leads to \| \psi h,H,0i \| H1
a(\omega 

H
i ) \lesssim Hd/2 - 1. Thus, the case d = 1 is proved.

Second, we deal with the case d = 2. Suppose h \leq H/2, and we choose

v(x) =

\left\{         
1 - 

log
Ä
1 + 4| x| 

h

ä
log
\bigl( 
1 + H

h

\bigr) , | x| \leq H

4
,

0, | x| > H

4
.

We have v(x) \leq 1, and for | x| \leq h/4, v(x) \geq 1 - log(2)
log(3) \gtrsim 1. Therefore, it holds that

[v, \phi h,Hi ] =
1

hd

\int 
[ - h/2,h/2]d

v \simeq 1 .

Then, we calculate the energy norm of v as follows:

\| v\| 2H1
a(\omega 

H
i ) \lesssim 

1

log2(1 + H
h )

\int 
B(0,H/4)

Å
1

h+ 4| x| 

ã2
dx

\lesssim 
1

log2(1 + H
h )

\int H/4

0

r

(4r + h)2
dr .

We write
\int H/4
0

r
(4r+h)2 dr =

\int h/2
0

r
(4r+h)2 dr+

\int H/4
h/2

r
(4r+h)2 dr \lesssim 

\int h/2
0

1
h dr+

\int H/4
h/2

1
r dr

\lesssim log
\bigl( 
1 + H

h

\bigr) 
. Thus, it follows that

\| v\| H1
a(\omega 

H
i ) \lesssim 

Ç
1

log
\bigl( 
1 + H

h

\bigr) å1/2

=
1

\rho 2,d(
H
h )

.

This concludes the proof for the case h \leq H/2. When h > H/2, we use the result in
the first step \| v\| H1

a(\omega 
H
i ) \lesssim Hd/2 - 1 \lesssim 1 \lesssim 1

\rho 2,d(
H
h )

. The case d = 2 is proved.

Finally, when d \geq 3, we choose v in a similar fashion as in the first step, such
that v = 1 in [ - h/4, h/4]d and v = 1 outside [ - h/2, h/2]d. Moreover, v \geq 0 and
\| \nabla v\| \infty \lesssim 1/h. Following the same argument in the first step, we will arrive at

\| \psi h,H,0i \| H1
a(\omega 

H
i ) \lesssim hd/2 - 1 =

1

\rho 2,d(
H
h )
Hd/2 - 1 ,

which completes the proof.

4.1.4. Localization per basis function. We define a space

V h,H := \{ v \in H1
0 (\Omega ) : [v, \phi 

h,H
j ] = 0, j \in I\} .

Then, by the optimality of \psi h,Hi and \psi h,H,li in their corresponding optimization prob-

lems, we have \langle \psi h,Hi , v\rangle a = 0 for any v \in V h,H and \langle \psi h,H,li , v\rangle a = 0 for any v \in 
V h,H

\bigcap 
H1

0 (N
l(\omega Hi )). Thus, \langle \psi h,Hi  - \psi h,H,li , v\rangle a = 0 for any v \in V h,H

\bigcap 
H1

0 (N
l(\omega Hi )).
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212 YIFAN CHEN AND THOMAS Y. HOU

Then, we define \chi h,Hi = \psi h,Hi  - \psi h,H,0i and \chi h,H,li = \psi h,H,li  - \psi h,H,0i . We have

\psi h,Hi  - \psi h,H,li = \chi h,Hi  - \chi h,H,li and \chi h,H,li \in V h,H
\bigcap 
H1

0 (N
l(\omega Hi )).

Based on the above fact and the orthogonality, we get

(4.8)
\| \psi h,Hi  - \psi h,H,li \| 2H1

a(\Omega ) = \| \chi h,Hi  - \chi h,H,li \| 2H1
a(\Omega )

\leq \| \chi h,Hi  - v\| 2H1
a(\Omega )

for any v \in V h,H
\bigcap 
H1

0 (N
l(\omega Hi )). We take

v = \eta \chi h,Hi  - \sansP h,H,0(\eta \chi h,Hi ) ,

where \eta is a cut-off function that equals 1 in Nl - 1(\omega Hi ) and equals 0 outside Nl(\omega Hi ).
Moreover, \eta \geq 0 and \| \nabla \eta \| \infty \lesssim 1/H. This v belongs to V h,H

\bigcap 
H1

0 (N
l(\omega Hi )) because

both \eta \chi h,Hi and \sansP h,H,0(\eta \chi h,Hi ) belong to H1
0 (N

l(\omega Hi )), and by definition, [\eta \chi h,Hi  - 
\sansP h,H,0(\eta \chi h,Hi ), \phi h,Hj ] = 0, j \in I. Then, it follows that

(4.9)
\| \chi h,Hi  - v\| 2H1

a(\Omega ) = \| (1 - \eta )\chi h,Hi  - \sansP h,H,0
Ä
\eta \chi h,Hi

ä
\| 2H1

a(\Omega )

= \| (1 - \eta )\chi h,Hi  - \sansP h,H,0
Ä
(1 - \eta )\chi h,Hi

ä
\| 2H1

a(\Omega ) ,

where we have used the fact \sansP h,H,0\chi h,Hi = 0. To move further, we need to use the
following lemma.

Lemma 4.1. The operator \sansP h,H,0 is stable under the norm \| \cdot \| H1
a(\Omega ). More pre-

cisely, we have that for any w \in H1
0 (\Omega ) it holds that

\| \sansP h,H,0w\| H1
a(\Omega ) \lesssim \| w\| H1

a(\Omega ) .

Proof of Lemma 4.1. By definition, \psi h,H,0i is supported in \omega Hi , and \sansP h,H,0w =\sum 
i\in I [w, \phi 

h,H
i ]\psi h,H,0i . Thus, we have

(4.10)

\| w  - \sansP h,H,0w\| 2H1
a(\Omega ) =

\sum 
i\in I

\int 
\omega H

i

a
\bigm| \bigm| \bigm| \nabla (w  - [w, \phi h,Hi ]\psi h,H,0i )

\bigm| \bigm| \bigm| 2
\leq 
\sum 
i\in I

\int 
\omega H

i

a | \nabla w| 2 = \| w\| 2H1
a(\Omega ) ,

where we have used the fact that in each \omega Hi , it holds that\int 
\omega H

i

a\nabla (w  - [w, \phi h,Hi ]\psi h,H,0i ) \cdot \nabla \psi h,H,0i = 0 ,

according to the definition of \psi h,H,0i . Equation (4.10) implies \sansP h,H,0 is stable.

Using Lemma 4.1, we proceed as follows:

(4.11)

(4.9) \lesssim \| (1 - \eta )\chi h,Hi \| 2H1
a(\Omega )

=

\int 
Sl\setminus Sl - 1

a2| (\nabla \eta )\chi h,Hi | 2 +
\int 
Sl\setminus Sl - 1

a2| \eta \nabla \chi h,Hi | + \| \chi h,Hi \| 2H1
a(\Omega \setminus Sl)

,
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where we have used the notation Sl = Nl(\omega Hi ). For the first term in (4.11), we have

(4.12)

\int 
Sl\setminus Sl - 1

a2| (\nabla \eta )\chi h,Hi | 2 =
\sum 

\omega H
j \subset Sl\setminus Sl - 1

\int 
\omega H

j

a2| (\nabla \eta )\chi h,Hi | 2

\lesssim 
\sum 

\omega H
j \subset Sl\setminus Sl - 1

1

H2
\cdot H2

Å
\rho 2,d(

H

h
)

ã2
\| \chi h,Hi \| 2H1

a(\omega 
H
j )

=

Å
\rho 2,d(

H

h
)

ã2
\| \chi h,Hi \| 2H1

a(Sl\setminus Sl - 1)
.

In the above inequality, we have used the gradient bound of \eta , the subsampled Poin-
care inequality (due to the property [\chi h,Hi , \phi h,Hj ] = 0). Therefore, we obtain

(4.13)

(4.11) \lesssim 

Ç
1 +

Å
\rho 2,d

Å
H

h

ãã2å
\| \chi h,Hi \| 2H1

a(Sl\setminus Sl - 1)
+ \| \chi h,Hi \| 2H1

a(\Omega \setminus Sl)

\lesssim 

Ç
1 +

Å
\rho 2,d

Å
H

h

ãã2å
\| \chi h,Hi \| 2H1

a(\Omega \setminus Sl - 1)
.

Using the fact \| \chi h,Hi \| 2H1
a(\Omega \setminus Sl - 1)

= \| \psi h,Hi \| 2H1
a(\Omega \setminus Sl - 1)

, the exponential decay property,

and the norm estimate of \psi h,Hi , we finally obtain

\| \psi h,Hi  - \psi h,H,li \| H1
a(\Omega ) \lesssim Hd/2 - 1 (\beta (h,H))

l/2

Ç
1 +

1

\rho 2,d(
H
h )

å
.

On the other hand, we have

\| \psi h,Hi  - \psi h,H,li \| H1
a(\Omega ) \leq \| \psi h,Hi \| H1

a(\Omega ) + \| \psi h,H,li \| H1
a(\Omega ) \lesssim Hd/2 - 1 1

\rho 2,d(
H
h )

,

due to the norm estimate established before. Thus, finally we obtain

\| \psi h,Hi  - \psi h,H,li \| H1
a(\Omega ) \lesssim Hd/2 - 1 \cdot min

®
(\beta (h,H))

l/2

Ç
1 +

1

\rho 2,d(
H
h )

å
,

1

\rho 2,d(
H
h )

´
.

Note that 1 \leq 1+ 1
\rho 2,d(

H
h )

\leq 1+ 1
\rho 2,d(1)

; we could further simplify the upper bound by

\| \psi h,Hi  - \psi h,H,li \| H1
a(\Omega ) \lesssim Hd/2 - 1 \cdot min

®
(\beta (h,H))

l/2
,

1

\rho 2,d(
H
h )

´
.

4.1.5. Overall localization error. Let w = \sansP h,Hu - \sansP h,H,lu; then

(4.14) \| w\| 2H1
a(\Omega ) =

\sum 
i\in I

[u, \phi h,Hi ]
¨
w,\psi h,Hi  - \psi h,H,li

∂
a
.

For each i, to deal with the term \langle w,\psi h,Hi  - \psi h,H,li \rangle a, we introduce a cut-off function \eta 
that equals 0 in Nl(\omega Hi ) and equals 1 in \Omega \setminus Nl+1(\omega Hi ); moreover, \eta \geq 0 and \| \nabla \eta \| \infty \lesssim 
1/H. We define

v =
\sum 

\omega H
j \subset \Omega \setminus Nl(\omega H

i )

[\eta w, \phi h,Hj ]\psi h,H,0j \in H1
0 (\Omega \setminus Nl(\omega Hi )) .
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Then \eta w  - v \in V h,H
\bigcap 
H1

0 (\Omega \setminus Nl(\omega Hi )). Thus, we have \langle \eta w  - v, \psi h,Hi  - \psi h,H,li \rangle = 0

because \eta w - v has a different support with that of \psi h,H,li , and \langle \psi h,Hi , v\rangle a = 0 for any
v \in V h,H ; see the first paragraph in subsection 4.1.4. Therefore, we get

(4.15)

¨
w,\psi h,Hi  - \psi h,H,li

∂
a

=
¨
w  - \eta w + v, \psi h,Hi  - \psi h,H,li

∂
a

\leq 
Ä
\| (1 - \eta )w\| H1

a(N
l(\omega H

i )) + \| v\| H1
a(N

l+1(\omega H
i )\setminus Nl(\omega H

i ))

ä
\| \psi h,Hi  - \psi h,H,li \| H1

a(\Omega ) ,

where we have used the fact that v is supported in Nl+1(\omega Hi )\setminus Nl(\omega Hi ). Then, by con-
struction of v, we have \| v\| H1

a(N
l+1(\omega H

i )\setminus Nl(\omega H
i )) \lesssim \| \eta w\| H1

a(N
l+1(\omega H

i )\setminus Nl(\omega H
i )); the proof

of this property is similar to that of Lemma 4.1. Now, by using the fact [w, \phi h,Hj ] = 0
and the subsampled Poincar\'e inequality, we obtain

\| (1 - \eta )w\| H1
a(N

l(\omega H
i )) + \| \eta w\| H1

a(N
l+1(\omega H

i )\setminus Nl(\omega H
i )) \lesssim \rho 2,d

Å
H

h

ã
\| w\| H1

a(N
l+1(\omega H

i )) .

Therefore, \langle w,\psi h,Hi  - \psi h,H,li \rangle a \lesssim \rho 2,d(
H
h )\| w\| H1

a(N
l+1(\omega H

i ))\| \psi 
h,H
i  - \psi h,H,li \| H1

a(\Omega ). Then

combining this estimate with (4.14), we arrive at
(4.16)

\| w\| 2H1
a(\Omega ) \lesssim \rho 2,d

Å
H

h

ã\sum 
i\in I

[u, \phi h,Hi ]\| w\| H1
a(N

l+1(\omega H
i ))\| \psi 

h,H
i  - \psi h,H,li \| H1

a(\Omega )

\lesssim \rho 2,d

Å
H

h

ã
\| u\| L\infty (\Omega )l

d/2\| w\| H1
a(\Omega )

\Biggl( \sum 
i\in I

\| \psi h,Hi  - \psi h,H,li \| 2H1
a(\Omega )

\Biggr) 1/2

,

where the last step is by the Cauchy--Schwarz inequality. Combining the above esti-
mate with the result in the last subsection (notice that the cardinality of I is 1/Hd),
we get

(4.17) \| w\| H1
a(\Omega ) \lesssim min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\cdot l
d/2

H
\| u\| L\infty (\Omega ) .

On the other hand, we can also bound

(4.18)

\| w\| H1
a(\Omega ) \leq 

\sum 
i\in I

| [u, \phi h,Hi ]| \cdot \| \psi h,Hi  - \psi h,H,li \| H1
a(\Omega )

\lesssim \| u\| L\infty (\Omega )H
 - d \cdot Hd/2 - 1 \cdot min

®
(\beta (h,H))

l/2
,

1

\rho 2,d(
H
h )

´
\lesssim min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\cdot 1

Hd/2+1\rho 2,d(
H
h )

\| u\| L\infty (\Omega ) .

Therefore, we can write
(4.19)

\| w\| H1
a(\Omega ) \lesssim min

ß
(\beta (h,H))

l/2
\rho 2,d

Å
H

h

ã
, 1

™
\cdot min

®
ld/2

H
,

1

Hd/2+1\rho 2,d(
H
h )

´
\| u\| L\infty (\Omega ) .

4.1.6. Overall recovery error. When d \leq 3, we have \| u\| L\infty (\Omega ) \lesssim \| \scrL u\| L2(\Omega );
for details see Theorems 8.22 and 8.29 in [13]. Combining the estimates in (2.7) and
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(2.12) leads to the estimate of the energy recovery error. For the L2 recovery error,
similar to (2.7), we have

(4.20) eh,H,l0 (a, u) \lesssim 
Å
H\rho 2,d

Å
H

h

ãã2
\| \scrL u\| L2(\Omega ) + \| \sansP h,Hu - \sansP h,H,lu\| L2(\Omega ) .

The second term \| \sansP h,Hu - \sansP h,H,lu\| L2(\Omega ) is the L
2 localization error. We can simply

bound it by

(4.21) \| \sansP h,Hu - \sansP h,H,lu\| L2(\Omega ) \leq \| \sansP h,Hu - \sansP h,H,lu\| H1
a(\Omega ) .

On the other hand, notice that since [\sansP h,Hu - \sansP h,H,lu, \phi h,Hi ] = 0 for any i \in I, we can
use the subsampled Poincar\'e inequality so that

(4.22)

\| \sansP h,Hu - \sansP h,H,lu\| 2L2(\Omega ) =
\sum 
i\in I

\int 
\omega H

i

| \sansP h,Hu - \sansP h,H,lu| 2

\lesssim 
Å
H\rho 2,d

Å
H

h

ãã2 \int 
\omega H

i

a| \nabla (\sansP h,Hu - \sansP h,H,lu)| 2

=

Å
H\rho 2,d

Å
H

h

ãã2
\| \sansP h,Hu - \sansP h,H,lu\| 2H1

a(\Omega ) .

Therefore, we obtain

(4.23) \| \sansP h,Hu - \sansP h,H,lu\| L2(\Omega ) \leq min

ß
1, H\rho 2,d

Å
H

h

ã™
\| \sansP h,Hu - \sansP h,H,lu\| H1

a(\Omega ) .

Using the estimate of the energy error, we arrive at the final estimate.

4.1.7. Overall Galerkin error. The estimate for the energy Galerkin error is
straightforward due to the Galerkin orthogonality. The L2 error is estimated using
the standard Aubin--Nitsche trick in finite element theory, which leads to square of
the energy error. This completes the proof.

4.2. Proof of Theorem 3.2. We start with the first case, i.e., \| u\| H1
a(\Omega ) < \infty .

By definition,

eh,H,\infty 0 (a, u) = \| u - \sansP h,Hu\| L2(\Omega ) .

We have the relation [u  - \sansP h,Hu, \phi h,Hj ] = 0 for any j \in I. Thus, using the weighted
Poincar\'e inequality in [5] (Theorem 4.3 and Example 1), we can estimate the error as
follows:

(4.24)

\| u - \sansP h,Hu\| 2L2(\Omega ) =
\sum 
i\in I

\| u - \sansP h,Hu\| 2L2(\omega H
i )

\lesssim C(\gamma )2H2
\sum 
i\in I

\| u - \sansP h,Hu\| 2H1
a(\omega 

H
i )

\lesssim C(\gamma )2H2\| u\| 2H1
a(\Omega ) ,

where in the last step, we have used the fact that \| u - \sansP h,Hu\| H1
a(\Omega ) \leq \| u\| H1

a(\Omega ) due
to the energy orthogonality. The first case is proved.
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For the second case, by energy orthogonality of the recovery, we get

(4.25) eh,H,\infty 1 (a, u) \leq \| u - v\| H1
a(\Omega )

for any v \in span \{ \psi h,Hi \} i\in I . We can write v = \scrL  - 1(
\sum 
i\in I ci\phi 

h,H
i ) for some ci. Then,

it holds that

(4.26)

\| u - v\| 2H1
a(\Omega ) = [u - v,\scrL (u - v)]

= [u - v, f  - 
\sum 
i\in I

ci\phi 
h,H
i ]

=
\sum 
i\in I

\int 
\omega H

i

(u - v)(f  - ci\phi 
h,H
i ) .

We choose ci =
\int 
\omega H

i
f , so that

(4.27)

\sum 
i\in I

\int 
\omega H

i

(u - v)(f  - ci\phi 
h,H
i ) =

\sum 
i\in I

\int 
\omega H

i

Ç
u - v  - 

\int 
\omega H

i

(u - v)\phi h,Hi

å
f

\lesssim C(\gamma )
\sum 
i\in I

H\| u - v\| H1
a(\omega 

H
i )\| f\| L2(\omega H

i )

\leq C(\gamma )H\| u - v\| H1
a(\Omega )\| f\| L2(\Omega ) ,

where in the second inequality, we use the Cauchy--Schwarz inequality and the weighted
Poincar\'e inequality (Theorem 4.3 and Example 1 in [5]). Thus, finally we get \| u  - 
v\| H1

a(\Omega ) \lesssim C(\gamma )H\| f\| L2(\Omega ), which implies the desired energy error estimate. The L2

error estimate is obtained by using the standard Aubin--Nitsche trick in the finite
element theory.

5. Concluding remarks. We summarize, discuss, and conclude this paper in
this section.

5.1. Summary. In this paper, we performed a detailed study of a specific ap-
proach that connects the problem of numerical upscaling and function approximation,
in the context that the target function is a solution to some multiscale elliptic PDEs
with rough coefficients. Our main focus is on a subsampled lengthscale that appears
in the coarse data of both problems. We investigated, both numerically and theoreti-
cally, the effect of h on the recovery errors (for function approximation) and Galerkin
errors (for numerical upscaling), given no computational constraints (ideal solution)
or limited computational budgets (localized solution with a finite l), and given differ-
ent regularity assumptions on the target function (a(x) \in L\infty (\Omega ) or a singular a(x)).
Our results imply that

\bullet there is a trade-off between approximation errors (of ideal solutions) and
localization errors (due to finite l) regarding the subsampled lengthscale h,
in addition to the oversampling parameter l;

\bullet due to the finite l caused by our limited computational budget, the Galerkin
solution and recovery solution are different in general; the former behaves
better in the energy accuracy, while the latter stands out in the L2 accuracy;

\bullet when the target function is ``nearly flat"" around the data locations, the sub-
sampled data with a very small h can still contain much coarse scale informa-
tion. Thus, we would recommend taking our measurements there as a first
choice.
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The more quantitative descriptions of these main results are established by our nu-
merical experiments and analytic studies based on tools such as the finite element
theory, the subsampled Poincar\'e inequality, and weighted inequalities.

5.2. Discussions. There could be multiple future directions:
\bullet A better understanding of the trade-off regarding h and l: how to choose

optimal l and h adaptively with respect to u or f . Our current results do not
address this question fully.

\bullet Other localization strategies: our localization in subsection 1.3 follows from
that in [23, 26], and there are other possibilities, for example, the one in [15]
or that in [18], which lead to error estimates that do not blow up as H \rightarrow 0.
It is of interest to understand how the subsampled lengthscale influences the
accuracy in that context.

\bullet Other measurement functions: as we mentioned earlier in subsection 1.2,
the choice of \phi h,Hi to be indicator functions in subsampled cubes is only for
simplicity of analysis. Thus, results in this paper could be generalized to
other types of subsampled measurement functions, for example, subsampled
finite element tent functions.

\bullet Generalization to high order models: the approach in subsection 1.1.3 applies
to a general operator \scrL that can be high order elliptic operators. This also
connects to our discussion in subsection 3 regarding a high order model to
avoid the degeneracy issues. It is of interest to study the effect of h, l and
also the order of the operator \scrL simultaneously on the recovery and Galerkin
errors.

\bullet Coupling of two problems: we have considered a common approach that
connects two class of problems. A natural question is about a hybrid model:
suppose we have the domain \Omega split into two smaller domains \Omega 1 and \Omega 2.
In \Omega 1, we have a multiscale PDE \scrL u = f with known f , and in \Omega 2 we have
some subsampled data [u, \phi i], i \in I. How shall we take advantage of the PDE
model in \Omega 1 and the measured data in \Omega 2 to recover an accurate u? This can
be a very fundamental problem in combining physics and data science.

5.3. Conclusion. Overall, we have explored the connection between numerical
upscaling for multiscale PDEs and scattered data approximation for heterogeneous
functions, focusing on the roles of a subsampled lengthscale h and the localization
parameter l. We believe it sheds light on the interplay of the lengthscale of coarse
data, the computational costs, the regularity of the target function, and the accuracy
of approximations and numerical simulations.
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